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Abstract

We introduce an irregular network structure into a model of frictional, on-the-job search

in which workers find jobs through their network connections or directly from firms. We show

that jobs found through network search have wages that stochastically dominate those found

through direct contact. Because we consider irregular networks, heterogeneity in the worker’s

position within the network leads to heterogeneity in wage and employment dynamics: better-

connected workers climb the job ladder faster and do not fall off it as far. These workers

also pass along higher-quality referrals, which benefit their connections. Despite this rich

heterogeneity from the network structure, the mean-field approach allows the problem of our

workers to be formulated tractably and recursively. We then calibrate and study the wage

and employment dynamics coming from our job ladder with network heterogeneity. This

quantitative version of our mechanism is consistent with several features of empirical studies

on networks and labor markets: jobs found through networks have higher wages and last

longer.
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Introduction

How do workers find jobs and does it matter? In this paper, we study an equilibrium search

model in which some jobs are found through network connections and workers differ in their

position within the network. In our framework, jobs found through a searcher’s network are

fundamentally different from and better than jobs found directly from contact with a firm. The

reason is twofold. First, offers passed through network search come from workers who have already

selected wages and climbed the ladder—network connections pass along wage offers like their own.

The second reason comes from the paradox of friendship, which implies that job referrals come

disproportionately from workers who are more central to the network than an average worker. To

the extent that workers who are more connected in the network have access to better jobs, they will

also refer better jobs to their own connections. This implies that jobs passed through the network

generally have higher wages than those found through random search and that workers who find

a job through their network generally are better connected. This selection effect again makes jobs

found through a network observationally different from those found through direct contact. These

model-generated features of network search and labor markets are consistent with well-supported

empirical findings.

The heterogeneity presented in our model—workers differ in their network position—implies

both differences in workers’ finding rate and differences in the distribution from which they sample

wage offers. Finding rates differ because better-connected workers have more connections from

whom to draw a referral. Thus, differences in network position provide a micro-foundation for

finding-rate heterogeneity. But network heterogeneity has another effect: workers at different

positions in the network also draw from different offer distributions. A better connected worker

samples from a distribution of offers with higher wages. This is because a larger fraction of a well-

connected worker’s offers comes from the network rather than direct search. From these outcomes,

the model has strong predictions about the differences between a job found via network search and

direct search.

Network search, as presented here, is consistent with some of the strongest results in this

empirical literature.1 In particular, jobs found through a worker’s network have (i) higher wages

and (ii) longer employment duration and (iii) workers experience shorter unemployment spells. Our

model provides a theoretical basis for these findings linking heterogeneity in network connections

to wage inequality and differences in employment dynamics. Workers searching through their

network have access to a better offer distribution and because those who find a job through their

network tend to be better connected, they received offers from this distribution at a higher rate.

Employment duration is longer because better matches are higher on the job ladder and naturally

1A large empirical literature has shown that labor market networks play an important role in matching workers
to employers. Even though estimates of the percentage of jobs found through social contacts vary across location
and profession, they consistently range between 25% and 80% of jobs in a given profession (Holzer (1988), Ioannides
and Datcher Loury (2004), Bayer et al. (2008), Hellerstein et al. (2011)).
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last longer. This reasoning is different from that proposed by Dustmann et al. (2015) and many

others,2 who attribute these same empirical findings to information frictions. While it may be

that offers passed through a network carry better information about match quality, we show

that qualitatively similar outcomes do not require information frictions: network heterogeneity is

sufficient to generate these empirical findings.

Our analytical results underpin each of these relationships to the empirical findings. We first

show that the equilibrium wage offer distribution via social networks first-order stochastically dom-

inates the wage offer distribution via direct search. Then it follows that better-connected workers,

those who draw more frequently from the network offer distribution, will have higher expected

wages. Turning to labor dynamics, we show a higher number of peers also brings more rapid re-

employment for the unemployed: well-connected workers receive more referals and therefore find a

new job faster than a worker with fewer peers. After finding the first job, better connected workers

are still more likely to find a suitable offer, make a job-to-job change and climb the wage ladder.

Changing our perspective, conditional on matching, even at the same wage, if a worker found this

job through her network she is more likely to be well connected. We show analytically that the

distribution of network links conditional on matching through a network first-order stochastically

dominates the distribution of network links for those who match through direct contact.

The tractability of our model comes from our ability to summarize a worker’s network position

into a scalar state variable, her number of ties. To do so, we employ the mean field approach,

which amounts to a set of assumptions over the network and information structure to omit local

correlation and neighborhood effects.3 With this simplification to the state, we can translate the

general form of the equilibrium into an equilibrium we term a “Sufficient Recursive Equilibrium”

because it uses a sufficient, scalar statistic to summarize the worker’s network position. This

allows us to compute and calibrate the model and in this calibrated version we show numerically

how better-connected workers climb the job ladder faster, operationalized as the worker’s half-life

before arriving at the top wage. For each of our three empirical findings, the calibrated version of

the model is qualitatively consistent.

Theoretical models of of labor market networks generally assume that there are information fric-

tions that hinder the job search behavior of unemployed workers and/or firms, and that information

flows through networks. In models such as Calvo-Armengol and Jackson (2007) and Ioannides and

Soetevent (2006) in which job searchers can learn about job vacancies either directly from employ-

ers or indirectly via employed individuals among their network contacts, but unemployed workers

2Many principally empirical papers ascribe their findings, network search leads to longer-lasting matches at
higher wages, to network connections ameliorating information frictions. See Granovetter (1995); Kugler (2003);
Datcher (1983); Marmaros and Sacerdote (2002); Simon and Warner (1992)

3The mean field approach is a technique to analyze the long run or average behavior of a complex system
and it was first developed for use in statistical physics to analyze the Ising model of interacting charged particles
(see Vega-Redondo (2007) for a summary). By replacing the effect of nearby particles with the “average” effect
of the magnetic field, one can solve for the equilibrium field, without need to consider the potentially intractable
interaction of local effects.
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do not have full information about job vacancies. In equilibrium, better-connected job searchers

are more likely to find employment and to have higher wages. In Montgomery (1991), the infor-

mation imperfection is on the employer side. Employers do not have full information about the

quality of job applicants and firms learn about a potential worker’s ability if the firm employs

individuals from the potential worker’s network. In equilibrium, individuals are more likely to re-

ceive and accept wage offers from businesses that employ others in their network. Fontaine (2008)

presents a matching model à la Pissarides (2000) where wage dispersion arises endogenously as the

consequence of the joined dynamics of networks, firms’ strategies and wage bargaining. Galenianos

(2014) presents a search model with job referrals through a network and rich predictions about

business cycle fluctuations and cross-sector differences in measured vacancy yield. As in our work,

worker dynamics depend on the network, but he considers a homogeneous network, so differences

in network location cannot contribute to wage dispersion.

From the search literature, this paper is directly related to the equilibrium on-the-job search

models in the vein of Burdett and Mortensen (1998). Despite being qualitatively consistent with

earnings dispersion, search frictions alone have difficulty generating realistic earnings heterogeneity

(Hornstein et al. (2011) and Mortensen and Pissarides (1999)). Worker and employer heterogeneity,

however, can explain the observed shape of earning distributions (van den Berg and Ridder (1998);

Bontemps et al. (2000); Postel-Vinay and Robin (2002)). In this thread, our model introduces

a dimension of unobserved heterogeneity that increases wage dispersion among observationally

identical workers.

A great deal of empirical literature has studied the role networks play, and we take as support

for our model its consistency with their findings. Here we briefly summarize some of the empirical

support for network search leading to (i) higher wages, (ii) longer employment duration, and (iii)

shorter unemployment spells. Using a direct measure of network quality based on the employment

status of close friends, Cappellari and Tatsiramos (2015) provide robust evidence that a higher

number of employed contacts increases wages for high-skilled workers forming networks with non-

familial contacts. Bentolila et al. (2010) analyze surveys from both the US and Europe including

information on job finding through contacts and find that network contacts reduce unemploy-

ment duration by 1-3 months on average. Hellerstein et al. (2015) present evidence that workers

who are more residentially networked to their co-workers at the time of hire have lower rates of

turnover. They also provide evidence that labor market network strength is linked to more rapid

re-employment and re-employment at neighbors’ employers. Defining networks by “co-displaced”

workers, Cingano and Rosolia (2012) present evidence for Italy that employment (re-employment)

of other co-displaced workers in the network reduces unemployment duration. There are related

papers that study the effect of coworker-based networks and employee’s referrals on individual

labor market outcomes (see Brown et al. (2013), Glitz (2013), and Burks et al. (2015))

Our contribution is an attempt to shed more light on the issue of how agents meet in the

labor market and to rationalize key empirical findings. In particular, by acknowledging the role of
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networks in labor markets we recognize that unemployed workers are not equally likely to locate

any job opening. We believe that this paper provides a framework to analyze wage dispersion

and unemployment as driven by (non-observable) worker heterogeneity in social connections. The

paper proceeds as follows. Section 2 presents a model of labor markets with two channels of

information about job opportunities: direct search and social networks. In Section 3, we discuss

the steady-state equilibrium and the associated distributions; in Section 4, we show that the

earnings distribution of a peer stochastically dominates the earnings distribution in the economy.

Section 5 presents the results from a calibrated version of our model, and Section 6 offers

concluding comments.

A Model of Search and Networks in Labor Markets

Demography, Network Structure and Job Offers
There are large fixed numbers of workers and employers participating in the labor market,

formally a continuum of each. The measure of both is normalized to one. At a moment in time,

each worker is either unemployed (state i = 0) or employed (state i = 1). Workers learn about job

opportunities at rates λ0 when unemployed and λ1 when employed. Job information is acquired

through either direct search or a worker’s social network. Job information arriving directly from

employers depend on a worker’s current employment state. Let γi denote the arrival rate of direct

offers while a worker is currently in state i ∈ {0, 1}. These offers are drawn from a firm offer

distribution F (w).

Job offer information can also be acquired through a worker’s social network. Each worker

has z peers to whom they are connected in a social network and this is summarizes her type, the

crucial dimension of heterogeneity. To clarify notation, we will refer to this quantity with several

variable names depending on the role of the worker when we refer to her. When we use z to denote

his number of peers, the worker is a generic agent. when we denote the type as s it will refer to

a peer, and type t will refer to an employee. The network is described by the degree distribution

Ω(z) and we will focus on large, complex networks, so that z ∈ [1,∞).4 We assume power-law

distributions. These networks exhibit the “small-worlds” properties of empirical social networks.

We use the mean-field approach to characterize flows in the networks.

This approach relies on three key assumptions. First, we consider random networks; that is,

rather than model worker behavior when the network’s structure is known with perfect information,

we consider agents who believe the social network they inhabit was generated by the so-called

“configuration” model. This is a very general process introduced by Bender and Canfield (1978).

We follow the formulation of Chung and Lu (2002).5 This procedure can generate large, complex

4This is common to approximate the discrete number of network connections with a continuous variable, so
rather than z ∈ 1, ...,∞ we use this half-closed interval.

5For further details, see Vega-Redondo 2007
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networks with arbitrary degree distributions.

It works as follows: for a fixed number n of nodes, fix a desired degree distribution Ω(z). Assign

to each note i weight Ω(i). For each pair of nodes ij, form a link between them at random, with

probability proportional to Ω(i)Ω(j). This procedure, as n rises, will generate a large, complex

network with the desired degree distribution. Networks generated by this process are almost all

trees, in that there is no local structure. To put this concretely, the probability a worker’s peers are

themselves peers vanishes and there are no correlations between node properties; a node of degree

j is no more likely to be connected to nodes of one type than another; the degree distribution of

a neighbor is the same for every neighbor, for every node. For this collection of random networks,

nothing can be inferred about a worker’s global position in the network from their own degree z.

Next, we rely on two informational assumptions. The second assumption is that we assume a

worker cannot observe their peer’s status: neither their degree, their employment status, nor their

wage. Under this assumption, workers must infer the status of their peers. Our final assumption,

that of limited memory, ensures that this inference can be based only on global averages. By

assuming workers cannot recall the sequence of job offers and associated wages from their peers,

they can only use the degree distribution and average employment status to form a belief about

the value of a job passed from a peer.

Under these assumptions, it is correct to use the mean field approach, replacing idiosyncratic

local effects with “expected” average effects. This is discussed in more detail in Appendix 7.6.

With this structure, we can characterize worker types simply by their number of links, and so the

rest of the objects we introduce treat this scalar quantity as the dimension on which workers are

heterogeneous, sufficient represent the worker’s position in the network.

G(w, z) is the earnings distribution among agents with z links, or in other words, the proportion

of employed workers of type z earning a wage no greater than w. The wage distribution in the

population and the earnings distribution of a worker’s peers are defined as, respectively,

G(w)
.
=

ˆ
z

Ω(z)G(w, z)dz (1)

G̃(w)
.
=

ˆ
s

Ψ(s)G(w, s)ds , (2)

where Ψ(s) is the probability a worker’s peer has s peers herself. A job offer learned via an unem-

ployed worker’s network is, therefore, a random draw from the endogenous earnings distribution

G̃(w) of a random peer. Note that Ψ(s) 6= Ω(s), i.e., the probability one of your peers has s links

is not equal to the proportion of workers who have s links. This is sometimes called the paradox

of friendship: your friends are likely to have more friends than you. This is because agents with
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many peers, and a large type s, are disproportionately likely to be your peers. The distribution

over peer types is given by Ψ(s) = sΩ(s)/〈z〉, where 〈z〉 =
´∞
z=1

zΩ(z)dz is the average degree in

the network. This peer is employed herself with probability n(s), the employment rate of workers

of type s. The job offer she passes along will be accepted if it is above the reservation wage of the

worker.

The probability a worker of type z in state i receives an offer via a peer in her social network is

ρi(z) =

(
1−

[
1−
ˆ
s

Ψ(s)n∗(s)γ1ν
i

s
ds

]z)
(3)

where νi/s is the probability at which job information is passed along and s∗(s) is the steady-state

employment rate in the economy of type s peers. We assume that jobs are passed to state i workers

in a network at a constant and equal rate. If one of an agent’s peers has an offer to pass, each of

her s other peers are equally likely to receive her job information. This means that, the greater

s, the more competition for this job information there is and the more unlikely this job is to be

passed to a particular peer. γ1 appears because jobs to be passed are acquired in the same way as

on-the-job search where the peer is searching for her peers rather than herself.

From here we can see already that heterogeneity in z implies heterogeneity in job finding

rates. The density of the network affects the finding rate in two ways. A job offer to be passed

arrives at rate γ1νi but is multiplied by 1
s

because every one of the peer’s connections entails

more competition with other workers connected to the same individual. On the other hand, if the

network is denser and searching workers have more connections z, they have more chances to get

an offer and hence faster finding rates. Note also that mean field approach has already appeared,

because we integrate over the distribution of peers’ connectedness Ψ(s), rather than knowing the

actual number of connections any of a searcher’s peers have.

The probability ν can be interpreted as a “socializing” parameter, representing how strongly

tied to one another peers in this network are and, hence, how likely they pass along a potential

job. We will assume that ν0 ≥ ν1, i.e., ties are stronger and jobs are more likely to be passed to

peers who are unemployed. Alternatively, this can be interpreted as there being less effort devoted

to social job search activities when employed and, hence, weaker social ties.6

Integrating over all possible peer types s, we obtain the weighted distribution of all acceptable

offers received by a type z worker. Or, in other words, the density of wages among peers is defined

as follows:

θ(w) =

ˆ
s

Ψ(s)
∂G(w, s)

∂w
ds (4)

6This approach follows Calvo-Armengol and Jackson (2004). In words, the probability one of your peers passes
you job information depends on the job arrival rate, the socializing parameter ν, the average employment rate n,
and the average degree in the network 〈z〉. This captures both the benefit of there being highly connected peers
and the cost of more competition for this information. More-connected peers are likely to be employed and thus
pass information but they also have more potential recipients.

7



Depending on a worker’s employment status, she receives job offers, either directly or through

her social network, at a rate

λi = γi + (1− γi)ρi(z). (5)

We assume that workers do not know the employment status of their peers (so that the expectation

above includes n(s), the probability their peers are employed) nor the exact wages their peers earn.

Hence, the average employment rate in the economy N will depend on each of these variables, as

well as on the job separation rate δ, the job arrival rate γi and the network Ω(z).

Job Search and Wage Posting with Labor Market Networks
In this section we will describe the problem of households and firms in the presence of the

network structure described above. In many ways, the frictional labor market we present is similar

to that of Burdett and Mortensen (1998) with heterogeneous workers. The crucial difference is that

this heterogeneity has a very particular structure that affects job finding rates, the distribution

from which wages are drawn and firms’ recruiting.

Jobs are identical except for the posted wage associated with them: productivity is the same.

A job offer represents a new position at a firm. Employed workers can hear about new positions

either at their own firms or at other firms. In the first case, the employed worker passes the job

information to her peers. This new job is identical to the job of the employed worker, so that

the worker who hears of it will not have any interest in taking the offer himself. Hence, this is a

model of referral. An employed worker can only refer direct connections to jobs in her own firm.

This relatively simple transmission process precludes a multi-step job transmission and simplifies

our analysis. We focus instead on the role of the structure of the social network, rather than the

technology of the transmission process. Rather than passing along the referral, employed workers

can also move from lower- to higher-paying jobs if they find an offer from a higher-paying job.

All job offers stand for one period only. If a job offer is declined, it expires and the position

is lost. Hence, referrals also last only one period, during which they are instantly transmitted

to other workers. Because search is random, each of those postings may be filled by a currently

employed or an unemployed worker.

The principal decisions in the model are the reservation wage of the worker and the posted

wage of the firm. On the worker side, the crucial heterogeneity is their position in the network,

which is summarized by their number of connections z ∈ [1,∞). For firms, their posted wage

offers may be filled by any type of worker: employed or unemployed, well connected or isolated.

These wages exist in a compact subset of the reals, which we denote as W ⊂ R+. As we present

their problems, note that although there is potentially a great deal of heterogeneity across workers

based on their position in the network, it can be summarized completely by z. This feature, which

is crucial to the tractability of our model, is revisited in Appendix 7.6.
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Households
The state of the unemployed worker is her number of connections z ∈ [1,∞) and the state of

an employed worker is (z, w) ∈ [1,∞)×W.

To calculate value functions, we use the mean field approximation of the network structure.

This approach assumes the global state of the network is replicated locally and that there are no

neighborhood effects. Under that Chang-Lu network topology, this assumptions is correct: due

to limited memory and incomplete information, workers cannot infer anything from their own

history of job matches about the employment status or type of their neighbors. They must form

expectations using the type distribution to calculate continuation values for jobs passed from each

peer, and each peer is simply a further possible source of job information.

One view of this assumption is to consider the economy already in the steady state; in such an

economy, each peer is identical and without knowledge of the global structure of the network, each

worker can use only the type distribution to form expectations. This assumption of homogeneous

mixing replaces the idiosyncratic effect of each worker’s peers with the average effect of a peer.

Given the distribution of offers obtained through direct contact, F , and the distribution of

earnings that may be referred, G, the value function of an unemployed worker of type z is

rV 0(z) = b+ γ0

{ˆ w̄

R(z)

[
V 1(z, x)− V 0(z)

]
dF (x)

}
+ (1− γ0)ρ0(z)

ˆ w̄

R(z)

[ˆ
s

Ψ(s)
∂G(w, s)

∂w

(
V 1(z, w)− V 0(z)

)
ds

]
dw, (6)

where r is the economy’s interest rate. In words, the value of an unemployed worker with z

peers is the unemployment benefit, the expected value of hearing about a job directly, plus the

expected value of hearing about a job from a peer.

Again taking F and G as given, the value function of an employed worker with z connections

and wage w is

rV 1(z, w) = w + δ
[
V 0(z)− V 1(z, w)

]
+ γ1

{ˆ w̄

w

[
V 1(z, x)− V 1(z, w)

]
dF (x)

}
+ (1− γ1)ρ1(z)

ˆ w̄

w

[ˆ
s

Ψ(s)
∂G(x, s)

∂x

(
V 1(z, x)− V 1(z, w)

)
ds

]
dx. (7)

That is, the expected discounted lifetime income of a worker currently employed, with z peers

in hher network, is her wage w plus the expected value of become unemployed plus the expected

value of hearing of a better job either directly from firms or through her social network. Her

job-search policy is simple, so we plugged into the value function in Equation 7: she takes any job

offering wages greater than her current wage w.
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Given an offer w, an unemployed worker will accept it if it is higher than her reservation R(z),

which may endogenously depend on peers, z. If unemployed, the worker receives unemployment

benefits b. At the reservation wage R(z), we have that V 1(z,R(z)) = V 0(z). Plugging w = R(z)

into equation (7) and using equation (6), we obtain

R(z)− b =
(
γ0 − γ1

){ˆ w̄

R(z)

[
V 1(z, x)− V 0(z)

]
dF (x)

}
+
[
(1− γ0)ρ0(z)− (1− γ1)ρ1(z)

]{ˆ w̄

R(z)

[ˆ
s

Ψ(s)
∂G(x, s)

∂x

(
V 1(z, x)− V 1(w, z)

)
ds

]
dx

}
=
(
γ0 − γ1

){ˆ w̄

R(z)

V 1
x (z, x) [1− F (x)] dx

}
+
[
(1− γ0)ρ0(z)− (1− γ1)ρ1(z)

]{ˆ w̄

R(z)

V 1
x (z, x)(1− G̃(x))dx

}
, (8)

where the derivative V 1
x (z, x), using equation (7), is given by:

V 1
x (z, x) =

[
r + δ + γ1(1− F (x)) + (1− γ1)ρ1(z)(1− G̃(x))

]−1

. (9)

The law of motion of the employment rate of a worker with z peers, n(z), is

nt+1(z) = (1− δ)nt(z) + [1− nt(z)]
{
γ0 [1− F (Rt(z))] + (1− γ0)ρ0(z)

(
1− G̃(Rt(z))

)}
, (10)

In steady state, nt+1(z) = nt(z)
.
= n∗(z) and, as in Burdett and Mortensen (1998), we set r = 0.

Hence, the employment rate of such workers is:

n∗(z) =
γ0 [1− F (R(z))] + (1− γ0)ρ0(z)

(
1− G̃(Rt(z))

)
δ + γ0 [1− F (R(z))] + (1− γ0)ρ0(z)

(
1− G̃(Rt(z))

) , (11)

and the economy’s employment rate is given by

N∗ =

ˆ
z

n∗(z)Ω(z)dz . (12)

From the steady-state allocation of matches at each z, the number of employed workers receiving

a wage no greater than w at time t, G(w, z)n(z), can be calculated. Its time derivative can be

written as follows:
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∂G(w, z)n(z)

∂t
= [1− n∗(z)]

[
γ0 max {F (w)− F (R(z)), 0}

]
+ [1− n∗(z)]

[
(1− γ0)ρ0(z)

{
G̃(w)− G̃(R(z))

}]
− n∗(z)G(w, z)

{
δ + γ1 [1− F (w)] + (1− γ1)ρ1(z)(1− G̃(w))

}
. (13)

Consider a given wage w ≥ R(z), which holds for any accepted wage w. In a steady state,

∂ [G(w, z)n(z)] /∂t = 0, and using equation (13) to implicitly define G(w, z), we obtain:

G(w, z) =
[1− n∗(z)]

{
γ0 [F (w)− F (R(z))] + (1− γ0)ρ0(z)

{
G̃(w)− G̃(R(z))

}}
n∗(z)

[
δ + γ1 [1− F (w)] + (1− γ1)ρ1(z)(1− G̃(w)

] (14)

From equations (11) and (14), the steady-state distribution of wages earned by employed work-

ers with z links is written as

G(w, z) = δ

γ
0 [F (w)− F (R(z))] + (1− γ0)ρ0(z)

[
G̃(w)− G̃(R(z))

]
δ + γ1 [1− F (w)] + (1− γ1)ρ1(z)

[
1− G̃(w)

]
{

γ0 [1− F (R(z))] + (1− γ0)ρ0(z)
[
1− G̃ (R(z))

]}−1

(15)

On the labor demand side, we will denote the average size of a firm whose employees have t

links and get paid a wage w as l(w, t). Since there is a range of workers with different numbers of

employed peers t ∈ [1,∞) who will earn a wage w, the total labor input per firm at this particular

wage is given by

L(w) =

ˆ
t

l(w, t)dt (16)

An employer’s steady-state profit, given the wage offer w, can be written as π = (p− w)L(w),

where p denotes the flow of revenue generated per employed worker. Finally, an employer’s problem

is to choose the optimal wage that maximizes its steady-state profit flow, i.e.,

π = max
w

(p− w)L(w) . (17)

The Steady-State Equilibrium

We now discuss the steady-state equilibrium and the associated distributions. An equilibrium

solution to the search and network labor market economy is a household solution, V 0(z), V 1(z, w)

and R(z) along with optimizing firm behavior which implies a wage offer distribution F (w), such
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that every wage in the support of F (w) is associated with the same profit π, and both sides of the

market are consistent with the definitions of G(w, z), n(z) . We make this formal in the definition

of the Sufficient Recursive Equilibrium. We call this equilibrium concept “sufficient” because it

is defined using z, the number of peers to whom a worker is connected in a social network, as

a sufficient statistic for the worker’s position in the network. The more general equilibrium, in

which the worker’s network state is given by a much more complicated object which we call χ is

described in Appendix 7. There, we prove that our framework exploits the mean-field approach to

reduce the meaningful heterogeneity to z.

1. A Sufficient Recursive Equilibrium is the unemployed searcher’s value function V 0 : [1,∞)→ R,

the worker’s value function V 1 : [1,∞) ×W → R and reservation wage R : [1,∞) → R, a level

of profit at each posted wage π : W→ R+, a distribution of posted wage offers F : W → [0, 1],

distributions of workers’ wages G : W× [1,∞)→ [0, 1] and employment distribution n : [1,∞)→
[0, 1], such that

• V 0, V 1 and R satisfy equations (6), (7) and (8), respectively,

• G and n are consistent with equations (14) and (11) and

• F implies that π = π̄ ∀ w ∈W, where π is given by equation (17).

The principal task of solving for an equilibrium is now to find the distribution, F , for posted

wages that is consistent with equal profits. To do so, we will first solve for L(w), an object implied

both by the wages posted in F and the recruitment and loss of workers through network search.

First looking at outflows, a firm offering wage w will lose workers to unemployment at the

exogenous separation rate δ. Workers at this firm will be directly contacted by other firms at rate

γ1, and the probability the firm they are contacted by offers a wage above w is 1−F (w). Workers

at this firm are contacted by their peers at rate (1− γ1), and these peers will communicate a job

offer at a firm with a wage above w with probability ρ1(z)(1− G̃(w)), which gives the probability

an acceptable job offer is passed to that worker. Hence, we define the separation rate β(w, z) to

be the sum of these terms:

β(w, z) = δ + γ1 [1− F (w)] + (1− γ1)ρ1(z)(1− G̃(w)) (18)

and the mass of workers of type z leaving the firm is thus l(w, z)β(w, z).

Consider now recruiting to this firm. First, there is a flow of recruits via direct contact.

Unemployed and employed workers are contacted directly by firms at rate γ0 and γ1, respectively.

These job contacts are spread among the 1
M

firms, and they will result in jobs for the unemployed

(employed) if the offered wage is above their reservation wage (current wage).

In our economy, there are Ω(z)(1− n(z))IR(z)≤w workers of type z that may be recruited from

unemployment at wage w where IR(z)≤w = 1 if R(z) ≤ w and zero otherwise. There are also

12



Ω(z)n(z)G(w, z) employed workers of type z earning less than w who may be recruited by this

employer. Direct recruiting is therefore given by

Ω(z)

M

{
[1− n(z)] γ0IR(z)≤w + n(z)γ1G(w, z)

}
. (19)

Recruiting also occurs indirectly through the social network of a firm’s employees. A firm

offering wage w employs L(w) workers. It is the peers of these workers who may be recruited.

Consider an employed worker of type t at this firm, which employs l(w, t) such workers. An

employed worker contacts all t of her peers about job opportunities at her own firm. The total

amount of possible referrals made by these workers is l(w, t)t, i.e., the more connections employees

have, the more referrals they will make. These peers can be either employed or unemployed and

may have different number of peers themselves.

Consider a given worker who is contacted by her employed peer. With probability Ψ(z) she

is of type z. With probability 1 − n(z) she is unemployed. With probability ν0 the job offer is

transmitted, and it will be accepted if the wage is above her reservation wage R(z). On the other

hand, with probability n(z), the worker contacted is employed. The job offer is then transmitted

with probability ν1, and it will be accepted if the wage is above her current wage, which happens

with probability G(w, z). Thus, the indirect recruiting of workers of type z by employees of type

t of a firm paying w is given by

γ1`(w, t)Ψ(z)
{

(1− n(z))IR(z)<wν
0 + n(z)G(w, z)ν1

}
.

Integrating this over t, we get the total volume of (indirect) recruiting of workers of type z from

all the firm’s current employees, i.e.,

ˆ
t

γ1l(w, t)Ψ(z)
{

[1− n(z)] ν0IR(z)≤w + n(z)ν1G(w, z)
}
dt . (20)

Note that unlike direct recruiting, indirect contacts are not spread among the M active firms.

These indirect contacts are in a sense “targeted,” since the job information being spread by a firm’s

employees is about job opportunities in that firm only. The term l(w, t) reflects how the firms’

current employees are not only valuable because of their productivity p, they are also valuable in

how they can recruit others. The labor force is, in this sense, the firms’ search capital. These

referrals are not distributed representatively, however. From the perspective of the type z worker

who will get the referral, this employed worker is her connection. As already described, this

implies that the employed worker is expected to be better-connected than average. connections

are distributed by Ψ(·), meaning she passes referrals to more connected workers.

Combining (19) and (20), the total hiring h(w, z) of workers of type z by a firm paying w is
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thus

h(w, z) ≡ Ω(z)

M

{
[1− n(z)] γ0IR(z)≤w + n(z)γ1G(w, z)

}
+

ˆ ∞
t=1

γ1 × `(w, t)Ψ(z)
{

(1− n(z))IR(z)<wν
0 + n(z)G(w, z)ν1

}
dt (21)

In the steady state, the flow of workers of type z leaving this firm, equation (18), must equal

the flow of workers of type z entering this firm, equation (21), and we must have

l(w, z)β(w, z) = h(w, z) (22)

Notice that the steady-state condition, equation (22), represents the balanced (separation and

recruiting) flows of workers, with z peers, for a particular firm offering wage w. If w is below R(z),

no workers of this type will be recruited to this firm from unemployment. If there are no workers of

type z currently earning less than w, then G(w, z) = 0 and no workers of this type will be recruited

to this firm from other firms. The steady state level of employment of this type of worker, at this

firm, will then be zero—the wage w may not be high enough to attract workers of this type if they

have better opportunities. Notice however that this is an equilibrium phenomenon and depends

on both R(w) and G(w, z).

The equilibrium measure of workers of type z earning a wage w is either 0, if w < R(z), or

l(w, z) =
h(w, z)

β(w, z)
(23)

A firm offering wage w will attract workers of many different types. Let ẑ be the type of worker

whose reservation wage is equal to w, i.e., R(ẑ) = w. Due to monotonicity of R(z), workers with

type z ≤ ẑ will accept w, while workers of type z > ẑ will not. Workers with type z ≤ ẑ will

accept w since R(ẑ) = w. Hence, the firm’s total labor force is given by

L(w) =

ˆ ẑ

z=1

h(w, z)

β(w, z)
dz (24)

Let R(1) be the reservation wage of the lowest type, that is, the reservation wage of workers

with only one peer in their network. The employer offering the lowest wage in the market—the

infimum w of the support of an equilibrium F—will maximize its profit if and only if w = R(1)

and it will employ a labor force of

L(w) = L(R(1)) =
h(R(1), 1)

β(R(1), 1)
=

Ω(1)
M
γ0(1− n(1))

δ + γ1 + (1− γ1)ρ1(z)(1− G̃(R(1)))
, (25)

where h(R(1), 1) is the flow of recruits to this firm and β(R(1), 1) is a measure of workers of type
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z = 1 leaving the firm (separation rate). Notice that the only type of worker this firm hires is

z = 1. Furthermore, this firm does no recruit from other firms, because any employed workers are

already earning at least w.

At the top of the wage distribution, the separation rate for a firm offering w̄ is simply δ, i.e.,

β(w̄, z) = δ. Firms paying the highest wage in equilibrium will lose workers only to unemployment,

not to other firms. On the hiring side, however, this firm recruits directly or indirectly all types

of workers from all other firms as well as from the unemployment pool. Since F (w̄) = 1 and

G(w̄, z) = 1, the total hiring h(w̄, z) of workers of type z by a firm paying w̄ is

h(w̄, z) =
Ω(z)

M

{
[1− n(z)] γ0 + n(z)γ1

}
+

ˆ
t

γ1`(w̄, t)Ψ(z)
{

(1− n(z))ν0 + n(z)ν1
}
dt (26)

Note that the employment rate of potential recruits n(z) only controls the contact rate, i.e., the

rate at which employed and unemployed workers are contacted about job opportunities. If a peer

of a current worker is of type s with probability Ψ(s), she is indirectly recruited to this firm at rate

{[1− n(s)] ν0 + n(s)ν1}. This firm’s current employees have
´
t
γ1`(w̄, t)dt such peers to recruit. In

a sense, this indirect recruiting of workers by employees of a firm can be interpreted as a measure

of the “capital” the firm has to facilitate recruiting.

The equilibrium measure of workers of type z earning wage w̄ is l(w̄, z) = h(w̄, z)/δ and the

total labor force of a firm offering the highest wage w̄ in equilibrium is given by

L(w̄) =

ˆ
z

h(w̄, z)

δ
dz , (27)

which does not depend on w̄, except that it must be the highest offered wage.

In equilibrium, every wage offer to workers of different types must yield the same steady-state

profit. In other words, the steady-state profit flow of a firm offering the lowest wage in the market

(w) must be equal to the profit of a employer paying the highest wage in equilibrium (w̄):

π∗ = [p−R(1)]

{
Ω(1)
M
γ0(1− n(1))

δ + γ1 + (1− γ1)ρ1(z)(1− G̃(R(1)))

}
= (p− w̄)L(w̄) (28)

Finally, we must also define the minimum of the wage domain. Our result very closely resembles

that of Burdett and Mortensen (1998) in their version with heterogeneous reservation wages. In

particular, let J(R) denote the distribution of reservation wages induced by R(z) and Ω(z). Then

w = arg maxw(p− w)J(w).

Properties of the Equilibrium

Our first result shows that the earnings distribution of a peer stochastically dominates the

earnings distribution in the economy. The proof of this and other results can be found in Appendix
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7.

Proposition 1. G̃(w) first order stochastically dominates G(w).

This result is due to the network structure: because workers of higher type are more likely to be

your peer than workers of lower type, they are also more likely to earn higher wages of workers of

lower type. Thus, the wages earned by peers are higher than the wages earned by a typical worker.

This is one source of the benefit of network search over direct search. In fact, the probability a

worker in state i is passed a job above a certain wage rises with s. Let

F 0
N(w, z) = γ0(F (w)) + (1− γ0)ρ0(z)(G̃(w))

F 1
N(w, z) = γ1(F (w)) + (1− γ1)ρ1(z)(G̃(w))

be the probabilities a worker of type z is offered a job that pays less w.

Corollary 1. F i
N(w, z) is monotonically increasing in z

Note that F i
N(w, z) is not actually a probability distribution, and so this does not necessarily

imply that the equilibrium offer distribution for workers with large z stochastically dominates that

of a worker with lower z; such a result depends not only on the probability of being offered a job

but also the set of acceptable jobs; the former is increasing, but the latter is decreasing. In our

numerical exercises, the former effect dominates by far, but it depends on the structure of R(z),

which is defined implicity.

Our principal result, Proposition 2, states that the earnings distribution of a peer stochastically

dominates the offer distribution of firms.

Proposition 2. G̃(w) first-order stochastically dominates F (w)

The wages sampled from peers are better than the wages directly offered by firms. This is

the reason network search is better than direct search; it is not necessary that more or better

information be passed via networks, or that matches found via network be more productive than

those found directly. The network structure of the labor market itself is biased towards higher-wage

jobs, which leads to network-found jobs dominating those found directly.

Lemma 1. If γ0 = γ1 then for z′ ≥ z and a given w

γ0 (1− F (R(z′))) + (1− γ0)ρ0(z′)
(

1− G̃(R(z′))
)
≥γ0 (1− F (R(z))) + (1− γ)ρ0(z)

(
1− G̃(R(z))

)
γ1 (1− F (w)) + (1− γ1)ρ1(z′)

(
1− G̃(w)

)
≥γ1(1− F (w) + (1− γ1)ρ1(z)

(
1− G̃(R(z))

)
This lemma states that the job finding rate is increasing in z for workers coming from unem-

ployment and, conditional on a wage level w, for job-to-job changes. As the proof will show, this
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relies crucially on γ1 = γ0, implying that ∂R
∂z

= 0. However, the numerical results presented in

Section 5 demonstrate that for reasonable calibrations where ∂R
∂z

> 0, job finding rates are still

strongly increasing in z.

Proposition 3. The distribution of z conditional on finding a job out of unemployment through

network search, (1−n(z))Ω(z)ρ0(z)(1−G̃(R(z)))´
(1−n(z))Ω(z)ρ0(z)(1−G̃(R(z)))dz

, first-order stochastically dominates the distribution of

z conditional on find a job from unemployment through direct search, (1−n(z))Ω(z)(1−F (R(z)))´
(1−n(z))Ω(z)(1−F (R(z)))dz

, if

γ0 = γ1.

Workers who find a job through network search are more likely to be well connected in the

network. This composition effect is important for the qualitative properties of our model. If a

worker is better connected, she receives offers more quickly while unemployed or working. Because

workers who find a job through network search are better-connected, it implies they have shorter

unemployment durations and climb the job ladder more quickly.

Numerical Results

We now describe the results from a calibrated version of our model. With this numerical

solution, we will explore the quantitative implications of network search for wage and employment

dynamics, focusing in particular on how heterogeneity in the number of contacts affects the model’s

endogenous outcomes, for instance, job offer arrival rates, the distribution of wage offers by contact

methods and wage growth paths. In the first step, we describe the features of the model itself,

then compare the solution to a similar model without network search, i.e., a Burdett-Mortensen

benchmark. Next, we compare the results of a model where workers have the same job finding

rates to one in which there is finding rate heterogeneity. And finally, we use the model to explore

and discuss some empirical results about network search and job finding through labor market

networks.

To set parameter values, we first choose b = 0, p = 1 and the mass of firms M = 1, which are

all just normalizations. The rest of the parameters must be jointly calibrated. The parameters

governing the arrival rate of referrals are particularly important to our study, but not directly

identified in standard labor market data. Hence we choose them so that 36% of openings are filled

through a network contact, following findings in Holzer (1988). In terms of our model elements,

we calibrate our baseline parameters such that

0.36 =

´
z

´
w
l(w, z)

´∞
t=1

γ1 × `(w, t)Ψ(z)
{

(1− n(z))IR(z)<wν
0 + n(z)G(w, z)ν1

}
dtdwdz´

z

´
w
h(w, z)dwdz

We constrain the arrival rate on and off the job to be the same for network and direct contact

offers. Table I presents our baseline calibration parameters.
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Parameter Value Moment

γ0 0.38 Average acceptance rate out of unemployment, 40%
γ1 0.08 Average acceptance rate from employment, 2.2%
ν0 0.90 Fraction of hires through the network, 36%
δ 0.03 Unemployment rate, 6%

Table I: Baseline calibration parameters

The degree distribution we study is a power-law distribution:

Ω(z) = (α− 1)z−α,

where the parameter α determines how heavy the tail of the distribution is, i.e., how common

are nodes with many peers. For α < 2, the mean degree in the network diverges (the tail is “too

heavy”), while for α > 3.47, the network is so sparsely connected that the “giant component” will

not exist; in this case, workers will not be connected to each other in the network. We choose

α = 3 in our numerical exercise.

Characteristics of the solution
Before turning to the analysis and discussion of equilibrium objects of our model, such as the

offer and employment distributions, it is instructive to consider how some features of labor market

networks affect the job search of an individual worker. First, we consider the offer arrival rate

through the network. The probability a worker of type z, in state i, receives and accepts an offer

via a peer in her social network is defined in equation (3). This offer arrival rate ρi(z) is increasing

in z and the only endogenous object it depends upon is the employment rate n(·) for any type.

The effect of heterogeneity in the network can be illustrated by the heterogeneity in finding

rates across job status and worker’s type. For our baseline parameterization, Figure 1 shows these

off-the-job and on-the-job arrival rates, ρ0(z) and ρ1(z) , where we take logs for visual clarity.

Unemployed workers learn about job opportunities at a higher rate than employed workers of the

same type, i.e., the same z. Though the differences between worker types of unemployed workers

visually seems larger, workers spend most of their time employed and so the smaller differences in

on-the-job finding are amplified by many periods in which to draw new offers.

As we have been emphasizing, offers through the network are not the same as offers from direct

contact with a firm. Our first theoretical result (Proposition 2) showed that the distribution of

offers found through a worker’s network, G̃(w), first-order stochastic dominates the distribution,

F (w), from which the direct searcher finds her job. This is visualized in Figure 2. We plot both

offer distributions and it is quite clear how wages from a referral, G̃(w), are expected to be much

higher than from direct contact F (w).

Quantitatively, the two job search methods yield different expected wages for two reasons.

First, with network search samples come from from the current employees earning distribution
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Figure 1: Log of the offer arrival rate through the network.

rather than the direct offer distribution. This is the logic behind the proof of Proposition 2. And,

moreover, the benefit from sampling from employees rather than offers holds even without network

heterogeneity. Second, referral wages from employees are weighted according to the distribution

Ψ(s). Here it is important to recall the paradox of friendship: the probability a worker’s peer has

s peers herself is not equal to the proportion of workers who have s links, i.e., Ψ(s) 6= Ω(s). The

distribution of peers, Ψ(s), used in weighting G̃(s) dominates the population distribution of types,

Ω(z).

The average wage draw shown in Figure 2 is an average of two distributions F (w) and G̃(w).

Rather than integrating over types z, we can highlight the differences across workers. Not only

does a better-connected worker draw more offers, she also draws from a better offer distribution.

Figure 3 shows the average offer distribution for workers with one and six peers, z = 1 and z = 6,

respectively. This is the visual counterpart to Corollary 1.

Figures 1 through 3 emphasize that the effect of heterogeneity in finding rates on wages is

twofold, namely, workers with more connections not only have a higher initial wage but also find

higher-paying jobs more quickly. The main implication here is that workers with more connections

climb the job ladder faster. We can see both effects at work in Figure 4. Conditional on finding

a job out of unemployment, the dotted line plots the expected wage as a function of the number

of connections. It is upward sloping because the initial wage found through networks, G̃(w), is

higher than through direct contact and better-connected workers get more offers from network

search. But, the initial wage is not as strongly affected by network connections as is the average
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Figure 2: Distribution of wage offers by contact method.

For the overall contact rate, we integrate over types z accord-

ing to their population weights and the fraction in employ-

ment or unemployment.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

 

 
Direct Contact
Average for z=1
Average for z=6
Network

Figure 3: Average distribution of wage offers by

contact method conditional on number of peers

wage among the pool of employed. Driving this increasing difference is the fact that workers with

more connections climb the ladder more quickly while they are employed.

To demonstrate this idea further, we will consider the half-life before an employed worker’s

wages are expected to converge on wage w̄. As in any model with a job ladder, as a worker’s wage

increases, she is decreasingly likely to get an offer that dominates and so the speed at which she

climbs the ladder is also decreasing. Hence, a good measure of the instantaneous rate a worker is

climbing the job ladder is the half-life, which measures half of the expected time to converge to the

upper-most wage w̄ with wages growing at their instantaneous rate given wage w and connections

z. To be specific, the half-life is log 2
λ(w,z)

, where the instantaneous convergence rate, λ(w, z), is

λ(w, z) = − log

(
w̄ − E[w′(w, z)]

w̄ − w

)
and the “expected wage” is

E[w′(w, z)] = γ1

ˆ w̄

w

xdF (x) + (1− γ1)ρ1(z)

ˆ w̄

w

xdG̃(x) +
(
1− γ1 − (1− γ1)ρ1(z)

)
w.

For different starting wages and different numbers of network connections z, Figure 5 illustrates

how quickly wages approach the maximum wage w̄. In Figure 5, we see that the effect of a better

network is stronger at high wages. At these high “rungs,” the chance of getting a dominating wage

offer through the direct offer distribution is quite low compared with the chance of getting one

through network search, that is, (1 − F (w)) gets considerably smaller than (1 − G̃(w)) when w

is high. This means that workers with more draws from G̃(w), i.e., the better-connected workers,
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Figure 4: Average wage on initial offer and in steady-state employment

have more of an advantage.

Comparison with Burdett-Mortensen benchmark
In this section, we compare the quantitative predictions of our model with a benchmark wage

posting model, as in Burdett and Mortensen (1998). This paper’s crucial modification allows

workers to find jobs not only directly from firms but also through their network connections. Here

we show quantitatively how differences in the number of network connections— a worker’s position

in the social network — fundamentally affects on-the-job and off-the-job searches. Then we show

the response, as the equilibrium distribution of wage postings is changed by this heterogeneity.

The equilibrium of our model with network search is qualitatively different from the equilibrium

of the Burdett and Mortensen (1998) model: comparing the equilibrium distribution of offers

through direct contact to the offer distribution in a Burdett-Mortensen model with equivalent

overall job-finding rate, connected workers engaged in direct search sample from a distribution of

offers with higher wages (Figure 6). In other words, the crucial difference between these two offers

distributions is that with our framework the domain of wage offers is shifted upwards. Hence, a

natural conclusion is that whether there is wage dispersion in an economy with on-the-job search

depends critically on whether workers find jobs through their network.

Figure 7 shows that the equilibrium reservation wage reflects a worker’s position in the social

network and, as noted before, the number of connections governs how quickly a worker can expect

to find a referral from a peer. Such heterogeneity is not present in a Burdett-Mortensen model
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Figure 5: Half-life of wage growth paths to maximum wage: different starting wages and different network connections z.

with equivalent overall job-finding rate. The average reservation wage in our model is plotted in

black. Because of heterogeneity in reservation wages, the lower bound of wages is actually closer to

the highest reservation wage than the lowest. In Figure 8 we contrast the half-life of wage growth

paths in our network search model to their respective paths in the Burdett-Mortensen framework.

Comparison with heterogeneous finding rates
Next, we present findings from our model but in which we consider only heterogeneous finding

rates, rather than heterogeneity in both the finding rates and offer distributions. We take exactly

the distribution of finding rates on and off the job implied by endogenous objects, (γi, ρi(z)), the

arrival rate of direct and network job offers, respectively, while keeping Ω(z), the proportion of

workers who have z links, as a fixed object. We integrate over the implied offer distributions to

take F and the average sampling from G̃.

The clearest way to see the differences between our model and one with merely heterogeneous

finding rates is through Figure 9. The blue lines are the half-lives to the top wage if only finding

rates differ and the black line is the half-life in our full network search model. With network search,

the half-life decreases more quickly in z. Those with higher numbers of peers climb the ladder fast

than if they were merely different because of faster offer arrival rates: They also benefit from a

distribution of offers that stochastically dominates both the distribution of offers for those with

fewer peers, z and also the average offer distribution, the blue line. On the other side, those with

few peers would benefit from drawing from the average offer distribution. The point at which the
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Figure 6: Equilibrium distribution of offers through direct contact: Network Search versus Burdett-
Mortensen benchmark.

blue and black lines cross is the indifference point, where those with fewer peers are draw from

a worse distribution in our model than if there were only finding rate heterogeneity. They cross

at a relatively small number of peers because of the power-law distribution assumption we made

on Ω. There are actually many workers at small levels of z who drew from a worse-than-average

distribution.

Understanding some empirical findings
There is a great deal of empirical literature pointing to the importance of networks to job-

seekers’ outcomes. We restrict our attention to three main results in the literature and analyze

them through the prism of our model. As we have discussed, a body of empirical studies present

evidence that a worker whose job is found through her network has a higher wage, a longer

employment duration and a shorter unemployment spell. These regularities are often attributed

to the information that network connections better convey to potential employers (e.g. Simon and

Warner (1992), Topa (2011), Cappellari and Tatsiramos (2015), Marmaros and Sacerdote (2002),

and Dustmann et al. (2015)), but we show and illustrate numerically that such results may also

be due to heterogeneity of network peers and their status in the labor market network.

In fact, our model allows us to understand two channels through which a successful network

search has better wages than a successful direct search. First, when a worker finds a job through

her own network, it implies that she draws from a better wage distribution; as we have shown,
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Figure 7: Reservation wages: Network Search versus Burdett-Mortensen benchmark.

G̃(w) first-order stochastic dominates the distribution F (w) from which the direct searcher finds

her job.

But there is another, more subtle ex post reason why wages are higher for an unemployed

worker searching through her network. In fact, a worker who found a job through network search

has brighter prospects because those who had found jobs through networks have, on average, more

peers. The intuition is that one with more network connections gets proportionally more of her

draws from the network distribution than a worker with fewer links. That is, ρ0(z)
γ0

is increasing in

z simply because the probability ρ0(z) that an unemployed worker of type z receives and accepts

an offer via a peer in her social network is increasing in z. Then, when we see the pool of searchers

who found a job through peers, more of those are better-connected. To put this another way, the

expected number of connections of a worker, conditional on getting a job through network search,

is greater than the expected number of connections if a worker finds a job through direct search:

´
z (1− n(z)) Ω(z)(1− γ0)ρ0(z)

(
1− G̃(R(z))

)
dz

´
(1− n(z)) Ω(z)(1− γ0)ρ0(z)

(
1− G̃(R(z))

)
dz

>

´
z (1− n(z)) Ω(z)γ0 (1− F (R(z))) dz´
(1− n(z)) Ω(z)γ0 (1− F (R(z))) dz

.

In Figure 10 we demonstrates this idea in our calibrated model, plotting the distribution of the

number of peers conditional on whether a worker finds a job through network or direct search. The

compositional differences between workers finding jobs directly or through a network will drive the
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Figure 8: Half-life of wage growth paths to maximum wage: Network Search versus Burdett-
Mortensen benchmark.

Network Search Direct Search

Percentile of Expected Initial Wage 48.48% 24.50%
Expected Duration of Job Match 7.91 years 3.72 years
Average z Relative To Unemployment Pool 1.81 1.00
Search Time Relative to Average 0.983 1.001

Table II: Expected differences between workers finding jobs through network or directed search.

differences between these groups in their endogenous variables.

Table II illustrates the expected differences between workers finding jobs out of unemployment

through network or directed search. Workers who find jobs via their network of contacts have on

average more peers, spend less time searching and should expect a higher initial wage than those

workers who become employed through direct search. As a consequence of having a higher matched

wage, jobs found through the network are expected to last longer Essentially there are two forces

at work: conditional on the same wage, a worker who finds a job through her network probably

has more peers and therefore finds new jobs more quickly and has a shorter tenure at the first job.

However, because the initial wage of a job found through the network is higher, and these jobs

last longer, this effect dominates. Hellerstein et al. (2015) and Cingano and Rosolia (2012) present

empirical evidence of lower rates of job turnover and rapid re-employment of more-networked

workers.

Figure 11 shows the expected duration of a job match conditional on wage for direct search
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Figure 9: Half-life of wage growth comparing heterogeneous search rates and network search model
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Figure 11: Expected duration of a job match conditional on wage: Direct search and network
search.

and network search. This is different from what we have in Table II, where numbers for expected

duration of job match are not conditional on wage. Conditional on wage, the worker finding a job

through her network has only 98% the expected duration of an average job because these workers

are better-connected and therefore have higher offer arrival rates. Overall, however, these matches

last more than twice as long because they are at higher wages and hence have a lower probability

of a dominating offer.

Conclusion

In this paper, we have explored how network search affects wage and employment dynamics.

We embedded the well documented evidence jobs are found through networks into an equilibrium

wage posting model with on-the-job search. In our model workers hear about job opportunities

through their social networks (peers, acquaintances and friends) and formal search (employment

agencies and direct applications to the employers). Heterogeneity in the worker’s position within

the network leads to heterogeneity in wage and employment dynamics: better-connected workers

climb the job ladder faster and do not fall as far. These workers also pass along higher quality

referrals, which benefits their connections. In our environment, wage offer distributions are natural

consequences of frictions in the job information propagation mechanism through different channels.

Differences in job finding rates and reservation wages are a function of a worker’s position in the

social network because the number of connections governs how quickly a worker can expect to find a
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referral from a peer. This feature alone provides a micro-foundation for finding-rate heterogeneity;

but further, we show that network-based search is important for the type of jobs that are found.

We show that the wage offer distribution via social networks first-order stochastically domi-

nates the wage offer distribution via direct search. Job offers learned from a worker’s peers are

endogenously better than those a worker would likely find through direct search. In our calibration

exercise, we show how a workers differ based on whether they found their job through network

or direct search. Those who find jobs through network-search generally have more peers than a

worker who found her job via direct search. This different composition then manifests itself in

different labor market transitions. Because those who found a job through network search have

more peers, they find jobs from unemployment more quickly. Once employed, a worker who found

her job through her network, and is therefore better-connected, experiences a higher wage growth

for the rest of her career than another who found an equivalent job through direct search.

Our analysis has abstracted from many quantitatively important factors, particularly firm-side

heterogeneity and other types of worker-side heterogeneity. It is, however, a very flexible starting

point to which these other features can be grafted. Our approach, simplifying the state using the

mean field approach makes many rich models with network search tractable. We hope that, in

the future, it can be used to study how network heterogeneity affects classic questions regarding

worker-side heterogeneity such as earnings inequality and unemployment duration dependence.

Furthermore, network search can be uniquely useful in understanding measured vacancy yields

which across sectors and time.
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Appendix

Proof of Proposition 1
We have that

Ψ(z) =
zΩ(z)

〈z〉
Therefore

Ω(z)

Ψ(z)
=
〈z〉
z

The likelihood ratio Ω(z)
Ψ(z)

is monotonically declining; Ψ and Ω therefore satisfy the monotone

likelihood ratio property, and this implies that Ψ first order stochastically dominates Ω. Therefore,

ˆ
u(z)Ψ(z)dz ≤

ˆ
u(z)Ω(z)dz

for any smooth monotonic function u(z). Applied to the earnings distribution G(w, z), this implies

ˆ
G(w, z)Ψ(z)dz ≤

ˆ
G(w, z)Ω(z)dz

G̃(w) ≤ G(w)

as was to be shown.

Proof of Corollary 1
Recall that

F i
N(w, z) = γi(F (w)) + (1− γi)ρi(z)(G̃(w))

which depends on z only through ρi(z), defined as in Equation 3

ρi(z) =

(
1−

[
1−
ˆ
s

Ψ(s)n(s)γ1ν
i

s
ds

]z)

Since
[
1−
´
s
Ψ(s)n(s)γ1 νi

s
ds
]
< 1, ρi(z) is increasing in z:

∂ρi(z)

∂z
= −

[
1−
ˆ
s

Ψ(s)n(s)γ1ν
i

s
ds

]z
log

(
1−
ˆ
s

Ψ(s)n(s)γ1ν
i

s
ds

)
Therefore, F i

N(w, z) is increasing in z.
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Proof of Proposition 2
Recall that

F 0
N(w, z) = γ0(F (w)) + (1− γ0)ρ0(z)(G̃(w))

F 1
N(w, z) = γ1(F (w)) + (1− γ1)ρ1(z)(G̃(w))

are the off-the-job and on-the-job offer probabilities, including both direct and network search,

respectively. We can write

G(w, z) =
1− n(z)

n(z)

F 0
N(w, z)− F 0

N(R(z), z)

δ + (F 1
N(w̄, z)− F 1

N(w, z))

1− n(z)

n(z)
=

δ

F 0
N(w̄, z)− F 0

N(R(z), z)

Substituting, we have

G(w, z) =
δ
F 0
N (w,z)−F 0

N (R(z),z)

F 0
N (w̄,z)−F 0

N (R(z),z)

δ + (F 1
N(w̄, z)− F 1

N(w, z))

=

F 0
N (w,z)−F 0

N (R(z),z)

F 0
N (w̄,z)−F 0

N (R(z),z)

1 + 1
δ
(F 1

N(w̄, z)− F 1
N(w, z))

≤ F 0
N(w, z)− F 0

N(R(z), z)

F 0
N(w̄, z)− F 0

N(R(z), z)

≤ F 0
N(w, z)− F 0

N(R(z), z) ≤ F 0
N(w, z)

where the penultimate inequality follows because F 0
N(w̄, z) > F 0

N(w, z) > F 0
N(R(z), z), and ultimate

inequality follows because F 0
N(R(z), z) ≥ 0. Thus, we have

G(w, z) ≤ F 0
N(w, z),

showing the the earnings distribution of workers of type z first order stochastically dominates the

“weighted ” offer distribution for these workers. This implies

G(w, z) ≤ F 0
N(w, z)

G(w, z) ≤ γ0(F (w)) + (1− γ0)ρ0(z)(G̃(w))

Integrating both sides with respect to the neighbor type distribution Ψ(z), we have

G̃(w) ≤ γ0(F (w)) + (1− γ0)G̃(w)ρ̃0,
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where

ρ̃0 =

ˆ
ρ0(z)Ψ(z)dz.

This implies

G̃(w) ≤ γ0F (w)

1− (1− γ0)ρ̃0
≤ F (w)

where the final inequality follows because γ0

1−(1−γ0)ρ̃0
≤ 1. Thus the result is proven.

Proof of Lemma 1
We will show that

γ0 + (1− γ0)ρ0(z′) ≥γ0 + (1− γ0)ρ0(z)

γ1 + (1− γ1)ρ1(z′) ≥γ1 + (1− γ1)ρ1(z)

Using the definition of R(z), Equation 8,reprinted here for convenience:

R(z) = b+
(
γ0 − γ1

){ˆ w̄

R(z)

V 1
x (z, x) [1− F (x)] dx

}
+
[
(1− γ0)ρ0(z)− (1− γ1)ρ1(z)

]{ˆ w̄

R(z)

V 1
x (z, x)(1− G̃(x))dx

}

we can see that if γ0 = γ0 then R(z) = b ∀z and then trivially ∂R(z)
∂z

= 0. Therefore for any z, z′,

(1−F (R(z)) = (1−F (R(z′)) and (1− G̃(R(z)) = (1− G̃(R(z′)). This means the only differences

are ρ0(z′) ≥ ρ0(z) and ρ1(z′) ≥ ρ1(z). This follows directly from the definition of ρi(z) in Equation

3:
∂ρi(z)

∂z
= −

[
1−
ˆ
s

Ψ(s)n(s)γ1ν
i

s
ds

]z
log

(
1−
ˆ
s

Ψ(s)n(s)γ1ν
i

s
ds

)
This is positive because the first term is negative as is the second because 1−

´
s
Ψ(s)n(s)γ1 νi

s
ds < 1.

Therefore z′ > z ⇒ ρi(z′) ≥ ρi(z) for i ∈ {0, 1}.

Proof of Proposition 3
The distribution of z conditional on finding a job out of unemployment is given by the number

of matches for any given z , (1−n(z))Ω(z)(1−γ0)ρ0(z)(1− G̃(R(z))), divided by the total number

of matches given by integrating over z. Thus, the distribution is (1−n(z))Ω(z)ρ0(z)(1−G̃(R(z)))´
(1−n(t))Ω(z)ρ0(t)(1−G̃(R(t)))dt

. We

find the distribution of z for direct-search matches analogously, (1−n(z))Ω(z)(1−F (R(z)))´
(1−n(t))Ω(t)(1−F (R(t)))dt

.

Using γ0 = γ1, as in Lemma 1, implies R(z) = b ∀z and therefore w = b. Thus (1−F (R(z)) =

(1− G̃(R(z)) = 1.

We show the network-search distribution first-order stochastically dominates the direct-search

distribution by showing likelihood ratio dominance. Consider any z, z′ such that 1 < z < z′ <∞.
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Then the likelihood ratio given z is

(1− n(z))Ω(z)ρ0(z)(1− G̃(R(z)))

(1− n(z))Ω(z)(1− F (R(z)))

´∞
1

(1− n(t))Ω(t)(1− F (R(t)))dt

(1− n(t))Ω(t)ρ0(t)(1− G̃(R(t)))dt

=ρ0(z)

´∞
1

(1− n(t))Ω(t)(1− F (R(t)))dt

(1− n(t))Ω(t)ρ0(t)(1− G̃(R(t)))dt

And then

ρ0(z′)

´∞
1

(1− n(t))Ω(t)(1− F (R(t)))dt´∞
1

(1− n(t))Ω(t)ρ0(t)(1− G̃(R(t)))dt
≥ ρ0(z)

´∞
1

(1− n(t))Ω(t)(1− F (R(t)))dt´∞
1

(1− n(t))Ω(t)ρ0(t)(1− G̃(R(t)))dt

because the fractions,
´∞
1 (1−n(t))Ω(t)(1−F (R(t)))dt´∞

1 (1−n(t))Ω(t)ρ0(t)(1−G̃(R(t)))dt
cancel and ∂ρ0(z)

∂z
> 0 implies ρ0(z′) ≥ ρ0(z)

iff z′ ≥ z. Therefore, we have shown likelihood ratio dominance which also implies first order

stochastic dominance.

Sufficiency of the State
In this section we first describe the equilibrium conditions for a similar economy to our main

model, with a more general state space, in which the worker’s position is not summarized simply

by her number of peers, but rather by a complete description of the state of the social network. Let

χ ∈ X describe the worker’s position in the network; literally a worker’s state is her employment

status and collection of peers, and their employment status and collection of peers, and so on.

We will define χ recursively, as it is otherwise quite a cumbersome object. Consider an individual

whose number of direct connections is z ∈ [1,∞), then χ is a z × 3 object. χ contains, for

each connection indexed c ∈ χ a triple, (i(c), w(c), χ(c)): The connection’s employment status

i(c) ∈ {0, 1}, wage w(c) ∈ W and that connection’s own position in the network χ(c). That is,

worker knows their peers employment status, wage, and position in the network. We will call a

worker’s χ their “position,” and continue, with a slight abuse of notation, to refer to the number

of direct peers they have, z, as their “type.”

With this notation we can re-define many of the objects of our model. Let s(c) be the type

of a worker whose position in the network is c; in general two workers who are both have type s

might have very different positions c, which depends on their employment status and position of

their peers, and peer’s peers, and so on. Then the rate of contact through one’s network is:

ρi(χ) =

(
1−

∏
c∈χ

[
1− n(c)γ1 νi

s(c)

])
(29)

That is, there is a probability particular peer has a chance to pass a job, which depends on her

employment status and precise position in the network, and the chance that at least one peer does
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so is given by ρi(χ).7

Given F,G, n and the {ρ0(χ), ρ1(χ)} implied by Equations 6 - 8 , the household value functions

solve

rV 0(χ) = b+ γ

ˆ w̄

R(χ)

V 1(χ, x)− V 0(χ)dF (x)

+ (1− γ0)ρ0(χ)

ˆ
c∈χ

(
V 1(χ,w(c))− V 0(χ)

)
Iw(c)≥R(χ)dc (30)

rV 1(χ,w) = w + δ
[
V 0(χ)− V 1(χ,w)

]
+ γ1

ˆ w̄

w

V 1(χ,w)− V 0(χ)dF (x)

+ (1− γ1)ρ1(χ)

ˆ
c∈χ

(
V 1(χ, x(c))− V 0(χ)

)
Iw(c)≥wdc (31)

R(χ) = b+ (γ0 − γ1)

ˆ w̄

R(χ)

V 1(χ, x)− V 0(χ)dF (x)

+ (ρ0(χ)− ρ1(χ))

ˆ
c∈χ

(
V 1(w(c), χ)− V 0(χ)

)
Iw(c)≥R(χ)dc (32)

Note that the integrations in these value functions are over the known positions of each peer; the

only uncertainty is in the friction of the wage transmission procedure, not in the positions of peers.

The steady state earnings distribution and employment probabilities for a worker of position χ are

given by

n(χ) =
γ0(1− F (R(χ))) + (1− γ0)ρ0(χ)

δ + γ0[1− F (R(χ))] + (1− γ0)ρ0(χ)
(33)

G(w, χ) =
(1− n(χ)) {γ0[F (w)− F (R(χ))] + (1− γ0)ρ0(χ)}

n(χ) {δ + γ1[1− F (w)] + (1− γ1)ρ1(χ)}
(34)

Definition of General Recursive Equilibrium: An equilibrium in this economy is the

searcher’s value function V 0 : X → R, worker’s value function V 1 : X ×W → R corresponding

policy functions—reservation wages— R : X → W , a level of profit at each wage, π : W → R+,

a distribution of posted wage offers F : W → [0, 1], distributions of worker’s wages, G : W ×
X → [0, 1], employment rate n : X → [0, 1]. V 1, V 0 satisfy Equations 30 and 31, R0 satisfies

equation 32, G and n are consistent with Equations 34 and 33 given an F which implies that

π(χ,w) = π̄ ∀w ∈W.

7In this case, the worker with complete information still receives only one job at random in the event that
multiple jobs offers are passed to him; she cannot choose, for example, the highest wage offer, even though she
knows which peer has the highest wage. We interpret this as a remaining friction in the labor market, even with
complete information on the state.One can imagine alternative offer selection procedures, but this would change
the wage dynamics drastically from our baseline model, and are not pursued here.
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Limited Information

We now consider the worker’s problem when she has limited information on the status of her

peers; we will show that the mean-field approach adopted above is precisely the result of a more

general model with limited information and a particular network topology. First, we impose the

requirement that workers no longer know their positions in the network, nor their type, their

employment status, or their wages; we further assume she has no memory of past wage offers

received, or who passed them. All she knows is the global structure of the network and her own

type z—but not her true position in the network, χ, for this would imply the position of all her

peers. Thus, there may be many different positions χ consistent with her information—she cannot

know which of the many χ such that z ∈ χ correctly describes her position. Since he knows the

global network structure, he knows all the possible χ that may describe her position, and how

likely they are, and may form an expectation of the value of a wage passed by a peer.

Let our worker’s belief over her own true network position χ, given her information, which is

her type z, be Pr(χ|z). For an arbitrary complex, large, network, this could be a very complicated

object, or very simple; there might me finitely many χ consistent with z, or infinitely many. The

various positions χ consistent with z might vary widely in the value of their peer, so that network

search is risky provides less value, or they might all be very similar. Note that this belief is over χ,

and so includes beliefs over employment status and wage, which in equilibrium must be consistent.

In this framework, the probability a worker is passed a job is given by

ρi(z) =

(
1−

[
1−
ˆ
s

n(s)γ1ν
i

s
Ψ(s)ds

]z)
(35)

This worker can no longer use her position to calculate precise probabilities he is passed a job

from a particular peer, because each peer is, from her point of view identical, with a unknown

number of other peers who compete for her job information. Let the unknown position of a

particular peer of this worker be called κ; the type of this worker is s, and these are both unknown,

but may be inferred from χ, and will have distributions Pr(s|χ), Pr(κ|s, χ). Let the wage of a

peer of type s and position κ be w(s, κ).

The value function of the household can therefore be written

rV 0(z) = b+γ0

ˆ w̄

R(χ)

(V 1(z, x)− V 0(z))dF (x)+

(1− γ0)ρ0(z)

ˆ
χ

[ˆ
s

[ˆ
κ

(V 1(z, w(s, κ))− V 0(χ))Pr(κ|s, χ)dκ

]
Pr(s|χ)ds

]
Pr(χ|z)dχ.

Note that this implies that any two workers with the same type z will have the same beliefs, in
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equilibrium, and a worker’s type z is a sufficient statistic for her position χ. Policy functions

therefore cannot be functions of χ, but only of z. A the wage passed by a peer, however, may

depend on the actual network position χ, however; even if that worker’s choices cannot be functions

of χ, the actually realized wages passed may be. Thus beliefs over χ will influence the value of

network search. The precise form those beliefs must take, however, depends on the global structure

of the network.

Local Structure of the Network

Under the topology generated by the Chung-Lu procedure, the resulting network is locally

tree-like; in the limit as the number of nodes n− > ∞, the probability of a loop forming, and

in particular the probability of a local cluster forming, vanish on the order of O( 1
n
). There are

no correlations between worker types, and starting from any two nodes of type z, they network

structure can be described as a random branching process, where each subsequent node’s own

degree s is drawn from the distribution of peers types Ψ(s). Thus, a worker’s position χ, given

a worker’s type z, is a realization of z independent, identically distributed branching processes,

with offspring distribution Ψ; because the network is infinitely large, there is a position χ in the

network corresponding to every possible realization of these branching processes, which a worker

must average over to form her expected value of network search. This implies that the probability

a worker’s local network structure deviates from the mean realization of the collection of branching

processes—that is, the probability that her position χ is either much more or much less valuable

than the position of another worker’s, who is of the same type z—is zero. Under this procedure,

therefore,

Pr(s|χ) = Ψ(s) (36)

That is, the probability that a worker’s peer has degree s is independent of the network position

χ of the worker, and is given by the offspring distribution Ψ. Second,

Pr(κ|s, χ) = Pr(κ|s) (37)

The distribution over a peer’s position κ is independent of χ; with probability 1 all peers of type

s have the same network distribution over positions κ, regardless of χ.

The distribution over a worker’s peer’s higher order peers—and their employment status and

wages— is independent of that worker’s position in the network, and that peer’s degree s. Under

our informational assumptions, because workers cannot condition on their global position in the
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network but only over their own type.

ˆ
χ

[ˆ
s

[ˆ
κ

V i(z, w(s, κ))Pr(κ|s, χ)dκ

]
Pr(s|χ)ds

]
Pr(χ|z)dχ

=

ˆ
χ

[ˆ
s

[ˆ
κ

V i(z, w(s, κ))Pr(κ|s)dκ
]

Ψ(s)ds

]
Pr(χ|z)dχ

=

ˆ
s

[ˆ
κ

V i(z, w(s, κ))Pr(κ|s)dκ
]

Ψ(s)ds×
ˆ
χ

Pr(χ|z)dχ

=

ˆ
s

[ˆ
κ

V i(z, w(s, κ))Pr(κ|s)dκ
]

Ψ(s)ds× 1

=

ˆ
s

[ˆ
κ

V i(z, w(s, κ))Pr(κ|s)dκ
]

Ψ(s)ds. (38)

It remains only to show that the expected value of a wage passed in this network is equal to the

value of the expected wage, as in section 2; that is, to show that there is no risk associated with

the unknown network position of a peer, κ. For a general network, there may be; it could be that

some network positions consistent with z are advantageous—in that the degree and wages of their

neighbors are high—and other less so. This possibility is eliminated under the Chung-Lu topology.

Under this network structure, there are infinitely many positions χ consistent with z, that each

correspond to a possible realization of collection of branching processes. A law of large numbers

results guarantees that the expected wage of a random peer is almost surely the average wage. Let

us define

w(s) =

ˆ
κ

w(s, κ)Pr(κ|s)dκ

to be the expected wage of a worker of type s, averaging over all the various κ they may have.

Under the Chung-Lu topology, the probability the wage of a peer of type s deviates from this wage

is zero. Thus, the probability

Pr(|V i(z, w(s, κ))− V i(z, w(s))| > δ)

for any δ > 0 vanishes as the network size grows according to the Chung-Lu procedure. Thus we

can write equation 38 as ˆ
s

V i(z, w(s))Ψ(s)ds

just as in section 2. Under this interpretation, the wage function w(s) we solve for in the section 3 is

the expected wage of a worker with s peers, averaging over all the different higher order peers κ he

may have; some such peers of type s may be unlucky enough to have poorly connected peers, and

even though this worker uses the same policy functions as another worker with s peers, her wage

will be lower. Another, more lucky, worker of type s may, despite using the same policy functions

as every other worker of type s, have a higher equilibrium wage, because her well connected peers
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pass him an unusually high number of good jobs. Such outcomes are happen with probability zero

under the Chung-Lu topology. Thus a worker can ignore this possibility when forming a belief

over the value of a wage passed by a peer of type s, and us only the average wage of these peers,

w(s). This is precisely the mean field approach.
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