This paper develops a framework for inferring common Markov-switching components in a panel data set with large cross-section and time-series dimensions. We apply the framework to studying similarities and differences across U.S. states in the timing of business cycles. We hypothesize that there exists a small number of cluster designations, with individual states in a given cluster sharing certain business cycle characteristics. We find that although oil-producing and agricultural states can sometimes experience a separate recession from the rest of the United States, for the most part, differences across states appear to be a matter of timing, with some states entering recession or recovering before others.