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Abstract

Empirical analysis of the Fed’s monetary policy behavior suggests that the Fed smooths
interest rates— that is, the Fed moves the federal funds rate target in several small steps instead
of one large step with the same magnitude. We evaluate the effect of countercyclical policy
by estimating a Vector Autoregression (VAR) with regime switching. Because the size of the
policy shock is important in our model, we can evaluate the effect of smoothing the interest
rate on the path of macro variables. Our model also allows for variation in transition proba-
bilities across regimes, depending on the level of output growth. Thus, changes in the stance
of monetary policy affect the macroeconomic variables in a nonlinear way, both directly and
indirectly through the state of the economy. We also incorporate a factor summarizing overall
sentiment into the VAR to determine if sentiment changes substantially around turning points
and whether they are indeed important to understanding the effects of policy.
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1 Introduction

FEmpirical analysis of the Fed’s monetary policy behavior suggests that the Fed smooths interest
rates— that is, the Fed moves the federal funds rate target in several small steps instead of one
large step with the same magnitude. Smoothing has been characterized as an optimal monetary
policy response in models that incorporate the private sector’s expectations of future policy [e.g.,
Woodford (1999)]. In these types of models, the monetary authority’s method of credibly altering
expectations is important in determining the efficacy of the stabilization policy.

Because monetary policy is countercyclical, its effectiveness is often measured by its ability
to induce large responses in output growth and inflation. However, the models used to measure
these responses (e.g., VARs) are often linear and may exaggerate the effectiveness of policy if
the dynamics of the economy change across states.! Even when the VARs do incorporate some
form of regime switching, the responses are often computed within-regime—i.e., the responses are
computed assuming that the regime never changes. This assumption is problematic for evaluating
countercyclical policy. In these models, during recessions, the Fed drops the funds target to raise
output growth but has no effect on the duration of the recession.?

To evaluate the effectiveness of countercyclical policy, we estimate a VAR with regime switching.
In our model, the probability of transitioning across regimes depends on the level of output growth.?
Thus, changes in the stance of monetary policy affect the macroeconomic variables nonlinearly, both

directly and indirectly through the state of the economy. To this end, the estimated responses of

macro variables to monetary shocks can depend on (1) the current state of the economy?, (2)

! The existing literature provides mixed empirical evidence of asymmetry. Cover (1992) finds that negative money
supply shocks have larger effects on output than positive shocks. Ravn and Sola (1996) find symmetric responses once
they account for a break in late 1970’s. Morgan (1993) finds asymmetric responses of output to interest rate changes
but the evidence is weaker when excluding the early 1980’s when the Fed abandoned traditional rate targeting polices.

?Garcia and Schaller (2002) extend Hamilton’s (1989) regime-switching model to allow monetary policy to affect
the growth rate of output and the probability of switching between states. They find that changes in the fed funds
rate have larger effects during recessions than during booms and that policy has substantial effects on the probability
of switching between expansionary and recessionary regimes.

*In related work, Weise (1999) uses a smooth-transition VAR to examine the asymmetric effects of policy based
on the three dimensions of interest: size, sign, and position in the business cycle. The author finds evidence of size,
but not sign, asymmetries and different effects during periods of high or low growth. Monetary shocks have stronger
output effects and weaker price effects when growth is initially low but have stronger price effects and weaker output
effects when in a high growth state.

4For instance, Thoma (1994) finds that negative shocks to money growth have stronger effects on output during
periods of high-growth in real activity than in low-growth periods while positive shocks have small, mostly insignificant
effects regardless of the contemporary economic conditions.



the history of the economy, (3) future shocks, and (4) the size of the (current) monetary shock.?
We incorporate consumer and producer sentiment into the VAR to determine if confidence and
expectations change substantially around turning points and whether they are indeed important to
understanding the effects of policy. In addition, because the size of the shock is important in our
model, we can evaluate the effect of smoothing the interest rate on the path of macro variables.

We find empirically relevant differences between the macroeconomic responses to contractionary
and expansionary policy shocks, depending on the underlying state of the economy at the time of
the shock. Small expansionary policy shocks induce responses with substantial variation in high and
low output growth environments, but show less variation in periods of high and low inflation. The
responses to large expansionary shocks do not exhibit the same variation. We also find significant
differences between gradual policy changes and one-time, large policy shocks, thus making a case
for more aggressive policy intervention to combat recessions.

The balance of the paper is outlined as follows: Section 2 outlines the models. We start by fixing
notation with the familiar single regime VAR. We then add the effects of sentiment, modeled by a
latent factor, and Markov-switching. Finally, we augment the Markov-switching with time-varying
transition probabilities. Section 3 describes the data and the methods used to estimate the model.
Details for the full sampler are left to the Appendix. Section 3.3 compares the different methods
to compute the impulse responses to evaluate the effectiveness of the shocks. In this section, we
reiterate the importance of history, future, sign, and scale of the shock. Section 4 presents the
baseline results. Section 5, in particular, focuses on the experiment comparing the effect of a net
25-basis-point change in the federal funds rate implemented in a single step or in multiple steps.

Section 6 offers final thoughts.

2 Empirical Approach

One of the most commonly used models in the empirical analysis of monetary policy is the VAR.
A simple example of a monetary VAR is a three-variable model with measures of output growth
and prices and a monetary policy instrument. The effects of the policy shocks are determined

by tracing out the impulse responses to identified shocks. In this section, we construct a VAR

Lo and Piger (2005) find that policy actions taken during recessions have much larger effects than those taken
during expansions. However, they find no evidence of asymmetries based on the size or sign of the policy shock.



that allows for asymmetric responses to shocks and differences in shock volatilities. In addition,
we model economic sentiment through a latent factor that is allowed to affect or be affected by

macroeconomic aggregates in different ways depending on the state of the economy.

2.1 The VAR
Let y; represent the N x 1 vector of period—t variables of interest; then, the reduced-form VAR(P)
is

yr = B (L) yi—1 + &4, (1)

where we have suppressed the constant and any trends, €, ~ N (0, S~2) is the reduced-form inno-
vation, and Q is left unrestricted. Inference on the effect of shocks is derived from the structural
form of the VAR:

A lyy = A B (L) yyor + Uy, (2)

which is obtained by pre-multiplying by A~ which represents the contemporaneous effects of the
structural shocks w; ~ N <0, i), where ¥ is diagonal, and AA" = Q. Because the decomposition
AA" = Q is not unique, further identifying restrictions must be imposed to obtain the structural
form of the VAR and determine the (impact) effects of the shocks. These restrictions can come in
the form of imposing a causal ordering on the variables in the VAR, assuming zero contemporaneous
effects across variables [Christiano, Eichenbaum, and Evans (2000)], imposing zero restrictions on
the long-run (or long-horizon) effects of certain shocks [Blanchard and Quah (1989)], predetermining
the signs of the responses [e.g., Uhlig (2005)], or some combination of these [Arias, Rubio-Ramirez,

and Waggoner (2014)].

2.2 Modeling Sentiment

Our desire is to augment the VAR with a broad measure of sentiment regarding the current strength
of and outlook for the economy. Sentiment, however, is not easily quantifiable. We opt to include
a factor (or vector of factors) F; representing overall sentiment in the VAR. Then, the (N +1) x 1

vector of variables of interest can be defined as Y; = [F},y;]’ and the VAR rewritten as



Yi=B(L)Yi—1 +¢y,

where the reduced form shocks e, ~ N (0,€);) are now an (N + 1) x 1 vector and we have imposed
autoregressive dynamics on the factor. The factor F; summarizes the information in M series col-
lected in a vector X; that contains observable information about consumer and producer sentiment.

The factor is related to X; = [X1¢, ..., X by

Xt = A Fy + St (3)

where ¢, ~ 1idN (O, Ufn), which assumes that the innovations to the elements of X; are uncorre-
lated. This assumption imposes that the correlation across series are a result of the factor alone

and is relatively common in the factor literature.

2.3 The Markov-Switching VAR

Recently, studies have investigated whether monetary policy has time-dependent effects—for ex-
ample, depending on the state of the economy.’ For example, one could ask whether monetary
policy has differing effects in recessions and expansions, when the Fed tightens or eases, or when
the change in the fed funds target rate is large or small, etc.” One popular model used to deter-
mine the state-dependent effects of monetary policy is the Markov-switching VAR, which has a

reduced-form:

Yi=[1—-S5¢]Bo(L)Yio1+ S:B1 (L) Y1 + e, (4)

where S; = {0,1} follows an irreducible first-order Markov process with (constant) transition
probabilities p = Pr[S; = 1|S;—1 = 1] and ¢ = Pr[S; =0|S;—1 = 0], r ~ N (0,€;), and regime-

dependent heteroskedastic covariance matrix

8See Hamilton (2015) for a detailed overview of regime-switching modeling techniques and applications within
macroeconomics.

"In recent work, Angrist, Jorda, and Kuersteiner (2013) find that contractionary policy can achieve reductions in
output, employment, and inflation but expansionary policy produces very little stimulus. Barnichon and Matthes
(2014) find that contractionary policy shocks have strong adverse effects on output while expansionary shocks do not
have significant effects unless the shocks are large and occur specifically during recessions.



Q= [1— S¢] Qo + S (5)

In this case, the economy takes on two alternative dynamics, dictated by the realization of the
underlying state S;. When S; = 1, the economy has Bj (L) dynamics and when S; = 0, the
economy has By (L) dynamics. Thus, the model is linear, conditional on S; being known.® The
shock processes—by assumption—follow the same regime-switching process as the reduced-form
VAR coefficients, making the contemporaneous effects of the shocks regime-dependent.? The shocks
are identified using similar methods as above or, additionally, exploiting the regime-dependence

[e.g., Rigobon and Sack (2004)].

2.4 Time-Varying Transition Probabilities

One drawback of the constant probability Markov-switching VAR is that the underlying regime
is invariant to the model variables. Countercyclical policy then cannot affect—either directly or
indirectly—the state of the economy, making both the regimes and the impulse responses to changes
in policy difficult to interpret.' One way to ameliorate this problem is to allow the state of the
economy to depend, in part, on variables in the VAR. For example, if we want to interpret the
state variable as business cycle regimes, we can make the transition probabilities functions of output
growth.

We can accomplish this by assuming that the state process S; has time-varying, rather than
constant, transition probabilities. Moreover, we assume that changes in the underlying state of
the economy (and, thus, underlying changes in the dynamic responses to monetary shocks) are
driven by (lags of) a variable z;. If, as in our case, z; is a variable in the VAR, shocks to the
policy instrument affect z; which, in turn, feed back into the regime.!! Thus, more accommodative

monetary policy in a recession can stimulate output and increase the probability of switching back

®Based on multiple Lagrange Multiplier tests for linearity, Weise (1999) finds that when using lagged output
growth as the switching variable, the data prefer the non-linear model with time-variation in the coefficients of all
equations in the VAR to a standard linear VAR with constant parameters. Furthermore, the parameter governing the
speed of the transition between regimes is very large. This suggests a sharp transition between regimes and justifies
the use of a discrete regime-switching model.

9Tt is straightforward to extend the model to allow the covariance switching process to vary from the coefficient
switching process. The main drawback is that independent processes increases the number of regimes geometrically.

10The constant transition probability model is also of limited use for forecasting. Conditional on the past regime
being known, no additional data improves the forecast of the regime.

"Potter (1995) called the system in which the transition variable is also in the VAR self-exciting.



to expansionary dynamics. We assume that the transition probabilities follow a logistic formulation:

exp (%‘z’ + ’sz‘ztfd)
> XD (Vii + Viizt—d)

Pji (zt—a) = Pr[Sy = j|Si—1 = 1] = (6)

for each of the regimes with >, pri (2¢—q) = 1 for all i, t. We define S; = 0 as the reference state;
thus, all parameters governing the transition into expansion (7, and v, for ¢« = 0, 1) are normalized
to 0.

We consider lagged output growth as the transition variable and set the delay parameter, d,
to 1. Thus, output growth in the previous period will affect the probability of switching between
expansion and recession in the current period. In order to identify the two separate regimes, we
impose that the coefficient on lagged output growth influencing the transition from expansion to
recession, 7, is negative. Therefore, if S;_1 = 0 (expansion) and output growth is above average,

the probability that S; = 1 (recession) falls.

3 Empirical Analysis

In this section, we describe how the model is estimated, the data used in the estimation, and the

methods for which we compute the impulse responses.

3.1 The Sampler

The model parameters, factors, regimes, and transition probabilities are estimated using the Gibbs

sampler. Let the full set of parameters, including the regimes and the factors, be represented by:

0= {BO (L) 7Bl (L) 7907 Qlaia‘yv {Amﬂfgn}i\::l} )

St = {St}thl, and Fr = {Ft}le. The Gibbs sampler draws elements of ©, S7, and Fr, conditional
on the previous draw of each other elements. We sample from five blocks: (1) the VAR coefficients
and covariance matrices; (2) the regimes; (3) the transition function parameters; (4) the factor;
and (5) the factor loadings and residual variances. The joint posterior distribution of all the model
parameters and the factors are obtained from these draws from the conditional distribution after

discarding some draws to allow for convergence.



The Gibbs sampler is a Bayesian method and requires a prior. We assume a multivariate
normal-inverse Wishart prior for the VAR parameters, a multivariate normal prior for the transition
function parameters, independent normal-inverse Gamma priors for each of the factor loadings and
their associated residual variance. Table 1 shows the hyperparameters of the prior distributions.

Given the prior and the data and conditional on the sequence of regimes and the factor, the
posterior for each regime’s VAR parameters is conjugate normal-inverse-Wishart. The regimes are
drawn from the Hamilton filter, modified to account for time-variation in the transition proba-
bilities. The parameters of the transition function are drawn employing the difference in random
utility model described in Kaufmann (2015). The factor is drawn from an application of the Kalman
filter; conditional on the factor, the loadings and variances of the factor equations have normal-
inverse-Gamma posterior densities. The blocks of the sampler and the derivation of the posterior

distributions are described in detail in the Appendix.

3.2 Data

Our sample period runs from 1960:1 to 2008:12, when the federal funds rate approaches the zero
lower bound. We exclude the zero lower bound period because of the difficulty in assessing the
stance of monetary policy in a single policy instrument.'> The data for the baseline VAR are
monthly and consist of a measure of output, prices, and policy. We use the change in the log of
the Conference Board Coincident Indicators Index (ZCOIN), the change in the log of the personal
consumption expenditures price level index (PCEPI), and the effective federal funds rate.

The model also requires data that proxy for overall sentiment in the form of a factor. We utilize
a small unbalanced panel of monthly data that includes multiple surveys and indices. We include
the Conference Board Consumer Confidence Index (CBCCI), the University of Michigan Con-
sumer Sentiment Index (UMCSI), the Organization for Economic Cooperation and Development
Consumer Confidence Index (OECDCCI), and the Institute for Supply Management Purchasing
Managers Index (PMI).!3

We order the sentiment factor first in the VAR, allowing the macro variables and the policy

20ne alternative that has been proposed is the shadow short rate of Krippner (2013) and Wu and Xia (2016).
The shadow short rate exploits the Gaussian affine term structure model and changes in the long rate to estimate
the level of a hypothetical short rate that is allowed to fall below the zero lower bound.

13 All sentiment data are normalized to have mean zero and unit standard deviation.



rate to respond contemporaneously to shocks to overall (consumer and producer) sentiment. This
restriction implies that the factor itself responds to policy shocks with a lag. The results are
qualitatively similar and the overall conclusions unchanged if the factor is instead ordered last,

after the policy rate, allowing it to respond to contemporaneous policy shocks.

3.3 Computing Impulse Responses

The effects of monetary policy shocks from VARs are typically summarized using impulse responses.
Nonlinearity in the VAR complicates computation of the impulse responses. In a nonlinear model,
the response can depend on the level (rather than the change) of all of the variables; thus, compu-
tation of the conditional expectation depends on the initial condition (i.e., the history of all of the
innovations up until time ¢) and the future path of the variables (i.e., the sequence of shocks from
t+ 1 to t 4+ h). For example, the responses can vary depending on whether the economy starts in
recession or expansion and can vary depending on whether a policy action is followed by successive
positive or negative shocks. Moreover, in the nonlinear model the response can depend on the sign
and magnitude of the shock.

The Markov-switching VAR is linear, conditional on knowing the regime. Regime-dependent
impulse responses (RDIR) can be obtained from each of the two conditionally linear VARs as
suggested by Ehrmann, Ellison, and Valla (2003) by assuming that the regime at the time of the
shock lasts forever. Of course, these RDIRs have the limitation that they are constructed under the
extreme counterfactual assumption that the state of the world does not change after the incidence
of the shock. The linear responses have the advantage of being invariant to the history of shocks
up through time ¢, the sequence of the shocks after time ¢, and the size of the shock. Moreover,
the responses are symmetric to the sign of the shock.

While these (conditionally) linear responses are often used to distinguish between the dynamics
across the regimes, they do not take into account the future possibility that the economy exits the
initial regime. In this sense, they can overestimate the differences between shocks that are inci-
dent in the different regimes. Alternatively, Krolzig (2006) shows that simple constant probability
transitions across regimes can be accounted for by computing the response as a weighted average
of the two regime-dependent responses. The weight at any horizon is a function of the transition

probabilities and the responses are computed conditional on the period—t regime. For more com-



plicated models with time-varying transition probabilities, we need to account for the response of
the transition probability to the shock.

In our case, the transition probabilities depend on the variables in the VAR. Thus, simply prop-
agating the transition probabilities out over time is insufficient to obtain any inferences about the
effect of shocks. One alternative is the generalized impulse response functions (GIRFs) suggested
by Koop, Pesaran, and Potter (1996). They argue that an impulse response at horizon h can be
viewed as the difference between two conditional expectations, one conditional on the (structural)

shock u; = d occurring at time ¢ and one conditional on no shock at time ¢:

IR (h) = By [Yen|ue = 0] — By [Yin|ue = 0]

In the linear model, the difference in the conditional expectation is invariant to the history up until
time ¢ and the future sequence of shocks up through ¢ + h. In addition, the magnitude of § acts
only as a scaling factor and the response is symmetric with respect to the sign of §. To compute
the expectations, we average the expected paths of Y over all histories Y;_; that correspond to
a Gibbs draw of S; = ¢. Thus, we are computing the averages of separate responses for average
shocks that occur in different regimes.

Let Rz[g] represent the number of incidences of S; = i for the gth Gibbs iteration. In addition to
the histories, the responses depend on the future sequence of shocks. We can account for variation
in future shocks by computing the average response over () draws of future shock paths. Finally,

we average over a subsample of the Gibbs draws. The generalized response at horizon h is

h

[YIerh’Ytb obl, St[g] =hu =29, {uﬂl}l—l
o 0 \* "

_ [Y}Jrh’Yt—ly @[9}75}9 =i,u; =0, {ut(il}lzl}

for each history starting with Sy =i, ¢ = 0,1, and the superscript g indicates the gth Gibbs itera-
tion. The error bands for the impulse responses can be constructed by computing the appropriate
coverage over the G Gibbs draws.

In addition to the policy shocks, a change in regime can cause a response in the macroeconomic

variables both through a change in the regime-dependent mean growth rate and a change in the



dynamics. We can compute the response to a change in the regime at time ¢. In this case, we do
not shock the system as in the GIRF's; the only difference in the two conditional expectations is
the change in regime.

We compute the response Y;,; of a change from S;_; = j to Sy = ¢ by simulating the errors

out to horizon h:

h
= 8
-

PG| - eanlin 0059 — s = {uldl )

for all histories in each Gibbs iteration for which Slg_]l = 7.

4 Results

To assess the effects of monetary policy in different phases of the business cycle, we compute the
impulse responses to a shock to the federal funds rate under various model assumptions. Our
baseline model is a monthly TVTP-FAVAR(12) with a single factor, where the transition variable
is the lag of monthly output (ZCOIN) data, normalized around its mean and standardized to have
unit variance. To account for the diminished variability of output after the Great Moderation,
we allow for a structural break in the mean and standard deviation of ZCOIN after 1984 when
standardizing the data.

Results are computed with 8000 draws of the Gibbs sampler, discarding the first 2000 draws
to ensure convergence. We compute the mean and 68-percent posterior coverage of the resulting
GIRFs and the responses to a change in regime. The GIRF's are computed over 400 equally-spaced

draws (thinning every 20th draw) from the posterior distributions.

4.1 Baseline Results

Figure 1 plots the posterior probability of recessions (S; = 1) for the full sample with the posterior
mean and 68-percent coverage of the factor, filtered from the unbalanced panel of data described

in Section 3.2. The NBER recessions are shaded in grey for comparison. The results are consistent

10



with many other empirical models of monetary policy in a VAR environment with switching. The
posterior probability of a recession is generally high during NBER recessions and the estimated
regimes are persistent. The average across Gibbs iterations of the correlation between the estimated
recessions and the NBER recessions is 0.44. The model appropriately identifies the NBER recessions
in the pre-Great Moderation period. However, unlike the economic contractions of 2001 and 2007
which elicit a spike in the posterior probability of recession, the 1991 recession does not appear to
be associated with a contractionary period that causes a variation in the effects of monetary policy.

The factor captures sentiment about current economic conditions as well as forward-looking
projections of future economic activity. Prior to all of the NBER recessions in the sample, the
factor declines substantially. Additionally, the factor begins to recover in the months leading up to
and through the official end of each recession. The recession in 1980 elicits the deepest decline in
sentiment, indicative of a severe economic contraction. This recession also produces the most clear
identification of the recessionary regime, based upon the consistently high posterior probability of
S; = 1 during this time. Likewise, the factor declines substantially more around the financial crisis
and Great Recession beginning in 2007, also associated with very high posterior probability of the
S; = 1 regime. In order to identify the scale and sign of the factor, we restrict the loading on the
Conference Board Consumer Confidence Index to be equal to positive one. The estimated loadings
on all sentiment series are similar with loadings slightly larger than one on the University of Michi-
gan Consumer Sentiment Index and the Organization for Economic Cooperation and Development
Consumer Confidence Index and slightly less than one on the Institute for Supply Management
Purchasing Managers Index (PMI). The posterior mean and 68-percent coverage intervals for the
loading estimates are presented in the top panel of Table 2.

The bottom panel of Table 2 provides the posterior means and 68-percent coverage intervals for
the TVTP coefficient estimates.!® The transition probabilities consist of a time-invariant compo-
nent, 7;;, and a time-varying component, 7,;, which represents the effects of lagged output on the
regime. The posterior mean estimates of 7,y and 7;; are —4.08 and 1.22, suggesting that the ex-
pansionary regime is more persistent than the recessionary regime. We impose that lagged output’s
effect on the transition from expansion to recession is negative (estimated to be equal to — 1.02),

which reduces the probability of switching from expansion to recession if output growth is above

4 The full set of parameter estimates are available from the authors upon request.
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average. Additionally, the posterior mean estimate of the coefficient affecting the persistence of
recessions, 71y, is also negative (—0.67). Therefore, an increase in output growth will reduce the
probability of remaining in recession from one period to the next. The time-varying effects are
significant, suggesting that lagged output growth is an important indicator for determining the

transition between the two regimes.

4.1.1 Comparison to Linear FAVAR

To establish a basis for comparison and to gauge the overall value-added of allowing the model
parameters to vary across regimes, we also estimated a linear FAVAR without Markov-switching in
any of the components.!> Figure 2 plots the posterior mean of the sentiment factors filtered from
both the linear and MS models. The factor series extracted from the model allowing for regime-
dependence in the model parameters exhibits more drastic variation, rising more during expansions
and falling more during recessions. This variation results from the time-varying propagation of
innovations to the series within the VAR. Table 3 compares the root mean-squared-error of in-
sample fitted values using the two models. For the ZCOIN and PCE inflation the RMSE’s are
essentially the same for both the linear and MS-TVTP models. However, for the federal funds
rate series, the RMSE from the MS-TVTP is lower than that from the linear model. Therefore, it
appears that the MS-TVTP model better describes the behavior of the policy rate, moving between
regimes of expansionary and contractionary policy based upon the prevailing economic conditions.

These comparisons indicate that much of the non-linearity and regime-switching nature of the
data are driven by variation in the volatility and covariance of the data series in recessionary
and expansionary phases. While we do uncover differences in the systematic VAR parameters
when S; = 1 versus Sy = 0, most of the separate regime identification comes through the regime-
dependent heteroskedastic covariance matrices Qp and Q1.'® In both the pre- and post-Great
Moderation subperiods, the magnitudes of all reduced-form variance and covariance terms are

larger in the recessionary regime.

15 As we did with the MS-TVTP-FAVAR, we allow for a one-time structural break in the covariance matrix in 1984
to accommodate the Great Moderation.

'S This result is consistent with Sims and Zha (2006) who estimate a variety of structural VAR model specifications
to describe the potentially regime-switching behavior of monetary policy and its effects on the economy. They find
that the model which best fits the data is one in which only the variances of structural innovations change across
regimes.

12



4.2 Generalized Impulse Responses to Shocks of Varying Size and Sign

Figure 3 illustrates the GIRFs across a range of shock sizes, conditional on being in a given regime
at the time of the shock. To model the likely behavior of the Fed at different points in the business
cycle, we compute the responses of all macro variables in the VAR to contractionary shocks (6.25,
12.5, and 25 basis points) during the expansionary regime (top row of Figure 3) and expansionary
shocks (-6.25, -12.5, and -25 basis points) during the recessionary regime (bottom row of Figure 3).
For all variables, we find some evidence of multiplicative scaling in the effects of shocks of varying
sizes. The responses to 125 basis point shocks are approximately four times the magnitude of those
to 46.25-basis-point shocks, similarly for £12.5-basis-point shocks. This supports the conclusion
of Lo and Piger (2005) who find no evidence of asymmetries based on the size or sign of the policy
shock. Instead, they find evidence of asymmetries depending on the state of the business cycle at
the time of policy action, with larger effects during recessions than during expansions.

Figure 3 suggests that the behavior of the sentiment factor is similar in both regimes. The
peak response to all shocks is reached after 9 months. In both regimes, the peak effect on output
(ZCOIN) growth is reached 12 months after the shock. With regards to inflation in both regimes
and to all shock sizes, the peak effect is reached after 4 to 5 months. We see more volatility in the
projected future path of inflation but the response is not significantly different from zero. The peak
response of the policy rate is reached more quickly in recessions (2 months) than in the expansions
(4 months).

We focus specifically on the responses of the sentiment factor and output growth to the shocks
of 25 basis points, the shock size most commonly analyzed in the literature. Figure 4 illustrates
the posterior mean GIRF's in recession (left column) and expansion (right column), the 68-percent
posterior coverage interval, and the posterior mean response from the linear model without regime-
switching. While the GIRFs of the sentiment factor in recession and expansion are similar, they
both highlight that the regime-switching model suggests a larger response to policy shocks than that
identified by the linear model. The GIRF's of output growth suggest less variation between the linear
response and that produced in either regime. This result is due to the fact that the recessionary
regime is rather short-lived and the GIRF simulations quickly switch from the recessionary regime

into the expansionary regime. The RDIR for the expansionary regime closely resembles that of the

13



linear VAR.

4.3 Generalized Impulse Responses to a Change in Regime

If we think of S; = 0 and S; = 1 as two steady states, we can compute the transition path between
them. The GIRFs to a change in regime represent the behavior of macroeconomic variables in the
model, conditional on a difference in regimes at time t. Figure 5 plots the mean response and the
68-percent posterior coverage intervals for these GIRFs. The left column of Figure 5 illustrates
the effects of switching from expansion to recession. The subsequent months see a slight decline in
output growth and little noticeable change in inflation. Additionally, the federal funds rate exhibits
a shift upward in the mean but then declines following the regime shift. Sentiment falls at the time
of the change and then takes more than two years to recover back to a level path.

The right column of Figure 5 depicts the macroeconomic behavior given a switch from the
recession to the expansion regime. Due to the limited number of periods in recession, conditioning
on this history when computing these GIRF's results in less-precise estimates. Based on the posterior
mean path, output growth increases slightly at the time of the switch. In the subsequent months,
the mean path of the federal funds rate rises and sentiment adjusts slightly downward. This could

be indicative of precautionary behavior during the early stages of moderate recoveries.

4.4 Conditioning on Economic Conditions

In addition to computing GIRFs based on the economy either being in state S; = 0 or Sy = 1 at
the time of the shock, we can perform policy experiments that condition on the specific economic
climate at the time of the policy action. For example, a recession during which inflation is far above
target may witness different policy effects than a recession during which inflation is controlled. We
examine the state-dependent effects of expansionary policies taken during recessions characterized
by a variety of inflation and output growth values.

Panel (A) of Figure 6 plots the responses of the sentiment factor and output growth to 25- and
6.25-basis-point reductions in the federal funds rate (left and right columns, respectively) during
recessions in which output growth was either: (1) less than 1-standard-deviation below average, (2)
between 0- and 1-standard-deviation below average, (3) between 0- and 1-standard-deviation above

average, and (4) greater than 1-standard-deviation above average. We compute these responses at
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the posterior mean estimate of all model parameters. As seen in Figure 6, a small expansionary
shock of 6.25 basis points results in responses with considerable variation, depending on the state
at the time of the shock. This variation decreases with the size of the shock and is less apparent
with the 25-basis-point rate cut.

Panel (B) of Figure 6 plots the responses of the sentiment factor and output growth to 25- and
6.25-basis-point reductions in the federal funds rate (left and right columns, respectively) during
recessions in which inflation was either above or below 3% at the time of the shock. The responses
do not seem to show much variation depending on the level of inflation when policymakers took
action. Interestingly, the most noticeable differences are seen for the sentiment factor when inflation
is low. When inflation is less than 3%, expansionary policy shocks are more persistent over the

medium- and long-term horizons and thus produce a larger boost to sentiment.

5 Sequential Shocks

Empirical evidence on Taylor rules and reaction functions suggests that the Fed smooths interest
rates. For example, the Fed may anticipate that it will reduce the federal funds rate in the face of a
recession. It can do so in one large move or make a series of smaller moves. We have argued before
that, in the linear model, the response is invariant to the size of the shock, up to a scalar multiple—
that is, a 25-basis-point shock produces the same response as a 1-basis-point shock multiplied by
25. Thus, a 25-basis-point shock produces a response equivalent to four consecutive 6.25-basis-
point shocks, except for the slight variation in timing. On the other hand, altering the magnitude
of the shock in the nonlinear model does not produce a scalar multiple response. Thus, there is
no guarantee that the 25-basis-point shock will produce anything similar to a sequence of four

6.25-basis-point shocks.

5.1 Sequential Shock Responses

In order to evaluate the effect of smoothing the shocks, we compare the responses of the economic
variables to two sets of shocks: (i) a 25-basis-point change in the federal funds rate and (ii) four
consecutive 6.25-basis-point changes in the federal funds rate. We then measure the expected

paths of the macroeconomic variables, including the latent state, integrating over the histories,
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future shocks, and Gibbs iterations:

h
G RY [Yt+h|Yt 1,009 89 — i, = 100, { la] }l 1]

11 1 t+l
IR;(h) = =——
(h) GR[g] Q ZZZ vy v, . el gl —; [4] a 1"
| Y1, 09, 7 =4, Qusyp1 = up, + 25 p=17 Uit I=p+1

Notice that we are conditioning on the same (structural) shocks for period ¢ + 1 to t + h even
though we have additional shocks for the second term in periods t+1 to t+3. Thus, the innovation
to the federal funds rate can be thought of as a 6.25-basis-point shock above and beyond the set of
Monte Carlo structural shocks. This conditioning ensures the shocks to both terms are the same
except for the innovations that we are interested in.

Figure 7 plots the GIRFs based on either a single 25-basis-point change or four sequential 6.25-
basis-point changes. The left column portrays the responses if the federal funds rate is increased 25
basis points at time ¢ or in four consecutive 6.25-basis-points moves at times ¢, t+1, t+2, and £t 43
during an expansion and the sentiment factor is listed first in the VAR. These two contractionary
policy sequences induce significantly different behavior in the factor. Even after the four months
it takes to fully implement both policy prescriptions, the factor is still significantly lower after the
one-time, large contractionary shock. The large shock results in a slightly deeper contraction in
output growth, but this is not persistent. There is little discernible difference in the response of
inflation. The differences in the paths of the federal funds rate suggest that a series of smaller
rate hikes leads to a higher path for the policy rate over the medium- to longer-term horizons, as
represented by the GIRF taking on negative values after the four months it takes to implement the
smoothed policy approach.

The right column of Figure 7 shows the responses if the federal funds rate is decreased in a
single 25-basis-point move or four sequential 6.25-basis-point moves during a recession. Under these
conditions, when the factor is listed first in the VAR, the difference in responses of the factor stays
positive after the large shock for longer than the four months witnessing small, incremental shocks.
This result suggests a longer-lasting, more favorable response of the sentiment factor after a large
policy accommodation. Congruently, the large shock induces a slightly bigger boost to output

growth but, again, little variation in the response of inflation. After four months, by the time
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both policies have been fully implemented, any difference between the paths for output growth
and inflation disappears. Therefore, the larger stimulus initially provides an immediate, stronger
boost to output growth that is not surpassed by the smooth policy approach. By construction,
for the first four months in which the sequential policy is enacted, the decline in the policy rate
is more substantial after the initial large shock. Once both policies have had time to induce the
same systematic changes in the federal funds rate, the difference in paths becomes positive. This
result suggests that, following the large rate cut, the federal funds rate takes on larger values in

the medium term than if the Fed enacts a series of smaller rate cutes to achieve its target.

5.2 Sequential Shocks and Conditioning on Economic Conditions

Section 4.4 above illustrated how the effects of countercyclical policy can depend on the prevailing
economic conditions at the time of the policy shock. We found that smaller shocks induce responses
which are more sensitive to the level of inflation or output growth when the policy is enacted. In this
section, we extend this experiment to look at the difference in responses to the single 25-basis-point
shock and the four sequential 6.25-basis-point shocks when inflation is above and below target or
when output growth is strong or weak. These GIRF's use the posterior mean estimates of all model
parameters.

Figure 8 plots the GIRFs of the sentiment factor and output based on the single or sequential
shocks, conditional on the relevant levels of output growth or inflation. The left column shows
the GIRFs during recessions in which output growth was either: (1) less than 1-standard deviation
below average, (2) between 0- and 1-standard deviation below average, (3) between 0 and 1 stan-
dard deviation above average, and (4) greater than one standard deviation above average. Any
substantial differences in the responses are seen after the four months it takes to cut the federal
funds rate the full 25 basis points using incremental steps. When output growth is negative, the
response of the sentiment factor exhibits greater persistence throughout the one-and-a-half years
following the first four months of policy changes. Additionally, while we find less variation in the
responses of output growth, we also see slightly greater persistence in the responses when output
growth is negative. The right column shows the GIRFs based on whether inflation was above
or below 3% at the time of the initial policy shock. We find almost no variation in the GIRFs

conditioning on inflation levels and the responses appear similar to those using the full history of
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recessions identified in the sample, as in the right column of Figure 6.

6 Conclusions

We estimate a self-exciting, TVTP-VAR in which lagged output growth affects the underlying
state of the economy. As a result, countercyclical policy affecting the variables within the VAR also
affects the latent state explaining the transition between expansionary and recessionary regimes.
Additionally, we extract a factor representing overall sentiment regarding the health and outlook
of the economy. We find that this factor declines in the months preceding each of the NBER-dated
recessions and recovers in the months leading up to the trough. Our model appropriately identifies
NBER recessions in the pre-Great Moderation subperiod but does not identify as much variation in
the dynamics of the model in these predetermined expansion or recession periods in the post-Great
Moderation period.

We find empirically relevant differences in the effects of policy between the two regimes, as well
as variation depending on the type of policy enacted at various points in the business cycle. The
effects of small policy changes are sensitive to the levels of output growth and inflation at the time
of the shocks, but large policy shocks have relatively similar effects in these different environments.
Finally, smoothing of policy rates in order to enact gradual adjustments induces different effects
than large, one-time policy shocks which ultimately result in changes in the policy rate of the same
magnitude. The greater stimulus to overall sentiment and output from large policy shocks may
suggest that more aggressive policy intervention, without as much emphasis on smoothing, may be

appropriate to combat recessions.
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A Sampler Details

The following subsections describe the draws of the estimation method.

A.1 Drawing By (L), B (L), 0, conditional on ©_(p,(1).5,(L),00,0:}: S7, Fr

Conditional on the factor and the parameters of ¢ (.), the VAR model parameters are simply conju-
gate N-IW. Let Yy, = [Yr_p,...Yitp)s Sr—p = [Sr—pre S11r—pl,
Xi=[1r_p,Yr 1, Y7 _p,ST_p,ST 1 ®Y7r_1,....,S7_p ® Yr_p|', and X* represent the vector
of stacked Xj’s.

Then, given the prior, a draw of { By (L) , By (L)} can obtained from By (L), B1 (L) |©_{py(L),B: (1)}, FT ~
N (b, B), where

B— (Bgl + X*'X*)il ,

b=B (Bglbo + X*’YT) .

Let e reflect the stacked vector of errors; then, given the prior, we can draw 2 from

QW (v, m),

where v = vg+ T'/2 and w = (wo + erel) /2.

A.2 Drawing S5;|0,Y

Let Q; = {y, : 7 <t} collect all the data up to time ¢. From Chib (1993), the conditional density

for S is
T—1

p (S|@7Y) =D (ST|®T7“7 025’7) H p (St|St+la X, K, 0277) : (9)
t=1

The density p(S5¢0,Y) is computed by Hamilton’s modification of the Kalman filter, the last

iteration yielding p (S7|©,Y). From Bayes Law, we have

DS 1,5 P St|®t7u'ao-277
p(St‘St.i_]_,@,Y) — 5 t+1,9t ( : )2 )
Zj:1pst+1,jp (St :]|®t>u70 77)
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where p;; is the (time varying) transition probability. Combined, this allows us to generate S;

recursively.

A.3 Drawing v|0_,,Y,S

The transition parameters are drawn using the difference random utility model described in Frithwirth-
Schnatter and Frithwirth (2010) and Kaufmann (2015). Under this specification, the regime variable
has an underlying continuous utility representation, U,, ;. The period ¢ latent state utility for regime

k is

Ukt = Z:€7k + VEk.ty k= 07 1

where

Z: = [z—q(1 — Si—1), 2e—aSi—1, (L — Si—1), Si—1]’,

Ve = [Yeo> Vi1 Vros V1) »

and vy ; follows a Type 1 extreme value distribution. We assume the regime with the maximum

utility at time ¢ is the observed regime:
St = j <= U;; = max Uy,.
t=J gt P kit
Differences in utility are given by

Uy — Upy ifk=0
Wkt = )
Uiy~ Upy ifk=1

where, analogous to the case above, the observed regime is the one with the highest utility
St = j <= w,; = Max Wg..
t=1J gt P kit
We can rewrite the state utilities as

Uk, = 10g(Cpp) + vkt
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where

Crr = exp (Ziyy),

1y k=0
ka,t =

Similarly, the difference in state utilities can be rewritten as

Wkt = ;’Yk - log(ka,t) + Vgt — Ukt

= Zyy —10g(C_py) +€rps  eny ~ Logistic.

For normalization purposes, we impose kK = 0 to be the reference regime. This implies the
restriction vy, = [0,0,0, 0]'. Thus, it is only necessary to draw the transition parameters for the
regime k = 1. Practically, there are three substeps to the sampling technique for ;. The first

substep is to sample the latent state utility differences outlined above for all time periods:

[ ~
w1t = 2Ly + €&,

where

- Crt Ciu
=1 +Wel1-5;— ’ -1 1-S;—Wi1-5;— .
€t og [St f ( Sy 1 Cl,t og Sy f Sy 1 cl,t ,

Wy ~ U (0,1).

Next, we estimate the logistic distribution of the true errors, €, by a mixture of normal distrib-

utions with six components. The components, R;, are sampled from the distribution

./ 2
p(Rt:r)mwreXp[—Oﬁ(M)], r=1,...,6,

Sy s

where the component weights, w,, and component standard deviation, s,, are given in Table 1 of
Frithwirth-Schnatter and Frithwirth (2010).

Finally, given the prior v; ~N(go, Gg), we generate the draw of v, from the normal posterior
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distribution v; ~N (g, G), where

T 7.0
g:G<G61gO+Z t21,t)’

=1 SR

T -1
Z,Z,
G:<G01+§: gt> .

=1 "R

2
m

A.4 Drawing \,,,0;, conditional on ©_¢, 21,57, Fr

Conditional on the factor, the factor equation parameters are N-IG. Given the prior, a draw of A,

can obtained from A,,|0_»,,Fr ~ N (d,, Dy,), where

D = (D,' + F4Fr) ',

d =D (Dy'do + FXpr)

and XmT = [Xml, ...,XmT]/.
Define X7 = [Xi7, ..., Xps7)'. Then, we can sample o2 from a gamma posterior o,,2|¥_q ~

G (Tm, ppy), Where r, = (ro +T') /2 represents the degrees of freedom and the scale parameter is

Pm = (po +uruy) /2.

A.5 Drawing F; conditional on ©,S,

Conditional on the VAR parameters, the transition function, and the factor equation parame-

ters, the factor can be filtered using a linear Kalman filter. It will be convenient to rewrite

=/

the model in its state-space representation. Define the state ¢; = [EQ, , "’:‘t—p—l-l],’ where Z; =

[[1 — ¢ (z1—a)] 52, & (2t—q) f;]l Then,

Zy = H¢+ ey, (10)

Gt = W1+,
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!/

where Z; = [Y/, X]]', e; = | iz u]’, v = |l 0’2(N+1)(P_1) . The state-space coefficient matrices

x1
are
7o In  Onxi Onxovt1)(P-1)
OmxN A Oprvavt1)yp-1)
and
Boy -+ Bop B -+ Bip
W = , (11)

Lvinrp-1) Oowvi1)(P-1)x2(N+1)
where each B;, is a (N 4+ 1 x N + 1) matrix collecting the pth lag coefficients for the ith regime.
Given a set of starting values of g9 and Fyg, the filter iterates prediction and update steps
forward for ¢t = 1,..,T. The prediction step computes a projection of the period—t state variable

based on information available at time ¢t — 1. The prediction density is typically written as

Stjt—1 = WCt—1|t—17

tgft—l = WPf—1|t—1W/ +Q,

where Q = F [ww'].
From the prediction density, we can update the state vector using the next period realization

of the data. Define the prediction error as

Meje—1 = Zt — Hepje—1, (12)

where the variance can then be written as:

PZ/

tt—1 = Hgt\tflptgft—lH/ +V.

The covariance with ¢;;_1 as
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Ty xr !/
Pyi—y = B H

The updated state vector density is then

_ Y -1
Stle = Stle—1 + Py Py 1 Mepe—15

with variance

_ -1 xy/!
tTt— taft—l t|t 1Pt|t 1Pt\t r
. T T :

From these, we can retain {§t|t}t:1’ { t|t} {§t|t 1}t , and { i 1} . In a single-move
Gibbs sampler, we would draw ¢; from N (qt‘T, t|T , which requires smoothing. A standard
backward smoother yields:

, -1
ST = Seje + Py, W ( t+1\t) (€t+1|T - <t+1|t) (13)

with variance

Pir = P, + P’ (Ptalet>_1 ((Pt:fHT)_l - <Ptx+1\t> _1> (Ptgiut) o W Pj,.

An alternative is to use a multi-move sampler (Carter and Kohn (1994)), which draws the entire
state vector at once from p (gtlﬂt,gf +1), where €2; represents the data known at time ¢ and the
superscript * indicates the truncation of the state vector due to the singular covariance matrix. We

then draw F; from N (Ft\t,<t+17131tgft,gt+l)7 where

1
Fijt oo = |:§tt + t\tW*/ (W* t\tW*/ +Q° ) (/g\:—i‘l - §t+1lt)] en, (14)
Ptg\gt,gt_,_l = e?V |: tg|6t + t|tW*I (W* t‘tW*l + Q ) w* t|t:| ey,

and ey is a vector with a 1 as the (IV 4 1)th element and 0’s everywhere else. The main difference

between (13) and (14) is that the former generates all the posterior distributions simultaneously
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while the latter forms them recursively, conditional on the ¢ + 1 period draw.
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B Tables and Figures

Table 1: Priors for Estimation

Parameter | Prior Distribution Hyperparameters
[Bo, B1] N (bg, By) by = [GDPy,0nxp, GDP, — GDPy, 0y p) ™V
By: See note (2).
Qo W (v, o) vo=N+2; wo=1In41
71 N(go, Go) go = [—4,—4,-4,4]' ; Go = diag(4,4,1,1)
Am N (dy, Dy) do=0; D=1
a2 IG (ro, pg) ro=1; py=1

Table 1: (1) We set GDPy equal to the mean value of ZCOIN growth in NBER expansions and
GDP; equal to the mean of ZCOIN growth in NBER recessions. (2) By imposes unit variance
on the constant in each equation and shrinkage on higher lags of Y;. Consider the components
of By corresponding to the VAR coefficients for lag p in equation n. We assign the variance on

the coefficient on variable n’s own lag to be 2}%’ and the variance of the coefficients on the other

variables to be %.
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Table 2: Select Parameter Estimates

Factor Loadings

Posterior Mean

68% Posterior Coverage Sentiment Series

A1
A2
A3
A4

1.00
1.15
1.09
0.83

1.10
1.04
0.78

1.20
1.14
0.88

CBCCI
UMCSI
OECDCCI
PMI

TVTP Coefficients

Posterior Mean

68% Posterior Coverage

Y10
Y11
Y10

Y11

—4.08
1.22
—1.02
—0.67

—4.58

0.72

—1.34
—1.08

—3.62
1.72
—0.69
—0.25

Table 3: Root Mean-Squared Errors

MS-TVTP-FAVAR

Linear-FAVAR

ZCOIN Growth
PCE Inflation

Federal Funds Rate

0.26
0.11
0.39
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Posterior Mean of Sentiment Factor and Probability of Recession
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Figure 1: Left Axis: Posterior mean and 68% posterior coverage interval of factor extracted from
unbalanced panel of sentiment data including: Conference Board (CB) Consumer Confidence Index,
the University of Michigan Consumer Sentiment Index, the Organization for Economic Cooperation
and Development (OECD) Consumer Confidence Index, and the Institute for Supply Management
(ISM) Purchasing Managers Index (PMI). Right Axis: Posterior Mean Probability of Recession
Regime - Four Variable FAVAR of Coincident Index growth, PCE Inflation, the Federal Funds
Rate, and the Sentiment Factor. The posterior means are computed over 8000 draws from the

Hamilton filter within the Gibbs sampler.
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5 Posterior Mean of Sentiment Factor
T T T T T T T T T T T T T

05~

-0.5

Sentiment Factor

——MS-TVTP-FAVAR
Linear-FAVAR
25 ! | I | 1 ! 1 | I 1f 1 ! ! | | 1 L L 1 1 1 | | L
1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
Year

Figure 2: Factors extracted from both the TVTP-MS-FAVAR and the Linear FAVAR models. Both
factors summarize information from the same unbalanced panel of sentiment data including: Con-
ference Board (CB) Consumer Confidence Index, the University of Michigan Consumer Sentiment
Index, the Organization for Economic Cooperation and Development (OECD) Consumer Confi-
dence Index, and the Institute for Supply Management (ISM) Purchasing Managers Index (PMI).

The posterior mean is computed over 8000 draws of the Kalman filter within the Gibbs sampler.
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Contractionary Shock to FFR in Expansion
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Figure 3: Generalized Impulse Responses: The responses are to a range of shocks to the Federal
Funds Rate between 46.25 and +25 basis points in expansion or -25 and -6.25 basis points in

recession. We condition on being in the expansionary regime (top row) or recessionary regime

(bottom row) at the time of the shock.
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Figure 4: GIRF and Linear IRF of the sentiment factor and output growth in response to a 25 basis
point shock to the Federal Funds Rate. For the GIRF’s, we condition on being in the expansionary
regime or recessionary regime at the time of the shock. The plots show the posterior mean and

68% posterior coverage intervals.

33



Switch from Expansion to Recession Switch from Recession to Expansion

e SR

Sent Factor
566
Sent Factor
°

0 4 8 12 16 20 24 0 4 8 12 16 20 24

ZCOIN Growth
5 oo
28R
7=

\) \

\

|

\

\

\

j
ZCOIN Growth
°
S5 s i

-
Q

)

(

5

|

12 16 20 24 0 4 8 12 16 20 2
Months Months

Figure 5: Generalized impulse responses to either a switch from the expansionary to the recessionary
regime (left column) or a switch from the recessionary to the expansionary regime (right column).
The Sentiment factor is listed first and thus responds to policy shocks with a lag while all macro
variables respond to sentiment shocks contemporaneously. The plots show the posterior mean and

68% posterior coverage intervals, computed over 400 equally-spaced draws (thinning every 20th

draw) from the posterior distributions.
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(A) Generalized IRFs to Shocks to FFR in Recession: ZCOIN Levels
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(B) Generalized IRFs to Shocks to FFR in Recession: Inflation Levels
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Figure 6: Generalized impulse responses to a 6.25 and 25 basis point reduction in the federal funds
rate, conditional on being in recession with various levels of output growth at the time of the
shock. The Sentiment factor is listed first and thus responds to policy shocks with a lag while all
macro variables respond to sentiment shocks contemporaneously. The responses are computed at

the posterior mean estimates of the model parameters.
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25 BP vs. 4 x 6.25 BP Increase in FFR - Expansion 25 BP vs. 4 x 6.25 BP Decrease in FFR - Recession
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Figure 7: Generalized impulse responses to a single 25 basis point reduction (increase) in the Fed-
eral Funds Rate compared with 4 sequential 6.25 basis point cuts (increases), conditioning on being
in recession (expansion) at the time of the policy shock. The Sentiment factor is listed first and thus
responds to policy shocks with a lag while all macro variables respond to sentiment shocks contem-
poraneously. The plots show the posterior mean and 68% posterior coverage intervals, computed

over 400 equally-spaced draws (thinning every 20th draw) from the posterior distributions.
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25BP vs. 4 x 6.25 BP Decrease in FFR in Recession
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Figure 8: Generalized impulse responses to a single 25 basis point reduction in the Federal Funds
Rate compared with 4 sequential 6.25 basis point cuts, conditional on being in recession with
various levels of output growth at the time of the first shock. The Sentiment factor is listed first
and thus responds to policy shocks with a lag while all macro variables respond to sentiment
shocks contemporaneously. The responses are computed at the posterior mean estimates of the

model parameters.
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