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Abstract

Assuming a neoclassical production technology, this paper characterizes constrained effi-

cient intertemporal wedges for the macro aggregate as well as the micro individual allocation of

dynamic Mirrleesian economies. We first construct “Pareto-Negishi weights” from the multi-

pliers on a sequence of temporary incentive constraints. For a fairly general stochastic process

of idiosyncratic labor productivity shocks, we show that the evolution of the Pareto-Negishi

weight associated with agents’ consumption is a nonnegative martingale. This powerful prop-

erty enables us to deliver three contributions to the literature. First, we demonstrate that

several celebrated results on the intertemporal wedge of the individual allocation can all be at-

tributed to their origin in the nonnegative martingale property of consumption Pareto-Negishi

weights. Second, we address optimal distortions for the aggregate allocation and establish

that the constrained efficient intertemporal wedge for aggregate savings is negative or positive,

depending on whether the intertemporal elasticity of substitution is elastic or inelastic. This

result is another application of the nonnegative martingale property. Third, we show how the

nonnegative martingale property will be modified in the presence of additional frictions and

shed new light on incorporating different types of constraints documented in the literature.
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1 Introduction

This paper considers a dynamic economy in which privately informed idiosyncratic labor produc-

tivity shocks evolve stochastically over time. The stochastic nature of these productivity shocks

accounts for a variety of uninsurable risks to the value of human capital over the course of peo-

ple’s lives. Assuming a standard neoclassical production technology, we characterize constrained

efficient intertemporal wedges for the macro aggregate as well as the micro individual allocation of

the economy.

We study a social planning problem in which the planner intends to provide an efficient in-

surance contract to each agent of the economy, subject to agents’ incentive constraints caused by

information frictions in a dynamic stochastic framework. This class of problems seeks the opti-

mal trade-off between insurance and incentives and has been studied intensively in two related

strands of the literature: Dynamic Contracting (DC) and New Dynamic Public Finance (NDPF).1

Instead of the conventional recursive formulation in the literature, however, we use a multiplier

approach that reformulates the social planning problem in a sequential fashion. Following Fernan-

des and Phelan (2000), we first decompose agents’ lifetime incentive constraints into a sequence

of temporary incentive constraints for all possible states at all times. We then use the multipliers

on these sequential temporary constraints to construct two variables known as “Pareto-Negishi

weights,” one for consumption and the other for labor input. Both evolve over time to ensure the

satisfaction of agents’ incentive constraints and, at the same time, they determine the evolution

of the welfare weights placed on an agent in the planner’s objective. Under a fairly general as-

sumption for the stochastic process of idiosyncratic labor productivity shocks, we show that the

evolution of the Pareto-Negishi weight associated with agents’ consumption is a nonnegative mar-

tingale. This property is built on the separability of period utility between consumption and labor,

but it is robust to whatever the binding patterns of agents’ incentive constraints may be. Using

the nonnegative martingale property, we deliver three main contributions to the literature.

First, we show that several important results on the intertemporal wedge of the micro individual

allocation in the DC/NDPF literature, including the inverse Euler equation, zero expected wealth

1For a review on DC, see Part V in Ljungqvist and Sargent (2012). For reviews on NDPF, see Golosov, Tsyvinski,
and Werning (2007); Kocherlakota (2010); Golosov, Troshkin and Tsyvinski (2011); and Golosov and Tsyvinski
(2015). Kocherlakota (2010, p. 3) explicitly noted that the optimal tax problem in NDPF is isomorphic to a
dynamic contracting problem between a risk-neutral principal and a risk-averse agent who is privately informed
about her type.

1



taxes and immiseration, can all be attributed to their origin in the nonnegative martingale property

of consumption Pareto-Negishi weights. This provides a deep insight into why these results hold in

the first place and how their underlying mechanisms work in an intuitive and novel perspective. We

consider this a nice complement to the existing literature. Given the generality of the nonnegative

martingale property, we essentially extend these findings from mainly endowment economies with

i.i.d. shocks to neoclassical production economies with non-i.i.d. shocks.

Second, the focus of the DC/NDPF literature has been on the micro individual rather than

the macro aggregate allocation. This is true despite most of the literature considering the scenario

where “the social planner does all the saving in the economy by choosing the amount of aggregate

savings.” (Golosov, Troshkin, and Tsyvinski (2011, p. 157)). Moreover, it is important to bring

micro individual behavior to bear on macro economic aggregates, since the economy-wide aggre-

gate variables of an economy remain the central focus of macroeconomics. Atkeson and Lucas

(1992, 1995) are exceptions. They envisioned an economy with many of the so-called “component

planner,” whose job is to transfer aggregate resources over time for the agents in her “jurisdiction”

and, simultaneously, to meet these agents’ incentive constraints in distributing the aggregate re-

sources. An important departure from the literature in their analysis is that they explicitly made a

distinction between the aggregate allocation and the distribution of the aggregate allocation for the

component planner. In the same vein, we address the constrained efficient allocation over time in

terms of aggregate as well as individual wedges. Chien, Cole, and Lustig (2011) adopted the multi-

plier approach and worked with an isoelastic utility over consumption in a positive analysis of asset

pricing. They showed that the intertemporal prices for the macro aggregate of an economy depend

on a specific moment of the distribution of accumulative multipliers. We obtain a similar result in

our normative analysis: the constrained efficient intertemporal wedges for the macro aggregate of

our dynamic Mirrleesian economy depend on a specific 1/σ moment of the Pareto-Negishi weights

placed on consumption, where 1/σ denotes the intertemporal elasticity of substitution (IES). In

particular, the constrained efficient intertemporal wedge for aggregate saving is negative or posi-

tive, depending on whether IES is elastic or inelastic. If there exists an asymptotic steady state for

the economy, we show that βR R 1 at constrained efficient allocations as IES R 1, where β is the

discount factor and R is the gross rate of return from saving. This finding is another application of

the nonnegative martingale property of consumption Pareto-Negishi weights, since the constrained
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efficient intertemporal wedge in the aggregate is shown to be exactly affected by the 1/σ moment

of the consumption Pareto-Negishi weights.

Third, we extend the benchmark model to incorporate different or additional types of fric-

tions/constraints documented in the DC/NDPF literature. Specifically, we consider three cases:

(i) Atkeson and Lucas (1995), who put a lower bound on agents’ utility; (ii) Phelan (2006) and

Farhi and Werning (2007, 2010), who perceived social discounting in excess of private discount-

ing; and (iii) Armenter and Mertens (2013), who made a verification technology on agents’ states

available to the social planner. In all of these cases, the nonnegative martingale in the benchmark

model becomes a martingale and, at the same time, there exists a force that makes consumption

Pareto-Negishi weights increase monotonically over time. These properties imply that immiser-

ation in the benchmark model is no longer applicable, which is the common result in all three

cases. We are also able to extend the Atkeson and Lucas (1995) result that βR < 1 in steady state

at constrained efficient allocations to a more general environment for σ ≤ 1. Integrating cases

(i)-(iii) into a single framework and studying them in light of the modification of the nonnegative

martingale sheds new light on these different frictions/constraints introduced in the DC/NDPF

literature.

It should be noted from the beginning that the focus of this paper is the characterization rather

than the implementation of constrained efficient allocations. Our focus has a good excuse: Kocher-

lakota (2010, chapter 4) has provided a recipe for implementing constrained efficient allocations

of dynamic Mirrleesian economies as part of a competitive equilibrium.

Related literature

Our paper is related to several strands of the literature. We briefly discuss them below.

Espino, Kozlowski, and Sánchez (2015) studied the partnership interaction with private in-

formation and capital accumulation in a two-agent production economy. They found that the

incentive of misreporting vanishes for the agent with dominating ownership and hence the immis-

eration result applies only to the dominated agent. Espino (2005) considered a private information

economy with heterogeneous agents in terms of their discount factor and showed that the immis-

eration result is avoided if the economy does not collapse in the long run. In terms of quantitative

studies, Veracierto (2014) considered a similar private information environment with aggregate un-

certainty and assumed log utility functions in both consumption and leisure. His result indicated

3



that the idiosyncratic information friction has no effect on aggregate fluctuations quantitatively.

The study is consistent with our finding that the intertemporal prices are not distorted with a

unitary value of IES. Given labor supply, Farhi and Werning (2012) quantitatively explored the

welfare effect of introducing optimal capital taxation prescribed by the inverse Euler equation.

Werning (2007) has formulated dynamic Mirrleesian taxation by encoding incentive constraints

through multipliers on these constraints. However, there is de facto no variation of multipliers over

time in the Werning framework. This is because he assumed that agents’ heterogeneity in their

characteristics remains invariant over time. Park (2014) extended the Werning model to allow for

stochastic agent types but within a Ramsey rather than Mirrleesian framework.

The use of the multiplier approach to solving macroeconomic models was pioneered by Kehoe

and Perri (2002), building on an earlier work by Marcet and Marimon (1999). Chien, Cole, and

Lustig (2011) used stochastic accumulative multipliers to characterize allocations and aggregate

prices, providing a tractable and computationally efficient algorithm for computing equilibria in the

context of asset pricing. In repeated moral hazard environments, Mele (2014) demonstrated a more

efficient computational algorithm with the recursive multiplier and with the first-order approach.

In an environment similar to ours, Kapička (2013) adopts the first-order approach to successfully

overcome the complexity caused by the persistence of shocks as well as the large numbers of shock

values. Our approach differs because it characterizes intertemporal wedges and aggregate variables

completely through a specific moment of the Pareto-Negishi weight distribution. Our method fits

into the literature of replacing “primal” states variables with “dual” ones. Messner, Pavoni, and

Sleet (2013) argued that the dual approach is applicable to a large class of economies and often

leads to an easy characterization of constrained efficient allocations.

There are other papers related to our work. We comment on and make comparisons with them

as we proceed.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 proves the

nonnegative martingale property. Using the property, Section 4 characterizes constrained efficient

intertemporal wedges for the micro individual allocation and Section 5 for the macro aggregate

allocation. Section 6 considers extensions and Section 7 concludes.
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2 Benchmark model

We consider a dynamic Mirrleesian economy in which privately informed idiosyncratic skill (labor

productivity) shocks evolve stochastically over time. The stochastic nature of these skill shocks

accounts for a variety of uninsurable risks to the value of human capital over the course of people’s

lives. The environment is similar to that in Kocherlakota (2010). For simplicity, our exposition

focuses on the first-order Markov process for skill shocks throughout the paper. We show in Lemma

2 that our results remain valid for a fairly general stochastic process of skill shocks.

2.1 Economic environment

2.1.1 Preferences and skill shocks

Time is discrete, indexed by t = 0, 1, ..., T , where T = ∞ is allowed. The economy is populated

by a continuum of infinitely-lived agents with a unit measure. The period utility of agents is given

by2

u(ct)− v(nt),

where u(.) is strictly concave and strictly increasing in consumption ct, while v(.) is strictly convex

and strictly increasing in labor supply nt. Both u(.) and v(.) are continuously differentiable. We

impose standard Inada conditions to ensure that both consumption and labor supply are positive.

In particular, we impose limc→0 u
′(c) = +∞.

Agents are ex ante identical but ex post heterogeneous. Ex post heterogeneity arises because

agents have different histories with regard to their realization of idiosyncratic skill shocks over time.

This is the only heterogeneity across agents. Realized skill shocks are the private information of

agents and so are unknown to the social planner. An agent’s skill shock at time t, denoted by θt,

takes positive values in a finite set Θ and is realized at the beginning of the time period. We attach

positive probabilities to all elements of Θ. The skills at t = 0 are drawn from a distribution over Θ,

2Additive separability between consumption and labor in the instantaneous utility is standard in NDPF; see, for
example, Kocherlakota (2005); Golosov, Tsyvinski, and Werning (2007); Werning (2007); and Farhi and Werning
(2012). It is a critical assumption for the derivation of the so-called “Inverse Euler Equation” in NDPF; see
Kocherlakota (2010, p. 54). Most papers in DC consider endowment economies; see Ljungqvist and Sargent (2012,
Part V).
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and then θt follows a first-order Markov process independently and identically across agents at each

point in time. We let θt = (θ0, θ1, ..., θt) designate the history of events for an agent up through

and until time t and let πt(θ
t) denote its unconditional probability as of time 0. Because of the

independence of skill shocks across agents, a law of large numbers applies so that the probability

πt(θ
t) also represents the fraction of the population that experiences θt at time t. We call an

agent with history θt simply “the agent θt.” For s > t, the probability of having θs conditional on

the realization of θt is denoted by πs(θ
s|θt) =

∏s−1
j=t π(θj+1|θj), where π(θj+1|θj) is the conditional

probability of θj+1 given θj. We set the initial skill to 1 for all agents before they draw θ0. There

are no aggregate shocks.

Agents are assumed to maximize their expected discounted utility

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
, (1)

where β ∈ (0, 1) denotes the discount factor and lt = θtnt is the effective labor supply at time t.

2.1.2 Production technology

The production technology is neoclassical, denoted by F (Kt, Lt), where Kt and Lt are aggregate

capital and aggregate effective labor, respectively. The resource constraints of the economy are

given by

Ct +Kt+1 ≤ F (Kt, Lt) + (1− δ)Kt, ∀t, (2)

where Ct denotes aggregate consumption and δ is the depreciation rate for capital. The initial

capital stock K0 is exogenously given; all agents are initially endowed with K0 units of capital at

time t = 0. We exclude government expenditures to focus on the insurance issue.

2.2 Planning problem

We turn to the planning problem facing the society.
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2.2.1 Temporary incentive-compatibility constraints

Although realized skill shocks and their history are the private information of agents, following

the seminal work of Mirrlees (1971) and most of the DC/NDPF literature, effective labor supply

lt = θtnt and consumption ct (and so saving) are publicly observable. We consider a social planner

(a benevolent government) that offers each agent an insurance contract with commitment.3 Ap-

plying the Revelation Principle allows us to restrict attention to contracts with a direct mechanism

whereby agents are induced to tell the truth about their skill types. Thus, each agent reports her

skill types over time and receives an allocation as a function of this report so that the allocation

is required to satisfy the incentive-compatibility (IC) constraints:

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
≥

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ̂

t)
)
− v

(
lt(θ̂

t)

θt

)]
,∀θt, θ̂t.

(3)

Kocherlakota (2010) shows that the set of allocations {ct(θt), lt(θt)} achievable by the society are

exactly the ones that satisfy the IC constraints (3) and the resource constraints (2).

The IC constraints above are in terms of lifetime utility as of t = 0. Fernandes and Phelan

(2000) showed that as long as idiosyncratic shocks are discrete and the probability of each shock is

strictly positive (both conditions are met in our setting), the lifetime IC constraints are equivalent

to a sequence of temporary IC constraints, each of which rules out one-period deviations at a time.

Therefore, the lifetime IC constraints (3) can be equivalently expressed as

u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)
+

T∑
s=t+1

∑
θs|θt

βs−tπs(θ
s|θt)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]

≥ u
(
ct(θ

t−1, θ̂t)
)
− v

(
lt(θ

t−1, θ̂t)

θt

)

+
T∑

s=t+1

∑
θs|θt

βs−tπs(θ
s|θt)

[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θ

s; θ̂t)

θs

)]
, ∀t, θt, θ̂t, (4)

3As time passes, information about agent types (skills) may be revealed. A benevolent government (the social
planner) is assumed to commit itself to the contract without exploiting information revelation as time passes. It is
known that the society is better off with such a commitment than without it; see, for example, Laffont and Tirole
(1988).
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where (θs; θ̂t) denotes (θ0, θ1, ..., θt−1, θ̂t, θt+1, ..., θs).

The replacement of the lifetime IC constraints (3) by a sequence of temporal IC constraints (4)

is crucial to our analysis, which will be clear later. To facilitate and simplify the analysis, we make

the following assumption:

Assumption 1. The disutility function of labor takes the form v(n) = nγ

γ
, where γ > 1.

This is a popular functional form for v(.), and the reciprocal of γ − 1 is the Frisch elasticity of

labor supply. Lemma 2 later shows that we can dispense with this assumption for a key result of

our paper.

2.2.2 Social planner’s problem

The social planner chooses allocations {ct(θt), lt(θt)} to maximize the objective (1), subject to the

sequences of the temporal IC constraints (4) and the resource constraints of the economy (2).

Let {βtπt(θt)ψ(θt−1, θt, θ̂t)} be the Lagrange multipliers on the IC constraints (4) and {µt} be

the Lagrange multipliers on the resource constraints (2). After incorporating the multipliers on

the constraints into the objective (1), the resulting Lagrangian can be rewritten as follows (see

Appendix A.1 for the derivation):

L = min
{ψ,µ}

max
{c,l,K}

T∑
t=0

∑
θt

βtπt(θ
t)

[
φc(θ

t)u
(
ct(θ

t)
)
− φl(θt)v

(
lt(θ

t)

θt

)]
(5)

+
T∑
t=0

µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1] ,

where φc(θ
t) and φl(θ

t) are the Pareto-Negishi weights placed on the agent θt, and their evolutions

are governed by

φc(θ
t) = 1 +

t∑
s=0

∑
θ̂s

[
ψ(θs−1, θs, θ̂s)−

πt(θ
t; θ̂s)

πt(θt)
ψ(θs−1, θ̂s, θs)

]
, (6)
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φl(θ
t) = 1 +

t∑
s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s)−
t−1∑
s=0

∑
θ̂s

πt(θ
t; θ̂s)

πt(θt)
ψ(θs−1, θ̂s, θs)

−
∑
θ̂t

π(θ̂t|θt−1)
π(θt|θt−1)

ω(θt, θ̂t)ψ(θt−1, θ̂t, θt), (7)

where ω(θt, θ̂t) =
(
θt
θ̂t

)γ
.

Consider φc(θ
t) in (6). Suppose that an agent’s history is θs−1 and her type realized at time s is

θs. The multiplier ψ(θs−1, θs, θ̂s) ≥ 0 is associated with the temporal IC constraint that she mimics

θ̂s, while the multiplier ψ(θs−1, θ̂s, θs) ≥ 0 is associated with the temporal IC constraint that she

is mimicked by θ̂s. Note that the multiplier ψ(θs−1, θs, θ̂s) enters (6) with a plus sign, whereas the

multiplier ψ(θs−1, θ̂s, θs) enters with a minus sign. Thus, the assigned Pareto-Negishi weight φc(θ
t)

for an agent will increase over time if she is capable of mimicking others, whereas it will decrease

over time if others are capable of mimicking her. These adjustments are to enforce IC constraints

in response to the evolution of skill shocks over time. Multiplying both sides of (6) by πt(θ
t), we

see that πt(θ
t) represents the fraction of the agent θt in the population at time t and πt(θ

t; θ̂s) the

fraction of agents who mimic the agent θt in the population at time t. It is clear that φc(θ
t) = 1

would hold all the time if the friction of private information were absent. The evolution of φc(θ
t)

simultaneously determines the welfare weights that the planner places on an agent’s utility u(.)

over time in her objective (5). A similar interpretation applies to φl(θ
t) in (7).

As is clear from (6) and (7), the Pareto-Negishi weight at time t is a function of all past realized

values of the multipliers ψ(.) and so it summarizes and encodes the frequency and severeness of

the binding of temporal IC constraints across states and over time. The summation and encoding

is robust to whatever the binding patterns of agents’ incentive constraints may be. It is worth

mentioning that the evolution of {φc(θt), φl(θt)} in (6) and (7) represents a generalization of Eq.

(36) in Werning (2007), in that while agent types are permanently fixed in the Werning framework,

they are stochastically evolving in our framework.

The evolution of the consumption Pareto-Negishi weight φc(θ
t) is key to the results of this

paper. We elaborate on it a bit more. Given the initial value φc(θ
−1) = 1, (6) can be expressed

recursively as

9



φc(θ
t) = φc(θ

t−1) + ε(θt), (8)

where

ε(θt) =
∑
θ̂t

[
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

]

−
∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)

[
π(θt|θ̂t−1)
π(θt|θt−1)

− 1

]
. (9)

The first summation in (9) is anticipated in view of (6). As to the second summation, its rise

is somewhat subtle. Note first that if idiosyncratic shocks were to evolve as an i.i.d. process,

π(θt|θ̂t−1) = π(θt|θt−1) would hold and hence the second summation would vanish for sure. In our

Markov environment, π(θt|θ̂t−1) 6= π(θt|θt−1) in general and so this second summation is not zero in

general. The likelihood ratio π(θt|θ̂t−1)
π(θt|θt−1)

in (9) then serves as a statistical reference. If π(θt|θ̂t−1)
π(θt|θt−1)

< 1,

the ratio signals that θt is more likely to be linked to θt−1 (true type at time t−1) than θ̂t−1 (other

types at time t − 1); as such, other things being equal, the agent θt is rewarded by the planner

with a higher φc(θ
t) according to (8). By contrast, if π(θt|θ̂t−1)

π(θt|θt−1)
> 1, the ratio signals that θt is more

likely to br linked to θ̂t−1 than θt−1; as such, other things being equal, the agent θt is punished by

the planner with a lower φc(θ
t) according to (8). This type of rewards and punishments is ex post

in nature and builds on the Markov link of idiosyncratic shocks. It invokes the planner’s “threat

keeping,” a terminology used by Fernandes and Phelan (2000), to ensure that there are no gains

at time t for any agent who deviated at time t− 1.4

This completes the description of our model.

3 Nonnegative martingale

This section proves a powerful property of φc(θ
t) over time, which is stated as follows:

4It has long been known from the agency problem that the principal uses the likelihood ratio of high against low
output to infer whether agents shirk or not. Hart and Holmström (1987, p. 80) remarked: “The agency problem
is not an inference problem in a strict statistical sense; conceptually, the principal is not inferring anything about
the agent’s action ..., because he already knows what action is being implemented. Yet, the optimal sharing rule
reflects precisely the principles of inference.” The essence of their remark equally applies here.
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Lemma 1. The Pareto-Negishi weight φc(θ
t) is nonnegative, has a first moment equal to 1, and

its evolution in (6) satisfies

∑
θt

φc(θ
t)π(θt|θt−1) = φc(θ

t−1). (10)

That is, {φc(θt)} is a nonnegative martingale.

Proof. See Appendix A.2.

By the property of (10), the term ε(θt) in (8) is an innovation orthogonal to φc(θ
t−1). We now

explain why ε(θt) is an innovation or, equivalently, why (10) holds.

Let us calculate Et−1(ε(θ
t)), that is, the expectation of ε(θt) conditional on information at time

t− 1:

∑
θt

ε(θt)π(θt|θt−1) =
∑
θt

∑
θ̂t

[
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

]
π(θt|θt−1)

−
∑
θt

∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)

[
π(θt|θ̂t−1)
π(θt|θt−1)

− 1

]
π(θt|θt−1),

which gives rise to

Et−1(εt(θ
t)) =

∑
θt

∑
θ̂t

ψ(θt−1, θt, θ̂t)π(θt|θt−1)−
∑
θt

∑
θ̂t

ψ(θt−1, θ̂t, θt)π(θ̂t|θt−1)

−
∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)
∑
θt

[
π(θt|θ̂t−1)− π(θt|θt−1)

]
.

First, note that the first and the second components of Et−1(εt) cancel each other out because we

can interchange the indices θt and θ̂t. This result merely reflects the fact that when θt mimics

θ̂t, it must be true that θ̂t is mimicked by θt at the same time and that both the mimicking and

the mimicked share the same multiplier ψ(.). It should be noted that this symmetry between θt

and θ̂t holds for u(.) but fails to hold for v(.); see (4). As such, the separability of utility between

consumption and labor is critical. Next, note that the last component of Et−1(εt) is equal to zero
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as well because
∑

θt

[
π(θt|θ̂t−1)− π(θt|θt−1)

]
= 0. As explained earlier, π(θt|θ̂t−1) 6= π(θt|θt−1) in

general in our Markov-process environment. However, the term π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1) in the

last component of Et−1(εt), which is associated with the threat keeping at time t, is given from the

viewpoint of time t− 1. As a consequence, the ex post punishments and rewards associated with

the threat keeping at time t average out.

From (6) and (7), we can express φl(θ
t) as

φl(θ
t) = φc(θ

t) +
∑
θ̂t

π(θ̂t|θt−1)
π(θt|θt−1)

ψ(θt−1, θ̂t, θt)
(

1− ω(θt, θ̂t)
)
, (11)

which describes the relationship between φc and φl. Since the second term of (11) is not zero in

general, the labor Pareto-Negishi weight φl(θ
t) fails to have a property similar to the consumption

Pareto-Negishi weight φc(θ
t) as described in Lemma 1.

Lemma 1 is proved under the imposition of Assumption 1 and the first-order Markov process

for skill shocks. The next lemma shows that the nonnegative martingale property of φc(θ
t) holds

more generally.

Lemma 2. Lemma 1 holds without the imposition of Assumption 1 and, moreover, it holds under

the stochastic process that the conditional probability of θt is given by π(θt|x(θt−1); t) > 0 for all θt,

where x(θt−1) represents partial elements of θt−1 = (θ0, θ1, ..., θt−1).

Proof. See Appendix A.3.

The stochastic process described in 2 is more general than the first-order Markov process. For

concreteness, let us consider three possible cases of idiosyncratic skill shocks for the specification

of the conditional probability π(θt|.) described in the above lemma.

• Case 1: i.i.d. shocks, where x(θt−1) = ∅ and π(θt|x(θt−1); t) = π(θt).

• Case 2: a first-order Markov process, where x(θt−1) = θt−1 and π(θt|x(θt−1); t) = π(θt|θt−1);

this is the case we expose in the text.

• Case 3: a second-order Markov process, where x(θt−1) = (θt−1, θt−2) and π(θt|x(θt−1); t) =

π(θt|θt−1, θt−2).

In all these cases, the results stated in Lemma 1 remain valid.
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4 Intertemporal wedges in the individual

The Lagrangian (5) yields the first-order conditions5

βtφc(θ
t)u′

(
ct(θ

t)
)

= µt, (12)

βtφl(θ
t)v′

(
lt(θ

t)

θt

)
1

θt
= µtFLt, (13)

µt = µt+1 (FK,t+1 + 1− δ) . (14)

The optimal conditions (12)-(14) plus the resource constraints (2) characterize the constrained

efficient individual allocation {ct(θt), lt(θt)}. The optimal conditions (12)-(14) show that the con-

strained efficient individual allocation depends on the Pareto weights {φc, φl}, which are determined

by (6) and (7). If the friction of private information were absent, φc(θ
t) = φl(θ

t) = 1 would hold

all the time and we would be back to the familiar first-order conditions.

Following Golosov, Tsyvinski, and Werning (2007), we define the inter- and the intra-temporal

wedge as

τkt(θ
t) ≡ 1− u′(ct(θ

t))

βRt+1

∑
θt+1

u′(ct+1(θt+1))π(θt+1|θt)
, (15)

τlt(θ
t) ≡ 1−

v′
(
lt(θt)
θt

)
θtwtu′(ct(θt))

, (16)

where wt = FLt and Rt+1 = 1 + FK,t+1 − δ are the wage rate and the gross rate of return from

saving in competitive equilibrium. The wedges are defined in terms of the deviation between the

marginal rate of substitution and the marginal rate of transformation. If there are no distortionary

government interventions, τkt(θ
t) = τlt(θ

t) = 0 will hold in competitive equilibrium.

For the rest of the section, we use Lemma 1 plus the optimal conditions (12)-(14) to characterize

5Werning (2007, footnote 7) noted that the social maximization in the Mirrleesian economy is a convex problem.
This can be seen after changes in variables in (3) from (c, l) to (u, v) to make the IC constraints become linear. As
such, one can consider the social maximization in the Mirrleesian economy by simply using it to derive the first-order
conditions. This is in contrast to the Ramsey problem, which is not convex in general; see Werning (2007, footnote
20).
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constrained efficient intertemporal wedges facing individuals from several aspects. Given the non-

martingale result of φl(θ
t), we fail to derive useful properties to characterize constrained efficient

intratemporal wedges. We thus concentrate our analysis on intertemporal wedges.

4.1 Inverse Euler equation

A central finding on capital taxation in NDPF is the so-called “inverse Euler equation” (IEE).6

Here we show that there exists an intimate relationship between the nonnegative martingale of φc

and the IEE.

Combining Eqs. (12) and (14) gives

1

u′ (ct+1(θt+1))
=
β (FK,t+1 + 1− δ)

u′ (ct(θt))

φc(θ
t+1)

φc(θt)
, (17)

which in turn implies

∑
θt+1

1

u′ (ct+1(θt+1))
π(θt+1|θt) =

β (FK,t+1 + 1− δ)
u′ (ct(θt))

∑
θt+1

φc(θ
t+1)

φc(θt)
π(θt+1|θt).

By Lemma 1,
∑

θt+1

φc(θt+1)
φc(θt)

π(θt+1|θt) = 1. The above equation then leads to the IEE:

∑
θt+1

1

u′ (ct+1(θt+1))
π(θt+1|θt) =

β (FK,t+1 + 1− δ)
u′ (ct(θt))

. (18)

The IEE result was originally derived by Diamond and Mirrlees (1978) and Rogerson (1985).

Golosov, Kocherlakota, and Tsyvinski (2003) extended the result to a general class of models and,

in particular, a general law of motion for skill shocks. The IEE plus Jensen’s inequality implies a

positive capital wedge. Kocherlakota (2010, pp. 56-57) gave an explanation for why it is socially

optimal: (i) starting from an Euler equation, “the planner is able to provide better risk-sharing by

front-loading consumption” and (ii) moving to the IEE, the planner “pays the second-order cost

of reducing smoothing to get the first-order benefit of improving insurance.”

The standard way of deriving the IEE is by means of the so-called “perturbation method” – a

small perturbation around the optimality.7 This method is powerful, but it may be blind about

6On IEE, see Golosov, Tsyvinski, and Werning (2007); Kocherlakota (2010); Farhi and Werning (2012); and
Golosov and Tsyvinski (2015).

7See Rogerson (1985); Golosov, Kocherlakota, and Tsyvinski (2003); Golosov, Tsyvinski, and Werning (2007);
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the underlying reason for the result. We instead rely on Lemma 1, which makes clear its origin.8

If φc(θ
t) = 1 all the time (i.e., there is no information friction), we see from (17) that EE rather

than IEE would hold. In this sense, we state:

Proposition 1. IEE is built on the nonnegative martingale of {φc(θt)}.

The result of a positive capital wedge can be derived directly from the nonnegative martingale

of {φc(θt)}. Let us denote the intertemporal individual wedge evaluated at constrained efficient

allocations by τ ∗kt(θ
t). Using the optimal conditions (12) and (13), (15) gives

1

1− τ ∗kt(θt)
=
∑
θt+1

φc(θ
t)

φc(θt+1)
π(θt+1|θt). (19)

Applying Jensen’s inequality to the right-hand side of the above equation and then using the

nonnegative martingale property of φc, we have

∑
θt+1

φc(θ
t)

φc(θt+1)
π(θt+1|θt) >

φc(θ
t)∑

θt+1
φc(θt+1)π(θt+1|θt)

= 1,

which implies τ ∗kt(θ
t) > 0 from (19).

4.2 Zero expected wealth taxes

Kocherlakota (2005) considered wealth taxes instead of capital taxes to implement constrained

efficient allocations.9 The imposition of the wealth tax proposed by Kocherlakota (2005) gives rise

to

1 = β
u′ (ct(θ

t+1))

u′ (ct(θt))
(1− τ ∗W,t+1(θ

t+1)) (FK,t+1 + 1− δ) ,

and Kocherlakota (2010).
8In an i.i.d. endowment economy with private information, Thomas and Worrall (1990) showed that the planner’s

marginal cost of delivering one more unit of promised value to agents is a martingale. Farhi and Werning (2013)
extended this result to a labor production economy in which idiosyncratic productivity evolves as a Markov process
and is private information. They showed that the result implies the IEE. Intuitively, the planner’s marginal cost of
the delivery has to do with 1/u′(.) and the planner’s desire to smooth the marginal cost of utility production over
time implies the IEE; see Section 5.3.3 for more details. It should be noted that there is no capital but a linear
storage technology in Farhi and Werning (2013) and the focus of the paper is on intratemporal labor wedges.

9Kocherlakota (2005) allowed aggregate as well as idiosyncratic shocks. We consider a version without aggregate
shocks.
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where τ ∗W,t+1(θ
t+1)) is the optimal wealth tax rate. This equation together with the optimal con-

ditions (12) and (14) yields

1− τ ∗W,t+1(θ
t+1) =

φc(θ
t+1)

φc(θt)
, (20)

which shows that the wealth tax proposed by Kocherlakota (2005) is to simply track the evo-

lution of consumption Pareto-Negishi weights in two adjacent time periods. According to (20),

τ ∗W,t+1(θ
t+1) < 0 if φc(θ

t+1) > φc(θ
t) while τ ∗W,t+1(θ

t+1) > 0 if φc(θ
t+1) < φc(θ

t). The optimal wealth

tax thus prescribes a subsidy for agents who receive high shocks and mimic others at time t+1 but

a tax for agents who receive low shocks and are mimicked by others at time t + 1. Kocherlakota

(2005) emphasized the importance of this wealth tax/subsidy characteristic in implementation, in

that it makes savings a bad hedge against idiosyncratic shocks and so deters the joint deviation of

saving too much and supplying labor too little. Taking the conditional expectation on both sides

of (20) and using the nonnegative martingale of {φc(θt)} leads to Et(τ
∗
W,t+1(θ

t+1)) = 0, which is a

main result of Kocherlakota (2005): zero expected wealth taxes at the optimum. If φc(θ
t) = 1 all

the time (i.e., there is no information friction), we see from (20) that τ ∗W,t+1(θ
t+1) = 0 would hold

all the time. In this sense, we state:

Proposition 2. The result of zero expected wealth taxes at constrained efficient allocations is built

on the nonnegative martingale of {φc(θt)}.

4.3 Immiseration

A celebrated result in the DC/NDPF literature is the so-called “immiseration,” in which almost

every agent’s consumption converges to zero in the limit at constrained efficient allocations even

though aggregate consumption remains high above zero. This result implies: (i) an increasingly

large fraction of agents consume a decreasingly small amount of consumption over time and their

individual consumption goes to zero in the limit, and (ii) a decreasingly small fraction of agents

consume an increasingly large amount of consumption over time and their individual consumption

goes to infinity in the limit.10 Thomas and Worrall (1990) and Atkeson and Lucas (1992) obtained

the “immiseration” result in i.i.d. and endowment economies. Using Lemmas 1 and 2, we demon-

10Kocherlakota (2010, p. 68) provided an example to illustrate the co-existence of (i) and (ii). His Example 1 (p.
64) puts a lower and an upper bound on consumption to stop the force of (i) and of (ii).
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strate that “immiseration” still holds under Markov or more general stochastic processes and in a

neoclassical production economy.

Proposition 3. For almost surely all θt, limt→∞ φc(θ
t) = 0 at constrained efficient allocations.

Proof. {φc(θt)} is a nonnegative martingale according to Lemma 1 and thus we can apply Doob’s

(1953) martingale convergence theorem: for a sample path θt of skill realizations, there exists a

finite φ∗(θt) such that φc(θ
t) converges along the sample path to φ∗(θt) and this convergence is

true for almost surely all sample paths; see Kocherlakota (2010, p. 62). Since limt→∞ φc(θ
t) =

limt→∞ φc(θ
t−1) = φ∗(θt), it is implied from (8) that limt→∞ ε(θ

t) = 0. This in turn implies that

almost surely all multipliers ψ(.) in (9) are equal to zero in the limit.

Consider a generic sample path θt after a long passage of time with φc(θ
t) = φ∗(θt). Suppose,

to the contrary, φ∗(θt) is non-zero. We show below that this leads to a contradiction.

The convergence of φc(θ
t) implies two things: (i) φc(θ

t) will stay and remain constant with

its value equal to φ∗(θt); (ii) φl(θ
t) = φ∗(θt) too because the multipliers ψ(.) in (11) are all equal

to zero. Note that skill shocks are still stochastically evolving after time t. Now consider two

agents who share the same history θt up to time t but draw two skill shocks θt+1 and θ̂t+1 with

θt+1 6= θ̂t+1 at time t+ 1. From Eqs. (21)-(22) derived later, we have ct+1(θ
t+1) = ct+1(θ

t, θ̂t+1) =

φ∗(θt+1)
1
σ

Ht+1
Ct+1; moreover, for all s > t + 1 conditional on θt+1, cs(θ

s) = cs(θ
s; θ̂t+1) = φ∗(θt+1)

1
σ

Hs
Cs;

ls(θ
s) = ls(θ

s; θ̂t+1) = φ∗(θt+1)
1

1−γ θ
−γ
1−γ
s

Js
Ls.

Applying these results, the temporary IC constraints (4) would reduce to

−v
(
lt+1(θ

t, θt+1)

θt+1

)
≥ −v

(
lt+1(θ

t, θ̂t+1)

θt+1

)
, ∀θt+1, θ̂t+1;

−v

(
lt+1(θ

t, θ̂t+1)

θ̂t+1

)
≥ −v

(
lt+1(θ

t, θt+1)

θ̂t+1

)
, ∀θt+1, θ̂t+1.

However, with φl(θ
t) = φ∗(θt), (22) implies that lt+1(θt,θt+1)

lt+1(θt,θ̂t+1)
=
(
θt+1

θ̂t+1

) −γ
1−γ

, which in turn implies that

the reduced temporary IC constraints above must be violated with θt+1 6= θ̂t+1. As such, we have

a contradiction and so φ∗(θt) must be zero almost surely in the limit.

From (12), limt→∞ φc(θ
t) = 0 implies that limc→0 u

′(ct(θ
t)) = +∞. The intuition underly-

ing “immiseration” is as follows. Along a sample path θt, φc(θ
t) is converging as time has been
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long passed. However, this does not mean that θt stops evolving; on the contrary, θt still evolves

stochastically over time even if φc(θ
t) is converging toward φ∗(θt). To provide incentives for more

productive people to produce more, the planner needs to spread out consumption across hetero-

geneous agents over time even though φc(θ
t) is converging. The planner accomplishes this task by

“immiseration”: let the consumption of an increasingly large fraction of agents go to zero in the

limit so that, due to the Inada condition limc→0 u
′(c) = +∞, even a tiny spreading of consumption

can be a significant differentiation for the agents.

The immiseration result depends heavily on the nonnegative martingale property stated in

Lemma 1. Given that the nonnegative martingale of φc is robust to the more general shock process

as shown in Lemma 2, the immiseration result holds more generally.

4.4 Permanent intertemporal distortions

The result of τ ∗kt(θ
t) > 0 for all θt found in NDPF is often in contrast with the classical result of

Chamley (1986) and Judd (1985) that capital should go untaxed in the long run.11 However, it is

clear from the IEE (18) that, unlike the classical result of Chamley (1986) and Judd (1985), the

implied τ ∗kt(θ
t) > 0 for all θt is not about the long-run property of capital taxation in the limit. To

make an informative comparison with the Chamley-Judd result, one must know what happens to

τ ∗kt(θ
t) as t→∞.

Albanesi and Armenter (2012) studied the long-run properties of intertemporal distortions in

a broad class of second-best economies. They identified a sufficient condition that rules out per-

manent intertemporal distortions in the second-best, that is, intertemporal individual distortions,

even if desirable in the short run, will no longer be desirable in the long run if the condition is met.

However, as Albanesi and Armenter (2012) acknowledged, their proposed sufficient condition does

not hold in general in economies with private information. As such, their analysis leaves open the

question of whether intertemporal distortions are permanent or temporary in dynamic Mirrleesian

economies. In terms of our framework, the question to ask is whether τ ∗kt(θ
t) will converge to zero

in the limit. The following result provides the answer.

Proposition 4. limt→∞ τ
∗
kt(θ

t) > 0 for almost surely every θt.

11A recent paper by Straub and Werning (2014) argued that the usual intuition that an indefinite positive tax
on capital is equivalent to an ever-increasing tax on consumption is invalid and that the prescription of no capital
taxation in the long run in the Ramsey framework may not be true.
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Proof. Proposition 3 demonstrates the immiseration result that φc(θ
t) converges almost surely to

0. This excludes the situation where limt→∞
φc(θt)
φc(θt+1)

= 1. From equation (19), the remaining

possibility is that limt→∞ τ
∗
kt(θ

t) > 0 for almost every θt.

We conclude that constrained efficient intertemporal individual distortions are permanent rather

than temporary in dynamic Mirrleesian economies. This result, to our knowledge, is new to the

literature.

Kocherlakota (2010, pp. 115-117) explored the long-run property of his proposed wealth taxes,

but failed to pin down the sign of the optimal tax rate as ct(θ
t)→ 0 (immiseration). He (p. 117)

simply suggested: “it may well be positive.” Utilizing our derived formula (20), we can say more.

Due to immiseration, both the numerator φc(θ
t+1) and the denominator φc(θ

t) of (20) converge to

zero almost surely in the long run. This feature immediately leads to:

Proposition 5. limt→∞ τ
∗
Wt(θ

t) 6= 0 for almost surely every θt.

From (6), we see that {φc(θt)} is not a monotonic sequence. As such, limt→∞ τ
∗
Wt(θ

t) according

to (20) may well be negative as well as positive.

5 Intertemporal wedges in the aggregate

The focus of the DC/NDPF literature has been on the micro individual allocation and, therefore,

it is not surprising that relatively little is known about the general property of macro aggregate

variables at constrained efficient allocations. This is true despite most of the literature consid-

ering the scenario where “the social planner does all the saving in the economy by choosing the

amount of aggregate savings.” (Golosov, Troshkin and Tsyvinski, 2011, p. 157). Moreover, even

if microfounded, the economy-wide aggregate variables of an economy remain the central focus of

macroeconomics. It is thus important to bring micro individual behavior to bear on macro eco-

nomic aggregates. Within our context, it is interesting to know how the social planner allocates

the macro aggregate resources over time when providing agents with insurance and dealing with

their incentive constraints at the micro individual level. This section intends to shed light on the

question.
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5.1 Consumption and labor sharing rules

To proceed, we make a further assumption:

Assumption 2. The consumption utility function takes the CRRA form:

u(ct) =
c1−σt

1− σ
,

where σ > 0, ensuring that u(.) is strictly concave.

The reciprocal of σ represents the intertemporal elasticity of substitution (IES). As will be seen,

whether IES is elastic or inelastic is of vital importance to the determination of aggregate con-

strained efficient intertemporal wedges. Whenever addressing aggregate wedges, we always impose

Assumptions 1 and 2. It is worth noting that imposing Assumptions 1 and 2 is highly popular in

many quantitative studies; see, for example, Farhi and Werning (2013); Golosov, Troshkin, and

Tsyvinski (2016).

Under Assumptions 1 and 2, we obtain the following from (12) and (13):

ct(θ
t)

Ct
=
φc(θ

t)
1
σ

Ht

, (21)

lt(θ
t)

Lt
=
φl(θ

t)
1

1−γ θ
−γ
1−γ
t

Jt
, (22)

where

Ht ≡
∑
θt

φc(θ
t)

1
σπt(θ

t),

Jt ≡
∑
θt

φl(θ
t)

1
1−γ θ

−γ
1−γ
t πt(θ

t).

Eqs. (21) and (22) are the consumption and labor sharing rules: the amount of consumption and of

effective labor destined for the agent θt will be completely determined, once the aggregates (Ct, Lt)

and the weights (φc(θ
t), φl(θ

t)) are known.

The result that individual allocations can be solved as a function of aggregate allocations

and Pareto-Negishi weights has been shown by Werning (2007) and Park (2014) in the Ramsey
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framework. In both papers the authors noted that a key to the result lies in the levying of linear

taxes so that marginal rates of substitution are equated with each other across agents. We show

here that the result can hold even with the levying of nonlinear taxes in Mirrleesian economies.

An important difference is that while Werning (2007) and Park (2014) restricted φc(θ
t) = φl(θ

t) in

their settings, we do not.

5.2 Constrained efficient aggregate allocations

Substituting the derived ct and lt of the consumption and labor sharing rules (21)-(22) into the

individual optimal conditions, (12)-(14), gives rise to

C−σt = βC−σt+1

(
Ht+1

Ht

)σ
(FK,t+1 + 1− δ), (23)

Lγ−1t

C−σt
=

(
Hσ
t

J1−γ
t

)
FLt. (24)

The constrained efficient macro aggregate allocation is characterized by (23) and (24) together

with the resource constraints (2). Contrasting (23)-(24) with (12)-(13) clearly shows that while

the micro individual allocation (ct, lt) is dictated by the individual Pareto-Negishi weights φc and

φl, the macro aggregate allocation (Ct, Lt) is dictated by some aggregations of the individual

Pareto-Negishi weights, that is, Ht and Jt. Since we fail to derive useful properties for Jt given the

non-martingale result of φl, we concentrate our analysis on the intertemporal margin associated

with (23).

How is the thrust of (23)? First, like the IEE, it characterizes the social planner’s behavior

over time in the presence of information frictions. The difference is that while the IEE describes

the social planner’s intertemporal behavior over the micro individual allocation, (23) describes

her intertemporal behavior over the macro aggregate allocation. Second, there does not exist a

representative agent for our friction-loaded economy in competitive equilibrium. It is thus not so

meaningful to define the intertemporal wedge for the macro aggregate allocation analogous to that

of (15) for the micro individual allocation. As an alternative, we use the first-best (a frictionless

or complete markets) economy as the benchmark, in which there does exist a representative agent

for the economy. In the first-best economy without frictions, it is straightforward to see that
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Ht+1/Ht = 1 for all t. We can define the aggregate wedge associated with (23) by its deviation

from the first-best:

Intertemporal aggregate wedge : τKt ≡ 1−
(
Ht+1

Ht

)σ
. (25)

For the rest of this section, we study the constrained efficient intertemporal aggregate allocation

characterized by (23) through the lens of the aggregate wedge defined by (25).

5.3 Properties of intertemporal aggregate wedges

This subsection characterizes the properties of the constrained efficient intertemporal aggregate

wedge, τ ∗Kt. Issues involved include the short run (at any finite time t) and the long run (as

t→∞). Lemma 1 plays a critical role for the results derived below.

5.3.1 The short run

It is clear from the definition of the intertemporal aggregate wedge (25) that the ratio Ht+1/Ht is

crucial. The next lemma characterizes this ratio.

Lemma 3. Ht R Ht+1 for t <∞ if σ R 1.

Proof. From Lemma 1, we have

φc(θ
t−1)

1
σ =

(∑
θt

φc(θ
t)π(θt|θt−1)

) 1
σ

.

By the power mean inequality, we have12

(∑
θt

φc(θ
t)π(θt|θt−1)

) 1
σ

R
∑
θt

φc(θ
t)

1
σπ(θt|θt−1) if σ R 1.

Combining the above results leads to

12For xi 6= xj , the inequality is read as(∑
i

xp
iwi

) 1
p

>

(∑
i

xq
iwi

) 1
q

if p > q,where wi > 0 and
∑
i

wi = 1.

Readers are referred to Bullen (2013) for the details.
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φc(θ
t−1)

1
σ R

∑
θt

φc(θ
t)

1
σπ(θt|θt−1) if σ R 1,

which in turn gives

∑
θt−1

φc(θ
t−1)

1
σπt−1(θ

t−1) R
∑
θt

φc(θ
t)

1
σπt(θ

t) if σ R 1.

The above lemma leads to three possibilities:

1. σ = 1 : When σ = 1, Ht+1 = Ht holds, which implies at constrained efficient allocations that

there is no intertemporal aggregate wedge at time t and so τ ∗Kt = 0.

2. σ > 1 : When σ > 1, Ht+1 < Ht holds, which implies at constrained efficient allocations that

there is a positive intertemporal aggregate wedge at time t and so τ ∗Kt > 0.

3. σ < 1 : When σ < 1, Ht+1 > Ht holds, which implies at constrained efficient allocations that

there is a negative intertemporal aggregate wedge at time t and so τ ∗Kt < 0.

To sum up, we state:

Proposition 6. τ ∗Kt R 0 for t <∞ if σ R 1.

The quantity of the intertemporal elasticity of substitution (IES), i.e., the value of 1/σ, is of

great importance in various fields in economics: for example, labor supply (Keane, 2011), con-

sumption and saving (Attanasio and Weber, 2010), asset pricing (Ljungqvist and Sargent, 2012,

chapters 13-14), and investment and business cycles (Favilukis and Lin, 2013). However, estima-

tions of its value vary. While works including those of Hansen and Singleton (1982), Attanasio

and Weber (1989), and Vissing-Jørgensen and Attanasio (2003) find IES to be well above 1, other

works including those of Hall (1988), Campbell and Mankiw (1989) and Campbell (1999) find IES

to be close to zero. Proposition 6 prescribes τ ∗Kt ≷ 0 according to whether IES is inelastic or elastic.

When IES is unitary, it prescribes τ ∗Kt = 0 all the time.
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5.3.2 The long run

Proposition 6 prescribes that τ ∗Kt = 0 if σ = 1, but τ ∗Kt 6= 0 if σ 6= 1. This is a short-run property,

which concerns what happens for any finite time t. But what about the long run or in the limit,

that is, t → ∞? This question is important because if Ht asymptotically converges to a positive

number, then at the optimum there will be no intertemporal aggregate distortion in the long run,

even though there is in the short run. In the following, we demonstrate that Proposition 6 remains

valid in the long run. The key underpinning the result is the immiseration property.

It is clear from Lemma 3 that if σ = 1, then Ht+1 = Ht = 1 must be true in the long run as well.

Thus, our long-run focus is on σ 6= 1. We show in Section 4.3 that immiseration must arise in our

economy. It prescribes that a diminishing fraction of agents receives an ever-increasing fraction of

the resources. Let π̃(t) be the fraction of those agents and let φ̃c(t) be the average Pareto-Negishi

weight associated with them. Immiseration implies that as t → ∞, π̃(t) → 0 but φ̃c(t) → ∞.

However, by Lemma 1,
∑

θt φc(θ
t)πt(θ

t) = 1. So, we have

lim
t→∞

∑
θt

φc(θ
t)πt(θ

t) = lim
t→∞

φ̃c(t)π̃(t) = 1, (26)

where the first equality holds because φ̃c(t)→∞ implies that agents other than the fraction π̃(t)

all receive φc(θ
t) = 0 in the limit. Thus,

lim
t→∞

Ht = lim
t→∞

∑
θt

φc(θ
t)

1
σπt(θ

t) = lim
t→∞

φ̃c(t)
1
σ π̃(t) = lim

t→∞
φ̃c(t)

1
σ φ̃c(t)

−1 = lim
t→∞

φ̃c(t)
1−σ
σ , (27)

where the third equality uses the implication of (26) that π̃(t) → φ̃c(t)
−1 in the limit. With

limt→∞Ht = limt→∞ φ̃c(t)
1−σ
σ from (27) and that φ̃c(t)→∞ as t→∞, we obtain:

Lemma 4. As t→∞, (i) Ht → 0 if σ > 1; (ii) Ht →∞ if σ < 1.

Lemma 4 directly implies that Ht+1/Ht < 1 for all t if σ > 1 and Ht+1/Ht > 1 for all t if σ < 1.

Based on this Lemma and the definition of the intertemporal aggregate wedge, we then have:

Proposition 7. As t→∞, (i) limt→∞ τ
∗
Kt > 0 if σ > 1; (ii) limt→∞ τ

∗
Kt < 0 if σ < 1.

This proposition dictates that the short-run result stated in Proposition 6 remains intact even

in the long run as t→∞.
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5.3.3 Intuitions

Both Propositions 6 and 7 build on Lemma 3, which in turn builds on Lemma 1. The proof of

Lemma 3 is rather technical and not particularly intuitive. Here we provide some intuitions for

what we have found.

First, let us explain (23). Kocherlakota (2010, p. 49) provided an intuition for the IEE (18)

in the following way. Suppose ρ(u) is the resource cost of producing u units of utility. Then the

social planner’s desire to smooth the marginal cost of utility production over time implies

ρ′(u(ct(θ
t))) =

1

β (FK,t+1 + 1− δ)
∑
θt+1

ρ′(u(ct+1(θ
t+1)))π(θt+1|θt),

which leads to the IEE (18) since ρ′(u) = 1/u′ (ρ(u)).

We can understand (23) in a similar way. Under Assumption 2, the marginal cost of utility

production for the agent θt at time t is equal to 1/u′ (ct(θ
t)) = ct(θ

t)σ. Thus, the marginal cost

of utility production for all agents at time t is given by
∑

θt
ct(θ

t)σπt(θt). From the consumption

sharing rule (21), ct(θ
t) = φc(θt)

1
σ

Ht
Ct and so we have

∑
θt

ct(θ
t)σπt(θt) = Cσ

t H
−σ
t

∑
θt

φc(θ
t)πt(θt) = Cσ

t H
−σ
t ,

where the last equality has used Lemma 1. The social planner’s desire to smooth the marginal

cost of utility production for all agents over time then implies (23).

Second, we explain Lemma 3 by more intuitive arguments. By the definition of Ht, we have

Ht =
∑

θt φc(θ
t)

1
σπt(θ

t). Note that H represents an expected utility if we view φc
1
σ as a utility

function. In this way, we then have risk aversion (σ > 1), risk loving (σ < 1) and risk neutrality

(σ = 1), respectively, in view of φ
1
σ
c being a function exhibiting concavity (σ > 1), convexity (σ < 1)

and linearity (σ = 1), respectively.

Next, from Lemma 1, we have E(φc(θ
t)) = 1 for all t; from (8), we have V ar(φc(θ

t+1)) >

V ar(φc(θ
t)) for all t. Thus, while φc(θ

t) has a mean equal to unity all the time, its variance

increases over time.

Putting together the above arguments leads to the result that the “expected utility” Ht is

decreasing (σ > 1), increasing (σ < 1), and remains unchanged (σ = 1) as time passes. That is,

Ht R Ht+1 if σ R 1. By (25), we then have τ ∗Kt R 0 if σ R 1.
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5.4 Steady-state βR

This subsection asks the question: what will βR be at constrained efficient allocations if there is

an asymptotic steady state in which Ct and Kt/Lt are constant over time?

If frictions were absent, Ht = 1 ∀t would hold and so (23) would reduce to

C−σt = βC−σt+1(FK,t+1 + 1− δ).

As a consequence, we would have βR = 1 all the time in steady state, regardless of whether σ R 1.

In the presence of information frictions, (23) together with the properties of Ht+1/Ht in the

long run gives

Proposition 8. βR R 1 in steady state at constrained efficient allocations if σ R 1.

With a fixed labor supply, Farhi and Werning (2012) provided a formal proof for the case of

logarithmic utility, that is, βR = 1 in steady state at constrained efficient allocations if σ = 1. In

the more general CRRA utility cases, they relied solely on their numerical results to find βR ≷ 1

if σ ≷ 1. Here we provide a formal proof for all cases of the CRRA utility function with a flexible

labor supply. The proof is ultimately built on Lemma 1. Note that the derivation of the above

proposition uses only the intertemporal condition (23), not the intratemporal condition (24). So,

it should not be a surprise that our results are compatible with those of Farhi and Werning (2012),

which assume a fixed rather than a flexible labor supply.

6 Extensions

This section extends the benchmark model to incorporate different or additional frictions/constraints

that have been introduced in the literature. In all cases considered, the nonnegative martingale

in the benchmark model reduces to a martingale and, at the same time, there exists a force that

makes consumption Pareto-Negishi weights increase monotonically over time.

Specifically, we consider three cases in which the social planning problems are as follows:
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1. Atkeson and Lucas (1995), denoted AL:

max{c,l,K}
∑T

t=0

∑
θt β

tπt(θ
t)
[
u (ct(θ

t))− v
(
lt(θt)
θt

)]
,

s.t.

∑T
s=t

∑
θs|θt β

s−tπs−t(θ
s|θt)

[
u(cs(θ

s))− v
(
ls(θs)
θs

)]
≥ U1, ∀t, θt,

(4) and (2),

where U1 represents a lower bound that the promised utility of agents is entitled to at any time

and in any state. The AL social planning problem is exactly the same as in the benchmark

model, except for the additional constraints associated with U1. Incorporating this type of

additional constraints is in the spirit of Atkeson and Lucas (1995), in that they studied the

imposition of a lower bound promised utility in a setting where there are privately informed

i.i.d. idiosyncratic shocks in the absence of capital. A possible rationale for incorporating

this type of constraint in our framework is to extend the Mirrleesian economy from “closed”

to “open” and thus allow for the possibility that agents can choose to migrate and renege on

the contracts offered by the social planner at each moment of time. To prevent agents from

breaking the contracts and walking away, the social planner faces the additional constraints

associated with U1. We attach the Lagrangian multipliers {βtπt(θt)λ(θt)} to these additional

constraints.

2. Farhi and Werning (2007, 2010), denoted FW:13

max{c,l,K}
∑T

t=0

∑
θt (βκ)t πt(θ

t)
[
u (ct(θ

t))− v
(
lt(θt)
θt

)]
,

s.t. (4) and (2),

where κ > 1. The FW social planning problem is exactly the same as in the benchmark

model, except for the presence of the term κ > 1. Incorporating κ > 1 is in the spirit of

Farhi and Werning (2007, 2010), in that they studied the situation where social discounting

is in excess of private discounting β with privately informed idiosyncratic shocks. FW con-

sidered a dynastic setting in which a parent and child are linked by altruism but they are

distinct individuals. The setting of κ > 1 arises in FW due to the presence of the additional

constraints that the welfare of the child must exceed some lower bound.

13Phelan (2006) considered a special case of FW.
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3. Armenter and Mertens (2013), denoted AM:

max
∑T

t=0

∑
θt β

tπt(θ
t)
[
u (ct(θ

t))− v
(
lt(θt)
θt

)]
,

s.t.

u (ct(θ
t))− v

(
lt(θt)
θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u (cs(θ

s))− v
(
ls(θs)
θs

)]
≥ (1−$)

 u
(
ct(θ

t−1, θ̂t)
)
− v

(
lt(θt−1,θ̂t)

θt

)
+∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θs;θ̂t)

θs

)]


+$U3, ∀t, θt, θ̂t,

and (2),

where $ > 0 denotes an exogenous state verification probability and U3 is the lowest utility

the planner can assign to an agent if her mimicking is detected. The AM social planning

problem is exactly the same as in the benchmark model, except for the replacement of the

sequence of temporal IC constraints (4) by the constraints associated with U3. Replacing the

IC constraints here is in the spirit of Armenter and Mertens (2013) since they introduced an

exogenous state verification of agents’ states into dynamic Mirrleesian economies. We attach

the Lagrangian multipliers {ϕ(θt−1, θt, θ̂t)} to the constraints associated with U3.

6.1 Martingale and monotonically increasing force

Despite incorporating different or additional frictions/constraints, we can integrate all three cases,

AL, FW and AM, into a unified framework and view them as a single social planning problem:

max
{c,l,K}

T∑
t=0

∑
θt

βtπt(θ
t)

[
φ̂c(θ

t)u
(
ct(θ

t)
)
− φ̂l(θt)v

(
lt(θ

t)

θt

)]
, s.t. (2). (28)

Appendix A.4 shows that the evolutions of φ̂c and of φ̂l satisfy the following form:

φ̂c(θ
t) = Ω1 · φc(θt)︸ ︷︷ ︸

Martingale

+ Ω2 · ∆t︸︷︷︸
Non-decreasing

,

φ̂l(θ
t) = Ω1 · φl(θt) + Ω2 · ∆t︸︷︷︸

Non-decreasing

,

where φc and φl are the Pareto-Negishi weights in the benchmark model as given by (6) and (7).

In the AL case, Ω1 = Ω2 = 1 and ∆t(θ
t) =

∑t
s=0 λ(θt), where {λ(θt)} are the multipliers on the
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constraints of the lower bound promised utility. In the FW case, Ω1 = Ω2 = 1 and ∆t(θ
t) = κt−1,

where κ > 1 is the factor leading to social discounting in excess of private discounting. In the AM

case, Ω1 = 1 − $, Ω2 = $ and ∆t(θ
t) =

∑t
s=0

∑
θ̂s
ϕ(θs−1, θs, θ̂s), where {ϕ(θt−1, θt, θ̂t)} are the

multipliers on the sequence of the temporal IC constraints with state verification.

From φ̂c, we obtain

φ̂c(θ
t)− φ̂c(θt−1) = Ω1

(
φc(θ

t)− φc(θt−1)
)

+ Ω2

(
∆t(θ

t)−∆t−1(θ
t−1)
)
, (29)

where ∆t(θ
t) ≥ ∆t−1(θ

t−1), ∀θt−1, θt. That is, the evolution of φ̂c consists of two components: the

evolution of φc(θ
t) and the nonnegative, non-decreasing sequence {∆t(θ

t)}. Irrespective of AL,

FW or AM, the evolution of the consumption Pareto-Negishi weight φ̂c associated with (28) can

always be represented by the two components of (29).

First, note that the second component of (29) tends to make φ̂c increase over time. Since, other

things being equal, φ̂c is inversely related to the marginal utility u′(.) (see (12) by replacing φc

with φ̂c), the increasing tendency of φ̂c over time implies that, to smooth the cost of producing

marginal utility (i.e., 1/u′(.)) over time, the social planner will have a tendency to implement a

back- instead of front-loading consumption plan if based on the second component of φ̂c alone.

This force is opposite to that of driving immiseration in the benchmark model.

Next, φc ≥ 0 always holds in the benchmark model. This property can be seen from the

first-order condition (12). The condition (12) remains true in the extension, except for φc being

replaced by φ̂c. Thus, the property of φc ≥ 0 in the benchmark is carried to the extension with

φ̂c ≥ 0, implying that φc ≥ 0 need not be true in the extension. However, the other two properties

of φc(θ
t) in Lemma 1 (i.e., E[φc(θ

t)] = 1 and (10)) remain intact. In other words, the process of

{φc(θt)} as a first component of (29) is a martingale, but no longer a nonnegative martingale. An

important consequence is that Dobb’s (1953) martingale convergence theorem is not applicable to

{φc(θt)} in the extension. Indeed, with E[φc(θ
t)] = 1 but in the absence of the lower bound φc ≥

0, the very nature of the random walk of φc(θ
t) described by (8) tends to yield an outcome in

which, as t→∞, some fractions of agents have φc(θ
t)→ +∞, while other fractions of agents have

φc(θ
t)→ −∞.

It is unclear how the two components of (29) together shape the evolution of φ̂c. Nevertheless,

we are able to derive some results from (29).

29



6.2 Some results

Note first that the social planning problem (28) is identical to the social planning problem (5),

except that the Pareto-Negishi weights φc(θ
t) and φl(θ

t) in the benchmark model are replaced

with the new Pareto-Negishi weights φ̂c(θ
t) and φ̂l(θ

t). This means that the optimal conditions

(12)-(14) remain intact in the extension as long as {φc, φl} in (12)-(14) are replaced with {φ̂c, φ̂l}.

Thus, all the equations/formulas derived in the benchmark model remain valid in the extension as

long as the Pareto-Negishi weights φc(θ
t) and φl(θ

t) in the benchmark model are replaced with the

new Pareto-Negishi weights φ̂c(θ
t) and φ̂l(θ

t). Recognizing this feature will be key to our analysis

below.

6.2.1 Negative expected wealth taxes

From (20) and (29), we have

Et
(
τ ∗W,t+1(θ

t+1)
)

= 1− Et

(
φ̂c(θ

t+1)

φ̂c(θt)

)
≤ 0,∀t; < 0, ∀t if ∆t+1(θ

t+1) > ∆t(θ
t) for some θt, θt+1.

The result of zero expected wealth taxes derived by Kocherlakota (2005) now becomes that of

negative expected wealth taxes.

6.2.2 Modified inverse Euler equation

From (17), we have

∑
θt+1

1

u′ (ct+1(θt+1))
π(θt+1|θt) =

β (FK,t+1 + 1− δ)
u′ (ct(θt))

∑
θt+1

φ̂c(θ
t+1)

φ̂c(θt)
π(θt+1|θt).

From (12) and (14), we have φ̂c(θ
t) = µt+1 (FK,t+1 + 1− δ) /βtu′ (ct(θt)). Substituting it into the

above equation and then applying (29) plus the martingale of φc, we obtain

∑
θt+1

1

u′ (ct+1(θt+1))
π(θt+1|θt) =

β (FK,t+1 + 1− δ)
u′ (ct(θt))

+
βt+1Ω2

µt+1

∑
θt+1

(
∆t+1(θ

t+1)−∆t(θ
t)
)
π(θt+1|θt),
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which is qualitatively the same as the “modified IEE” derived by Farhi and Werning (2010,

Eq. (27)). When Ω2 = 0, the modified IEE reduces to the IEE given by (18). In the pres-

ence of the last term in the modified IEE, it can be checked that the result of τ ∗kt(θ
t) > 0 implied

by the IEE is not necessarily true any longer. This result is not surprising in light of the presence

of the second component of (29) that exerts a “back-loading” force on consumption.

6.2.3 No immiseration

AL, FW, and AM have all found that the immiseration outcome of Proposition 3 is not applicable

in their framework. The properties embodied in the two components of (29) imply this result.

Formally, we prove:

Proposition 9. Given that the evolution of the consumption Pareto-Negishi weight follows (29),

the immiseration result fails to hold.

Proof. We prove by contradiction that φ̂c cannot converge to zero. Suppose that φ̂c converges

along a generic sample path θt as t goes to ∞. Given that, we obtain

lim
t→∞

[
φ̂c
(
θt+1

)
− φ̂c

(
θt
)]

= lim
t→∞

[
Ω1

(
φc
(
θt+1

)
− φc

(
θt
))

+ Ω2

(
∆t+1

(
θt+1

)
−∆t

(
θt
))]

= 0,

which implies limt→∞ [φc (θt+1)− φc (θt)] ≤ 0 since {∆t (θt)} is a non-decreasing sequence. The

result of limt→∞ [φc (θt+1)− φc (θt)] ≤ 0 violates the property
∑

θt+1
φc (θt+1) π (θt+1|θt) = φc (θt).

The non-convergence of φ̂c leads to a non-degenerate distribution of consumption and thus no

immiseration.

6.2.4 Aggregate wedges and steady-state βR

Ht =
∑

θt φ̂c(θ
t)

1
σπt(θ

t) in the extension. We have the following result.

Lemma 5. Ht < Ht+1, ∀t, including t→∞, if σ ≤ 1.

Proof. From (29), using the martingale of {φc(θt)} and applying the power mean inequality gives

φ̂c(θ
t) <

∑
θt+1

φ̂c(θ
t+1)π(θt+1|θt)⇒ φ̂c(θ

t)
1
σ <

∑
θt+1

φ̂c(θ
t+1)π(θt+1|θt)

 1
σ

. (30)
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∑
θt+1

φ̂c(θ
t+1)π(θt+1|θt)

 ≤
∑
θt+1

φ̂c(θ
t+1)

1
σπ(θt+1|θt)

σ

, if σ ≤ 1

⇒

∑
θt+1

φ̂c(θ
t+1)π(θt+1|θt)

 1
σ

≤
∑
θt+1

φ̂c(θ
t+1)

1
σπ(θt+1|θt), if σ ≤ 1. (31)

Putting (30) and (31) together yields

φ̂c(θ
t)

1
σ <

∑
θt+1

φ̂c(θ
t+1)π(θt+1|θt)

 1
σ

≤
∑
θt+1

φ̂c(θ
t+1)

1
σπ(θt+1|θt) if σ ≤ 1.

Summing the first and the last term of the above inequality over θt gives

∑
θt

φ̂c(θ
t)

1
σπt(θ

t) <
∑
θt

∑
θt+1

φ̂c(θ
t+1)

1
σπ(θt+1|θt)πt(θt) if σ ≤ 1.

⇒ Ht < Ht+1 if σ ≤ 1.

Since φ̂c does not converge, (30) and (31) hold as t → ∞. That being so, Ht < Ht+1, ∀t,

including t→∞, if σ ≤ 1.

From (25), this lemma immediately leads to

Proposition 10. τ ∗Kt < 0, ∀t, including t→∞, if σ ≤ 1.

Suppose there exists a steady state in which Ct and Kt/Lt are constant over time. Using Lemma

5, we obtain from (23) the following result:

Proposition 11. βR < 1 in steady state at constrained efficient allocations if σ ≤ 1.

Imposing a lower bound for the promised utility, Atkeson and Lucas (1995) showed that βR < 1

in steady state at constrained efficient allocations in a setting where idiosyncratic shocks are i.i.d.

and there is no capital. Proposition 11 extends their result to a more general environment for the

cases where σ ≤ 1.

32



7 Conclusion

This paper considers a dynamic economy in which privately informed idiosyncratic productivity

shocks evolve stochastically. The stochastic nature of these productivity shocks accounts for a

variety of uninsurable risks to the value of human capital over the course of people’s lives. Assuming

a standard neoclassical production technology, we characterize constrained efficient intertemporal

wedges for the macro aggregate as well as the micro individual allocation of the economy.

Instead of the conventional recursive approach in the DC/NDPF literature, we reformulate the

social planning problem in a sequential fashion. We first construct “Pareto-Negishi weights” from

the multipliers on a sequence of temporary incentive constraints. For a fairly general stochastic

process of idiosyncratic productivity shocks, we show that the evolution of the Pareto-Negishi

weight associated with agents’ consumption is a nonnegative martingale. Using this powerful

property, we expose existing results in the literature and derive new results on intertemporal

wedges. We also consider extensions in which the nonnegative martingale is modified.

The focus of this paper is on inter- rather than intra-temporal wedges. This is mainly due

to the fact that relatively few useful properties are known about the stochastic process of the

Pareto-Negishi weight associated with agents’ labor input. Recent work by Farhi and Werning

(2013) and Golosov, Troshkin, and Tsyvinski (2016) has addressed optimal labor distortions in

dynamic Mirrleesian economies. Following their line of investigation, it is hoped that there will be a

corresponding characterization of constrained efficient intratemporal wedges both in the individual

and in the aggregate in future work.
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A Appendix

A.1 Social planner’s problem

This appendix derives the details of the social planner’s problem.

The Lagrangian associated with (1), (2) and (4) is given by

L = min
{ψ,µ}

max
{c,l,K}

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
+

T∑
t=0

∑
θt,θ̂t

βtπt(θ
t)ψ(θt−1, θt, θ̂t)

×

 u (ct(θ
t))− v

(
lt(θt)
θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u (cs(θ

s))− v
(
ls(θs)
θs

)]
−u
(
ct(θ

t−1, θ̂t)
)

+ v
(
lt(θt−1,θ̂t)

θt

)
−
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θs;θ̂t)

θs

)]


+
T∑
t=0

µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1] .

The part associated with the temporary IC constraints (4) can be decomposed into three compo-

nents:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)
− u

(
ct(θ

t−1, θ̂t)
)

+ v

(
lt(θ

t−1, θ̂t)

θt

)]
︸ ︷︷ ︸

Component A

+
T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]
︸ ︷︷ ︸

Component B

−
T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θ

s; θ̂t)

θs

)]
︸ ︷︷ ︸

Component C

.

Each component can be further rearranged as follows:
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1. Component A:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)
− u

(
ct(θ

t−1, θ̂t)
)

+ v

(
lt(θ

t−1, θ̂t)

θt

)]

=
T∑
t=0

∑
θt

∑
θ̂t

βtπt(θ
t)

 u (ct(θ
t))
(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

πt(θt−1,θ̂t)
πt(θt)

)
−v
(
lt(θt)
θt

)(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

(
θt
θ̂t

)γ)
 .

2. Component B:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]

=
T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)] t−1∑
s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s).

3. Component C:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θ

s; θ̂t)

θs

)]

=
T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)] t−1∑
s=0

∑
θ̂s

ψ(θs−1, θ̂s, θs)
πt(θ

t; θ̂s)

πt(θt)
.

Putting together the three components, we obtain the Lagrangian (5) with φc(θ
t) and φl(θ

t)

given by (6) and (7).

A.2 Proof of Lemma 1

Here is the proof of Lemma 1.

Proof. First, rearranging (12), we have φc(θ
t) =

u′(c∗t (θt))
−1∑

θt u
′(c∗t (θ

t))−1πt(θt)
, where 1

u′
is nonnegative; so

φc(θ
t) is nonnegative. Second, consider epsilon defined in equations (8) and (9) and calculate
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Et−1(ε(θ
t)), i.e., the expectation of ε conditional on information at date t− 1:

Et−1(ε(θ
t)) =

∑
θt

ε(θt)π(θt|θt−1)

=
∑
θt

∑
θ̂t

[
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

]
π(θt|θt−1)

−
∑
θt

∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)

[
π(θt|θ̂t−1)
π(θt|θt−1)

− 1

]
π(θt|θt−1)

=
∑
θt

∑
θ̂t

ψ(θt−1, θt, θ̂t)π(θt|θt−1)−
∑
θt

∑
θ̂t

ψ(θt−1, θ̂t, θt)π(θ̂t|θt−1)

−
∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θs−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)
∑
θt

[
π(θt|θ̂t−1)− π(θt|θt−1)

]
= 0.

We provide an intuition for the last equality (i.e., equal to zero) in the main text. Applying the

zero conditional expectation result of ε(θt) to equation (6), we obtain

∑
θt

φc(θ
t)π(θt|θt−1) = φc(θ

t−1).

Finally, applying the law of iterated expectation to (10), we obtain

E[φc(θ
t)] = E[Et−1(φc(θ

t))] = E[φc(θ
t−1)]

= E[Et−2(φc(θ
t−1))] = E[φc(θ

t−2)]

= ... = E[φc(θ
0)]

= φc(θ
0) = 1

Therefore, φc(θ
t) has a finite first moment.

A.3 Proof of Lemma 2

The proof of part (1) is obvious. Under the period utility function u(ct)− v(nt), the nonnegative

martingale of {φc(θt)} has to do with the consumption part of the utility only. We prove part (2)
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as follows:

Following the derivation in Appendix A.1, we obtain

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
φc(θ

t)− v
(
lt(θ

t)

θt

)
φl(θ

t)

]
, (32)

where

φc(θ
t) = 1 +

t∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

πt(θ
t; θ̂s)

πt(θt)

)

and

φl(θ
t) = 1+

t∑
s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s)−
t−1∑
s=0

∑
θ̂s

ψ(θs−1, θ̂s, θs)
πt(θ

t; θ̂s)

πt(θt)
−
∑
θ̂t

ψ(θt−1, θ̂t, θt)
π(θ̂t|x(θt−1); t)

π(θt|x(θt−1); t)

(
θt

θ̂t

)γ
.

We then have

φc(θ
t)− φc(θt−1) =

t∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

πt(θ
t; θ̂s)

πt(θt)

)

−
t−1∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

πt−1(θ
t−1; θ̂s)

πt−1(θt−1)

)
,

where the first term on the right-hand side can be re-expressed as

t−1∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

π(θt|x(θt−1; θ̂s); t)πt−1(θ
t−1; θ̂s)

π(θt|x(θt−1); t)πt−1(θt−1)

)

+
∑
θ̂t

(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|x(θt−1); t)

π(θt|x(θt−1); t)

)
.

Thus, we obtain

φc(θ
t) = φc(θ

t−1) + ε(θt),
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where

ε(θt) =
∑
θ̂t

(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|x(θt−1); t)

π(θt|x(θt−1); t)

)

−
t−1∑
s=0

∑
θ̂s

ψ(θs−1, θ̂s, θs)
πt−1(θ

t−1; θ̂s)

πt−1(θt−1)

(
π(θt|x(θt−1; θ̂s); t)

π(θt|x(θt−1); t)
− 1

)
.

For concreteness, we consider three possible cases of idiosyncratic shocks for the specification of the

conditional probability π(θt|x(θt−1; θ̂s); t), where the notation (θt−1; θ̂s) denotes that the elements

of θt−1 corresponding to θ̂s are replaced by θ̂s.

• Case 1: i.i.d. shocks where π(θt|x(θt−1; θ̂s); t) = π(θt) for s ≤ t− 1.

• Case 2: a first-order Markov process where π(θt|x(θt−1; θ̂s); t) = π(θt|θ̂t−1) for s = t− 1, and

π(θt|x(θt−1; θ̂s); t) = π(θt|θt−1) for s < t− 1.

• Case 3: a second-order Markov process where π(θt|x(θt−1; θ̂s); t) = π(θt|θ̂t−1, θt−2) for s = t−1,

π(θt|x(θt−1; θ̂s); t) = π(θt|θt−1, θ̂t−2) for s = t− 2, and π(θt|x(θt−1; θ̂s); t) = π(θt|θt−1, θt−2) for

s < t− 2.

Let the first and the second component of ε(θt) be ε1(θ
t) and ε2(θ

t). Using the logic of proving

Lemma 1 in Appendix A.2, it can be shown that

∑
θt

ε1(θ
t)π(θt|x(θt−1); t) =

∑
θt

ε2(θ
t)π(θt|x(θt−1); t) = 0. (33)

We are ready to show that φc(θ
t) is a nonnegative martingale. First, except for a more general

shock process, the Lagrangian associated with (32) is identical to the Lagrangian (5). Hence,

following the same arguments as in Appendix A.2, φc(θ
t) > 0. In addition, Eq. (33) indicates

∑
θt

φc(θ
t)π(θt|θt−1) = φc(θ

t−1),

which implies that the unconditional mean of φc(θ
t) equals 1 as well. This completes the proof.
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A.4 Pareto-Negishi weights in the extension

The AL case imposes a lower bound on the promised utility. This type of additional constraints

can be expressed as

T∑
s=t

∑
θs|θt

βs−tπs−t(θ
s|θt)

[
u(cs(θ

s))− v
(
ls(θ

s)

θs

)]
≥ U1, ∀t, θt,

where U1 represents the lower bound that agents are entitled to in any state and at any time.

Attach Lagrangian multipliers {βtπt(θ)λ(θt)} to the constraints above and incorporate them into

the Lagrangian (5). The new Pareto-Negishi weights become

φ̂c(θ
t) = φc(θ

t) +
t∑

s=0

λ(θs),

φ̂l(θ
t) = φl(θ

t) +
t∑

s=0

λ(θs),

where φc(θ
t) and φl(θ

t) are given by (6) and (7).

The FW case considers the situation where social discounting is in excess of private discounting.

Let the social planner’s discount factor be βκ with κ > 1. The Lagrangian (5) is modified to be

L = min
{ψ,µ}

max
{c,l,K}

T∑
t=0

∑
θt

βtκtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
+

T∑
t=0

∑
θt,θ̂t

βtπt(θ
t)ψ(θt−1, θt, θ̂t)

×

 u (ct(θ
t))− v

(
lt(θt)
θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u (cs(θ

s))− v
(
ls(θs)
θs

)]
−u
(
ct(θ

t−1, θ̂t)
)

+ v
(
lt(θt−1,θ̂t)

θt

)
−
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θs;θ̂t)

θs

)]


+
T∑
t=0

µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1] ,

which can be expressed as

L = min
{ψ,µ}

max
{c,l,K}

T∑
t=0

∑
θt

βtπt(θ
t)

[
(φc(θ

t) + κt − 1)u
(
ct(θ

t)
)
− (φl(θ

t) + κt − 1)v

(
lt(θ

t)

θt

)]

+
T∑
t=0

µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1]
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where φc(θ
t) and φl(θ

t) are given by (6) and (7). As such, the new Pareto-Negishi weight on

consumption becomes

φ̂c(θ
t) = φc(θ

t) + κt − 1,

φ̂l(θ
t) = φl(θ

t) + κt − 1.

The AM case endows the social planner with a random verification technology. With the

availability of the verification technology, temporary incentive constraints are modified to be

u (ct(θ
t))− v

(
lt(θt)
θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u (cs(θ

s))− v
(
ls(θs)
θs

)]
≥ (1−$)

(
u
(
ct(θ

t−1, θ̂t)
)
− v

(
lt(θt−1,θ̂t)

θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θs;θ̂t)

θs

)])
+$U3,∀t, θt, θ̂t,

where $ > 0 denotes an exogenous state verification probability and U3 is the lowest utility the

planner can assign to an agent if her mimicking is detected.

Let {ψ(θt−1, θt, θ̂t)} be the multipliers associated with the temporary incentive constraints. The

Lagrangian becomes

L = min
{ψ,µ}

max
{c,l,K}

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
+

T∑
t=0

∑
θt,θ̂t

βtπt(θ
t)ψ(θt−1, θt, θ̂t)

×



u (ct(θ
t))− v

(
lt(θt)
θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u (cs(θ

s))− v
(
ls(θs)
θs

)]
−(1−$)

 u
(
ct(θ

t−1, θ̂t)
)
− v

(
lt(θt−1,θ̂t)

θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θs;θ̂t)

θs

)]


−$U3


+

T∑
t=0

µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1] .

The above can be rewritten as

L = min
{ψ,µ}

max
{c,l,K}

T∑
t=0

∑
θt

βtπt(θ
t)

[
φ̂c(θ

t)u
(
ct(θ

t)
)
− φ̂l(θt)v

(
lt(θ

t)

θt

)]
+µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1] ,
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where

φ̂c(θ
t) = (1−$)φc(θ

t) +$

t∑
s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s),

φ̂l(θ
t) = (1−$)φl(θ

t) +$
t∑

s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s),

and φc(θ
t) and φl(θ

t) are given by (6) and (7).
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Kapička, M. (2013): “Efficient Allocations in Dynamic Private Information Economies with

Persistent Shocks: A First-Order Approach,” Review of Economic Studies, 80(3), 1027–1054.

Keane, M. P. (2011): “Labor Supply and Taxes: A Survey,” Journal of Economic Literature,

49(4), 961–1075.

Kehoe, P. J., and F. Perri (2002): “International Business Cycles with Endogenous Incomplete

Markets,” Econometrica, 70(3), 907–928.

Kocherlakota, N. R. (2005): “Zero Expected Wealth Taxes: A Mirrlees Approach to Dynamic

Optimal Taxation,” Econometrica, 73(5), 1587–1621.

(2010): The New Dynamic Public Finance, The Toulouse Lectures in Economics. Prince-

ton University Press.

Laffont, J.-J., and J. Tirole (1988): “The Dynamics of Incentive Contracts,” Econometrica,

56(5), 1153–75.

44



Ljungqvist, L., and T. J. Sargent (2012): Recursive Macroeconomic Theory, Third Edition,

MIT Press Books. The MIT Press.

Marcet, A., and R. Marimon (1999): “Recursive Contracts,” Working Paper, Universitat

Pompeu Fabra.

Mele, A. (2014): “Repeated Moral Hazard and Recursive Lagrangeans,” Journal of Economic

Dynamics and Control, 42(C), 69–85.

Messner, M., N. Pavoni, and C. Sleet (2013): “The Dual Approach to Recursive Optimiza-

tion: Theory and Examples,” Working papers, SSRN.

Mirrlees, J. A. (1971): “An Exploration in the Theory of Optimum Income Taxation,” Review

of Economic Studies, 38(114), 175–208.

Park, Y. (2014): “Optimal Taxation in a Limited Commitment Economy,” Review of Economic

Studies, 81(2), 884–918.

Phelan, C. (2006): “Opportunity and Social Mobility,” Review of Economic Studies, 73(2),

487–504.

Rogerson, W. P. (1985): “Repeated Moral Hazard,” Econometrica, 53(1), 69–76.

Straub, L., and I. Werning (2014): “Positive Long Run Capital Taxation: Chamley-Judd

Revisited,” NBER Working Papers 20441, National Bureau of Economic Research, Inc.

Thomas, J., and T. Worrall (1990): “Income Fluctuation and Asymmetric Information: An

Example of a Repeated Principal-Agent Problem,” Journal of Economic Theory, 51(2), 367–390.

Veracierto, M. (2014): “Adverse Selection, Risk Sharing and Business Cycles,” Working Paper

Series WP-2014-10, Federal Reserve Bank of Chicago.

Vissing-Jørgensen, A., and O. P. Attanasio (2003): “Stock-Market Participation, Intertem-

poral Substitution, and Risk-Aversion,” American Economic Review, 93(2), 383–391.

Werning, I. (2007): “Optimal Fiscal Policy with Redistribution,” The Quarterly Journal of

Economics, 122(3), 925–967.

45


	2015-043Bcoverpage.pdf
	April 2016
	FEDERAL RESERVE BANK OF ST. LOUIS


