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Abstract

We assess point and density forecasts from a mixed-frequency vector autoregression (VAR)

to obtain intra-quarter forecasts of output growth as new information becomes available. The

econometric model is specified at the lowest sampling frequency; high frequency observations are

treated as different economic series occurring at the low frequency. We impose restrictions on

the VAR to account explicitly for the temporal ordering of the data releases. Because this type

of data stacking results in a high-dimensional system, we rely on Bayesian shrinkage to mitigate

parameter proliferation. The relative performance of the model is compared to forecasts from

various time-series models and the Survey of Professional Forecaster’s. We further illustrate the

possible usefulness of our proposed VAR for causal analysis.
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1 Introduction

Information available to forecasters changes over the forecasting horizon. This variation occurs be-

cause macroeconomic variables are observed at mixed frequencies (i.e., some variables are monthly,

while others are quarterly) and are released at different times during the quarter, each with its

specific publication lag. Thus, modeling the information flow in an efficient way is a central issue

for practitioners and policymakers.

Many of the models that have been developed to deal with the variation in incoming information

are estimated at the highest sampling frequency, treating the low frequency variables as latent

processes. Typically these are modeled in a state-space framework and, consequently, are highly

parameterized. In this paper instead, we address the forecaster’s information problem by using a

mixed-frequency Bayesian VAR estimated at the lowest common data frequency. More specifically,

our VAR stacks the three quarterly observations of a monthly variable, modeling each individual

monthly release with a separate process. In addition, we incorporate the data release properties with

recursive restrictions imposed on the VAR. Ordering the data consistent with the release calendar

helps us deal with the publication lags: We model the available information set and consider its

predictive content with no particular emphasis to the reference period of the released data.

Our VAR is a high-dimensional variant of the model proposed in Ghysels (2015), evaluated in

real-time for out-of-sample nowcasting and forecasting of U.S. real GDP growth. Given that our

model is large and unrestricted relative to the various specifications considered in Ghysels (2015),

we estimate it relying on Bayesian shrinkage.1 Our implementation introduces some technical

intricacies which we further discuss in the paper. As we also aim to postulate a model that can be

used for policy analysis, we evaluate it according to two criteria: (i) its ability to provide reliable

forecasts and (ii) its usefulness for causal analysis. We compare the predictions of our model to

commonly used time series alternatives considered in the literature, as well as competitive consensus

forecasts provided by the Survey of Professional Forecasters (SPF). In addition, we quantify the

differential effects of discretionary monetary policy shocks on real economic activity depending on

when they occur during the quarter.

There are a variety of alternative forecasting models that address the variation in data sampling

and data release timings—e.g., state-space models and Mixed Data Sampling (MIDAS). State

space models are usually specified at a high-frequency and filtering/smoothing algorithms provide

updates for the missing values of low frequency variables.2 MIDAS regressions (Ghysels et al., 2004)

1See Foroni, Guérin and Marcellino (2013) for a classical evaluation of a small-scale stacked VAR for the Euro-
area in real-time. Blasques et al. (2015) provides a weighted maximum likelihood estimation procedure for mixed
frequency dynamic factor models considered in the stacked form.

2Giannone et al. (2008), Aruoba et al. (2009), and others utilize state-space framework to estimate factor
models. They summarize large panels of macro data with a few factors to obtain high-frequency updates for missing
observations of (latent) variables of interest. Schorfheide and Song (2015) use a mixed-frequency medium-scale VAR
to obtain monthly nowcasts and forecasts of quarterly GDP growth.
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are typically implemented for univariate autoregressive distributed lag models, allowing the high

frequency data to enter the predictive regressions by sparsely parameterized weighting polynomials.

Under certain non-restrictive conditions, VARs can be mapped back to these alternatives.3 In fact,

our forecasting model parallels with a multivariate version of MIDAS regressions where we use

unrestricted, data-driven weights instead of weighting polynomials. Thus, which model performs

the best can not be known ex ante and is an empirical question.4

However, as discussed in Ghysels (2015), in the context of mixed frequency data there is a

difference between state-space models and the proposed mixed-frequency, stacked VAR: State-

space models are parameter-driven whereas the stacked VAR is observation-driven. Furthermore,

high-frequency VAR models with latent shocks yield infinite-order VAR models in the observables,

while the stacked VAR is of finite order by construction. This misspecification could be relevant

for causal analysis. Consequently, while the various mixed-frequency alternatives are expected to

be similar in their forecasting performance, the stacked VAR may be more generally useful.

We find that the mixed-frequency nature of the data is important for nowcasting, but that not

all intra-quarter information improves forecast accuracy. Our model dominates some competitive

alternatives—including a variant of a factor model—when nowcasting real GDP growth. In fact,

the accuracy of our model’s nowcasts are comparable to those of the SPF’s: The root-mean-squared

forecast error associated with our nowcasts is only 7 percent higher than that associated with the

nowcasts of the SPF. Admittedly, we find considerable time variation in the forecasting performance

of the models. For example, our model performs better than the factor model during the post-Great

Recession period, but the nowcasts of the SPF have been more accurate since 2000. Controlling for

a few outliers by using a median-squared forecast errors loss criterion makes our model even more

competitive relative to the SPF.

Finally, we show that our model can be useful for causal analysis in ways that a low frequency

VAR cannot. Specifically, we quantify the effects of conventionally identified monetary policy shock

on real output growth but do so allowing for the shock to occur at different months within the

current quarter. This is potentially relevant insofar as historically, Federal Open Market Committee

(FOMC) meetings have met in all three months of each quarter. We find that the monetary policy

shocks with the most impact on real output growth occur in the second month of the quarter. These

results could be interpreted in two ways: Shocks that occur earlier in the quarter have more time

to propagate through the real economy or the marginal predictive content of the high-frequency

variables are largest in the second month of the quarter.

3For instance, De Mol et al. (2008) consider the equivalence of principal components and Bayesian shrinkage. Bai
et al. (2013) show the equivalence between the state space models and MIDAS regressions.

4Bai et al. (2013) suggest that MIDAS regressions would be preferred to the state-space models when the latter is
misspecified or overparameterized. Both, misspecification and overparameterization, are difficult to evaluate ex ante.
Schorfheide and Song (2015) show that the nowcasts and forecasts of real GDP growth from the mixed frequency
VAR are empirically similar to those obtained from unrestricted MIDAS regressions.
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The remainder of the paper is organized as follows. Section 2 lays out the econometric specifica-

tion of the blocking model and discusses the data. Section 3 considers the estimation methodology.

Section 4 presents the construction of nowcasts and forecasts; Section 5 discusses the forecasting

results and compares them to various alternatives. Section 6 investigates the usefulness of our

model for causal analysis. We conclude with Section 7.

2 The Setup

In this section, we describe the data and method for performing our out-of-sample forecasting

exercises. In our description of the data, we highlight the timing of their releases. These release

dates will be used to generate a number of restrictions on the contemporaneous effects in the VAR

outlined in the following subsection.

2.1 Data

Table 1 summarizes the data. The choice of the data series is based on some judgment as to

which economic variables are important and is broadly followed by markets and policymakers.5

For each series listed in the first column, we indicate the original frequency of the data, as well as

the transformation used to achieve stationarity.6 We specify the approximate release date of the

series, their publication lags, the dates of the first available vintages, as well as the economic data

release report from which the series are obtained. The data are combined from ALFRED (ArchivaL

Federal Reserve Economic Data) database of the St. Louis Fed and Haver Analytics (marked by

a †). We have monthly real-time vintages from 1980:01 to 2014:04. However, in the estimation we

use vintages starting from 1985:01 onwards to ensure we have sufficient degrees of freedom for our

estimation.7 The earliest observation for any vintage is 1971:01.8

INSERT TABLE 1 HERE

To make the information reported in the table more transparent, take the example of employment

labeled as “Empl.: Total Nonfarm Payrolls”. “M” in the frequency column indicates the monthly

nature of the employment data. Employment, with some exceptions, is released on the first Friday

5For some discussion on data choice, see McBride (2014).
6The transformations are broadly consistent with (unreported) unit root test results. The growth rates are

annualized, consistent with quarterly frequency, while variables in percentage differentials are multiplied by 4.
7While degrees of freedom is less important for Bayesian estimation, we start the sample in 1985:01 to minimize

the impact of the prior on the estimation results. Panel B in Figure 1 shows that considerable amount of uncertainty
remains even when starting the estimation in 1985:01.

8Although the dataset is “real time” in the sense that the most recent vintage is used for estimation in each
out-of-sample experiment, we do not forecast data-revisions. To accommodate data revisions, additional equations
would have to be included to link the revisions across releases (especially for GDP). We leave this exercise for future
research.
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of each month and pertains to the previous month. Thus, employment series has one-month

publication delay, which captures the difference between the release and reference months.

Over time, new real-time data series become available. As we attain real-time vintages for

these variables, we incorporate them in our estimation. As a result, the dimensionality of our

model changes six times across our collection of vintages.9 Prior to 1996, our model is comprised

of sixteen monthly and one quarterly variables. In the late 1990s, we add core CPI (1996:12),

ISM Manufacturing PMI (1997:03), and New Single Family Houses Sold (1999:07). The latter two

series are considered to be leading indicators for real activity. The core CPI, on the other hand,

can improve the interest rate—and consequently real output growth—forecasts as it is central to

the central bank’s objectives. The real-time data for PCE headline and core price indices become

available for the 2000:07 vintage. Initial Unemployment Insurance Claims is added in the 2009:06

vintage and the New Orders Index and the Supplier Deliveries Index are added in the 2009:11

vintage. We include these variables because of their timely release.

Since our objective is to model the timing of the releases explicitly, we collect the data into five

groups based on the timing of their release dates using a few simplifying assumptions:

1. Group 1 consists of the variables that are released during the first week of the month; Group

2 consists of the variables released during the second and third weeks in the month; Group

3 consists of the real variables released during the last week of the month; Group 4 is the

policy instrument; and Group 5 includes other financial variables.10

2. The number of estimated parameters in our model increase faster than in the standard VAR

of equal lag order. Introducing variables at higher than monthly frequencies (weekly or daily)

will exacerbate this problem. In order to mitigate parameter proliferation, we consider data

only in monthly and quarterly frequencies. Financial variables are summarized at a monthly

frequency, using end of month values. The exception is the S&P 500 Stock Index, for which

we use the average value of the month.

3. Initial Unemployment Insurance Claims is a weekly series and are usually revised substan-

tially. Each weekly release reports the four-week-moving-average of initial claims. We use

9Retail Sales is a splice of two series RETAIL (Retail Sales) and RSAFS (Retail and Food Services Sales). Post
2006:06, we use the RSAFS data and its revisions, always splicing the data with the historic values of RETAIL
for pre-1992:01. Moreover, for Retail Sales, Housing Starts and New Houses Sold, there are vintages that provide
revisions for historical data, but no new observations. In these cases, we proxy the new values by repeating the
values of the previous month so that the last few values (depending on the number of missing observations) in the
faux-vintage are identical. This is consistent with the assumption that we are modeling what is in the forecasters
information set.

10The release dates required some approximations. For example, the Employment Situation Report can be released
on the second Friday of the month when the first Friday falls on the 1st of the month and when the prior month has
fewer than 31 days. This happens rarely. In such cases, we treat the reports as in the table as the changes usually
still preserve the temporal ordering.
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the first weekly release in the month which reflects the past month’s average of initial claims.

Based on this assumption, Initial Unemployment Insurance Claims is placed in Group 1 with

the variables that are released at the beginning of the month.

We assume that variables released in the same group are considered simultaneous in the Wold

causal chain sense. This assumption may be reasonable from a policymaker’s point of view; in

many circumstances, the costs associated with acquiring and explaining daily forecasts far exceed

the benefits. We also further assume that each group reacts to the groups released before but are

independent of the groups released after.

We separated the federal funds rate from the rest of the financial variables to analyze the

effects of monetary policy shocks throughout the quarter. By isolating the federal funds rate,

we can combine causal restrictions of the conventional empirical monetary policy literature (as

in Christiano et al., 1999) with temporal restrictions motivated by data releases. Specifically, we

assume that the monthly federal funds rate responds to all the information from the previous month

and to the information in non-financial variables in the current month. Thus, monetary shocks can

affect the current quarter’s real GDP growth, but monetary shocks occurring in the first month

of the quarter cannot affect the real GDP growth reported in the same month. Real GDP growth

released in the first month of the quarter refers to previous quarter’s growth and is already realized

before the monetary shock occurs. We discuss this further in Section 6.

It should be noted that our data are organized based on the release and not reference calendar.

Thus, in January, the information set that is used for forecasting typically includes data pertaining

to the past month and the current month, as well as the past quarter’s realization of GDP. We use

all these information for predicting the release of the current quarter real GDP growth. Within

a quarter, the exercise parallels the direct forecasting approach (which is more robust in the case

of misspecification), rather than filling the missing observations consistent with some parametric

model such as the state-space model.

2.2 Model

Our forecasting model is a VAR, estimated at the lowest sampling frequency. While the data releases

are observed in mixed frequencies, we treat multiple releases in the lowest frequency as separate

observations modeled in a blocked linear form consistent with the previously defined groups.

Without loss of generality, we define our notation consistent with the specification used in our

empirical application, mixing monthly and quarterly variables; alternative frequency mixing is a

straightforward extension. Let xt−τ represent the high frequency (monthly) variable and yt denote

the low frequency (quarterly) variable, for quarters t = 1, ..., T and months within the quarter

τ = {2/3, 1/3, 0}. In this setup, each τ represents an intra-quarter month: τ = 2/3 indexes data
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that are observed during the first month of the t quarter and τ = 0 indexes data that are observed

in the last month of the t quarter.

For illustrative purposes, consider the case with one quarterly variable (say, real GDP) and one

monthly variable (say, payroll employment) that is released during each of the three intra-quarter

months prior to the release of the quarterly variable. Define the vector Yt = [xt−2/3, xt−1/3, xt, yt]
′;

then, the mixed-frequency VAR takes the form:

A′Yt = C +

p∑
l=1

B′lYt−l + εt, t = 1, ..., T, (1)

where A′ and B′l are n× n parameter matrices, C is a vector of deterministic components, p is the

lag length, εt ∼ N (0, I), and T is the sample size in quarters.

The model structure is different from the standard VAR. Our model allows each monthly release

of a data series within a quarter to have its own data generating process. If our data was only at

a monthly frequency, the standard monthly VAR could be written in the stacked form with a set

of restrictions on the coefficients across months of the quarter.

The matrix A′ is used to impose temporal ordering restrictions on the elements of Yt depending

on the timing of their releases over the quarter. In the example, the three monthly releases of

xt−τ are observed in a specific order followed by the eventual release of the quarterly value of yt;

thus, n = 4 and A′ is lower triangular (4× 4) matrix. In this example, each release is assumed

to occur on a completely different day and it seems reasonable to estimate a lower triangular A′.

If, on the other hand, the third monthly release of the high-frequency variable xt occurs on the

same day as the quarterly release of yt, one can make various assumptions about the temporal

relationship of these variables. We make the choice of leaving the contemporaneous impact of xt

on yt unrestricted.11 Accordingly, the A′ matrix would have the following form:

A′ =


a1,1 0 0 0

a2,1 a2,1 0 0

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 , (2)

where ai,j-s, i, j = 1, ..., 4, are unrestricted scalars.

In general, we can write A′ in terms of monthly blocks A′j , where j reflects the month of the

quarter, and a denotes unrestricted matrices of varying dimensions:12

11Our forecasting problem is formulated such that yt is not updated in response to the xt because we assume they
are released at the same time.

12We omit the subindices and use a generic notation for simplicity.
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A′ =


A′1 0 0

a A′2 0

a a A′3

 . (3)

Each monthly block, as suggested above, has its own internal timing. Based on the data and release

date assumptions in Table 1, the (monthly) Wold causal chain relating the release information

results in a monthly block lower triangular A′m, for m = 1, 2, 3 :

A′m =



a1,1 0 0 0 0

a a2,1 0 0 0

a a a3,3 0 0

a a a a4,4 0

a a a a a5,5


, (4)

where a again denotes unrestricted matrices of different dimensions and the ai,js are unrestricted

matrices of dimensions corresponding to the variables in each group. The first month in the

quarter (m = 1) is different than the rest since it includes the quarterly release of the GDP: A1

is one dimension larger than A2 and A3. This dimensionality increase is associated with the third

group of variables: it now contains real GDP growth. For instance, in 2013:01, a1,1 is a matrix of

dimensions 7 × 7, while a3,1 of 5 × 5 and so on. However, in 2013:02, a3,1 is of dimension 4 × 4.

Consequently, the dimension of A′m increases by one.

3 Estimation

In general, the dimension of VARs becomes large quickly; in our case, the parameter proliferation

is exacerbated because adding one more monthly predictor adds three variables to the VAR. In

order to address the dimensionality issue, we estimate the VAR with Bayesian methods assuming a

shrinkage prior. Bańbura et al. (2010) show that Bayesian VARs forecast with sufficient accuracy,

even when the considered systems are fairly large (e.g., 100+ variables).

3.1 The Prior

Let Xt = [Y ′t−1 ... Y ′t−p 1]′, and Fk×n = [B1 ... Bp C]′, where n is the number of endogenous

variables in the VAR, p is the lag order of the VAR and k = np+ 1 is the number of parameters in

each VAR equation. A general form of the VAR in equation (1) can be re-written as

Y ′tA = X ′tF + ε′t, for t = 1, ... , T. (5)
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Let ai and fi represent the respective ith columns of A and F , accounting for the ith structural

equation in the VAR. We consider a modification of the Sims and Zha (1998) prior. The prior

imposes independence across the structural equations and assumes that the vectors ai and fi are

both jointly normally distributed. More specifically, the prior postulates the following distributions

on the parameters. For i = 1, ..., n,

ai ∼ N(0, S̄),

fi|ai ∼ N(P̄ ai, H̄). (6)

Sims and Zha (1998) consider a random walk prior which centers the reduced-form parameters

on the first autoregressive lag at unity. Since we have transformed the variables to stationary, we

instead center the reduced-form autoregressive lag coefficients on zero. Accordingly, P̄ is param-

eterized as a matrix of zeros. Furthermore, S̄ is a n × n diagonal positive definite matrix, where

the elements on the ith row are S̄ij =
λ2

0

σ2
j
, for j = i = 1, ..., n, and zero otherwise. On the other

hand, H̄ is a k× k positive definite matrix, such that the (k− 1)× (k− 1) elements are defined as

diag([H̄1 ... H̄p]), where diag(.) makes a (block) diagonal matrix and H̄l, l = 1, ..., p, is an n× n
diagonal matrix, where H̄lij =

λ2
0λ

2
1

σ2
j l

2λ3
, for j = i = 1, ..., n, and zero otherwise. The prior variance

for the constant, i.e., the kth diagonal is λ2
0λ

2
4 and uncorrelated with the rest of the parameters.

For example, suppose n = 2 and p = 2. It follows from the discussion above that

P̄ =
[
02×2 02×2 02×1

]′
;

S̄ = diag
([

λ2
0

σ2
1

λ2
0

σ2
2

])
,

and

H̄ = diag
([

λ2
0λ

2
1

σ2
1

λ2
0λ

2
1

σ2
2

λ2
0λ

2
1

σ2
122λ3

λ2
0λ

2
1

σ2
222λ3

λ2
0λ

2
4

])
.

A scaling factor, σ2
j , is included to mitigate the effect of a difference in the unit of measure across

the variables. In practice, σ2
j is proxied by the sample variance of the residuals that result from

a univariate autoregression of order p for series j. The role of the hyperparameters λ0, λ1, λ3, λ4

and λ5 is presented in Table 2.13

INSERT TABLE 2 HERE

Hyperparameters can be selected by borrowing the values from, for example, Sims and Zha (1998)

or Clark and Doh (2014). However, we mix the monthly and quarterly series together differently

13We adopt the notation of Sims and Zha (1998), who omit λ2 which differentiates own lag contraction from
cross-variable lag contraction.
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from previous studies. Moreover, as shown in Bańbura et al. (2010) the optimal level of shrinkage

increases as the dimensions of the model increase relative to the sample size. Therefore, it is

desirable to allow hyperparameter values to be selected in a systematic way.

We compute the marginal data density to choose the hyperparameter values λ0 and λ1 (hence,

their values are “tbd” in Table 2). We set λ3 = 1, the same value used by Bańbura et al. (2010),

and set λ4 = 1, consistent with Sims and Zha (1998). In principle, we could also use the marginal

data density to obtain the values for λ3 and λ4, but, given that we are conducting a recursive

forecasting exercise, this would increase computation time. Moreover, according to Giannone et al.

(2014), the behavior of the constant is not important for short-run forecasting and λ3 = 1 performs

well in Bańbura et al. (2010).14

To make the out-of-sample forecasting exercise easy to conduct, an analytical solution for the

marginal data density is preferred. As our causal and temporal restrictions result in an underiden-

tified system, a closed-form solution for the marginal data density exists and is presented below:15

p(y|x) ∝ (2π)−
n(t+n)

2 |H̄|−
n
2 |S̄|−

n
2 |(X′X + H̄−1)|−

n
2 |∆|−

t+1
2 , (7)

where ∆ = (S̄−1 + P̄ ′H̄−1P̄ + Y′Y − Ξ′(X′X + H̄−1)−1Ξ), Ξ = (X′Y + H̄−1′P̄ ), Y ≡ [Y1 ... Yt]
′,

X ≡ [X1 X2 ... Xt]
′, while y ≡ vec(Y) and x = In ⊗X. To choose the hyperparameters λ0 and λ1

we conduct a grid search over grids {0.01 : 0.01 : 0.5} and {0.025 : 0.025 : 0.5}, respectively.16

3.2 The Sampler

The model is estimated via Gibbs sampler proposed in Waggoner and Zha (2003).17 We need to

estimate the VAR in equation (5) subject to constraints imposed by matrices Qi and Ri. The

restrictions are imposed such that for i = 1, ...., n:

Qiai = 0,

Rifi = 0. (8)

14We estimated the model by choosing all hyperparameter values from the marginal data density. The results are
not sensitive to those choices.

15Details are provided in Appendix A and a numerically more stable implementation is discussed in Appendix B.
16We tried using finer grids and larger intervals, yet it did not make too much of a difference for the results. In

principle, we could also allow for different shrinkage for monthly and quarterly variables. In this case, the marginal
data density calculations are not trivial. Whether or not the adjustment of the shrinkage would make a difference
for forecasting is an empirical open question that we leave for future work.

17There are alternative ways to estimate a VAR as the one in equation (5). We prefer Waggoner and Zha (2003)
approach as it provides with an efficient algorithm to estimate a VAR even when the contemporaneous correlation
matrix A is overidentified, resulting in a restricted reduced form variance-covariance matrix for the VAR. Since
we have modeled the within group releases of data as contemporaneously correlated, A is underidentified in our
case. Nevertheless, we prefer to utilize a general framework that is not restrictive in terms of the form of temporal
restrictions one can impose. If one imposes many restriction such that the system becomes overparameterized, then
the marginal data density calculations in the Appendices A and B become approximations.
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For our implementation Qi is a n×n matrix parameterized to incorporate the temporal ordering

restrictions highlighted in Section 2, while Ri is a k × k matrix of zeros reflecting the fact that

there are no restrictions on the lag dynamics. We further define Ui and Vi to be matrices whose

columns form an orthonormal basis for the null spaces of Qi and Ri. We can then rewrite our

parameter space in terms of ψi = Uifi and φi = Vigi, where the orthonormal rotation matrices Ui

and Vi reduce the parameter space of the VAR, taking into account the linear restrictions on the

contemporaneous and lagged dynamics (which is unrestricted in our case) of the system.

As Wagonner and Zha (2003) show, the prior in equation (6), the likelihood of the model in

equation (5) and the restrictions in equation (8) imply marginal posterior distributions for ψi and

φi represented by:

p(ψ1, ..., ψm|X,Y) ∝ |[U1ψ1, ..., Umψm]|texp

(
− t

2

n∑
i=1

ψ′iS
−1
i ψi

)
(9)

p(φi|ψi,X,Y) = ϕ(Piψi, Hi), (10)

where H, P , and S are transformations of the prior mean and variance matrices H̄, P̄ , and S̄ and

ϕ(.) denotes the pdf of a normal distribution.

The implied joint conditional posterior distribution of ψis is independent of φis, but non-

standard. Waggoner and Zha (2003) propose a Gibbs sampler as a strategy to simulate from

this joint distribution. Starting from some arbitrary initial values of {ψ∗1, ..., ψ∗i−1, ψ
∗
i , ψ

∗
i+1, ..., ψ

∗
m},

Gibbs sampler sequentially draws from the conditional posteriors p(ψi|ψ1, ..., ψi−1, ψi+1, ..., ψm,X,Y)

as a mechanism to draw from the joint. In order not to be redundant and to conserve some space,

we refer the reader to Waggoner and Zha (2003) for the details on how to draw from the conditional

distributions. Given the simulated values of ψis, simulating the φis is fairly easy as they are drawn

from a normal distribution.

As Waggoner and Zha (2003) suggest, the algorithm results in Monte Carlo chains that mix

fairly well and converge fairly fast. Thus, our reported results are based on 5,000 accumulated.18

Once we have the distribution of φis and ψis, the distributions of ais and fis, thus of A and F ,

could be easily recovered with the help of the orthonormal rotation matrices Ui and Vi.

4 Forecasting

To document the forecasting performance of our proposed model in real-time, we consider point

and density forecasts, focusing on nowcast and four-quarter-ahead (one-year-ahead) forecasts. To

18The initial 100 draws are discarded to eliminate the effect of the initial values. We use all the draws to construct
the posterior in order to obtain more efficient estimates. Since draws are correlated over time, we can, in principle,
retain only a subset of draws for computational purposes.
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simplify the discussion that follows, we first address some timing issues:

1. January, April, July, and October are the months for which we have observations for the

previous quarter real GDP growth and all other variables in our dataset.

2. The model is only estimated in January, April, July, and October after a new GDP release

is obtained. The posteriors of the parameter estimates are stored to construct intra-quarter

forecasts. The lag length is fixed at p = 4 for the entirety of the empirical implementation.

3. We compute two forecasts, Yt+1 and Yt+4. During the first month of the quarter, the one-

quarter-ahead forecast is effectively forecasting the advance release for first quarter real GDP

growth. Similarly, Yt+4 is a one-year-ahead forecast.

4. The forecasts are updated as data become available within the quarter. For simplicity, we

recompute the forecasts at the end of each month, when a full set of monthly predictors are

available. We refer to the forecasts obtained at the end of the first month of the quarter

(January, April, July, October) as “Month 1”; forecasts obtained at the end of the second

month of the quarter (February, May, August, November) are labeled as “Month 2”; and the

rest as “Month 3”.

5. In order to understand the importance of the economic releases and to better match with the

timing of professional forecasts, which are usually collected in the middle of the month, we

also show how the forecasts get updated when a new group of data (based on the groupings

in Section 2) become available.

6. All forecasts are evaluated against the advance release of the real GDP growth. For exam-

ple, forecasts produced in January, February and March (and all the times in between) are

evaluated against the advance release of the first quarter GDP in the April vintage of the

data.

4.1 Point Forecasts

There is always a question of which measure of central tendency to consider when dealing with

optimal forecasts. Gneiting (2012) argues that when the scoring function is in a form of a squared

error, the optimal point forecast is the mean of the predictive distribution. Therefore, we construct

point forecasts for all 5000 draws of A and F and report the mean of the forecast distributions as

a point forecast. This is equivalent to reporting the conditional mean of Yt+h, h = 1, 4, for each

parameter draw given the information available at time t and immediately following each group of

releases.
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We provide the exact formulas for forecast construction after every monthly release; they can be

easily adjusted for more granular forecasts. Let n1, n2 and n3, be the number of variables released

in Month 1, Month 2 and Month 3, respectively, where n1 +n2 +n3 = n. For each parameter draw,

nowcasts are obtained as:

1. Time t (Month 1): At time t, E(εt+h|Xt,Yt) = 0 for all h > 0 and hence:

Ŷ ′t+1|t = X ′tFA
−1. (11)

2. Time t+ 1/3 (Month 2): Let i1/3 = [1n2×n2 ,0n2×n3 ,0n2×n1 ]′.

Define ε̂t+1/3 = [(i′1/3Ai1/3)′(i′1/3(Yt+1/3− Ŷt+1|t)),0n2×n3 ,0n2×n1 ]′. E(εt+h|Xt+1/3,Yt+1/3) =

0 for all h > 1/3. However, when h = 1/3, that is no longer the case. Because Yt+1/3 is

observed, we find that E(εt+1|Xt+1/3,Yt+1/3) = εt+1/3, which we proxy with ε̂t+1/3. Substi-

tuting this into the forecasting formula above gives us:

Ŷ ′t+1|t+1/3 = Ŷ ′t+1|t + ε̂′t+1/3A
−1, (12)

which updates the forecast at time t with an add factor ε̂′t+1/3A
−1.

3. Time t+ 2/3 (Month 3): Let i2/3 = [0n3×n2 ,1n3×n3 ,0n3×n1 ]′.

Define ε̂t+2/3 = [ε̂t+2/3, (i
′
2/3Ai2/3)′(i′1/3(Yt+2/3 − Ŷt+1|t+1/3)),0n3×n1)′. With a logic similar

to that in the previous step we get:

Ŷ ′t+1|t+2/3 = Ŷ ′t+1|t + ε̂′t+2/3A
−1, (13)

4. Time t+ 1 (Month 4): We go back to step 1, as Month 4 has the same structure as Month 1.

Now, in order to obtain forecasts for an arbitrary h > 1, we iterate the forecasts forward. Thus,

the forecasts at the end of each month can be calculated as Ŷ ′t+h|t = X̂ ′t+1|t(FA
−1)h−1; Ŷ ′t+h|t+1/3 =

X̂ ′t+1|t+1/3(FA−1)h−1 and Ŷ ′t+h|t+2/3 = X̂ ′t+1|t+2/3(FA−1)h−1 and X̂t+1|t = [Ŷ ′t+1|t ... Y
′
t−p 1]′,

X̂t+1|t+1/3 = [Ŷ ′t+1|t+1/3 ... Y
′
t−p 1]′ and X̂t+1|t+2/3 = [Ŷ ′t+1|t+2/3 ... Y

′
t−p 1]′.

4.2 Predictive Distribution

In addition to point forecasts, we are also interested in the evaluation of density forecasts. The

predictive density for h = 1 is defined as:

p(Yt+1|Xt,Yt) =

∫ ∞
−∞

∫ ∞
−∞

p(Yt+1|Xt,Yt, F,A)p(F |A,Xt,Yt)p(A|Xt,Yt)dFdA, (14)
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where p(F |A,Xt,Yt) and p(A|Xt,Yt) are the posterior distributions of the parameters F and A.

In order to construct the predictive distributions, we follow the algorithm below:

1. Draw 500 observations of εt.

2. Given the posteriors of p(F |A,Xt,Yt), p(A|Xt,Yt), we construct the corresponding Ŷt+1 for

the forecasting model in equation (5).

3. In total, we have 5000 parameter draws. Thus, for each observation of εt, we construct

averages of the prediction Ŷt+1|t across the draws.

4. Calculate percentiles for the distributions with 500 observations.

5. When calculating the predictive densities within the quarter, we simulate only the shocks

that have not yet been realized. In other words, when computing density forecast at the end

of month two, we simulate only month three shocks.

4.3 Evaluation

We use a few different evaluation criteria for our forecasting exercise.19 First, we evaluate the

unconditional predictive performance of our model (and the alternatives) using the root-mean-

squared forecast error for an out-of-sample evaluation period P = T −R− h:

rMSE =

√√√√ 1

P

P∑
s=1

(Ys+h − Ŷs+h|s)2, s = R, ..., T − h. (15)

Next, we compute the root-median-squared forecast error to obtain a performance measure.

To compare our model to alternatives that are at time-smoothed consensus forecasts, we want an

measure that is robust to outliers. The root-median-squared forecast error is:

rMedSE =
√
median(Ys+h − Ŷs+h|s)2, s = R, ..., T − h. (16)

In addition, we consider conditional predictive ability tests by tracing measures in equations

(15) and (16) over time with a fixed, rolling window of 10 years. To determine how the predictive

densities change over time, we examine the evolution of the distance between the 97.5th and 2.5th

percentiles over time.

19We do not assess whether our model is statistically better than the alternatives since there are no readily available
tests of conditional and unconditional equal predictive ability for recursively estimated Bayesian models in a real-time
framework.
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5 Forecasting Results

We compare he forecasting performance of our model to some alternative time-series models and

the Survey of Professional Forecasters’ forecasts. For ease of exposition, we concentrate on the

forecasting performance of four macroeconomic variables: employment growth (“EMP”), CPI in-

flation (“CPI”), the change in the Federal Funds Rate (“FFR”) and real GDP growth (“GDP”);

our emphasis throughout will be on the growth rate of real GDP.

INSERT FIGURE 1 HERE

First, Figure 1 documents the properties of the forecasts from our model in absolute sense. Panel

A shows the nowcasts from our model at the end of Month 1, Month 2 and Month 3; Panel B shows

the evolution of the distance between the 97.5 and 2.5 percentiles of the predictive distribution

constructed as in Section 4.2. As we can see in Panel A, the nowcasts at the end of Month 1

generally replicate the fluctuations in the data but do not get the peaks. Month 2 predictions do

pick up the peaks, suggesting that the additional information helps. On the other hand, month

3 can magnify and, at times, misalign the timing of these peaks. Panel B shows that there is

considerable uncertainty in our nowcasts at the beginning of the out-of-sample period. Towards the

end of the out-of-sample period, the distance between the 97.5 and 2.5 percentiles of the predictive

distribution becomes more reasonable. Moreover, it appears that within-quarter information makes

the distribution more concentrated around the mean.

INSERT TABLE 3 HERE

Quarterly Models

We first evaluate the predictive performance of our quarterly model, ignoring the within-quarter

monthly releases, and compare the forecasting performance of our model for h = 1 in Month 1 of

each quarter to univariate autoregressive models and a simple VAR estimated with OLS. The intent

of this exercise is to compare the predictive performance of our large VAR to that of parsimonious

time series models, known to be competitive benchmarks for forecasting exercises.

The autoregressive models (“AR-Quarterly”) are an AR(4) for the real GDP growth and an

AR(12) for the monthly variables. We estimate monthly and quarterly ARs with data from the

January, April, July and October vintages. For the monthly variables, we construct three-step-

ahead forecasts (with no new information) and compare the quarterly average of the monthly

forecast to the quarterly average of the monthly realization. We construct forecast errors based on

the averages of three intra-quarter monthly forecasts and realizations to make them comparable

with our Bayesian VAR (“BVAR-Quarterly”). For the BVAR, we obtain three direct, one-step-

ahead forecasts per quarter (as the monthly variable appears in the blocking model three times over
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the quarter) and average them to obtain a quarterly value. For the single-frequency quarterly VAR

(“VAR-Quarterly”), the model is a four-variable VAR(4) in employment growth, CPI inflation,

changes in the Federal Funds Rate and real output growth as a forecasting model.20 We average

the monthly variables to a quarterly frequency by considering simple averages across the months

in a quarter.

In Table 3, we report the rMSE for the “AR-Quarterly” (in bold); for the other the models,

we report the ratio of their respective rMSEs to that of the “AR-Quarterly”. Ratios less than 1

(marked in italics) indicate improvements. As the table suggests, the performance of the small-scale

VAR (“VAR-Quarterly”) is inferior to the autoregressive model. For employment growth and CPI

inflation, the performance of our “BVAR-Quarterly” is also inferior to that of the autoregressive

benchmark. However, our quarterly BVAR does as good as the parsimonious AR(4) for the real

GDP growth. This is an encouraging result, since our estimated system is fairly large. For the

changes in the FFR, our “BVAR-Quarterly” provides a 15 percent improvement over the AR.

Mixed Models

Table 4 reports the results from our mixed frequency BVAR and compares them to a mixed-

frequency AR model. The BVAR results correspond to those discussed in Section 4 and are reported

in the last three columns of the table as a ratio of rMSE-s relative to those from an autoregressive

model. The results reported under the column labeled as “AR-Mixed” correspond to a monthly

AR(12) for each reported variable. We estimate the AR(12) only when we have a balanced panel

and use these estimates to update the forecasts as new monthly observations become available

throughout the quarter. Thus, we are reporting one-step-ahead monthly forecasts and comparing

them to one-step-ahead forecasts for these monthly variables obtained via direct forecasting as

implied by our mixed BVAR framework.

INSERT TABLE 4 HERE

The nowcasting performance of the BVAR improves as new information becomes available over

the course of a month. At the end of the second month of the quarter, the nowcasting performance

improves by 16 percent relative to the previous month. However, the new information realized in

third month of the quarter does not further improve the nowcasting performance of the model.

When we look at the forecasting performance of our model for the monthly variables, the story is

mixed. Our BVAR does better than the parsimonious autoregressive benchmarks for forecasting

the Month 1 changes in the FFR and Month 2 and 3 employment growth. For the rest of the cases,

it does no better than the benchmark. Moreover, for all variables except the FFR, the forecasting

20We considered an optimal lag selection mechanism with BIC. Using information criterium for lag selection im-
proves the FFR forecast about 50%, but it does not change the rest of the rMSE-s much. For real output growth the
rMSFE improves by about 0.05.
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performance improves as new information becomes available, i.e., BVAR - M3 has a lower rMSE

than BVAR - M2, etc.

Two points are worth noting. First, the shrinkage employed in the estimation is optimized

for a quarterly set-up. It is possible that one could further improve the forecasts of the monthly

variables if alternatives are considered. Second, there is a tradeoff between the estimation risk that

a variable introduces versus the information content it provides for improving the nowcasts as the

quarter goes by. For instance, we have considered an alternative specification of a model where we

do not incorporate the financials given that they are volatile and perhaps embed a lot of noise. In

this specification, the BVAR-M1 forecasts improve, indicating a reduction in the estimation risk,

however, the BVAR-M2 and BVAR-M3 forecasts deteriorate. This implies that the information in

the financials is useful for intra-quarter updates.

Table 5 shows that the information within the quarter does not affect the four-quarter-ahead

forecasts, consistent with the results in Schorfheide and Song (2015).

INSERT TABLE 5 HERE

An additional alternative we consider for forecasting the real GDP growth is by factors extracted

from our large dataset. More specifically, we consider a model inspired by Giannone et al. (2008),

where we extract factors from a monthly dataset and use these monthly factors to forecast the

quarterly real GDP growth. For t = 1, ..., T and τ = {2/3, 1/3, 0}, the model is constructed as

follows:

Xt−τ = ΛFt−τ + ξt−τ (17)

Ft−τ = ΠFt−τ + ut−τ (18)

Ŷt = α+ βF̂t, (19)

where Xt−τ is a (n− 1)/3× 1 vector of monthly variables, Ft−τ is a r× 1 vector of common factors

and Yt is the real GDP growth. The parameters Λ, Π, α and β capture the parameters, while

ξt−τ and ut−τ are Gaussian white noise error terms. We estimate the number of factors F̂t−τ via

principal components, choosing the number of factors r such that they jointly explains at least 50

percent of the variation contained in the (n− 1)/3 macroeconomic data series at any t.21

INSERT FIGURE 2 HERE

We estimate the model at the end of every month. Our forecast of the quarterly growth rate

of the real GDP is determined by its projection over monthly factors at the end of each quarter.

In order to get the value of the extracted factor at the end of each quarter, we consider equation

21The choice of 50 percent has been motivated by parsimony. Alternatively, one could try using information criteria
such as those proposed in Bai and Ng (2002), though the information criteria usually select larger models.
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(18). Thus, at the end of t−1, we consider a three-step-ahead, iterated forecast of the factor to get

to a time-t value. Accordingly, at times t − τ , τ = 2/3, 1/3, we consider two- and one-step-ahead

forecasts, respectively. The difference between how we structure the factor model relative to the

traditional approaches is that we still keep the data ordered based on the release calendar, not the

reference calendar, to make the results from the various considered approaches comparable.

The ratio of the rMSE-s for Month 1, Month 2 and Month 2 over the full sample are 1.00, 0.81

and 0.62, respectively. Thus, our model on average performs as well as the factor model at the

end of Month 1. However, it does better than the factor model at the end of Month 2 and 3. The

improvement goes up to 38 percent in Month 3. The evolution of the real output growth forecasts

from the factor model in equations (17-19) and the BVAR presented in Sections 2-4 are depicted in

Figure 2. The figure shows the ratio of the rMSE-s with a rolling window of 10 years. The dates on

the horizontal axes correspond to the middle of the 10 year rolling window. As Figure 2 indicates,

at the end of Month 1 the performance of both models is comparable: the rMSE ratios hover

around one. However, there is time-variation in the relative forecasting performance of the models

in Month 2 and Month 3: our model performs better than the factor model at the beginning and

at the end of the sample period. However, between 1996 and 2004, the nowcasts from the factor

model dominate the ones we obtain from the BVAR.

Survey of Professional Forecasters

The Survey of Professional Forecasters (SPF) provides forecasts of real GDP growth as well as a

variety of economic fundamentals at the quarterly frequency. These include nowcasts as well as

forecasts up to four quarters ahead. We use the forecasts of (annualized) quarterly real GNP/GDP

growth rates. The series start in 1968:IV. We use the mean forecast across 34 professional forecasters

starting 1985:I provided by the Federal Reserve Bank of Philadelphia. The choice of the mean is

motivated with our loss function of squared forecast error, as well as with the intention to keep

our model forecasts (based on the means of predictive distributions) comparable with that of the

survey. We should also note that SPF is conducted with the advance release of the GDP as a target

variable in mind, putting it on fair grounds with the forecasting exercise conducted in our paper.22

INSERT TABLE 6 HERE

The timing of the SPF is crucial since it would be important to match the timing of our forecasts

with that of the SPF. Usually, the professional forecasters respond to the survey in between the

22Certainly, there are other competitive benchmarks one can use. For instance, Greenbook/Teelbook forecasts
are the staff forecasts of the Federal Reserve Board and Blue Chip Economic Indicators (BCEI) are monthly pro-
fessional forecasts that are sometimes considered as benchmarks. The Greenbook/Teelbook forecasts are avail-
able to the public with a five-year lag, while the BCEI are proprietary forecasts. Thus, we settle for SPF avail-
able at https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/data-
files/rgdp. SPF is known to be a competitive benchmark as suggested by the results in Giannone et al. (2008).
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second and third weeks of the month.23 Consistent with the temporal restrictions discussed in

Section 2, the forecasts obtained after either Group 1 or Group 2 data are released match with

the SPF timing the best. Table 6 reports the rMSE’s for nowcasts constructed multiple times

throughout the quarter, after each groups’ data (as in Table 1) has been released. Group 5 coincides

with the end of the month. We also report the rMSE for the SPF’s mean forecast for real output

growth. As the table suggests, the nowcasting performance of our model improves as the first two

groups of data in the second month of the quarter become available. After that, the marginal

impact of each group on the nowcast is negligible. The rMSE of our BVAR is 1.44 after the Group

2 data in the second month is released. This is only about 7 percent worse than that of the SPF

with the rMSE of 1.35.

INSERT FIGURE 3 HERE

Figure 3 sheds further light on the importance of the group releases for the performance of

our BVAR relative to the SPF. We divide the figure into two parts: Panel A shows the smoothed

rMSE-s calculated with a fixed rolling windows of ten years for the nowcasts obtained at the end

of Month 1 and after the release of two group variables. As a reminder, the first group captured

mainly soft survey data and the information from the Employment Situation Report, while group

two had more diverse information such as industrial production, inflation and housing information

as well as Philadelphia Fed’s Business Outlook Survey. We show the behavior of the nowcasts after

marginal releases of the 10 sequential groups in Panel B. In order to make the picture legible, we

only plot the bounds corresponding to the point-wise maximum and minimum across the 10 various

nowcasts. First, Panel B confirms the results of Table 6: there is not much action after the Group

2 in the Month 2 has been realized. As we can see from the figure, the bounds are narrow and they

tightly replicate the behavior of the Group 2 nowcast presented in Panel A. Panel A, on the other

hand, shows a few pieces of interesting information. First, our nowcasts are in general worse than

that of the SPF even when we consider the nowcasting performance conditionally over time and

not on average. There is a brief period in time between 1996 and 2002 that our model performs

similar to the SPF, but this corresponds to a period where the SPF is particularly bad relative to

other periods.

INSERT FIGURE 4 HERE

Figure 4 shows the nowcasts based on our BVAR relative to the SPF based on a rMedSE

criterion. As suggested by the figure, if one uses a median, which is robust to outliers, rather than

a mean, then the relative ranking of the nowcasts changes. In fact, Panel A shows that according to

23The exact deadlines for returning the surveys are available at http://www.philadelphiafed.org/research-
anddata/real-time-center/survey-of-professional-forecasters/spf-release-dates.txt for the period starting from 1990
onwards.
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rMedSE criterion our nowcasting model has done better than the SPF for most of the out-of-sample,

though the performance has declined recently since mid-2005. Panel B suggests more variability

in the marginal impact of data releases for the data that becomes available after the mid-second

month of the quarter.

INSERT FIGURE 5 HERE

Figure 5 shows the boxplot of the nowcasts from the BVAR after the Group 2 data has been

released. The figure shows the median for forecast errors grouped by a rolling window of ten years

worth of observations. In addition, it shows the 25th and 75th percentiles. Points are marked

as outliers (by red +) if they are larger than Q3+1.5*(Q3-Q1) or smaller than Q1-1.5*(Q3-Q1),

where Q1 and Q3 are the 25th and 75th percentiles, respectively. The default 1.5 corresponds to

approximately 99.3 coverage if the data are normally distributed. The plotted whisker extends to

the most extreme data value that is not an outlier. The figure documents the existence of outliers

but also a fairly stable median value. There is only a slight trend in the median at the end of the

out-of-sample period.

There is an important aspect of discussion here. From the figures, one could conclude that the

predictive content of the variables might have changed. Though that could be the case. However,

it is also true that our model structure changes over time. It is possible that once new variables

become available in our dataset and they are added to the model, they diminish the importance of

the variables that were previously included in the model.24

INSERT FIGURE 6 HERE

6 Monetary Policy Shocks over the Quarter

In addition to forecasting, the blocking model is general enough that it can be used for causal

analysis—for example, assessing the effects of monetary policy surprises at various times during

the quarter. Because FOMC meetings occur at various times during the quarter, the effect of

monetary shocks may vary, depending on the timing. Figure 6 shows the frequency of the FOMC

meetings in each month over the quarters. From the beginning of 1978 though the end of 2014

there were a total of 337 FOMC meetings and 24 percent of those occurred in the first month of

the quarter, 39 percent in the second month, while 37 percent in the third month. Thus, it is

potentially interesting to find out which meeting is more impactful, if so, for the short and medium

term GDP dynamics.

24We refer the reader to Gilbert et al. (2015) for an interesting discussion on the changes in the marginal predictive
content of the variables depending on their informational context, i.e. what other variables are available in the public
domain when the new variable is released.
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Given the temporal and causal restrictions we put on our VAR, the system is under-identified.

However, monetary policy shocks, defined as orthogonalized innovations to the monthly Federal

Funds Rate, are identified. According to the short-run restrictions imposed on our system, monetary

policy shocks are orthogonal to shocks to variables that are in the information set of the policymaker

prior to the occurrence of the shock, yet they contemporaneously affect other financial variables

and all real variables that occur afterwards. In the case of the real GDP growth our Month 1 shock

is restricted not to have an effect on it since the GDP pertaining to Month 1 is the advance release

of the previous quarter: the data can not be changing due to the monetary policy shocks. On the

other hand, both Month 2 and Month 3 shocks can actually affect the advance release of the GDP

of the contemporaneous quarter that is realized towards the end of Month 4.

INSERT FIGURE 7 HERE

Figure 7 shows the cumulative impulse responses of the Federal Funds Rate (Panel A) and real

GDP growth (Panel B) to 25-basis-point unanticipated shock. The estimation is done in April of

2005 in order to get a more “typical” response for the monetary policy by avoiding the effective

zero low bound period.25 Federal Funds Rate is a monthly variable. In order to capture the overall

dynamics of the Federal Funds Rate throughout the quarter, we show the response of the three

month sum. When the Federal Funds Rate increases by 25 basis point in Month 1, the total impact

effect over the quarter is higher (40 basis points), while the 25-basis-point increase in Month 2

creates a total impact effect a bit lower (around 30 basis points). Since we have modeled the

Federal Funds Rate in difference, the effect on the level is permanent. Panel B shows the response

of the real GDP. As expected the effects of the Month 2 shocks are higher than those in Month

3. Month 1 shocks have no impact effect by construction and the total effect is lower as well.

As implied by the shaded 95% coverage areas, Month 2 response of the real GDP is statistically

different than those of months 1 and 3. Moreover, the difference of the response between Month 2

and Month 3 is about 0.05 percentage points between 8-20 quarters. Lastly, the difference between

real GDP responses to monthly Federal Funds Rate is non-linear: the Month 3 response is not

merely a scaled version of Month 2 response.

7 Conclusion

We present a stacked VAR as an alternative for high dimensional forecasting. We show that our

VAR, estimated by Bayesian shrinkage, performs well for GDP nowcasting: it outperforms the

considered time series models and does comparably well relative to the Survey of Professional Fore-

25We have repeated our exercise at the end of the sample and the results are not very different. The conjecture is
that the zero low bound period is much smaller relative to the rest of the sample, so it does not make too much of a
difference in the recursive estimation.
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casters’ forecasts. Nevertheless, there is considerable time variation in the forecasting performance.

We show the usefulness of out setup for causal analysis by looking at the real GDP responses to

discretionary monetary policy shocks throughout the quarter.
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A Derivation of the Marginal Data Density

Below we consider the derivation of the marginal data density for the model in equation (5) and

the priors in equation (6). In the derivation below ⊗ represents Kronecker product. Consider a

slightly rewritten version of the model for convenience:

A′Yt = F ′Xt + εt, (20)

22



where Yt is an n× 1 vector of endogenous variables at time t, Xt is a k× 1 vector of predetermined

and exogenous variables at time t, Xt = [Y ′t−1 ... Y
′
t−p 1]′, where k = np+ 1. εt|Xt ∼ N(0, In), and

ai and fi are the respective ith columns of A and F .

We can write the reduced form as:

Yt = (FA−1)′Xt + (A−1)′εt. (21)

Thus, Yt|Xt ∼ N((FA−1)′Xt, ((A
−1)′A−1)).

Let Y ≡ [Y1 ... Yt]
′, which is of a dimension of t × n and X ≡ [X1 X2 ... Xt]

′, which is of

dimension t × k, and ε ≡ [ε1 ... εt]
′, which is of the same dimensionality as Y. Let y ≡ vec(Y)

and e ≡ vec(εA−1), where vec(.) vectorizes the respective matrices making (tn × 1) vectors. Let

x ≡ In ⊗ X, which is a (tn × kn) matrix. Consequently, e ∼ N(0, ((A−1)′A−1) ⊗ It). Let f =

vec(FA−1) = ((A−1)′ ⊗ Ik)vec(F ). Similarly, e ≡ vec(εA−1) = ((A−1)′ ⊗ It)vec(ε).

The system can be rewritten as:

y = xf + e. (22)

The likelihood function is:26

p(y|x, F,A) = (2π)−
tn
2 |((A−1)′A−1)⊗ It)

−1|
1
2 exp

[
−1

2
(y − xf)′((A−1)′A−1)⊗ It)

−1(y − xf)

]
= (2π)−

tn
2 |AA′ ⊗ It|

1
2 exp

[
−1

2
(y − xf)′(AA′ ⊗ It)(y − xf)

]
= (2π)−

tn
2 |AA′|

t
2 exp

[
−1

2
(y − x((A−1)′ ⊗ Ik)vec(F ))′(AA′ ⊗ It)(y − x((A−1)′ ⊗ Ik)vec(F ))

]
= (2π)−

tn
2 |AA′|

t
2 exp

[
−1

2(y − (In ⊗X) ((A−1)′ ⊗ Ik)vec(F ))′(AA′ ⊗ It)

(y − (In ⊗X) ((A−1)′ ⊗ Ik)vec(F ))

]

= (2π)−
tn
2 |AA′|

t
2 exp

[
−1

2
(y − ((A−1)′ ⊗X)vec(F ))′(AA′ ⊗ It)(y − ((A−1)′ ⊗X)vec(F ))

]
.

Since the prior imposes independence across the structural equations, we can re-write the priors

in equation (6) in the following vectorized notation:

vec(A) ∼ N(0, In ⊗ S̄),

vec(F |A) ∼ N(vec(P̄A), In ⊗ H̄). (23)

It follows that

p(A) =

n∏
i=1

p(ai) = p(vec(A)) = (2π)−
nn
2 |(In ⊗ S̄)−1|

1
2 exp

[
−1

2
vec(A)′(In ⊗ S̄)−1vec(A)

]
.

26In the derivation we use the property of the Kronecker product that (A⊗B)−1 = A−1 ⊗B−1.
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With the property of the trace operator tr(ABC) = vec(A′)′(I ⊗B)vec(C), we can rewrite:

p(A) = (2π)−
nn
2 |S̄−1|

n
2 exp

[
−1

2
tr(A′S̄−1A)

]
= (2π)−

nn
2 |S̄−1|

n
2 exp

[
−1

2
tr(S̄−1AA′)

]
(24)

p(F |A) =

n∏
i=1

p(fi|ai) = p(vec(F |A))

= (2π)−
kn
2 |H̄−1|

n
2 exp

[
−1

2
(vec(F )− vec(P̄A))′(In ⊗ H̄)−1(vec(F )− vec(P̄A))

]
(25)

Note that we derive the marginal data density for an arbitrary prior characterized by P̄ as

opposed to it being a matrix of zeros as it is in the case of our empirical application. In the case

of zeros the expressions simplify.

The marginal likelihood or marginal data density is then given by

p(y|x) =

∫ ∞
−∞

∫ ∞
−∞

p(y|x, A, F )p(F |A)p(A)dFdA. (26)

We can plug in the expressions of the respective probabilities to get:

p(y|x) =

∫ ∞
−∞

∫ ∞
−∞

(2π)−
tn
2 |AA′|

t
2 exp

[
−1

2
(y − ((A−1)′ ⊗X)vec(F ))′(AA′ ⊗ It)(y − ((A−1)′ ⊗X)vec(F ))

]
× (2π)−

kn
2 |H̄−1|

n
2 exp

[
−1

2
(vec(F )− vec(P̄A))′(In ⊗ H̄)−1(vec(F )− vec(P̄A))

]
× (2π)−

nn
2 |S̄−1|

n
2 exp

[
−1

2
tr(S̄−1AA′)

]
dFdA

= (2π)−
n(t+k+n)

2 |H̄−1|
n
2 |S̄−1|

n
2

∫ ∞
−∞
|AA′|

t
2 exp

[
−1

2
tr(S̄−1AA′)

]
(27)

×
∫ ∞
−∞

exp

[
−1

2
(y − ((A−1)′ ⊗X)vec(F ))′(AA′ ⊗ It)(y − ((A−1)′ ⊗X)vec(F ))

]
(28)

× exp
[
−1

2
(vec(F )− vec(P̄A))′(In ⊗ H̄)−1(vec(F )− vec(P̄A))

]
dFdA (29)

The last integral could be simplified. We proceed by simplifying the expressions under the

exponentials separately.

The first expression under the exponential could be written as:
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(y − ((A−1)′ ⊗X)vec(F ))′(AA′ ⊗ It)(y − ((A−1)′ ⊗X)vec(F )) =

y′(AA′ ⊗ It)y − 2y′(AA′ ⊗ It)((A
−1)′ ⊗X)vec(F ) + vec(F )′(A−1 ⊗X′)(AA′ ⊗ It)((A

−1)′ ⊗X)vec(F ) =

y′(AA′ ⊗ It)y − 2y′(AA′(A−1)′ ⊗ ItX)vec(F ) + vec(F )′(A−1AA′(A−1)′ ⊗X′ItX)vec(F ) =

y′(AA′ ⊗ It)y − 2y′(A⊗X)vec(F ) + vec(F )′(In ⊗X′X)vec(F ) =

tr(Y′YAA′)− 2y′(A⊗X)vec(F ) + vec(F )′(In ⊗X′X)vec(F )

The second expression under the exponential could be written as:

(vec(F )− vec(P̄A))′(In ⊗ H̄)−1(vec(F )− vec(P̄A)) =

vec(F )′(In ⊗ H̄)−1vec(F )− 2vec(P̄A)′(In ⊗ H̄)−1vec(F ) + vec(P̄A)′(In ⊗ H̄)−1vec(P̄A) =

vec(F )′(In ⊗ H̄)−1vec(F )− 2vec(P̄A)′(In ⊗ H̄)−1vec(F ) + tr(A′P̄ ′H̄−1P̄A) =

vec(F )′(In ⊗ H̄)−1vec(F )− 2vec(P̄A)′(In ⊗ H̄)−1vec(F ) + tr(P̄ ′H̄−1P̄AA′)

The marginal data density becomes:

p(y|x) = (2π)−
n(t+k+n)

2 |H̄−1|
n
2 |S̄−1|

n
2

∫ ∞
−∞
|AA′|

t
2 exp

[
−1

2
tr(S̄−1AA′ + P̄ ′H̄−1P̄AA′ + Y′YAA′)

]
×
∫ ∞
−∞

exp

[
−1

2
(vec(F )′(In ⊗ H̄)−1vec(F )− 2vec(P̄A)′(In ⊗ H̄)−1vec(F ))

]
× exp

[
−1

2
(vec(F )′(In ⊗X′X)vec(F )− 2y′(A⊗X)vec(F ))

]
dFdA (30)

We can rewrite the last integral as:

∫ ∞
−∞

exp

[
−1

2(vec(F )′(In ⊗ H̄)−1vec(F ) + vec(F )′(In ⊗X′X)vec(F ))+

vec(P̄A)′(In ⊗ H̄)−1vec(F ) + y′(A⊗X)vec(F )

]
dF =∫ ∞

−∞
exp

[
−1

2
(vec(F )′(In ⊗ H̄−1 + In ⊗X′X)vec(F )) + (vec(P̄ )′(A⊗ H̄−1) + y′(A⊗X))vec(F )

]
dF

Let Σ = In ⊗ H̄−1 + In ⊗X′X = In ⊗ (X′X + H̄−1) and λ = vec(P̄ )′(A⊗ H̄−1) + y′(A⊗X),

where λ is a 1× kn vector and Σ is a kn× kn matrix.

The integral could be written in the following form:∫ ∞
−∞

exp

(
−1

2
vec(F )′Σvec(F ) + λvec(F )

)
dF (31)

This integral is a Gaussian integral and is equal to (2π)
kn
2 |Σ|−1/2exp

(
1
2λΣ−1λ′

)
Let us simplify some relevant expressions that enter this integral. First,27

|Σ| = |In ⊗ (X′X + H̄−1)| = |In|k|X′X + H̄−1|n = |X′X + H̄−1|n

27If A is a n× n matrix and B is a m×m matrix. Then, |A⊗B| = |A|m|B|n.

25



Further, let Ξ = (X′Y + H̄−1′P̄ ). We can rewrite λ as:28

λ = vec(P̄ )′(A⊗ H̄−1) + y′(A⊗X) = vec(H̄−1′P̄A)′ + vec(X′YA)′ = vec(X′YA+ H̄−1′P̄A)′

= vec((X′Y + H̄−1′P̄ )A)′ = vec(ΞA)′

Then,

λΣ−1λ′ = vec(ΞA)′Σ−1vec(ΞA) = tr(A′Ξ′Σ−1ΞA) = tr(Ξ′(X′X + H̄−1)−1ΞAA′).

Thus, the Gaussian integral becomes:

(2π)
kn
2 |Σ|−1/2exp

(
1

2
λΣ−1λ′

)
= (2π)

kn
2 |X′X + H̄−1|−

n
2 exp

(
1

2
tr(Ξ′(X′X + H̄−1)−1ΞAA′)

)
Let ∆ = (S̄−1 + P̄ ′H̄−1P̄ + Y′Y − Ξ′(X′X + H̄−1)−1Ξ).

The marginal data density simplifies to:

p(y|x) = (2π)−
n(t+k+n)

2 |H̄−1|
n
2 |S̄−1|

n
2

∫ ∞
−∞
|AA′|

t
2 exp

[
−1

2
tr(S̄−1AA′ + P̄ ′H̄−1P̄AA′ + Y′YAA′)

]
× (2π)

kn
2 |X′X + H̄−1|−

n
2 exp

(
1

2
tr(Ξ′(X′X + H̄−1)−1ΞAA′)

)
dA

= (2π)−
n(t+n)

2 |H̄−1|
n
2 |S̄−1|

n
2 |X′X + H̄−1|−

n
2

×
∫ ∞
−∞
|AA′|

t
2 exp

[
−1

2
tr(S̄−1AA′ + P̄ ′H̄−1P̄AA′ + Y′YAA′ − Ξ′(X′X + H̄−1)−1ΞAA′)

]
dA

= (2π)−
n(t+n)

2 |H̄−1|
n
2 |S̄−1|

n
2 |(X′X + H̄−1)|−

n
2

∫ ∞
−∞
|AA′|

t
2 exp

[
−1

2
tr(∆AA′)

]
dA

We can do a change of a variable and write the integral above in terms of dAA′. In order to do

so, we need to figure out the Jacobian matrix, which |dAA′/dA|.
We can write

vec(AA′) = (A⊗ In)vec(A) = (In ⊗A)vec(A′) = (In ⊗A)Tnnvec(A),

where Tnn is a nn × nn permutation matrix such that Tnnvec(A) = vec(A′) and (A ⊗ B)Tnn =

Tnn(B ⊗A).

The derivative of dAA′/dA by the product rule is:

dAA′/dA = (A⊗ In) + (In ⊗A)Tnn = (A⊗ In) + Tnn(A⊗ In) = (A⊗ In)(Inn + Tnn)

28We use the property vec(ABC) = (C′ ⊗A)vec(B).
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The Jacobian is:

|(A⊗ In)(Inn + Tnn)| = |(A⊗ In)||(Inn + Tnn)| = |A|n|(Inn + Tnn)|

Thus, the last integral in the marginal data density calculation becomes:∫ ∞
−∞
|AA′|

t
2 exp

[
−1

2
tr(∆AA′)

]
dA =

∫ ∞
−∞
|A|texp

[
−1

2
tr(∆AA′)

]
dA

= |(Inn + Tnn)|−1

∫ ∞
−∞
|A|t−nexp

[
−1

2
tr(∆AA′)

]
dAA′

= |(Inn + Tnn)|−1

∫ ∞
−∞
|AA′|

t−n
2 exp

[
−1

2
tr(∆AA′)

]
dAA′. (32)

Suppose A is such that H = AA′ is a symmetric, nonnegative-definite matrix-valued random

variable. The integral above then has the kernel of a Wishart distribution, where H = AA′ is the

random variable. Thus, H ∼ W (ν,∆−1) (see Definition B.27 in Koop, 2003), where ν = t + 1 is

the degrees of freedom and ∆−1) is a positive definite matrix.

The constant adjustment we need is:

cw = 2
(t+1)n

2 π
n(n−1)

4

n∏
i=1

Γ

(
t+ 2− i

2

)

Thus, the marginal data density can be rewritten as:

p(y|x) = (2π)−
n(t+n)

2 cw|(Inn + Tnn)−1||H̄|−
n
2 |S̄|−

n
2 |(X′X + H̄−1)|−

n
2 |∆|−

t+1
2 , (33)

where ∆ = (S̄−1 + P̄ ′H̄−1P̄ + Y′Y − Ξ′(X′X + H̄−1)−1Ξ) and Ξ = (X′Y + H̄−1′P̄ ).

B Numerical Considerations for Marginal Data Density

As in Giannone et al. (2015) we work with a modified version of the marginal data density for

numerical stability purposes. We consider re-writing |(X′X+H̄−1)|−
n
2 and ∆ in the following ways.

Let CH be the Choleski factor of H̄, such that CHC
′
H = H̄. Then, we can rewrite:

|(X′X + H̄−1)|−
n
2 = |H̄|

n
2 |CHC ′H |−

n
2 |(X′X + H̄−1)|−

n
2

= |H̄|
n
2 |CH |−

n
2 |C ′H |−

n
2 |(X′X + H̄−1)|−

n
2 = |H̄|

n
2 |CH |−

n
2 (X′X + H̄−1)|−

n
2 |C ′H |−

n
2

= |H̄|
n
2 |CH(X′X + H̄−1)C ′H |−

n
2 = |H̄|

n
2 |(CHX′XC ′H + CHH̄

−1C ′H)|−
n
2

= |H̄|
n
2 |(CHX′XC ′H + Ik)|−

n
2 ,
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where the last passage is true due to the fact that H̄ is a diagonal matrix.

Similarly, let C∆ be the Choleski factor of S̄, such that C∆C∆
′ = S̄:

|∆|−
t+1

2 = |S̄−1 + P̄ ′H̄−1P̄ + Y′Y − Ξ′(X′X + H̄−1)−1Ξ|−
t+1

2

= |S̄|
t+1

2 |In + C∆(P̄ ′H̄−1P̄ + Y′Y − Ξ′(X′X + H̄−1)−1Ξ)C∆
′|−

t+1
2

This alternative reformulations of the determinants are more stable since the original expression

is decomposed into a component directly coming from a prior, i.e. H̄ and S̄. Note only the researcher

has a direct control over the specification of this prior, but also these are diagonal matrices for the

form of the prior we consider. Thus, its inversion is very easy. The second determinant created in

either of the decompositions involves a sum or two matrices, one of them being the identity matrix.

The identify matrix assures that there is at least one positive definite matrix in the sum, thus

yielding more numerical stability in the calculation of the determinant in large datasets. Thus,

p(y|x) = (2π)−
n(t+n)

2 cw|(Inn + Tnn)−1|S̄|−
n−(t+1)

2 |(CHX′XC ′H + Ik)|−
n
2

× |In + C∆(P̄ ′H̄−1P̄ + Y′Y − Ξ′(X′X + H̄−1)−1Ξ)C∆
′|−

t+1
2 . (34)

Instead of the marginal data density, we grid search the natural logarithmic transformation of

it written in the following form:

ln(p(y|x)) ∝ −n(t+ n)

2
ln(2π) + ln(cw)− n− (t+ 1)

2
ln(abs(|S̄|))− n

2
ln(abs(|(CHX′XC ′H + Ik)|))

×− t+ 1

2
ln(abs(|In + C∆(P̄ ′H̄−1P̄ + Y′Y − Ξ′(X′X + H̄−1)−1Ξ)C∆

′|)), (35)

where abs(.) takes the absolute value of the arguments, in this case the determinants, of interest.

The set of hyperparameter values that make the determinant |In + C∆(P̄ ′H̄−1P̄ + Y′Y −
Ξ′(X′X+ H̄−1)−1Ξ)C∆

′| zero are not permissible. Thus, we incorporate a check in the grid search

and assign −∞ to the log marginal data density value to make sure that the set of hyperparameters

that generate a zero determinant are not selected when we pick the maximum of the marginal data

density. Note that similar checks for the other determinants under the logarithm are not necessary

since they come directly from priors or involve sum of matrices where at least one of them is a

positive definite matrix. Thus, the positive domain condition is satisfied for those by construction.
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C Tables

Table 1: Description of Data Series
Name Freq. Transf. Release Date Publ. Lag Vintage Report

Group 1
ISM Manufacturing PMI (s.a.) M level 1st business day one month 1997:03 ISM
ISM Supplier Deliveries Index (s.a.) M level 1st business day one month 2009:11 ISM
ISM New Orders Index (s.a) M level 1st business day one month 2009:11 ISM
Initial Unempl Insurance Claims (s.a.) W ∆ ln Thursdays, weekly one week 2009:06 DL
Civilian Unempl. Rate, 16+ (s.a.) M ∆ 1st Friday one month 1980:01 ES
Empl.: Total Nonfarm Payrolls (s.a.) M ∆ ln 1st Friday one month 1980:01 ES
Avg Weekly Manufacturing Hours (s.a.) M level 1st Friday one month 1980:01 ES

Group 2
Industrial Production (s.a.) M ∆ ln after 2 weeks one month 1980:01 Board
Retail Sales (s.a) M ∆ ln after 2 weeks one month 1980:01 DC
New Res. Construction - Housing Starts (s.a) M ∆ ln 12th workday one month 1980:01 DC
Philadelphia Fed Business Outlook Survey (s.a.)* M level 3rd Thurs curr. month 1980:01 PF †
CPI Headline (s.a.) M ∆ ln varying, mid-month one month 1980:01 DL
CPI Core (s.a.) M ∆ ln varying, mid-month one month 1996:12 DL
New (1-Family) Houses Sold (s.a.) M ∆ ln 17th workday one month 1999:07 DC

Group 3
Consumer Sentiment Index (n.s.a)* M ∆ last Friday curr. month 1980:01 UM†
GDP AdvanceEstimate (s.a.)* Q ∆ ln last week of month one month 1980:01 DC
PCE Headline (s.a.) M ∆ ln day after GDP one month 2000:07 DC
PCE Core (s.a.) M ∆ ln day after GDP one month 2000:07 DC
Personal Income (s.a) M ∆ ln day after GDP one month 1980:01 DC

Group 4
Federal Funds (Effective) Rate* D ∆ last day curr. month 1980:01 Board†

Group 5
Term Spread (10-Year Tr. Note - 3-Month Tr. Bill)* D level last day curr. month 1980:01 Board†
WTI Oil Price* D ∆ ln last day curr. month 1980:01 WSJ†
S&P 500 Stock Index* D ∆ ln last day curr. month 1980:01 WSJ†
Credit Spread (Moodies Seasoned Baa - Aaa)* D level last day curr. month 1980:01 Board†
Nom. Trade Weighted Exch. Rate vs Major Curr* M ∆ ln last day curr. month 1980:01 Board†

Notes: Reports are abbreviated as follows: Board - Federal Reserve Board of Governors, DC - Department of Commerce, DL - Department of
Labor, ES - Employment Situation, ISM - ISM Report on Business-Manufacturing, PF - Philadelphia Fed, UM - University of Michigan, WSJ -
Wall Street Journal. (Q) indicates quarterly frequency for the data, while (M), (W) and (D) stand for monthly, weekly and daily frequencies,
respectively. “*” next to the name of the data series indicates that these variables do not get revised. “s.a.” indicates seasonally adjusted series:
if not marked, then series are seasonally unadjusted. The data series are collected as vintage series from ALFRED (ArchivaL Federal Reserve
Economic Data). The data marked with † is collected from Haver Analytics.

Table 2: Description of Hyperparameters

λ0 tbd controls the overall tightness of the beliefs

λ1 tbd tightens the prior around the mean

λ3 1 rate of contraction with an increase in lag length

λ4 1 controls the tightness of the constant

Table 3: Evaluation of Quarterly Models

EMP CPI FFR GDP

AR-Quarterly 0.33 0.94 0.78 1.78

VAR-Quarterly 1.24 1.05 1.72 1.26

BVAR-Quarterly 1.42 1.14 0.85 0.99

Notes: We report the out-of-sample rMSE for the AR-Quarterly model (in bold), while for the VAR-
Quarterly and BVAR-Quarterly we report the rMSEs relative to that of the AR. Numbers in italics indicate
improvements.
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Table 4: Evaluation of Mixed Model

AR-Mixed BVAR - M1 BVAR - M2 BVAR - M3

EMP-M1 0.45 1.20

CPI-M1 1.07 1.12

FFR-M1 0.85 0.98

EMP-M2 0.48 1.27 1.15

CPI-M2 1.14 1.23 1.04

FFR-M2 0.83 1.04 1.55

EMP-M3 0.53 1.07 0.94 0.94

CPI-M3 1.03 1.25 1.20 1.01

FFR-M3 0.70 1.11 1.30 1.28

GDP 1.78 0.99 0.83 0.84

Notes: We report the out-of-sample rMSEs for the AR model (in bold), while for the mixed-BVAR we
report the rMSE relative to that of the AR. “BVAR - M1,” “BVAR - M2” and “BVAR - M3” correspond to
forecasts obtained at the end of Month 1, Month 2 and Month 3 in the quarter.

Table 5: Evaluation of BVAR for h = 4 Forecasts

BVAR - M1 BVAR - M2 BVAR - M3

EMP-M1 0.69 0.69 0.68

CPI-M1 1.31 1.30 1.29

FFR-M1 0.86 0.85 0.85

EMP-M2 0.70 0.70 0.70

CPI-M2 1.46 1.46 1.45

FFR-M2 0.91 0.90 0.90

EMP-M3 0.69 0.69 0.69

CPI-M3 1.34 1.33 1.33

FFR-M3 0.77 0.77 0.77

GDP 2.06 2.08 2.08

Notes: We report the out-of-sample rMSEs for the “BVAR - M1,” “BVAR - M2”and “BVAR - M3”.
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Table 6: Output Growth Nowcasts

BVAR SPF

End of Month 1 1.76

Group 1 1.61

Group 2 1.44 1.35

Group 3 1.46

Group 4 1.46

End of Month 2 1.47

Group 1 1.45

Group 2 1.47

Group 3 1.46

Group 4 1.46

End of Month 3 1.49

Group 1 1.43

Group 2 1.47

Notes: We report the out-of-sample rMSEs for the mixed frequency nowcasts of the BVAR after each group’s
data (as in Table 1) has been released. We also report the rMSE for the SPF’s mean forecast.

D Figures

Figure 1: BVAR Nowcasts

Panel A: Point Nowcasts Panel B: Nowcast Distributions
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Note: Panel A depicts the time series of nowcasts, while Panel B shows the evolution of the distance between
97.5 and 2.5 percentiles of the predictive distribution over time.
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Figure 2: BVAR versus Factor Model
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Notes: Ratio less than 1 indicates that the BVAR dominates the factor model. Horizontal axis reports the
mid-point of the 10-year rolling window.

Figure 3: BVAR versus SPF rMSE

Panel A: Up to Group 2 Panel B: The Rest of the Groups
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Notes: Panel A depicts rolling rMSEs, while Panel B, in addition, shows the bounds of the rMSEs for the
nowcasts obtained after the middle of the quarter. Horizontal axes report the mid-point of the 10-year rolling
window.
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Figure 4: BVAR versus SPF rMedSE
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Notes: Panel A depicts rolling rMSEs, while Panel B, in addition, shows the bounds of the rMSEs for the
nowcasts obtained after the middle of the quarter. Horizontal axis reports the mid-point of the 10-year
rolling window.

Figure 5: Rolling Windows of Squared Nowcast Errors after Group 2 Data Release
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Notes: Horizontal axis reports the mid-point of the 10-year rolling window.

33



Figure 6: Frequency of FOMC Meetings
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Notes: The table shows the frequency of FOMC meetings from January 17, 1978 till end of 2014.

Figure 7: Monetary Policy in a Mixed Frequency Model
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Notes: We show the cumulative response of the FFR and the real GDP to 25 bases point increase in FFR
in Month 1, 2 and 3 of the quarter. The shaded area is the 95% coverage area associated with Month 1
monetary policy shock.

34


