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Abstract

We compare methods to measure comovement in business cycle data using multi-level dy-
namic factor models. To do so, we employ a Monte Carlo procedure to evaluate model perfor-
mance for different specifications of factor models across three different estimation procedures.
We consider three general factor model specifications used in applied work. The first is a single-
factor model, the second a two-level factor model, and the third a three-level factor model. Our
estimation procedures are the Bayesian approach of Otrok and Whiteman (1998), the Bayesian
state space approach of Kim and Nelson (1998) and a frequentist principal components approach.
The latter serves as a benchmark to measure any potential gains from the more computation-
ally intensive Bayesian procedures. We then apply the three methods to a novel new dataset
on house prices in advanced and emerging markets from Cesa-Bianchi, Cespedes, and Rebucci
(2015) and interpret the empirical results in light of the Monte Carlo results. [JEL codes: C3]
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1 Introduction

Dynamic factor models have gained widespread use in analyzing business cycle comovement. The
literature began with the Sargent and Sims (1977) analysis of U.S. business cycles. Since then
the dynamic factor framework has been applied to a long list of empirical questions. For example,
Engle and Watson (1981) study metropolitan wage rates, Forni and Reichlin (1998) analyze industry
level business cycles, Stock and Watson (2002) forecast the U.S. economy, while Kose, Otrok and
Whiteman (2003) study international business cycles. It is clear that dynamic factor models have
become a standard tool to measure comovement, a fact that has become increasingly true as
methods to deal with large datasets have been developed and the profession has gained interest in
the "Big Data" movement.

Estimation of this class of models has evolved significantly since the original frequency domain
methods of Geweke (1977) and Sargent and Sims (1977). Stock and Watson (1989) adopted a state-
space approach and employed the Kalman filter to estimate the model. Stock and Watson (2002)
utilized a two-step procedure whereby the unobserved factors are computed from the principal com-
ponents of the data. Forni, Hallin, Lippi, and Reichlin (2000) compute the eigenvector-eigenvalue
decomposition of the spectral density matrix of the data frequency by frequency, inverse-Fourier
transforming the eigenvectors to create polynomials which are then used to construct the factors.
This latter approach is essentially a dynamic version of principal components. A large number of
refinements to these methods have been developed for frequentist estimation of large-scale factor
models since the publication of these papers.

A Bayesian approach to estimating dynamic factor models was developed by Otrok and White-
man (1998), who employed a Gibbs sampler. The key innovation of their paper was to derive the
distribution of the factors conditional on model parameters that is needed for the Gibbs sampler.
Kim and Nelson (1998) also developed a Bayesian approach using a state-space procedure that
employs the Carter-Kohn approach to filtering the state-space model. The key difference between
the two approaches is that the Otrok-Whiteman procedure can be applied to large datasets, while,
because of computational constraints, the Kim-Nelson method cannot. The Bayesian approach in
both papers is particularly useful when one wants to impose ‘zero’ restrictions on the factor loading

matrix to identify group specific factors. In addition, both approaches, because they are Bayesian,



draw inference conditional on the size of the dataset at hand; the classical approaches discussed
above generally rely on asymptotics. While this is a not a problem when the factors are estimated
on large datasets, for smaller datasets—or multi-level factor models where some levels have few
time series, it may be problematic. Lastly, the Bayesian approach is the only framework that can
handle the case of multi-level factor models when the variables are not assigned to groups a priori
(e.g., Francis, Owyang, and Savasgin 2014).

In this paper, we compare the accuracy of the two Bayesian approaches and a multi-step princi-
pal components estimator. In particular, we are interested in the class of multi-level factor models
where one imposes various ‘zero’ restrictions to identify group-specific factors (e.g. regional fac-
tors). To be concrete, we will label these models as in the international business cycle literature,
although the models have natural applications to multi-sector closed economies or to models that
mix real and financial variables. We perform Monte Carlo experiments using three different models
of increasing complexity. The first model is the ubiquitous single factor model. The second is a
two-level factor model that we interpret as a world-country factor model. In this model, one (world)
factor affects all of the series; the other factors affect non-overlapping subsets of the series. The
third is a three-level factor model that we interpret as world-region-country factor model.

For each model, we first generate a random set of model coefficients. Using the coefficients
we generate ‘true’ factors and data sample. We then apply each estimation procedure to the
simulated data to extract factors and model coefficients. We then repeat this sequence many times,
starting with a new draw for the model parameters each time. The Bayesian estimation approach
is a simulation based Markov Chain Monte Carlo (MCMC) estimator, making the estimate of one
model non-trivial in terms of time; however, modern computing power makes Monte Carlo study
of Bayesian factor models feasible.

In this sense, our paper provides a complementary study to Breitung and Eickmeier (2014) who
employ a Monte Carlo analysis of various frequentist estimators of multi-level factor models with
their new sequential least squares estimator. There are three key differences in our Monte Carlo
procedures with that of Breitung and Eickmeier (2014). First, they study a fixed and constant
set of parameters. As they note in their paper, the accuracy of the factor estimates can depend
on the variance of the factors (or more generally the signal to noise ratio). To produce a general

set of results that abstracts away from any one or two parameter settings, we randomly draw new



parameters for each simulation. A second difference is that the number of observations in each of
the levels of their factor model is always large enough to expect the asymptotics to hold. In our
model specification, we combine levels where the cross-sections are both large and small, which is
often the case in applied work. Third, we include in our study measures of uncertainty in factor
estimates while Breitung and Eickmeier (2014) focus on the accuracy of the mean of an estimate.
Taken together the two papers provide a comprehensive Monte Carlo analysis of the accuracy of a
wide range of the procedures used for a number of different model specifications and sizes.

Our evaluation mainly focuses on the three key features of the results that are important
in applied work with factor models. The first is the accuracy of the approaches in estimating
the ‘true’ factors as measured by the correlation of the posterior mean factor estimate with the
truth. The second is the extent to which the methods characterize the amount of uncertainty
in factor estimates. To do so, we measure the width of the posterior coverage interval as well
as count how many times the true factor lies in the posterior coverage interval. The third is
the correspondence of the estimated variance decomposition with the true variance decomposition
implied by the population parameters." In simulation work, we compare two ways to measure the
variance decomposition in finite samples. The first takes the estimated factors, orthogonalizes them
draw-by-draw, and computes the decomposition based on a regression on the orthogonalized factors
(i.e., not the estimated factor loadings).? The second takes each draw of the model parameters and
calculates the implied variance decomposition. While the factors are assumed to be orthogonal,
this is not imposed in the estimation procedures, which could bias a model where the factors have
some correlation in finite samples.

We find that, for the one factor model, the three methods do equally well at estimating a factor
that is correlated with the true factor. For models with multiple levels, however, the Kalman-filtered
state-space method typically does a better job at identifying the true factor. As the number of levels
increases, the Otrok-Whiteman procedure—which redraws the factor at each Gibbs iteration—
estimates a factor more highly correlated with the true factor than does PCA, which estimates the

factor ex ante. We find that both the state-space and Otrok-Whiteman procedures provide fairly

'One could also consider the accuracy of other model parameters. However, factor analysis has tended to focus
on the variance decomposition because it is this output that is most useful in telling an economic story about the
data. In addition, since the scale of a factor model is not identified, the factor loading is not as of as much interest
as the scale independent variance decomposition.

2This is the procedure in Kose, Otrok and Whiteman (2003, 2008), and Kose, Otrok Prasad (2012).



accurate, albeit conservative, estimates of the percentage of the total variance explained by the
factors. PCA, on the other hand, tends to overestimate the contribution of the factors.

When we apply the three procedures to house price data in advanced and emerging markets
we find that there does exist a world house price cycle that is both pervasive and quantitatively
important. We find less evidence of a widely important additional factor for advanced economies
or or for emerging markets. Consistent with the Monte Carlo results we find that all three methods
deliver the same global factor. We also find that the Kalman Filter and Otrok-Whiteman procedures
deliver similar regional factors, which is virtually uncorrelated with the PCA regional factor. The
PCA method provides estimates of variance decompositions that are greater than the Bayesian
procedures, which is also consistent with the Monte Carlo evidence. Lastly, the parametric variance
decompositions are uniformly greater than the factor based estimates, which is also consistent with
the Monte Carlo evidence.

The outline of this chapter is as follows: Section 2 describes the empirical model and outlines
its estimation using the three techniques—a Bayesian version of principal components analysis, the
Bayesian procedure of Otrok and Whiteman, and a Bayesian version of the state-space estimation
of the factor—we study. Section 3 outlines the Monte Carlo experiments and describes the methods
we use to evaluate the three methods. In this section, we also present the results from the Monte
Carlo experiments. Section 4 applies the methods to a dataset on house prices in Advanced and

FEmerging Market Economies. Section 5 offers some conclusions.

2 Specification and Estimation of the Dynamic Factor Model

In the prototypical dynamic factor model, all comovement among variables in the dataset is cap-
tured by a set of M latent variables, F;. Let Y; denote an (N X 1) vector of observable data. The

dynamic factor model for this set of time series can be written as:

Y, = BF; + 1y, (1)

Ty =0 (L)Ty 1+ Uy, 2)



F,=®(L)F_1+V,, (3)

with E; (ViVY) = Ipr. Vector Ty is a (IV x 1) vector of idiosyncratic shocks which captures movement
in each observable series specific to that time series. Each element of I'y is assumed to follow an
independent AR(q) process, hence W(L) is a block diagonal lag polynomial matrix and  is a
covariance matrix that is restricted to be diagonal. The latent factors are denoted by the (M x 1)
vector Fy, whose dynamics follow an AR(p) process. The (N x M) matrix 5 contains the factor
loadings which measure the response (or sensitivity) of each observable variable to each factor.
With estimated factors and factor loadings, we are then able to quantify the extent to which the
variability in the observable data is common. Our one factor model sets 5 to a vector of length M,
implying all variables respond to this factor.

In multiple factor models, it is often useful to impose zero restrictions on 3 in order to give an
economic interpretation to the factors. The Bayesian approach also allows (but does not require)
the imposition of restrictions on the factor loadings such that the model has a multi-level structure
as a special case. For example, Kose, Otrok, and Whiteman (2008) impose zero restrictions on 3 to
separate out world and country factors. They use a dataset on output, consumption and investment
for G-7 countries to estimate a model with 1 common (world) factor and 7 country-specific factors.
Identification of the country factors is obtained by only allowing variables within each country to
load on a particular factor, which we then label as the country factor. For the G-7 model, the 3

matrix (of dimension 21 x 24 when estimating the model with 3 dataseries) is:



BUSY 0 0 /BUSY 0 0 0 0
Bise 0 0 Bgic 0 0 0 0
ﬁUSI 0 0 BUSI 0 0 0 0
Gy 00 0 00 oy 0
Biky 00 0 00 0 - Bixy
Bike 00 0 00 0 - Byke
Gk; 00 0 00 0 - Bpks

Here, all variables load on the first (world) factor while only U.S. variables load on the second (U.S.
country) factor.

The three-level model adds an additional layer to the model to include world, region, and
country-level factors. In this setup all countries within a given region load on the factor specific
to that region in addition to the world and country factors. The objective of all three econometric

procedures is to estimate the factors and parameters of this class of models as accurately as possible.

2.1 The Otrok-Whiteman Bayesian Approach

Estimation of dynamic factor models is difficult when the factors are unobservable. If, contrary to
assumption, the dynamic factors were observable, analysis of the system would be straightforward;
because they are not, special methods must be employed. Otrok and Whiteman (1998) developed
a procedure based on an innovation in the Bayesian literature on missing data problems, that
of “data augmentation” (Tanner and Wong, 1987). The essential idea is to determine posterior
distributions for all unknown parameters conditional on the latent factor and then determine the
conditional distribution of the latent factor given the observables and the other parameters. That
is, the observable data are “augmented” by samples from the conditional distribution for the factor
given the data and the parameters of the model. Specifically, the joint posterior distribution
for the unknown parameters and the unobserved factor can be sampled using a Markov Chain
Monte Carlo procedure on the full set of conditional distributions. The Markov chain samples
sequentially from the conditional distributions for (parameters|factors) and (factors|parameters)

and, at each stage, uses the previous iterate’s drawing as the conditioning variable, ultimately



yields drawings from the joint distribution for (parameters, factors). Provided samples are readily
generated from each conditional distribution, it is possible to sample from otherwise intractable
joint distributions. Large cross-sections of data present no special problems for this procedure since
natural ancillary assumptions ensure that the conditional distributions for (parameters|factors)
can be sampled equation by equation; increasing the number of variables has a small impact on
computational time.

When the factors are treated as conditioning variables, the posterior distributions for the rest
of the parameters are well known from the multivariate regression model; finding the conditional
distribution of the factor given the parameters of the model involves solving a “signal extraction”
problem. Otrok and Whiteman (1998) used standard multivariate normal theory to determine the
conditional distribution of the entire time series of the factors, (Fy, ..., Fr) simultaneously. Details
on these distributions are available in Otrok and Whiteman (1998). The extension to multi-level
models was developed in Kose, Otrok and Whiteman (2003). Their procedure samples the factor
with a sequence of factors by level. For example, in the world-country model we first sample from
the conditional distribution of (world factor|country factors, parameters), then from the conditional
distribution of (country factors|world factor, parameters).

It is important to note that in the step where the unobserved factors are treated as data, the
Gibbs sampler does in fact take into account the factor estimates’ uncertainty when estimating the
parameters. This is because we sequentially sample from the conditional posteriors a large number
of times. In particular, when the cross-section is small, the procedure will accurately measure
uncertainty in factor estimates, which will then affect the uncertainty in the parameters estimates.
A second important feature of the Otrok and Whiteman procedure is that it samples from the
conditional posteriors of the parameters sequentially by equation; thus, as the number of series

increases, the increases in computational time is only linear.

2.2 The Kim-Nelson Bayesian State-Space Approach

A second approach to estimation follows Kim and Nelson (1998). As noted by Stock and Watson
(1989), the set of equations (1) — (3) comprises a state-space system where (1) corresponds to the
measurement equation and (2) and (3) corresponds to the state transition equation. One approach

to estimating the model is to use the Kalman filter. Kim and Nelson instead combine the state-space



structure with a Gibbs sampling procedure to estimate the parameters and factors. To implement
this idea, we use the same conditional distribution of parameters given the factors as in Otrok
and Whiteman (2008). This allow us to focus on the differences in drawing the factors across the
two Bayesian procedures. To draw the factors conditional on parameters, we use the Kim-Nelson
state-space approach.

In the state-space setup, the F; vector contains both contemporaneous values of the factors
as well as lags. The lags of the factor enter the state equation (3) to allow for dynamics in each
factor. Let M be the number of factors (M < N) and p be the order of the autoregressive process
each factor follows, then we can define k = Mp as the dimension of the state vector. F; is then an
(k x 1) vector of unobservable factors (and its lags) and ® (L) is a matrix lag polynomial governing
the evolution of these factors.

Two issues arise concerning the feasibility of sampling from the implied conditional distribution.
The first has to do with the structure of the state space for higher-order autoregressions; the second
has to do with the dimension of the state in the presence of idiosyncratic dynamics. To understand
the first issue, note that, because the state is Markov, it is advantageous to carry the sequential
conditioning argument one step further: Rather than drawing simultaneously from the distribution
for (F1,..., Fr), one samples from the T'—conditional distributions (F}|F1, ..., Fj_1, Fj41, ..., Fr) for
j = 1,...,T. If F} itself is autoregressive of order 1, then only adjacent values matter in the
conditional distribution, which simplifies matters considerably.

When the factor itself is of a higher order, say an autoregression of order pf, one defines a new p!-
dimensional state Xy = [F}, Fy—1,..., Fy_pt;1], which in turn has a first-order vector autoregressive
representation. The issue arises in the way the sequential conditioning is done in sampling from
the distribution for the factor. Note that in (X|X;_1, X;+1), there is in fact no uncertainty at
all about X;. Samples from this sequence of conditionals actually only involve factors at the ends
of the data set. Thus, this “single move” sampling (a version of which was introduced Carlin,
Polson, and Stoffer, 1992) does not succeed in sampling from the joint distribution in cases where
the state has been expanded to accommodate lags. Fortunately, an ingenious procedure to carry
out “multimove” sampling was introduced by Carter and Kohn (1994). Subsequently more efficient
multimove samplers were introduced by de Jong and Sheppard (1995) and Durbin and Koopman

(2002). We follow Kim and Nelson (1998) in their Bayesian implementation of a dynamic factor



model and use Carter and Kohn (1994). In our analysis of the three econometric procedures we
will not be focusing on computational time.

The second issue arises because, while the multimode samplers solves the “big-7” curse of di-
mensionality, it potentially reintroduces the “big-N” curse when the cross section is large. The
reason is that the matrix calculations in the algorithm may be of the same dimension as that of the
state vector. When the idiosyncratic errors u; have an autoregressive structure, the natural formu-
lation of the state vector involves augmenting the factor(s) and their lags with contemporaneous
and lagged values of the errors (see Kim and Nelson, 1998; 1999, chapter 3). For example, if each
observable variable is represented using a single factor that is AR(p) and an error that is AR(q),
the state vector would be of dimension p + N¢q, which is problematic for large V.

An alternative formulation of the state due to Quah and Sargent (1993) and Kim and Nelson
(1999, chapter 8) avoids the “big-N” problem by isolating the idiosyncratic dynamics in the obser-
vation equation. To see this, suppose we have N observable variables, y, for n =1,..., N, and M
unobserved dynamic factors, f,, for m = 1,...., M, which account for all of the comovement in the

observable variables. The observable time series are described by the following version of (1):

Ynt = Gn + b ft + Yot (4)

where

Ynt = wn,lfyn,t—l +.o.t wn,q7n7t—q + Unt (5)

with un ~ iidN(0,02). The factors evolve as independent AR(p) processes:

fmt = ¢m1fm,t—1 + ...+ d)mpfm,t—p + Ui, (6)

where vy,; ~ 7dN (0,1). Suppose for illustration that M = 1 and ¢ > p. The “big-N” version of

the state space form for (3)-(5) is

}/;,:HFt7 (7)

Fy = BF;_1 + E, (8)

10



!/
)

where Y = (Yit, -y Ynt)

Ep = (ug,0,...,0,u1 4,0, ...,0,u24, ...,0)’,

and

/
Fi = [ft7ft—17"-aft—p+17717t771,t—17'-'77n,ta7n,t—17"'77n,t—p+1] :

Here, B is block diagonal with the companion matrix having first row ¢y, #y,...,#, in the (1,1)
block; the companion matrix with first row v;;,%19,...,%y, in the (2,2) block; etc.; with the
companion matrix having first row ,,, ..., %, in the southeastern-most block. The matrix H is 0
except for (by, ..., bn)' in the first column, and 1’s in the columns and rows corresponding to vy 4,
Yo, €tC. In Fi.

Alternatively, a system with a lower-dimension state can be obtained by operating on both sides

of (4) by (1 —1,q — ... — ¥, ,L'79) to get

Ynt = G+ b (1= Vg — oo = U L) fi 4 s, 9)
where y:—i,t = Ynt — Up1Ynt—1— .. — wmqyn,t,q, ay = (1 — 1 — e — wn,q) an. This yields the
state-space system

Y =A"Di+ H'F, + Uy, (10)
F, = BF;_1 + E, (11)

where Y;* = (v, .-, ui)s Up = (uig,ugg, - -y ung), Ff = (ft,ft_l,...,ft_p)/, Ef = (e,0,...,0),
the nth row of H* is (bn, —p 1bny ey —T/Jn,qbn), and B* has ¢y, @9, ..., ¢4, 0, ..., 0 in the first row and
1’s on the first subdiagonal. (The extra ¢ —p + 1 columns of zeros in B* accommodate the lags of
the factor introduced into the measurement equation by the transformation to serially uncorrelated
residuals.) This model has a [ x m dimensional state vector, so N no longer impacts the size of the
state vector. Jungbacker, Koopman and van der Wal (2011) have a discussion comparing the state
space formulation with quasi-differencing (as above) with a formulation that adds the idiosyncratic

error terms directly into the state vector. As they note, both formulations will lead to the same
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answer if the filters are properly normalized.

2.3 Principal Components

A third approach to estimating the latent factors employs Principal Components Analysis (here-
after, PCA) which solves an eigenvector-eigenvalue problem to extract the factors before condi-
tioning on said factors. The latter conditioning step treats the extracted factors as observable
variables. Thus, PCA identifies the common movements in the cross-sectional data without impos-
ing any additional model structure. The advantage of PCA is that it is simple to use and has been
shown, under certain conditions, to produce a consistent approximation of the filtered (i.e., direct)
estimate of the factors. An expansive literature has assessed the potential applications of factor
modelling techniques and principal components analysis. Bai and Ng (2008) gives a detailed survey
of the asymptotic properties of static factor models and dynamic factor models expressed in static
form. Stock and Watson (2002) delivers key results suggesting that the method of asymptotic PCA
consistently estimates the true factor space.

Consider the collection of data at time ¢, Y; = (y1y, ..., yn¢)’ to be a random (N x 1) vector with
sample mean and covariance i and S, respectively. Normalizing the data to have mean zero, PCA

results in the transformation:

Foy = (Ye = 17) g0,

i =1,..,N and where 1 is an (N x 1) vector of ones. The vector g(;) denotes the standardized
eigenvector corresponding to the i largest eigenvalue of S (S = GV G’) where V is a matrix with
the eigenvalues of S in descending order along the diagonal. G is an orthogonal matrix of principal
component loadings with columns g(;). Thus, g(1) corresponds to the largest eigenvalue associated
with the first principal component F (1) = (Y; — 17')g(1)-

When extracting static principal components, we find the standardized eigenvalues of the sample
covariance matrix and treat the corresponding standardized eigenvectors as the factor loadings
relating the static factors to the observable data. In order to impose the structure associated with
world, region, and country factors, we extract each factor from the data assumed to load upon

each factor. For the multi-level factor models, we extract the first factor, F'"V, with its associated
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eigenvector, gy, from the entire (7" x N) dataset. Subsequently, letting Y, for n, = 1,...m
correspond to the observable series which load upon the second-level factor m, we adjust the data
to remove the first factor: ?nm =Y, — FWgw. Next, we extract the first principal component
from this set of ?nm, Ny = 1,...,m. We perform a similar adjustment for the three-level factor
model. Note that uncertainty in estimating F" is not taken into account in this procedure.
These standardized principal component estimates serve as the latent factor estimates. As in
the previous estimation methods, we condition on the latent factor estimates and apply Bayesian
estimation to obtain the parameters of the model. However, using the PCA method, we extract the
principal components outside of the Gibbs sampler and then treat the unobserved factors as data
when we sample from the conditional posterior distributions of the parameters. By construction

then, the PCA approach will underestimate the uncertainty in variance decompositions.

3 Monte Carlo Evaluation

The three methods presented in the previous section are evaluated using Monte Carlo experiments.
For each of the three models (1-factor, 2-factor, 3-factor), we generate 1000 sets of true data that
includes a set of true factors by simulating U; and V; from multivariate normal distributions and
then applying equations (1) - (3). The true data consist of 100 time series observations forming
a balanced panel. For the one factor case, we generate 21 series of data. For the two factor case,
we generate 3 series of data for each of 7 countries. For the three factor case, we generate a small-
region model with 3 series of data for each of 8 countries broken up into 2 equally-sized regions.
Additionally, we generate a large-region model with 3 series of data for each of 16 countries, again
broken into 2 equally-sized regions.

In order to assess the methods across a wide range of model parameterizations, we redraw the
model parameters at each Monte Carlo iteration. The covariance matrices of each of the innovation
processes are fixed. All shocks are normalized to have unit variance and are assumed orthogonal.
The AR parameters are drawn from univariate normal distributions with decreasing means for

higher lag orders:

13



O, ~ N <0.15(p +1-4), (0.1)2) :

U, ~ N (0.15(q +1-4), (0.1)2) :

where p and q are the lag orders of factor and innovation AR processes, respectively. The AR para-
meters for each process are constrained to be stationary; we redraw the parameters if stationarity

of the lag polynomial is violated. The factor loadings are also drawn from normal distributions:

By~ N (1, (0.25)2) :

where the multi-level model zero restrictions on the factor loadings are appropriately applied.
We then estimate the model using the three methods described above. We assume that the
number of factors and, in the three factor case, the number and composition of the regions are ex

ante known.

3.1 Priors for Estimation

The estimation in our Monte Carlo exercises are Bayesian and requires a prior. The prior for the
model parameters are generally weakly informative, with the exception that we impose stationarity
on the dynamic components. In the dynamics for the observable data, the prior on the constant,

B0, and each factor’s loading, 3 form =1,..., M, for each country n =1, ..., N is:

nm?

/

Buo Bu1 - Bunr |~ N (Orr, diag ([1,10 X Laxan])) (12)

where 1(1,p7) is a (1 x M) vector of ones. The prior for the autoregressive parameters of the factors
and of the innovations in the measurement equation are truncated normal. In particular, the AR
parameters are assumed to be a multivariate standard normal truncated to maintain stationarity.
The prior for the innovation variances in the measurement equation is Inverted Gamma, parame-
terized as 1G(0.05 x T,0.25%). The factor innovation is normalized to have unit variance and is
not estimated. These priors are fairly diffuse. In work on actual datasets (e.g. Kose, Otrok and

Whiteman 2008), we have experimented with different priors and we did not find the results to
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be sensitive to changes in these priors. Including sensitivity to the prior in our Monte Carlo work

would be computationally very expensive.

3.2 Accuracy of Factor Estimates

The first metric for assessing the three estimation methods outlined above is to determine the
accuracy of the factor estimates. For each simulation, we have the true values of the factors.
In estimation, for each iteration of the Gibbs sampler, we produce a draw from the conditional
distribution of the factor. To assess the accuracy of each method, we compare the correlation of
the true factor with each draw of the sampler to form a distribution for the correlation. Figure
1 shows the distribution of this correlation for the world factor in the 1-factor case. For the 2-
factor case, we show the distribution of the correlation for the world factor in Figure 2. For the
country factor, we compute the correlation for each country, then take the average correlation
across countries and report this in one PDF in Figure 3. For the 3-factor case with small regions,
we show the correlation distribution for the world factor in Figure 4, the average correlation across
regional factors in Figure 5, and average across countries in Figure 6. For the 3-factor case with
large regions, these same plots are shown in Figures 7-9.

In the 1-factor case, all three methods produce similar results with correlations very close to
1. However, when the model is extended to include additional factors, the accuracy of the factor
estimates for each of the methods deteriorates, even for the factor estimated across all of the series
(the world factor). In addition, for higher level models, the average correlation between the true
factor and the estimated factor falls considerably. Because the world factor is computed with a
larger number of series, we expect the factor to be estimated more accurately.

In each case, the factors that affect smaller number of series are more accurately estimated
using the Kalman filter. In most cases, the Otrok-Whiteman procedure performs similarly to PCA.
One difference occurs when estimating the country factor for the 3-factor model. In this case, the
country factor is estimated with only 3 series with two additional layers (factors) contributing to
the uncertainty of the estimates. In this case, the Otrok-Whiteman procedure outperforms PCA
but continues to be outperformed by the state-space method. This last result may stem from the
fact that the state space imposes orthogonality across the factor estimates, while Otrok-Whiteman

procedure assumes it but does not impose it.
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3.3 Uncertainty in Factor Estimates

A second method for evaluation of the estimation procedures outlined in the previous section is
to determine the uncertainty in the estimates of the factor. To do this, we construct the average
uncertainty in the factor estimates for the procedures. Our measure of average uncertainty is
computed by determining the width of the 68- and 90-percent coverage intervals of the factor for
each time period. These intervals are computed for each Monte Carlo iteration across all saved
draws of the Gibbs sampler. We then compute the average of these intervals across time and
across Monte Carlo iterations and report the numbers in the top panel of Table 1. In the principal
components case, the factor is determined outside the Gibbs sampler, and, thus, does not have a
small-sample uncertainty measure. We see this as a limitation of this approach as uncertainty in
the factor estimate should be part of interpreting the importance of the factor. In each of the three
models, the Otrok-Whiteman procedure has, on average, narrower coverages than the state-space
method. In particular, the Otrok-Whiteman procedure yields about 20-30 percent narrower bands
than the Kalman filter. Since there is no ’true’ measure of uncertainty our interpretation is that
there are precision gains associated with drawing the factors directly from their distribution as

opposed to simulating them in state-space model.

3.4 Accuracy in Variance Decompositions

A third metric that can be used to evaluate the three estimation procedures is to analyze the
accuracy of the variance explained by each of the estimated factors—i.e., do the estimated factors
explain more or less of the variation explained by the true factors? We measure the variance
decomposition in two ways. First, we compute a measure of the variance decomposition using
a parameter-based method. This measure uses the draw of the set of model parameters at each
Gibbs iteration to calculate the implied variance decomposition. The variance of the factor and
idiosyncratic component is constructed using the parameters governing the time series process.
These variances, along with the factor loadings are then used to construct the implied variance of
the observable data and the resulting variance decomposition. This procedure relies on the accuracy
of the estimates of the full set of the true parameters. In the second procedure, at each iteration

of the Gibbs sampler, we orthogonalize the set of estimated factors and then compute the variance

16



decomposition based on a regression of the observable data on the orthogonalized factors. This
factor-based method is similar to the approach used in Kose, Otrok and Whiteman (2003, 2008),
and Kose, Otrok, and Prasad (2012). Because the Otrok-Whiteman procedure does not impose
orthogonality when estimating the factors themselves, the explained variances could be biased if
the factors exhibit some finite sample correlation. The orthogonalization procedure addresses this
issue.

To assess accuracy we first compute the posterior mean of the variance explained by each of the
estimated factors across Gibbs iterations. Next, we compute the variance of the data explained by
the true factors within each simulated dataset. Finally, we take the difference between the true and
estimated variance decompositions for each Monte Carlo iteration. To measure the total size of the
bias, we compute the absolute value of the bias. The top panel of Figure 10 plots the pdfs of the
absolute value difference between the true and the estimated factor-based variance decomposition
for all Monte Carlo iterations for the three estimation methods applied to the one-factor model.
The Kalman filter and Otrok-Whiteman methods produce almost identical results with a nearly
identical PDFs. The PCA approach has a distribution that lies to the right (larger absolute error).
For parameter-based estimates, the bulk of the distribution is in the same area as the factor based,
but has a noticeably larger tail. This larger tail indicates that the parameter-based estimates can
occasionally yield large errors in the variance decomposition. Experience tells us that this is driven
by nearly non-stationary parameter sets. Small variations in parameters can yield large difference
in implied variance when near a unit root. In this sense, the factor-based estimates of variance
decompositions are more robust to the underlying model parameters.

Table 2 shows that the mean of the absolute error in the variance decomposition between the
true and estimated variance decompositions is 0.092 for the Kalman filter and Otrok-Whiteman
methods. The PCA method slightly overestimates the variance attributed to the world factor
and as a result, slightly underestimates the variance attributed to the idiosyncratic component.
The mean of this distribution, 0.095, is slightly larger in magnitude than that of the other two
methods, though the difference is negligible. Average errors, then, appear similar across methods.
In terms of the sign of the bias, the factor-based estimates do better in all three cases .The Otrok-
Whiteman method yields the same number of positive and negative biases regardless of method.

For both the PCA and Kalman Filter methods, the number of positive/negative biases goes to a
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much more asymmetric distribution with a 70/30 split for the parametric case. Taking all these
results together, it appears that the factor-based variance decompositions are less likely to lead to
significantly wrong answers.

For the two-factor model, the top panel of Figure 11 illustrates that the Kalman filter and Otrok-
Whiteman again produce similar results when using the factor-based variance decomposition. For
the country factors, which are the addition relative to Figure 10, we see that the dispersion is less
diffuse for all 3 methods with the factor based approach. With the parameter-based approach, the
absolute errors are both larger in mean, more diffuse, and exhibits a larger right tail. This confirms
the results of the one-factor model that the factor-based variance decompositions are more robust
then then parametric. From Table 3, we can see that the three methods have similar mean absolute
errors. However, in this case the PCA approach has more symmetric errors than either Bayesian
which both have more positive errors than negative.

For the three-factor model with small regions, the top panel of Figure 12 shows the absolute
biases resulting from the factor-based variance decomposition. Table 4 gives the mean and percent
of positive and negative biases. For the world factor and the idiosyncratic component, the Kaman
filter and Otrok-Whiteman methods produce very similar similar results for all three types of
factors. The Bayesian approaches do better than PCA for all three layers of factors. This can all
be seen by the means reported in Table 4. The differences in performance for this more complex
model is striking. The mean bias for the world factor is 70% higher with PCA then the Kalman
filter. The parametric estimates do better for the PCA case then the factor based estimates. A
reversal of previous results. For the Bayesian approach, the factor based estimates were again
superior. Table 5 and Figure 13 report the same facts for the larger country model. As can be
seen, there is no real difference in the relative performance of the procedures. This indicates that
additional cross-section data will likely not change are results, or in the case of the PCA method

the smaller model is big enough for asymptotics to apply.

4 An Application to Global House Prices

The recent financial crisis was centered around a global housing price collapse. This has height-

ened interest in the nature of house price fluctuations. Most work on the issue has been at the
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national level. One recent exception is Hirata, Kose, Otrok, and Terrones (2013) who use principal-
component—based factor models to study house price for a panel of advanced economies. A new
dataset by Cesa-Bianchi, Cespedes, and Rebucci (2015) develops a set of comparable house prices
for both emerging markets and advanced economies. Their contribution is to build the dataset,
analyze the dataset in terms of moments of house prices and their comovement with the macro-
economy. They then use a panel VAR to understand the differential role of liquidity shocks on
house prices across countries in regions defined as advanced and emerging. Here, we extend their
work by using multi-layer factor models to measure the importance of world and regional cycles
in house prices across advanced and emerging markets. Following the theme of this paper, we will
apply all three methods to estimate the factors.

In Figure 14, we plot estimates of the world factor for house prices. The global house price factor
exhibits a long and fairly steady growth cycle from 1991 to 2005, when a modest decline begins,
followed by a sharp drop in 2007. The global house cycle appears to have little high frequency
volatility. The Otrok-Whiteman posterior coverage intervals are tighter than that of the Kalman
Filter. This result is consistent with the Monte Carlo results which showed more precise coverage
intervals for Otrok-Whiteman. Our Monte Carlo results also showed that the common world factor
was generally very similar across procedures. The lower right panel of Figure 14 plots the means
of the factors on the same graph (though PCA is plotted a a different scale). It is clear that they
all deliver the exact same message about global house prices.

The factor for advanced economies is plotted in Figure 15. Posterior coverage intervals for
Otrok-Whiteman are again tighter than the Kalman filter. There now appears to be less agreement
on the regional factor. The correlation of the PCA factor with Otrok-Whiteman is only 0.19.
The correlation between Otrok-Whiteman and the Kalman Filter is 0.62. This is also consistent
with our Monte Carlo results in that the two Bayesian procedures deliver similar factors, and
we found that in multi-layer models the Bayesian procedures did a better job at finding the true
factor. The variance decompositions in Table 6 show that the regional factor is not that important
quantitatively, which means there is not a lot of information in the data in the cycle. It is then not
surprising that we may get somewhat different estimates of this factor.

The emerging markets factor is plotted in Figure 16. Consistent with the results for advanced

economies, there is little relationship between the PCA factor and the Bayesian factors. The
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correlation of PCA with the Bayesian estimates is 0, while the correlation between the Bayesian
estimates is again 0.6. Taken together, Figures 14-16 tell an interesting story about the evolution
of house prices. In the pre-crisis period, the emerging markets factor is quite volatile, while in the
crisis period the factor does not move very much. In contrast, the advanced economies factor is
fairly smooth in the pre-crisis period while it drops in the crisis period. Because the world factor
also drops in this period, the two factors imply that the crash in advanced economies was in fact
worse than in emerging markets. The world factor shows that all house prices fell in the crisis, the
regional factors indicate a greater drop in advanced economies, while in emerging markets there
was relative calm.

The variance decompositions in Table 6 shows patterns that would be expected based on our
Monte Carlo results. The parametric results are all greater than the factor-based estimates. Our
Monte Carlo results suggest the factor based results are more accurate (and conservative) so we will
base our discussion on them. Figure 17 plots the variance decompositions from the three models
for each country. Its clear that PCA lies above the two Bayesian procedures, consistent with the
Monte Carlo results. All three methods show an important role for the world factor, though the
PCA perhaps overstates the importance.

For advanced economies their is an important role for the global factor, both PCA and Otrok-
Whiteman method attribute about 1/3 of fluctuations to this factor. The advanced regional factor
plays a much smaller role, accounting for about 10% of the variation on average. The median
variance decompositions are even smaller, suggesting that this factor is only affecting a small
number of countries.

Cesa-Bianchi et al (2015) report average correlations that are greater for advanced economies
then for emerging economies. Our results are consistent with these results. The world factor plays
a much smaller role for emerging markets as the lower average variance decompositions show. It is
also clear that the emerging market comovement is largely through the world factor. The median
variance decomposition for the emerging markets factors is only 1%. We conclude then that regional
factors are not important in understanding house price movements in either advanced or emerging

markets. There is a common global cycle of significant importance.
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5 Conclusion and Discussion

In this paper, we use Monte Carlo methods to analyze the accuracy of three methods to estimate
dynamic factor models. All three methods worked well in the one factor case. It also is apparent that
the factor-based estimates of variance decompositions are better than parametric based estimates.
Our experience tells us that this is due to the fact that variances can blow up with parameter
estimates near the unit root. In applied work, we have found this to often be true. As model
complexity increased the Bayesian approaches yielded more accurate results, which in the case of
the three-layer model were substantially different.

This latter results was perhaps unsurprising in sign, though the magnitude of the difference
was surprisingly large. The Kalman-filter based method would expected to be most accurate as
we are directly drawing from the likelihood of the model. The gains over the Otrok-Whiteman
method were surprisingly small. This is goods news in that the Otrok-Whiteman method is more
computationally efficient in dealing with large datasets. It is useful to know that its accuracy is a
good as the state-space approach. Both the PCA and Otrok-Whiteman approach share an iterative
approach to estimation. They differ in that the PCA approach conditions in one direction, while
the Otrok-Whiteman conditions (repeatedly) in multiple directions (i.e., world is drawn conditional
on country, country then drawn conditional on world). While this is clearly costly in computational
terms, it yields more accurate estimates of the importance of factors in complex factor settings.

There are a number of choices to be made in applied work on factor models. The PCA approach
will always be best to get quick answers, and in the one factor case there seems to be no accuracy
gains from the more complicated methods. On the other hand, the Bayesian methods naturally
yield measures of factor uncertainty, which should always accompany applied work in order to
establish the statistical legitimacy of the results. In this paper, we have not reported information
on computational time, as for any specific application the computation time is not large. Here, for
each model type, we have estimated 1000 different applications (i.e. each model parameter drawn).
It follows that estimating one is not a problem for modern computers.

In our application, we did find that PCA yielded factors that appeared to have greater im-
portance then the Bayesian methods. In economic terms though, all methods delivered a similar

story in that house price comovement across advanced and emerging markets is through a common
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factor, and not through group specific factors.
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Table 1: Mean Width of Posterior Coverage Intervals

PCA Kalman Filter Otrok-Whiteman
One-Factor Model

World Factor: 68% Interval 0.000 0.585 0.426
World Factor: 90% Interval 0.000 0.967 0.706

Two-Factor Model

World Factor: 68% Interval 0.000 0.875 0.622
Country Factor: 68% Interval 0.000 1.386 0.983
World Factor: 90% Interval 0.000 1.450 1.004
Country Factor: 90% Interval — 0.000 2.352 1.650

Three-Factor Model: 8 Country

World Factor: 68% Interval —0.000 1.007 0.657
Region Factor: 68% Interval  0.000 1.358 0.976
Country Factor: 68% Interval 0.000 1.772 0.990
World Factor: 90% Interval — 0.000 1.672 1.055
Region Factor: 90% Interval  0.000 2.270 1.590
Country Factor: 90% Interval 0.000 2.998 1.654

Three-Factor Model: 16 Country

World Factor: 68% Interval 0.000 0.746 0.494
Region Factor: 68% Interval 0.000 1.102 0.770
Country Factor: 68% Interval — 0.000 1.425 0.924
World Factor: 90% Interval  0.000 1.238 0.782
Region Factor: 90% Interval  0.000 1.836 1.241
Country Factor: 90% Interval  0.000 2.398 1.547
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Table 2: PDF of Variance Decomposition Biases - One-Factor Model

PCA Kalman Filter Otrok-Whiteman

Factor-Based Variance Decomposition

Mean of PDF

World Factor 0.095 0.092 0.092
Idiosyncratic Factor 0.095 0.092 0.092

Percent of Positive Biases
World Factor 0.417 0.486 0.489
Idiosyncratic Factor 0.583 0.514 0.511

Percent of Negative Biases
World Factor 0.583 0.514 0.511
Idiosyncratic Factor 0.417 0.486 0.489

Parameter-Based Variance Decomposition

Mean of PDF

World Factor 0.089 0.094 0.083
Idiosyncratic Factor 0.089 0.094 0.083

Percent of Positive Biases
World Factor 0.674 0.306 0.482
Idiosyncratic Factor 0.326 0.694 0.518

Percent of Negative Biases
World Factor 0.326 0.694 0.518
Idiosyncratic Factor 0.674 0.306 0.482
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Table 3: PDF of Variance Decomposition Biases - Two-Factor Model

PCA Kalman Filter Otrok-Whiteman

Factor-Based Variance Decomposition

Mean of PDF
World Factor 0.142 0.159 0.155
Country Factor 0.121 0.110 0.130
Idiosyncratic Factor 0.120 0.216 0.217
Percent of Positive Biases
World Factor 0.401 0.838 0.818
Country Factor 0.443 0.704 0.679
Idiosyncratic Factor 0.752 0.094 0.156
Percent of Negative Biases
World Factor 0.599 0.162 0.182
Country Factor 0.557 0.296 0.321
Idiosyncratic Factor 0.248 0.906 0.844

Parameter-Based Variance Decomposition

Mean of PDF

World Factor 0.161 0.131 0.137
Country Factor 0.153 0.138 0.162
Idiosyncratic Factor 0.070 0.079 0.104
Percent of Positive Biases
World Factor 0.457 0.318 0.313
Country Factor 0.538 0.653 0.659
Idiosyncratic Factor 0.519 0.512 0.492
Percent of Negative Biases
World Factor 0.543 0.682 0.687
Country Factor 0.462 0.347 0.341
Idiosyncratic Factor 0.481 0.488 0.508
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Table 4: PDF of Variance Decomposition Biases - Three-Factor Model, 8 Country

PCA Kalman Filter Otrok-Whiteman

Factor-Based Variance Decomposition

Mean of PDF

World Factor 0.221 0.144 0.155
Region Factor 0.200 0.180 0.179
Country Factor 0.162 0.127 0.140
Idiosyncratic Factor 0.269 0.198 0.205
Percent of Positive Biases
World Factor 0.264 0.643 0.614
Region Factor 0.251 0.199 0.236
Country Factor 0.586 0.617 0.604
Idiosyncratic Factor 0.860 0.548 0.559
Percent of Negative Biases
World Factor 0.736 0.357 0.386
Region Factor 0.749 0.801 0.764
Country Factor 0.414 0.383 0.396
Idiosyncratic Factor 0.140 0.452 0.441

Parameter-Based Variance Decomposition

Mean of PDF

World Factor 0.184 0.172 0.191
Region Factor 0.205 0.171 0.183
Country Factor 0.159 0.134 0.151
Idiosyncratic Factor 0.065 0.062 0.083
Percent of Positive Biases
World Factor 0.408 0.368 0.329
Region Factor 0.542 0.551 0.613
Country Factor 0.574 0.599 0.604
Idiosyncratic Factor 0.438 0.488 0.491
Percent of Negative Biases
World Factor 0.592 0.632 0.671
Region Factor 0.458 0.449 0.387
Country Factor 0.426 0.401 0.396
Idiosyncratic Factor 0.562 0.513 0.509
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Table 5: PDF of Variance Decomposition Biases - Three-Factor Model, 16 Country

PCA Kalman Filter

Otrok-Whiteman

Factor-Based Variance Decomposition

Mean of PDF

World Factor 0.208 0.129 0.149
Region Factor 0.177 0.175 0.173
Country Factor 0.142 0.114 0.129
Idiosyncratic Factor 0.273 0.195 0.204
Percent of Positive Biases
World Factor 0.270 0.690 0.650
Region Factor 0.280 0.188 0.226
Country Factor 0.480 0.617 0.604
Idiosyncratic Factor 0.864 0.533 0.543
Percent of Negative Biases
World Factor 0.730 0.310 0.350
Region Factor 0.720 0.812 0.774
Country Factor 0.520 0.383 0.396
Idiosyncratic Factor 0.136 0.467 0.457
Parameter-Based Variance Decomposition
Mean of PDF
World Factor 0.176 0.172 0.180
Region Factor 0.201 0.150 0.162
Country Factor 0.150 0.126 0.140
Idiosyncratic Factor 0.061 0.057 0.079
Percent of Positive Biases
World Factor 0.411 0.277 0.279
Region Factor 0.549 0.538 0.613
Country Factor 0.575 0.685 0.634
Idiosyncratic Factor 0.447 0.568 0.509
Percent of Negative Biases
World Factor 0.589 0.723 0.721
Region Factor 0.451 0.462 0.387
Country Factor 0.425 0.315 0.366
Idiosyncratic Factor 0.553 0.432 0.491

31



LL8'0 900°0 0800 9¢6°0 9TI0°0 8S0°'0 8980 €I0°0 €80°0 €880 9200 <CLO'0O 2Ce0 TSP'0 <CSI'0 8890 O0ST'0 6S0°0 UBIpIIN

68L4°0 €80°0 8CT'0 808°'0 680°0 €0T'0 %080 990°0 TET°0 L€8°0 6800 ¥L0'0 ¥¥€'0 6€V'0 LIZ'0 0990 9I¢0 ¥2I'0 UBSIN

296°0 L00°0 9200 0660 600°0 100°0 816°0 G¥0°0 L€0°0 6€6°0 G50°0 900°0 897°0 €97°0 690°0 ¥26°0 cL0°0 €000  Aendnip

¢69°0 100°0 L9€°0 16670 ¢00°0 Lvv0 9¥.L°0 €00°0 16¢°0 89L°0 900°0 9¢¢’0 0600 0210 0€8°0 L61°0 860°0 G0L°0  ®OLJV {inog

806°0 €00°0 680°0 6960 810°0 €¢0°0 L18°0 20070 LLT0 €¢6°0 110°0 29070 ¢€c0 1690 L1T°0 66S°0 89€°0 €00  drodeSurg

8¢6°0 100°0 1.0°0 L9L°0 €60°0 0020 0¥6°0 G00°0 960°0 088°0 €10°0 L0T°0 6€¢°0 1¢9°0 o 907°0 8L€°0 91¢’0  eIske[ely

046°0 G00°0 G¥0°0 €€6°0 G00°0 ¢90°0 668°0 9¢0°0 GL0°0 L88°0 8600 Gs0°0 919°0 6L1°0 ¥02°0 L68°0 9¢0°0 8L0°0  ®aI03]

Lv8°0 600°0 ¥v10 G460 610°0 9¢0°0 016°0 800°0 ¢80°0 986°0 G00°0 600°0 19%°0 ¥9€°0 GLT°0 480 [44 0] 9000 ®nroIn

¢66°0 810°0 050°0 8€6°0 L0070 74070 1¢6°0 20070 €L0°0 v16°0 20070 8L0°0 G070 0¥¥7°0 Gar1o 9LL°0 LGT°0 1900  ®IqUOIonH

GLT°0 9LL°0 6¥0°0 ¢9¢0 ¥€L0 700°0 6¥7°0 L97°0 ¥80°0 9€7°0 €49°0 ¢10°0 969°0 0020 ¥01°0 066°0 010°0 0000 oD

11270 ¥00°0 G8¢°0 608°0 ¢50°0 6€1°0 ¥99°0 0L0°0 99¢°0 €9L°0 Lv1'0 060°0 910 9¢9°0 6¢¢°0 8LG°0 €ve0 6L0°0  ®RUNULSIY

9€8°0 800°0 9410 916°0 ¥10°0 0L0°0 ¥LL°0 610°0 8020 698°0 9€0°0 G60°0 8¢1°0 €¢L°0 6¥1°0 €8€°0 99¢°0 160°0  Suoy Suoy
serwiouo2y Surdrowy

¥el'0 <CTI0°0 €¥2°0 €89°0 L€0°0 0L2°0 SO0L0 OTIT'0 A8T°0 QIL0 L2T'0 T9T°0 <¢2I'0 98T°0 6CS°0 LLV'O €P0°0 €PP'0 UBIPIA

8G9°0  ¢S0°0 062°0 8%9°0 €90°0 6820 €L9°0 S2I'0 <€0%'0 ATL'0 ¥CT'0  6ST'0  86I'0 6920 <C¥PS'0 LLV'O VPEI'0 680 UBSIN

€110 910°0 048°0 67¢°0 €10°0 8€L°0 691°0 65¢°0 €8¢°0 8770 6L1°0 €LE°0 970°0 9¢0°0 8¢6°0 0¥¢°0 2200 €€L°0  wopdury paupn

¢L8°0 L00°0 1¢1°0 988°0 L1070 26070 9980 Lv0°0 18070 168°0 €L0°0 9€0°0 ¥90°0 GL8°0 190°0 61€°0 G€9°0 9%¥0'0  pUe[IeZ}IMG

6€€°0 8¢0°0 €€9°0 G670 G¥0°0 00670 L2€0 ¥€¢°0 8€T°0 896°0 1LT°0 19¢°0 180°0 ¢50°0 L9870 ¢6€°0 €L0°0 GEG'0  Uepamg

66L°0 G00°0 961°0 L€G°0 G¥0°0 8170 €8L°0 860°0 691°0 v.6°0 €91°0 €9¢°0 880°0 12980 6GL°0 8020 €70°0 67,0  uredg

106°0 €70°0 960°0 606°0 680°0 ¢00°0 ¥06°0 8¥0°0 670°0 ¥76°0 Ge0°0 020°0 66¢°0 c97°0 6€¢°0 999°0 6¢¢°0 9000  [ednjr04

L07°0 1¢0°0 LGS0 8¢9°0 0100 c9¢€°0 697°0 881°0 ¥eo €€L°0 10T°0 991°0 LL0°0 Lev0 967°0 1L6°0 c91°0 L92°0  AemioN

€rL°0 800°0 6¥2°0 8GL°0 €10°0 622’0 G0L°0 €110 ¢81°0 csL0 8¢1°0 021°0 G020 Geeo 0970 ¥64°0 0L0°0 9€€°0  pue[eaz moN

€¢6°0 ¢10°0 G90°0 €€L°0 86070 0120 9¢6°0 77070 0€0°0 L18°0 8600 Gc1'0 ¢ce0 1v¢0 8¢V°0 1¢¥°0 8¢¢€°0 1¢¢°0  SpPUBLIdYION

179°0 ¢10°0 Lve0 €.8°0 ¥00°0 [44 0] ¥99°0 601°0 L2c’0 €48°0 2900 78070 €720 160°0 G990 6¥L.°0 6€0°0 ¢Ic0 RN

¥eL'0 ¥e1'0 ¢s1°0 G€9°0 ¥eT0 0€c°0 ¥64°0 612°0 L81°0 60L°0 LvT°0 10 L6170 €01°0 00270 0¥4°0 Gg10°0 GYy'0  SmoquexnTg

c98°0 900°0 ce1’0 9¢6°0 L€0°0 8€0°0 1680 Ge0'0 ¥L0°0 966°0 1€0°0 €10°0 897°0 6€2°0 €62°0 €260 Gg10°0 £90'0  ueder

886°0 100°0 110°0 €89°0 611°0 661°0 61670 800°0 €10°0 ¢IL0 84T1°0 0€1°0 €0L°0 8¥1°0 671°0 0¥4°0 L1070 eVP0  ATedl

98L°0 L00°0 L0¢°0 L6470 L0070 G6€°0 GcL0 780°0 161°0 G99°0 L60°0 8¢€¢°0 160°0 19¢°0 8840 L0 G9¢°0 196°0  pPu®pIl

LG6°0 G00°0 8¢0°0 7.0 600°0 0¢¢°0 G€6°0 €¢0°0 ¢v0°0 9rL0 8L0°0 9L1°0 €€0°0 667°0 897°0 €1¢°0 00€°0 L8F'0  9999IH

789°0 €L0°0 €70 €0L°0 810°0 6L.2°0 orL0 660°0 691°0 GeL’o €80°0 ¢91°0 96¢°0 GLT°0 6¢S°0 61470 Ge0'0 9yy’0  Auruten

L18°0 ¥00°0 6L1°0 614°0 29070 viv'o ¢I80 €90°0 9¢1°0 G96°0 0€2°0 9020 1120 Gg0'0 GeLo 86¢°0 G¥0°0 L1890  oouelg

1050 ¢10°0 L8770 €740 800°0 8770 Lvg0 S¥1°0 60€°0 099°0 811°0 [qaall] 060°0 L9770 [qaay] 06€°0 97¢°0 ¥9€°0  pueulg

657°0 G000 9€4°0 ¥89°0 G100 10€°0 697°0 9LT°0 Gge0 ¥cL'0 GI1°0 191°0 L0T1°0 Geo'o 8680 ¥67°0 610°0 L87°0  rewruo(g

¥84°0 €€0°0 €8¢€°0 6GL°0 980°0 Gae1'0 G97°0 ¥Le'0 19¢°0 169°0 87¢°0 10T°0 990°0 1.9°0 €9¢°0 L9770 v1e0 61¢'0  epeuep

90 viT'0 e 0 ¥69°0 G90°0 1720 019°0 002°0 161°0 G69°0 G810 0210 L60°0 190°0 av80 LLYV0 000°0 €¢g0  wnidpg

¥01°0 ¥84°0 ¢reo 0¢c°0 01¢°0 0L2°0 ¥19°0 6L1°0 L0¢°0 06270 LET0 ¢e10 €740 9¢¢°0 1¢¢°0 6¢8°0 €00°0 891°0  eLsny

9670 910°0 8¥4°0 809°0 ¢€0°0 09€°0 €L7°0 ¥91°0 €9¢€°0 289°0 Le1°0 981°0 ¢c10 981°0 169°0 68¢°0 170°0 0L€°0  ®lehsnY

9680 640°0 980°0 19¢°0 8%0°0 98€°0 9180 0110 GL0°0 €99°0 0€T°0 202°0 9¢1°0 ¥90°0 08.°0 G9€°0 €20°0 C19°0  S9%®)S pajyiun
SOIUIOUO0D] PIIUBAPY

"OIP] UOISeY PILIOM "OIP] UOISSY PIIOM ‘OIp] uoISey PIIOM ‘OIP] UOISeY PIIOM "OIP] UOIS9Y PIIOM ‘OIp] uoISey PIIOM

posed-i9jotueiedq

paseg-10310€q

posedg-Jojomreaedq

paseg-10}oeq

poasedg-Jojouaeaed

paseg-i031oe]

URTWOIIY A\ -H0130

103[1 Uew[ed]

vod

suo131soduioda(q 9dURBIIBA :9 S[qe],

32



CDF of Correlation Between Estimated and True World Factors: 1 Factor Model
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Figure 1: CDF of the correlation between the true and estimated world factor in the one-factor
model, over 1000 MC simulations.
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CDF of Correlation Between Estimated and True World Factors: 2 Factor Model
1 T T T T T
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Figure 2: CDF of the correlation between the true and estimated world factor in the two-factor
model, over 1000 MC simulations.

CDF of Correlation Between Estimated and True Country Factors: 2 Factor Model
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Figure 3: CDF of the correlation between the true and estimated country factors in the two-factor
model, over 1000 MC simulations. The correlations are averaged across countries.
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CDF of Correlation Between Estimated and True World Factors: 3 Factor Model, 8 Country
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Figure 4: CDF of the correlation between the true and estimated world factor in the three-factor
model with small regions, over 1000 MC simulations. The datasets consist of 8 countries broken
into two equally-sized regions.

CDF of Correlation Between Estimated and True Region Factors: 3 Factor Model, 8 Country
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Figure 5: CDF of the correlation between the true and estimated region factor in the three-factor
model with small regions, over 1000 MC simulations. The datasets consist of 8 countries broken
into two equally-sized regions. The correlations represent the average across regions.
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CDF of Correlation Between Estimated and True Country Factors: 3 Factor Model, 8 Country
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Figure 6: CDF of the correlation between the true and estimated country factors in the three-factor
model with small regions, over 1000 MC simulations. The datasets consist of 8 countries broken
into two equally-sized regions. The correlations represent the average across countries.

CDF of Correlation Between Estimated and True World Factors: 3 Factor Model, 16 Country
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Figure 7: CDF of the correlation between the true and estimated world factor in the three-factor
model with large regions, over 1000 MC simulations. The datasets consist of 16 countries broken
into two equally-sized regions.
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CDF of Correlation Between Estimated and True Region Factors: 3 Factor Model, 16 Country
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Figure 8: CDF of the correlation between the true and estimated region factor in the three-factor
model with large regions, over 1000 MC simulations. The datasets consist of 16 countries broken
into two equally-sized regions. The correlations represent the average across regions.

CDF of Correlation Between Estimated and True Country Factors: 3 Factor Model, 16 Country
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Figure 9: CDF of the correlation between the true and estimated country factors in the three-factor
model with large regions, over 1000 MC simulations. The datasets consist of 16 countries broken
into two equally-sized regions. The correlations represent the average across countries.
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