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1 Introduction

Imagine that an important public policy issue, involving the functioning of the entire economy,

could be settled by a simple formula together with only a few inputs estimated from data.

Imagine further that the simple formula, connecting the public policy variable to empirical

inputs, was general in that it held within a wide class of theoretical models that were rele-

vant to the issue at hand. The scenario just described is the goal of the sufficient statistic

approach. Chetty (2009) states “The central concept of the sufficient statistic approach ... is to

derive formulas for the welfare [revenue] consequences of policies that are functions of high-level

elasticities rather than deep primitives.”

An important application of the sufficient statistic approach is to predict the tax rate at the

top of the Laffer curve (i.e. the revenue maximizing tax rate). Thus, the public policy variable

under consideration is a tax rate on some specified component of income or expenditure. This

could be the tax rate on consumption, labor income, capital income or something more specific

such as the top federal tax rate on ordinary income.

One may want to predict the top of the Laffer curve for several reasons. First, it may be

widely agreed that setting a tax rate beyond the revenue maximizing rate is counterproductive.

If so, an accurate prediction usefully narrows the tax policy debate. Second, one may argue,

following Diamond and Saez (2011), that the revenue maximizing tax rate on top earners

closely approximates the welfare maximizing top tax rate for some welfare criteria. From this

perspective, the revenue maximizing tax rate then becomes a quantitative policy guide.

From a quick look at the literature, one might conclude that the theoretical groundwork on

this issue is complete. There is a widely-used sufficient statistic formula τ ∗ = 1/(1 + aε) that

characterizes the revenue maximizing marginal tax rate τ ∗ that applies beyond a threshold.

Moreover, there is also a closely related formula τ ∗ = (1 − g)/(1 − g + aε) for the welfare

maximizing marginal tax rate that is stated in terms of the same two empirical inputs (a, ε)

and a social welfare weight g ≥ 0 put on the marginal consumption of top earners. See Diamond

and Saez (2011), Piketty and Saez (2013) among many others for a discussion of these formulae.

The Mirrlees Review uses them to offer quantitative advice for setting the top income tax rate

- see Adam et al. (2010, Chapter 2).

A more critical reading of the literature suggests that the widely-used formula does not actually

apply to a wide class of relevant models. The widely-used formula τ ∗ = 1/(1 + aε) is not valid

in dynamic models. For example, it does not apply to steady states in either the infinitely-lived

agent or the overlapping generations versions of the neoclassical growth model. These are the

two workhorse models of modern macroeconomics. A large literature analyzes the taxation of

2



consumption, labor income and capital income using these models.1 The widely-used formula

does not apply to the class of heterogeneous-agent models that currently dominate as positive

models of the distribution of earnings, income, consumption and wealth.2

The sufficient-statistic formula in Theorem 1 of this paper applies to static models and to steady

states of dynamic models. Specifically, we show that it applies to the Mirrlees (1971) model, to

the two workhorse models of modern macroeconomics and to human capital models. Theorem

1 is stated in terms of three elasticities including the single elasticity of the widely-used formula.

One of the new elasticities captures the possibility, within dynamic models, that revenue from

agent types below the threshold will respond to changes in the top rate. For example, this

can occur because such agents anticipate the possibility of passing the threshold later in life.

The other new elasticity captures the possibility that agent types that are above the threshold

have incomes or expenditures that are taxed separately. For example, consumption and various

types of capital income are commonly taxed separately from labor income. The formula in

Theorem 1 allows both of these new elasticities to be non-zero.

This paper makes two contributions. First, Theorem 1 provides a tax rate formula with wide

application yet it is stated in terms of only three elasticities. Thus, the formula in Theorem 1

should replace the widely-used formula in future work. It should also help guide future empirical

work that estimates elasticities. Currently, there are no estimates in the literature for two of

the three elasticities that enter the formula. Second, we bench test the formula using a human

capital model. One message from the bench test is that the formula accurately predicts the top

of the Laffer curve even when the top tax rate in the model is initially quite far from the revenue

maximizing top tax rate. This is important because prediction is precisely the intended use of

the formula in applied work. A second message of the bench test is that standard methods, from

the elasticity of taxable income literature, underestimate one key elasticity in the human capital

model. An underestimated elasticity would lead one to overstate the revenue maximizing top

tax rate. Future work should develop methods to accurately estimate the three key long-run

elasticities in different modeling frameworks and then apply these methods to data.

Our paper is most closely related to three literatures. First, it relates to the optimal labor

income taxation literature. See Piketty and Saez (2013) for a review that highlights sufficient

statistic formulae. Second, it relates to the class of heterogeneous-agent models surveyed by

1Auerbach and Kotlikoff (1987) is an early quantitative exploration of tax reforms within overlapping gen-
erations models.

2Heathcote, Storesletten and Violante (2009) review this literature. The models that they review feature
agents that are ex-ante heterogeneous, face idiosyncratic risk and trade in incomplete financial markets. Badel
and Huggett (2014), Guner, Lopez-Daneri and Ventura (2014) and Kindermann and Krueger (2014) compute
Laffer curves produced by changing top tax rates within such models and examine the resulting steady states.
Altig and Carlstrom (1999) analyze implications of changing tax progressivity in a model without idiosyncratic
risk.
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Heathcote, Storesletten and Violante (2009) because our tax rate formula applies to many

models in this large class. Badel and Huggett (2014) apply our tax rate formula to a specific

heterogeneous-agent model and find it accurately predicts the top of the model Laffer curve.

Our formula could also be applied to the models in Guner, Lopez-Daneri and Ventura (2014)

and Kindermann and Krueger (2014) to better understand why these quantitative models have

substantially different revenue maximizing top tax rates. Third, it relates to the elasticity of

taxable income literature - a key source of elasticity estimates for sufficient statistic formulae.

Saez, Slemrod and Giertz (2012) survey this literature. The work of Golosov, Tsyvinski and

Werquin (2014) is close in some respects to our work. They analyze local perturbations of tax

systems of a more general type than the elementary perturbation that we analyze. Our formula

applies to a much wider class of models.

The paper is organized as follows. Section 2 presents the tax rate formula. Section 3 shows

that the formula applies in a straightforward way to several classic static and dynamic mod-

els. Section 4 bench tests the formula using a quantitative human capital model. Section 5

concludes.

2 Tax Rate Formula

The tax rate formula is based on three basic model elements: (i) a distribution of agent types

(X,X ,P), (ii) an income choice y(x, τ) that maps an agent type x ∈ X and a parameter τ

of the tax system into an income choice and (iii) a class of tax functions T (y; τ) mapping

income choice and a tax system parameter τ into the total tax paid. Total tax revenue is then∫
X
T (y(x, τ); τ)dP . Our approach does not rely on specifying an explicit dynamic or static

equilibrium model up front. Instead, our tax rate formula can be applied in a straightforward

way by mapping equilibrium allocations of specific static or dynamic models into these three

basic model elements.

2.1 Assumptions

Assumption A1 says that the distribution of agent types is represented by a probability space

composed of a space of types X, a σ-field X on X and a probability measure P defined over

sets in X . Assumption A2 places structure on the class of tax functions. The tax functions

differ in a single parameter τ , where τ is interpreted as the linear tax rate that applies to

income beyond a threshold y. Below this threshold the tax function can be nonlinear but

all tax functions in the class are the same below the threshold. Assumption A3 says that

key aggregates are differentiable in τ . The aggregates are based on integrals over the sets
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X1 = {x ∈ X : y(x, τ ∗) > y} and X2 = X − X1 in X , where τ ∗ ∈ (0, 1) is a fixed value that

serves to define and fix these sets.

A1. (X,X ,P) is a probability space.

A2. There is a threshold y ≥ 0 such that

(i) T (y; τ)− T (y; τ) = τ [y − y], ∀y > y,∀τ ∈ (0, 1) and

(ii) T (y; τ) = T (y; τ ′),∀y ≤ y,∀τ, τ ′ ∈ (0, 1).

A3.
∫
X1
y(x, τ)dP and

∫
X2
T (y(x, τ); τ)dP are strictly positive and are differentiable in τ .

We also consider a generalization where the tax system depends on n ≥ 2 components of income

or expenditure. The three basic elements of the generalized model are (i) a distribution of agent

types (X,X ,P), (ii) an n ≥ 2 dimensional income-expenditure choice (y1(x, τ), ..., yn(x, τ)) and

(iii) a class of tax functions T (y1, ..., yn; τ) mapping the vector of choices and a tax system

parameter τ into the total tax paid.

Assumptions A1′ − A3′ restate assumptions A1 - A3 for the generalized model. A2′ assumes

that the tax system is additively separable in that the first component of income y1 determines

a portion of the tax liability of an agent separately from the other components. For example,

this structure captures a situation where labor income y1 and capital income y2 are taxed using

separate tax schedules or where labor income y1 and consumption y2 are taxed separately.

Alternatively, one might view y1 as being ordinary income and y2 as being the sum of long-

term capital gains and qualified dividends as defined by the Internal Revenue Service in the

US. In Assumption A3′ the integrals are calculated over the sets X1 = {x ∈ X : y1(x, τ ∗) > y}
and X2 = X −X1, where τ ∗ ∈ (0, 1) is a fixed value.

A1′. (X,X ,P) is a probability space.

A2′. T is separable in that T (y1, ..., yn; τ) = T1(y1; τ) + T2(y2, ..., yn),∀(y1, ..., yn, τ). Moreover,

there is a threshold y ≥ 0 such that

(i) T1(y1; τ)− T1(y; τ) = τ [y1 − y],∀y1 > y,∀τ ∈ (0, 1) and

(ii) T1(y1; τ) = T1(y1; τ ′), ∀y1 ≤ y,∀τ, τ ′ ∈ (0, 1).

A3′.
∫
X1
y1dP,

∫
X1
T2(y2, ..., yn)dP and

∫
X2
T (y1, ..., yn; τ)dP are strictly positive and are differ-

entiable in τ .
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2.2 Formula

Before stating the formula in Theorem 1, we express total tax revenue as the sum of tax revenue

from the set of agent types with incomes above a threshold X1 = {x ∈ X : y(x, τ ∗) > y} and

from all remaining types X2 = X −X1. Total tax revenue can be stated in the same manner

when the tax system depends on n ≥ 2 components of income or expenditure by again defining

two sets X1 = {x ∈ X : y1(x, τ ∗) > y} and X2 = X −X1. This is done below.

∫
X
T (y(x, τ); τ)dP =

∫
X1
T (y(x, τ); τ)dP +

∫
X2
T (y(x, τ); τ)dP

∫
X
T (y1, ..., yn; τ)dP =

∫
X1
T (y1, ..., yn; τ)dP +

∫
X2
T (y1, ..., yn; τ)dP

With these expressions in hand, we now state the theorem.

Theorem 1:

(i) Assume A1− A3. If τ ∗ ∈ (0, 1) is revenue maximizing, then τ ∗ = 1−a2ε2
1+a1ε1

, where

(a1, a2) = (

∫
X1
ydP∫

X1

[
y − y

]
dP

,

∫
X2
T (y; τ ∗)dP∫

X1

[
y − y

]
dP

) and (ε1, ε2) = (
d log

∫
X1
ydP

d log(1− τ)
,
d log

∫
X2
T (y; τ ∗)dP

d log(1− τ)
).

(ii) Assume A1′ − A3′. If τ ∗ ∈ (0, 1) is revenue maximizing, then τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

, where

(a1, a2, a3) = (

∫
X1
y1dP∫

X1

[
y1 − y

]
dP

,

∫
X2
T (y1, ..., yn; τ ∗)dP∫
X1

[
y1 − y

]
dP

,

∫
X1
T2(y2, ..., yn)dP∫
X1

[
y1 − y

]
dP

) and

(ε1, ε2, ε3) = (
d log

∫
X1
y1dP

d log(1− τ)
,
d log

∫
X2
T (y1, ..., yn; τ ∗)dP

d log(1− τ)
,
d log

∫
X1
T2(y2, ..., yn)dP

d log(1− τ)
).

Proof:

(i) If τ ∗ ∈ (0, 1) maximizes revenue then it also maximizes τ
∫
X1

[y(x; τ)−y]dP+
∫
X2
T (y(x; τ), τ)dP .

This holds by subtracting the constant term
∫
X1
T (y; τ)dP from total revenue and using A2.

The following necessary condition then holds:
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∫
X1

[
y(x, τ ∗)− y

]
dP − τ ∗

d
∫
X1
y(x; τ ∗)dP

d(1− τ)
−
d
∫
X2
T (y(x, τ ∗); τ ∗)dP

d(1− τ)
= 0

Divide the necessary condition by
∫
X1

[
y(x, τ ∗)− y

]
dP and rearrange using the elasticities

stated in the Theorem. This implies 1 − τ∗

1−τ∗a1ε1 − 1
1−τ∗a2ε2 = 0 which in turn implies

τ ∗ = 1−a2ε2
1+a1ε1

.

(ii) If τ ∗ ∈ (0, 1) maximizes revenue then it also maximizes τ
∫
X1

(y1−y)dP+
∫
X1
T2(y2, ..., yn)dP+∫

X2
T (y1, ..., yn; τ)dP . This holds by subtracting the constant term

∫
X1
T1(y; τ)dP from total

revenue and using A2’. The following necessary condition then holds:

∫
X1

[
y1 − y

]
dP − τ ∗

d
∫
X1
y1dP

d(1− τ)
−
d
∫
X1
T2(y2, ..., yn)dP

d(1− τ)
−
d
∫
X2
T (y1, ..., yn; τ ∗)dP

d(1− τ)
= 0

Divide all terms in the previous equation by
∫
X1

[
y1 − y

]
dP and then rearrange using the

elasticities stated in the Theorem. This implies 1− τ∗

1−τ∗a1ε1 − 1
1−τ∗a2ε2 − 1

1−τ∗a3ε3 = 0 which

in turn implies τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

. ‖

Comments:

1. The formula is appealing from the perspective of the sufficient statistic approach. It is stated

in terms of at most three elasticities. Nevertheless, it applies to economies where taxes are

determined based on many different income or expenditure types. It applies to non-parametric

economic models analyzed in partial or in general equilibrium. Thus, it does not require

assumptions on functional forms for the primitives of specific models. However, it does require

that certain aggregates are differentiable in the tax parameter.

2. The widely-used formula τ ∗ = 1/(1 +aε) is effectively a special case of the sufficient statistic

formula in Theorem 1. What type of situations does the widely-used formula not address

that the formula in Theorem 1 successfully addresses? There are two general categories. The

first category includes situations where agent types below the threshold, in the set X2, have

their income and expenditures (y1, ..., yn) and corresponding tax liabilities change as τ changes.

This can happen, in static or dynamic models, when factor prices change due to the response

from agent types above the threshold. In dynamic models this can also happen because agents

transit through the income distribution. Thus, agents can be below the threshold at one age
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and above it at a later age. This implies that “agent types” below the threshold can have

income or expenditure choices that vary with τ . In all these circumstances the tax revenue

from agent types in X2 changes as τ changes and thus the term a2ε2 is non-zero.

The second category covers scenarios in which many components of income or expenditure are

taxed in practice. Consider a change in the parameter τ that governs the taxation of component

y1. Then agent types above the threshold, in the set X1, will adjust other components (y2, ..., yn)

of income or expenditure. The revenue consequences of such adjustments need to be accounted

for. The term a3ε3 will be non-zero when these revenues change. The next two sections give

concrete examples of when the terms a2ε2 or a3ε3 are non-zero.

3. To state the formula using elasticities requires that each of the integrals (e.g.
∫
X2
T (y; τ)dP ),

over which the elasticity is taken, is non-zero. If any of the integral terms is zero, then the

result can still be stated but without using an elasticity for that integral. For example, if the

integral
∫
X2
T (y; τ)dP is zero (i.e. total net taxes on agent types below the threshold are zero)

and the integral does not vary on the margin as the tax rate τ varies, then the term a2ε2 in

the formula in Theorem 1 can be replaced with a zero. Examples 1 and 3 in the next section

illustrate this point.

3 Examples

We now consider three classic models: the Mirrlees model as well as the overlapping genera-

tions and infinitely-lived agent versions of the neoclassical growth model. We map equilibrium

elements in each model into the language of Theorem 1. While the examples associate the tax

rate parameter τ with a labor income tax rate, this is purely for convenience.

3.1 Example 1: Mirrlees Model

Mirrlees (1971) considered a static model in which agents make a consumption and labor deci-

sion in the presence of a tax and transfer system. In our version of this model, the government

runs a balanced budget where taxes fund a lump-sum transfer Tr(τ). The model’s primitives

are a utility function u(c, l), agent’s productivity x ∈ X, a productivity distribution P and a

class of tax functions T (y; τ).

Definition: An equilibrium is (c(x; τ), l(x; τ), T r(τ)) such that given any τ ∈ (0, 1)

1. optimization: (c(x; τ), l(x; τ)) ∈ argmax{u(c, l) : (1 + τc)c ≤ wxl(1− τ) + Tr(τ), l ≥ 0}

2. market clearing:
∫
X
c(x; τ)dP = w

∫
X
xl(x; τ)dP
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3. government budget: Tr(τ) = τ
∫
X
wxl(x; τ)dP + τc

∫
X
c(x; τ)dP

We state equilibria in closed form using the following functional forms and restrictions:

u(c, l) = c− α l1+
1
ν

1+ 1
ν

and α, ν > 0

X = R+ and (X,X , P ) implies that
∫
X
x1+νdP is finite and P (0) = 0

Equilibrium allocations are straightforward to state:

l(x; τ) = [wx(1−τ)
α(1+τc)

]ν

c(x; τ) = [wx[wx(1−τ)
α(1+τc)

]ν(1− τ) + Tr(τ)]/(1 + τc)

Tr(τ) = (τ + τc)w
1+ν [ (1−τ)

α(1+τc)
]ν
∫
X
x1+νdP

We now map equilibrium allocations into the elements used to state Theorem 1.

Step 1: Set (X,X , P ) to the probability space used in Example 1.

Step 2: Set y1(x, τ) = wxl(x; τ) and y2(x, τ) = c(x; τ)

Step 3: Set T (y1, y2; τ) = τy1 + τcy2.

We now calculate the terms in the formula. It is clear that a1 = 1 as the threshold is y = 0 and

that ε1 = ν by a direct calculation of the elasticity.3 It is also clear that
∫
X2
T (y1, y2; τ)dP = 0

as effectively all agent types are above the threshold as P (X2) = P (0) = 0. Thus, the term

a2ε2 in the formula can be replaced with a zero, consistent with Comment 3 to Theorem 1. It

is easy to see that (a3, ε3) = (τc, ν). Finally, it is also easy to calculate the revenue maximizing

tax rate directly and see that it agrees with the rate implied by the formula.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1
=

1− 0− τcν
1 + 1× ν

=
1− τcν
1 + ν

3Theorem 1 directs one to calculate the elasticities and the related coefficients when the sets (X1, X2) are
defined at the revenue maximizing tax rate τ∗. We calculate (a1, ε1) = (1, ν) when these sets are specified for
any fixed value of τ ∈ (0, 1).
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3.2 Example 2: Diamond Growth Model

Diamond (1965) analyzes an overlapping generations model with two-period lived agents and

a neoclassical production function F (K,L) with constant returns. In the model, age 1 and

age 2 agents are equally numerous at any point in time and each age group has a mass of

1. Agents solve problem P1, where they choose labor, consumption and savings when young.

They face proportional labor income and consumption taxes with rates τ and τc, respectively.

The government collects taxes and makes a lump-sum transfer Tr(τ) to young agents.

(P1) maxU(c1, c2, l) s.t.

(1 + τc)c1 + k ≤ w(τ)zl(1− τ) + Tr(τ), (1 + τc)c2 ≤ k(1 + r(τ)) and l ∈ [0, 1]

Age 1 agents are heterogeneous in labor productivity z ∈ Z ⊂ R+. The distribution of labor pro-

ductivity is given by a probability space (Z,Z, P̂ ). Define two aggregates K(τ) =
∫
Z
k(z; τ)dP̂

and L(τ) =
∫
Z
zl(z; τ)dP̂ .

Definition: A steady-state equilibrium is (c1(z; τ), c2(z; τ), l(z; τ), k(z; τ)), a transfer Tr(τ)

and factor prices (w(τ), r(τ)) such that for any τ ∈ (0, 1)

1. optimization: (c1(z; τ), c2(z; τ), l(z; τ), k(z; τ)) solve P1.

2. factor prices: w(τ) = F2(K(τ), L(τ)) and 1 + r(τ) = F1(K(τ), L(τ))

3. market clearing:
∫
Z

(c1(z; τ) + c2(z; τ))dP̂ +K(τ) = F (K(τ), L(τ))

4. government budget: Tr(τ) = τc
∫
Z

(c1(z; τ) + c2(z; τ))dP̂ + τ
∫
Z
w(τ)zl(z; τ)dP̂

We now map equilibrium allocations into the language used to state Theorem 1.

Step 1: Define the probability space of agent types. An agent type is x = (z, j) consisting of

the agent’s productivity z when young and the agent’s current age j.

x = (z, j) ∈ X = Z × {1, 2} and P (A) =

∫
Z

[
1

2
1{(z,1)∈A} +

1

2
1{(z,2)∈A}]dP̂ ,∀A ∈ X

Step 2: Define choices (y1, y2) as labor income and consumption, respectively.

(y1(x; τ), y2(x; τ)) =

(w(τ)zl(z; τ), c1(z; τ)) for x = (z, 1),∀z ∈ Z

(0, c2(z; τ)) for x = (z, 2),∀z ∈ Z
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Step 3: Set T (y1, y2; τ) = τy1 + τcy2. Aggregate taxes
∫
X
T (y1, y2; τ)dP are proportional to

the right-hand side of equilibrium condition 4.

The coefficients premultiplying each of the elasticities are easy to determine. The threshold

is y = 0 as the tax τ is a proportional labor income tax. The coefficients are (a1, a2, a3) =

(1,
τc

∫
Z c2(z;τ∗)dP̂

w(τ∗)L(τ∗)
,
τc

∫
Z c1(z;τ∗)dP̂

w(τ∗)L(τ∗)
). The coefficient a2 from Theorem 1 is the ratio of the total tax

revenue from agent types in X2 to the total incomes y1 above the threshold y for agent types

in X1. This equals the ratio of total consumption taxes paid by age 2 agents to total labor

income. The coefficient a3 is the ratio of total tax revenue from agents in X1 on types of income

or expenditure other than type y1 to total incomes y1 above the threshold.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

=
1− τc

∫
Z c2(z;τ∗)dP̂

w(τ∗)L(τ∗)
× ε2 −

τc
∫
Z c1(z;τ∗)dP̂

w(τ∗)L(τ∗)
× ε3

1 + 1× ε1

The take-away point from Example 2 is that the formula in Theorem 1 applies to steady states

of dynamic models once an agent type is viewed in the right way.4

3.3 Example 3: Trabandt and Uhlig

Trabandt and Uhlig (2011) analyze Laffer curves using the neoclassical growth model. The

model features a production function F (k, l) and an infinitely-lived agent. They calibrate

some model parameters so that steady states of their model match aggregate features of the

US economy and 14 European economies and preset other model parameters. They calculate

Laffer curves by varying either the tax rate on labor income, capital income or consumption to

determine how the steady-state equilibrium lump-sum transfer responds to the tax rate. We

show that our sufficient statistic formula applies to Laffer curves in their model. We focus on

the Laffer curve related to varying the labor income tax rate, but our formula also applies to

the Laffer curves arising from varying the other tax rates in their model.

The equilibrium concept given below differs from that in Trabandt and Uhlig in that it abstracts

from steady-state growth and imports in order to simplify the exposition.

(P1) max
∑∞

t=0 β
tu(ct, lt) s.t.

(1 + τc)ct + (kt+1 − kt(1− δ)) + bt+1 ≤ (1− τl)wtlt + kt(1 + rt(1− τk)) + btR
b
t + Trt

4For transparency we abstract from long-run growth. It is straightforward to add a constant growth rate
of labor augmenting technological change and analyze equilibria displaying balanced growth. The tax system
parameter τ will alter the “level” but not the growth rate of balanced-growth equilibrium variables. The formula
can then be applied to these “level variables”. The tax rate produced by the formula will maximize revenue
each period along a balanced-growth path.
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lt ∈ [0, 1] and k0 is given

Definition: A steady-state equilibrium is an allocation {ct, lt, kt}∞t=0, prices {wt, rt, Rb
t}∞t=0 fiscal

policy {gt, bt, T rt}∞t=0 such that

1. optimization: (ct, lt, kt, bt) = (c̄, l̄, k̄, b̄), ∀t ≥ 0 solves P1.

2. prices: wt = w̄ = F2(k̄, l̄), rt = r̄ = F1(k̄, l̄)− δ and Rb
t = R̄b,∀t ≥ 0

3. government: (gt, bt, T rt) = (ḡ, b̄, T̄ r),∀t ≥ 0 and ḡ + b̄(R̄b − 1) + T̄ r = τlw̄l̄ + τcc̄+ τkk̄r̄

4. market clearing: c̄+ k̄δ + ḡ = F (k̄, l̄)

We map equilibrium allocations into the language of Theorem 1. Denote the labor income

tax rate τl = τ . Bars over variables denote steady-state quantities so that c̄(τ) denotes the

steady-state equilibrium consumption associated with labor income tax rate τl = τ , fixing the

other tax rates (τc, τk) and government spending and debt (ḡ, b̄). Transfers T̄ r(τ) adjust to

changes in revenue when τ is varied.

Step 1: (X,X ,P) is X = 1,X = {{1}, ∅},P(1) = 1,P(∅) = 0

Step 2: y1(x, τ) = w̄(τ)l̄(τ), y2(x, τ) = c̄(τ) and y3(x, τ) = r̄(τ)k̄(τ)

Step 3: T (y1, y2, y3; τ) = τy1 + τcy2 + τky3

With the tax system in step 3, total taxes
∫
X
T (y1, y2, y3; τ)dP equal the right-hand side of

equilibrium condition 3. Therefore, the Laffer curve for transfers Tr(τ) equals total taxes less

government spending and interest payments on the debt. Since R̄b(τ) = 1/β, ∀τ ∈ [0, 1) follows

directly from the Euler equation in steady state, transfers are a monotone function of total

taxes in this model.

Given the mapping, the coefficients pre-multiplying the elasticities are easy to calculate. The

two relevant coefficients are (a1, a3) = (1, τcc̄(τ
∗)+τkk̄(τ∗)r̄(τ∗)

w̄(τ∗)l̄(τ∗)
). The representative-agent structure

implies that there is just one agent type. Thus, the term a2ε2 is zero in this model as there are

no agent types in the set X2 having y1 at or below the threshold y = 0. Thus, the revenue from

these types is zero at all tax rates. The coefficient a3 is non-zero as there are other sources of

taxes besides the labor tax on agent types in the set X1. When the labor tax moves these other

sources of tax revenue can move as well.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

=
1− τcc̄(τ∗)+τkk̄(τ∗)r̄(τ∗)

w̄(τ∗)l̄(τ∗)
× ε3

1 + 1× ε1

12



The take-away point is that for each of the model economies considered by Trabandt and Uhlig

(2011), there are two high-level elasticities (ε1, ε3) and one coefficient a3 that determine the

top of the model Laffer curve. Thus, for the purpose of determining the top of the Laffer curve

with respect to a specific tax rate, the empirical strategy could be quite different. Instead

of calibrating the many parameters of a specific parametric version of the Trabandt-Uhlig

model, one could focus on estimating the two high-level elasticities that are directly relevant

for determining the top of the model Laffer curve.

4 Bench Testing the Formula

We now bench test the formula. The intended use of the formula in applied work is to predict

the top of a Laffer curve. Prediction is based on using values of the three elasticities and

the related coefficients determined away from the maximum. Thus, a first step in our bench

test is to determine the accuracy properties of using the formula when the relevant inputs are

determined away from the maximum. A second step is to estimate a key model elasticity using

standard methods from a large empirical literature on tax reforms. This allows us to determine

the performance of existing empirical methods, in the context of specific models, because the

theoretically-relevant, high-level elasticities are computed separately.

4.1 A Human Capital Model

We bench test the formula using a version of the Ben-Porath (1967) model. This human capital

model is a central model in the analysis of the distribution of earnings (see Weiss (1986), Neal

and Rosen (2000) and Rubinstein and Weiss (2006)). In our version of this model, agents

maximize lifetime utility by choosing time allocation decisions (nj, lj, sj) and by choosing a

consumption cj and asset choice aj+1. Leisure nj, work time lj and learning time sj are distinct

activities. Labor market earnings whjlj are the product of a wage rate w, worker skill hj and

work time lj. Worker skill evolves according to a function H which is increasing in current skill

hj, learning time sj and learning ability a.

Problem P1: max
∑J

j=1 β
j−1u(cj, nj) subject to

cj + kj+1 = whjlj − T (whjlj; τ) + Tr(τ) + kj(1 + r) and cj, kj+1, nj, sj, lj ≥ 0

hj+1 = H(hj, sj, a) and nj + sj + lj = 1, given (h1, a).

Taxes are determined by a tax function T (whjlj; τ) that taxes labor market earnings and by

a lump-sum transfer Tr(τ) received at each age. The tax function and transfers are indexed
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by a one-dimensional parameter τ . Agents differ in initial conditions which are initial skill and

learning ability level (h1, a). The distribution of these initial conditions is given by a probability

measure P . The fraction µj of age j agents in the population satisfies µj+1 = µj/(1 +n), where

n is a population growth rate.

Definition: An equilibrium consists of decisions (cj, kj, nj, lj, sj, hj) and a government trans-

fers Tr(τ) such that conditions 1 and 2 hold, given an exogenous value for the wage and interest

rate (w, r) and the tax function parameter τ :

1. Decisions: (cj(h1, a; τ), kj(h1, a; τ), nj(h1, a; τ), lj(h1, a; τ), sj(h1, a; τ), hj(h1, a; τ)) solve Prob-

lem P1, given (w, r, Tr(τ)).

2. Government Budget: Tr(τ) =
∑J

j=1 µj
∫
H×A T (whj(h1, a; τ)lj(h1, a; τ); τ)dP

4.2 Model Parameters

We document properties of the US federal income tax schedule and the US age-earnings dis-

tribution. Figure 1 graphs the US federal marginal income tax rates in 2010. The income

thresholds in Figure 1 for different tax brackets are stated as multiples of average US income

in 2010. The model tax function T is determined by a polynomial.5 Figure 1 shows that

the marginal rates implied by the model tax function closely approximate US federal marginal

rates. We associate the tax function parameter τ with the top tax rate in Figure 1. When the

parameter τ is increased from the benchmark value of τ = 0.35, the tax function T (y; τ) implied

by this new value of τ is unchanged below the top threshold but differs above the threshold.

Thus, the class T of tax functions satisfies assumption A2 from section 2.

Figure 2 documents earnings and hours facts. The earnings facts are based on the age coef-

ficients from a regression of a third-order polynomial in age and a time dummy variable for

each year run on tabulated US Social Security Administration (SSA) male earnings data from

Guvenen, Ozkan and Song (2014). The earnings facts are (i) median earnings, (ii) the 99-50,

90-50 and 10-50 earnings percentile ratios and (iii) the Pareto statistic. The facts on the average

fraction of time spent working are from Panel Study of Income Dynamics (PSID) male hours

data from Heathcote, Perri and Violante (2010).6 Appendix A.1 describes what is measured in

the SSA and PSID data sets.7

5Appendix A.2 describes data sources and approximation methods.
6The average fraction of time spent working is total work hours per year in PSID data divided by discretionary

time (i.e. 14 hours per day times 365 days per year).
7The age coefficients from the regression on earnings data are normalized to pass through the data statistics

at age 45 in 2010, with the exception of median earnings which is normalized to 100 at age 55. The age
coefficients from the PSID hours regression are normalized to pass through the average value across years at
age 45 as discussed in Appendix A.1.
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Table 1 - Benchmark Model Parameter Values

Category Functional Forms Parameter Values

Demographics µj+1 = µj/(1 + n) n = 0.01, J = 40
j = 1, ..., 40 (ages 23-62)

Tax System T Figure 1 and Appendix

Preferences u(c, n) = log c+ φn
1−1/ν

1−1/ν
β = 0.952, φ = .231, ν = 0.25

Human Capital H(h, s, a) = h(1− δ) + a(hs)α (α, δ) = (0.833, 0.00001)
Initial Conditions (log h1, log a) ∼ N((µh, µa),Σ) (µh, µa) = (5.03,−1.07)

(σh, σa, ρh,a) = (.789, .407, .242)
Note: Parameters for Demographics, the Tax System and that utility function parameter ν are preset without

solving for equilibrium. The remaining parameters are set so that the model equilibrium best matches the facts

in Figure 2. Parameters are rounded to 3 significant digits. The parameters (σh, σa, ρh,a) refer to the standard

deviation of log human capital and log learning ability and the correlation between these log variables.

Figure 2 calculates how the Pareto statistic at the 99th percentile for earnings varies with age.

The Pareto statistic is the mean for observations above a threshold divided by the difference

between this mean and the threshold. We set the threshold to be the 99th percentile for each

age and year in the data set. We highlight the Pareto statistic because the cross-sectional value

of the Pareto statistic is the coefficient a1 in the tax rate formula in Theorem 1. We focus on

the Pareto statistic at the 99th percentile because the top federal tax rate iin 2010 begins at

approximately the 99th percentile of income as displayed in Figure 1.

We specify functional forms for the utility function u, human capital H, the tax function T

and for the distribution of initial conditions. Table 1 presents functional forms and parameter

values. We preset some model parameters. Specifically, we set (w, r, n, J) = (1.0, .04, .01, 40) so

that the wage is normalized to 1, the real interest rate is 4 percent, the population growth rate

is 1 percent and the working lifetime is 40 model periods covering a real-life age of 23 to 62.

We preset the tax function T as described above. Finally, we also preset the utility function

parameter to ν = 0.25. This implies that the model has a constant Frisch elasticity of leisure

with respect to human capital equal to −ν and a Frisch elasticity of total labor time (sj + lj)

equal to ν(nj/(lj + sj)).
8 Thus, the model has a Frisch elasticity of total labor time equal to

.375 when ν = .25 and nj/(lj + sj) = 1.5

We set all remaining model parameters (governing preferences, human capital and initial con-

ditions) to minimize the weighted squared deviation of the log of equilibrium model moments

from the log of the data moments in Figure 2. Figure 2 plots the corresponding model econ-

8The standard necessary conditions for a solution to Problem P1 with constant marginal tax rates imply
that over the life cycle ∆ log nj = ν[log β(1 + r) − ∆ log hj ]. Thus, after correcting for a trend term, leisure
decreases by ν percent after a 1 percent evolutionary increase in human capital across periods.
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omy moments that result from this minimization problem.9 Table 1 lists the value of model

parameters.

We stress that the goal of the bench test is not to analyze a rich model that accounts for many

aspects of the US tax system and many aspects of the earnings and hours distribution in US

data. Instead, the bench test highlights whether or not the formula is useful in predicting the

top of the Laffer curve in interesting applications for which the answer is not known in advance.

We analyze a dynamic model because our work claims that the formula applies to both static

and dynamic models. We choose to analyze a dynamic human capital model for two reasons.

First, skill accumulation is a natural explanation for why top earners are disproportionately

age 50 and above - see Figure 2. Second, we hypothesize that current methods for estimating

earnings elasticities that are in wide use in the literature will systematically underestimate the

elasticities that are theoretically relevant for determining the top of the Laffer curve. If true,

then bench testing the formula on a human capital model will be especially valuable as it will

highlight a potential weakness in the current status of a large empirical literature.

4.3 Theorem 1 and Model Laffer Curves

Figure 3 presents Laffer curves. The Laffer curve for the benchmark model is based on the

parameters in Table 1.10 The Laffer curve for the other model in Figure 3 is based on setting

ν = 0.10 and resetting the remaining model parameters to best match targets following the

procedures for the benchmark model. The goal is to construct model economies where the top

of the Laffer curve occurs at top tax rates that are at varying distances from the initial top

rate in Figure 1. These models are then used to bench test the accuracy of the formula when

the inputs to the formula are calculated away from the maximum.

We now relate the top of the model Laffer curve to the top predicted by the tax rate formula.

To do this, we map equilibrium variables into the language used in Theorem 1. Agent types

have to be defined in terms of exogenous variables to apply Theorem 1. A natural formulation

is that an agent type is x = (h1, a, j) and is determined by the initial condition (h1, a) and age

j.

Step 1: x = (h1, a, j) ∈ X = R+ ×R+ × {1, ..., J}
9There is a tension in choosing model parameters governing initial conditions. For example, increasing the

variance of log learning ability σ2
a tends to reduce the model Pareto statistic at the 99th percentile but increase

the 99-50 ratio in Figure 2. We conjecture that a more flexible class of distributions over initial conditions is
key to a better fit to the upper tail of the earnings distribution.

10The model Laffer curve is calculated by varying the top tax rate τ , computing the model equilibrium for
each value of τ and plotting the resulting equilibrium total tax revenue. Transfers per agent equal total taxes
per agent as implied by the government budget constraint.
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Table 2: Revenue Maximizing Top Tax Rate Formula

Terms Benchmark Model Alternative Model
ν = 0.25 ν = 0.10

a1 × ε1 2.29× .550 = 1.26 1.68× .258 = .433
a2 × ε2 3.26× .010 = .031 1.83× .001 = .002
a3 × ε3 0 0

τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

0.43 0.70

τ at peak of 0.425 0.675
Laffer curve

Note: The coefficients (a1, a2, a3) are calculated at the equilibrium with top tax rate τ = 0.35. The elasticities

(ε1, ε2, ε3) are calculated as a difference quotient. Individual terms in the formula are rounded to at most three

digits to provide a simple numerical display. The tax rate τ at the peak of the Laffer curve are taken from

Figure 3.

Step 2: y1(x, τ) = whj(h1, a; τ)lj(h1, a; τ)

Step 3: T (y1; τ) = T (y1; τ)

Based on Steps 1-3, we calculate the coefficients (a1, a2, a3) and the elasticities (ε1, ε2, ε3).11 We

analyze each of the model economies underlying the Laffer curves in Figure 3. Table 2 presents

the results. The elasticity ε1 is quite different across models. The lower value of the leisure

elasticity parameter ν = 0.1 is associated with an earnings elasticity ε1 that is roughly half

of the earnings elasticity in the benchmark economy. The coefficient a1 is also quite different

across models. This occurs despite the fact that the calibration procedure keeps the targets

fixed. In practice the model Pareto statistic at the threshold for the top tax rate is close to the

corresponding model Pareto statistic among agents age 50.

One conclusion from the bench test is that the predicted top of the model Laffer curve is not

far from the actual top. This holds in both of the models analyzed. This occurs even though

the top of one of the Laffer curves occurs at a top tax rate quite far from the initial top tax rate

that was used to calculate the coefficients and elasticities that enter the formula. Thus, using

the Badel-Huggett formula to predict the top of the Laffer curve within these specific dynamic

models is not especially problematic when inputs are calculated far away from the top of the

Laffer curve.

11To calculate elasticities, set X1 = {x ∈ X : y1(x; τ) = whj(h1, a; τ)lj(h1, a; τ) > y} using the benchmark
value τ = .35 and the threshold y from Figure 1. In practice, the set X1 is determined by a grid on (h1, a) used
to compute equilibria as described in Appendix A.3. Elasticities are calculated as a difference quotient based
on τ = 0.35 and 0.40.
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4.4 Comparing Model Elasticities to Estimated Elasticities

Saez, Slemrod and Giertz (2012) review the literature that estimates earnings or income elastic-

ities with respect to the net-of-tax rate. Much of the literature applies the regression framework

below. The parameter ε is the elasticity with respect to the net-of-tax rate, zit is income or

earnings of individual i at time t, τt(zit) is the marginal tax rate at time t that corresponds to

income zit, f(zit) = log zit is an income control and αt are time dummy variables. The variable

(1− τt(zit)) is refered to as the net-of-tax rate. This regression framework was used by Gruber

and Saez (2002) among many others.

log

(
zit+1

zit

)
= ε log

(
1− τt+1(zit+1)

1− τt(zit)

)
+ βf(zit) + αt + νit+1

We follow the literature and apply this regression framework. Unlike the literature, we apply

it to a tax reform within the benchmark human capital model. In model period 1 and 2 agents

live in the economy with top tax rate τ = 0.35 set to the value in the benchmark model. In

model period 3 agents are surprised to discover that the top tax rate is permanently changed

to τ = 0.45. We analyze the tax reform assuming that transfers are constant at the initial

steady-state level. We draw a sample of 30,000 agents between the ages of 23-55 that have

earnings within the top 10 percent of the earnings distribution. We follow these agents for 7

model periods. Model period 3 is the year of the tax reform.

We run the regression above on this sample. We estimate the elasticity using the three different

instrumental variables procedures described and employed in Saez, Slemrod and Giertz (2012,

Table 2). The precise instruments employed are described in Table 3. Table 3 presents the

mean and the standard deviation of the estimated elasticity after applying this framework to

100 different randomly drawn balanced panels of 30,000 agents. The main finding is that the

mean of the estimated elasticities are consistently far below the true long-run model elasticity.

Moreover, standard errors are quite small so that sampling variability is not the explanation

for why estimated elasticities are below long-run elasticities. The reader should keep in mind

that the long-run model elasticity enters the sufficient statistic formula and accurately predicts

the tax rate at the top of the Laffer curve.

5 Discussion

This paper has two main contributions. First, the formula in Theorem 1 applies broadly to

static models and to steady states of dynamic models and yet depends on only three elasticities.

Thus, this sufficient-statistic formula should replace the widely-used formula in future work.
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Table 3 - Elasticity Estimates

Mean Elasticity ε -0.067 0.112 0.091 0.131 0.090 0.131
S.D. (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
Income Control f(z) No Yes No Yes No Yes
Time Effects αt No No Yes Yes Yes Yes
Instrument 1: 1{i∈T2} Yes Yes
Instrument 2: 1{i∈T2 and t=2} Yes Yes

Instrument 3: log( 1−τt+1(zit)
1−τt(zit) ) Yes Yes

Use data for time periods t = 2, 3 t = 2, 3 All All All All
Long-run Model Elasticity ε1 0.550 0.550 0.550 0.550 0.550 0.550

Note: The set T2 is the set of agents in the balanced panel that in model period 2 have earnings above the
earnings threshold at which the top tax rate applies. Instrument 1 is the indicator function taking the value 1
when the agent lies in T2, whereas instrument 2 is the indicator function taking the value 1 when the agent lies
in T2 and the time period is t = 2.

Second, the formula from Theorem 1 works well in predicting the top of the Laffer curve in

a human capital model. However, state-of-the-art methods for estimating elasticities, drawn

from the literature on the elasticity of taxable income, under estimate one of the theoretically-

relevant model elasticities when applied to an ideal data set.

These two contributions raise two important issues:

Issue 1: The formula developed in this paper applies to many model frameworks that have

been widely used by macroeconomists and public economists. Within a given framework,

the formula applies without making parametric assumptions. Thus, the use of this sufficient

statistic formula would not appear to be very restrictive. This raises the methodological issue of

whether estimating three high-level elasticities may be a superior research strategy, compared

to estimating the many parameters of the primitives of a specific parametric economic model

and then computing policy counterfactuals, for the purpose of predicting the top of the Laffer

curve.

Issue 2: Suppose that we adopt the view that the long-term response to a permanent tax

reform is of most interest for policy making. This view seems to be widely shared. The policy

focus is then on the steady-state effects of a permanent change in the top tax rate.

Given this view, are existing elasticity estimates, from the elasticity of taxable income literature,

ready to be used as direct inputs into our sufficient statistic formula? We provide three reasons

to be cautious in doing so. First, the literature has focused on estimating short-term responses.

Saez et al. (2012, p. 13) state “The long-term response is of most interest for policy making

... The empirical literature has primarily focused on short-term (one year) and medium-term

(up to five year) responses ...”. Second, the results in Table 3 show in a specific context that

empirical methods commonly used to estimate a short-term elasticity underestimate the true

long-run model elasticity. Third, marginal tax rates applying to US top earners display strong
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mean reversion. Mertens (2015) uses proxies for exogenous variation in tax rates to argue that

shocks to US marginal tax rates for the top 1 percent lead to transitory movements in top

tax rates in practice. This raises the important issue of how to estimate long-run elasticities

corresponding to a permanent change in the top tax rate when some of the exogenous variation

in top marginal rates highlighted in the data lead to only transitory movements in these tax

rates.
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A Appendix

A.1 Data

SSA Data We use tabulated Social Security Administration (SSA) earnings data from Guvenen, Ozkan

and Song (2014). We use age-year tabulations of the 10, 25, 50, 75, 90, 95 and 99th earnings percentile for

males age j ∈ {25, 35, 45, 55} in year t ∈ {1978, 1979, ..., 2011}. These tabulations are based on a 10 percent

random sample of males from the Master Earnings File (MEF). The MEF contains all earnings data collected

by SSA based on W-2 forms. Earnings data are not top coded and include wages and salaries, bonuses and

exercised stock options as reported on the W-2 form (Box 1). The earnings data is converted into real units

using the 2005 Personal Consumption Expenditure deflator.

We construct the Pareto statistic at the 99th earnings percentile for age j and year t as follows. We assume

that the earnings distribution follows a Type-1 Pareto distribution beyond the 99th percentile for age j and

year t. We construct the parameters describing this distribution via the method of moments and the data

values for the 95th and 99th earnings percentiles (e95, e99) for a given age and year. The c.d.f. of a Pareto

distribution is F (e;α, λ) = 1 − ( eα )−λ. We solve the system .95 = F (e95;α, λ) and .99 = F (e99;α, λ). This

implies λ = log .05−log .01
log e99−log e95 . To construct the Pareto statistic at the 99th percentile for age j and year t, it remains

to calculate the mean earnings for earnings beyond the 99th percentile that is implied by the Pareto distribution

for that age and year. The mean follows the formula E[e|e ≥ e99] = λe99
λ−1 .

PSID Data We use Panel Study of Income Dynamics (PSID) data provided by Heathcote, Perri and

Violante (2010), HPV hereafter. The data comes from the PSID 1967 to 1996 annual surveys and from the

1999 to 2003 biennial surveys.

Sample Selection We keep only data on male heads of household between the ages of 23 and 62 reporting to

have worked at least 260 hours during the last year with non-missing records for labor earnings. In order to

minimize measurement error, we delete records with positive labor income and zero hours of work or an hourly

wage less than half of the federal minimum in the reporting year.

Variable Definitions The annual earnings variable provided by HPV includes all income from wages, salaries,

commissions, bonuses, overtime and the labor part of self-employment income. Annual hours of work is defined

as the sum total of hours worked during the previous year on the main job, on extra jobs and overtime hours.

This variable is computed using information on usual hours worked per week times the number of actual weeks

worked in the last year.

Age-Year Cells We split the dataset into age-year cells, compute the relevant moment within each cell and

then collapse the dataset so there is a single observation per age-year cell. We put a PSID observation in the

(a, y) cell if the interview was conducted during year y = 1968, 1970, 1971, ..., 1996 or y = 1998, 2000, 2002 with

reported head of household’s age a in the interval [a, a + 4]. The life-cycle profiles we calculate correspond

to (β23 + d, β24 + d, β25 + d, ..., β63 + d), where the βa are the estimated age coefficients and d is a vertical

displacement selected in the manner described in section 4.

A.2 Tax Function

The model tax function is described in three steps.
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Step 1: Specify the empirical tax function T̂ (x):

T̂ (x) =

R1[x− q1] i(x) = 1∑i(x)
n=2Rn−1[qn − qn−1] +Ri(x)[x− qi(x)] i(x) > 1

i(x) ≡ maxn s.t. n ∈ {1, 2, ..., N} and qn ≤ x

The values {(q1, R1), ..., (q7, R7)} are set based on the seven tax brackets and tax rates for the 2010 federal

income tax schedule for married couples filing jointly. Brackets and rates come from Schedule Y-1 in the IRS

Form 1040 Instructions. Adding $18, 700 to each of the taxable income brackets from Schedule Y-1 generates

total income cutoffs that produce these taxable income cutoffs in Schedule Y-1 for joint filers without dependents

according to the NBER tax program TAXSIM for the 2010 tax year. Total income brackets qn are stated as

multiples of average income in 2010.12

Step 2: Fit the 5th order polynomial P (x; ζ) to T̂ (x):

ζ ∈ argmin
∑

xi∈Xgrid

(T̂ (xi)− P (xi; ζ))2 subject to P (0; ζ) = 0, P ′(q7; ζ) = 0.35

Xgrid contains 51 points uniformly distributed on the interval [0, q7].

Step 3: Set the model tax function(s) T (e; τ):

T (e; τ) =

ēP (e/ē; ζ) e ≤ q7ē

ēP (q7; ζ) + τ [e− q7ē] e > q7ē

The quantity ē is average earnings in the model. Note that P (x; ζ) from Step 2 takes input x stated in multiples

of average income and states output in units of average income.

A.3 Computation

The algorithm to compute the model Laffer curve is given below. This computation takes all model parameters

and the structure of the tax system below the threshold as given. The tax system below the threshold is

expressed as a function of ē as described in Appendix A.2. Thus, to compute the Laffer curve we fix the value

ē at its value in the benchmark model.

Algorithm:

1. Guess transfers Tr(τ) for any top tax rate τ ≥ 0.35.

2. Solve Problem DP-1, given Tr(τ).

12The World Top Incomes Database reports that average income per tax unit in 2010 is 53, 347 stated in 2014
dollars. Using the CPI, this is equivalent to 49, 278 dollars in 2010. The US top bracket starts at a ratio of
total income to average income equal to q7 = (373, 650 + 18, 700)/49, 278 = 7.96, where 373, 650 is the start of
the top taxable income bracket and 18, 700 is the standard deduction for joint filers without dependents.
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3. Compute the implied values of Tr(τ) using the optimal decision rules from step 2 and a discretized initial

distribution. If the guessed and implied values are within tolerance, then stop. Otherwise, revise the

guess and repeat steps 2-3.

We solve Problem 1 by solving the dynamic programming problem DP-1 below. For each age and state (h, k, a)

on a grid, we solve an inner and an outer problem. The inner problem takes choices (k′, s) as given and solves for

(c, l). The inner problem is easy to solve by bisection. This is true when T is differentiable almost everywhere

and T ′ is increasing. The class of model tax functions satisfies both properties. The outer problem maximizes

over (k′, s), using solutions to the inner problem. The outer problem is solved by a Nelder-Mead algorithm.

(DP − 1) vj(h, k, a) = max u(c, 1− s− l) + βvj+1(h′, k′, a) subject to

c+ k′ ≤ whl + k(1 + r)− T (whl) , c, s, l, k′ ≥ 0, 0 ≤ s+ l ≤ 1 and h′ = H(h, s, a)

To compute the implied value of Tr(τ), we use a discrete approximation to the bivariate lognormal N(µ,Σ).

We use 16 points for log a and 61 points for log h1. The grid points for log a and log h1 range from 3.99 standard

deviations above and below the mean of the respective marginal distributions. For learning ability, we put 8

points below the 90th percentile and 8 points above the 90th percentile.
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Figure 1: Model Tax System
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Note: The horizontal axis measures income in multiples of average US income per tax unit. Appendix A.2
discusses data sources for the 2010 US federal tax schedule and approximation methods used to compute the
model tax system.
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Figure 2: Life-Cycle Profiles: Data and Model
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(c) Pareto Statistic at 99th percentile (d) Mean Hours
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Note: Large open circles describe profiles for the model economy. Small solid circles describe profiles for the
U.S. economy.

Figure 3: Laffer Curves
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Note: Small solid circles describe the Laffer curve in the benchmark model with ν = 0.25. Large open circles
describe the Laffer curve in the alternative model with ν = 0.10.
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