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1 Introduction

Factors are now a common, parsimonious approach to incorporating many potential predictors into

a predictive regression model. Examples that estimate factors using a large collection of macroeco-

nomic variables include works by Stock and Watson (2002), who use factors to predict U.S. inflation

and industrial production; Ludvigson and Ng (2009), who use factors to predict bond risk premia;

Hofmann (2009), who uses factors to predict euro-area inflation; Shintani (2005), who uses factors to

predict Japanese inflation; and Ciccarelli and Mojon (2010), who use factors to predict global inflation.

Examples that estimate factors using a large collection of financial variables include works by Stock

and Watson (2003), who use factors to predict a variety of macroeconomic variables; Kelly and Pruitt

(2013), who use factors to predict stock returns; and Andreou, Ghysels, and Kourtellos (2013), who

use factors to predict U.S. real GDP growth.

In many of these examples, the predictive content of the factors is evaluated using pseudo out-

of-sample methods. Specifically, the usefulness of the factors is evaluated by comparing the mean

squared forecast error (MSE) of a model that includes factors with one that does not include fac-

tors. Typically, the comparison is between a baseline autoregressive model and a comparable model

that has been augmented with estimated factors. As such, the models being compared are nested

under the null hypothesis of equal accuracy and the theoretical results in West (1996), based on

non-nested comparisons, may not apply. McCracken (2007) and Clark and McCracken (2001, 2005)

show that, for forecasts from nested models, the distributions of tests for equal forecast accuracy and

encompassing are usually not asymptotically normal or chi-square. For one-step-ahead forecasts from

models with conditionally homoskedastic errors, tables are provided in Clark and McCracken (2001)

and McCracken (2007). For longer horizons or when conditional heteroskedasticity is present, Clark

and McCracken (2012) and Hansen and Timmermann (2015) delineate simulation-based methods for

estimating asymptotically valid critical values.

The existing literature on out-of-sample methods for nested models is largely silent on situations

where generated regressors — and, in particular, factors — are used for forecasting.1 In most cases,

the asymptotic distribution of the test of predictive ability is derived assuming that the predictors

are observed and do not themselves need to be estimated prior to forecasting. A related exception

is Cheng and Hansen (2015) who show that Mallows-based model averaging remains asymptotically

valid when factors are used as predictors. Even so, in the context of in-sample methods, generated

regressors have been shown to sometimes affect the asymptotic distribution of a statistic, typically

1Li and Patton (2013) establish the first-order validity of the asymptotics in Clark and McCracken (2001, 2005) when
the dependent variable, not the regressors, is generated. Fosten (2015) considers the non-nested case with estimated
factors.
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through the standard errors. Examples include works by Pagan (1984, 1986) and Randles (1982). Of

particular interest here, Gonçalves and Perron (2014) prove that in some instances an asymptotic bias

is also introduced when factors are estimated rather than known.

Building on McCracken’s (2007) and Clark and McCracken’s (2001, 2005) results, we examine the

asymptotic and finite sample properties of tests of equal forecast accuracy and encompassing applied

to predictions from nested models when generated factors are used as predictors. Specifically, we

establish conditions under which the asymptotic distributions of the MSE-F and ENC-F tests of

predictive ability continue to hold even when the factors are estimated recursively prior to forecasting.

Throughout we focus on one-step ahead forecasts made by linear regression models estimated by

ordinary least squares (OLS). Our results hold under the null hypothesis of equal predictive ability

as well as under a sequence of local alternatives.

Because our asymptotics depend on the relative size of the number of cross sectional units (N), the

total number of observations (T ), and the number of predictions (P ), we provide a collection of Monte

Carlo simulations designed to examine the size and power of the tests as we vary these parameters. In

most of our simulations the presence of estimated factors leads to only minor size distortions, yielding

rejection frequencies akin to those found in the existing literature when the predictors are observed

rather than estimated. Nevertheless, we find that the estimation of factors reduces power relative to

the case where factors are observed. Finally, to illustrate how the tests perform in practical settings,

the paper concludes with a reexamination of factor-based forecasting of excess stock returns.

The rest of the paper is structured as follows. Section 2 introduces notation and describes the setup.

Section 3 provides assumptions and a discussion of these. Section 4 contains our main theoretical

results, including some asymptotic results on the estimation of factors over recursive samples which

may be of independent interest. Section 5 presents Monte Carlo results on the finite sample size

and power of the tests with an emphasis on the degree of distortions induced by factor estimation

error. Section 6 applies the tests to forecasting excess stock returns using a large cross-section of

macroeconomic aggregates and financial data. Finally, Section 7 concludes.

Before we proceed, we define some notation. For any matrix A, we let ‖A‖ = tr1/2 (A′A) denote

the Frobenius norm and ‖A‖1 = λ
1/2
max (A′A) the spectral norm. For R = T − P , we let supt denote

supR≤t≤T .
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2 Setup and statistics of interest

2.1 Setup

In this paper we compare the predictive ability of a benchmark linear regression model with an

alternative linear model that also includes factors. These additional predictors ft are latent and

denote a vector of r common factors underlying a panel factor model

xit = λ′ift + eit, t = 1, . . . , T ; i = 1, . . . , N , (1)

or in matrix form

X = FΛ′ + e,

where X is an observed data matrix of size T × N , F = (f1, . . . , fT )′ is a T × r matrix of factors

factors, Λ = (λ1, . . . , λN )′ is a N × r matrix, and e is T ×N.

We base our comparison of the two models on their ability to forecast y one step-ahead. To do

so, we divide the total sample of T = R + P observations into in-sample and out-of-sample portions.

The in-sample observations span 1 to R, whereas the out—of-sample observations span R+ 1 through

T for a total of P one-step-ahead predictions.

For each forecast origin t = R, . . . , T − 1, we first generate forecasts of yt+1 recursively using the

benchmark model by regressing ys+1 on the k1×1 observed predictor ws for s = 1, . . . , t−1 and hence

ŷ1,t+1 = w′tβ̂t,

where

β̂t =

(
t−1∑
s=1

wsw
′
s

)−1 t−1∑
s=1

wsys+1.

For the alternative model, forecasts of yt+1 are constructed in two steps. First, we estimate the

latent factors recursively at each forecast origin t = R, . . . , T−1 by the method of principal components.

More specifically, at each time t, we compute an N × r matrix of factor loadings defined as Λ̃t =(
λ̃1,t · · · λ̃N,t

)′
and the corresponding factors collected in the t×r matrix F̃t =

(
f̃1,t · · · f̃t,t

)′
.

Since estimation takes place recursively over t = R, . . . , T − 1, we index Λ̃t and F̃t by t. Thus, f̃s,t

denotes the sth observation on the r × 1 vector of factors estimated using data on xis up to time t.

The principal components estimators are defined as

(
Λ̃t, F̃t

)
= arg min

{λi,fs}

1

Nt

N∑
i=1

t∑
s=1

(
xis − λ′ifs

)2
,
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subject to the normalization condition that F̃
′
t F̃t
t = Ir. Under this normalization, we can show that F̃t

is equal to
√
t times the t× 1 eigenvector of the t× t matrix XtX

′
t/ (tN) and Λ̃t =

X′tF̃t
t , where we let

Xt
t×N

=

 x1,1 . . . x1,N
...

. . .
...

xt,1 . . . xt,N

 , for t = R, . . . , T − 1.

Thus, XtX
′
t

tN F̃t = F̃tṼt, where Ṽt = diag (ṽ1,t, . . . , ṽr,t), with ṽ1,t ≥ ṽ2,t ≥ . . . ≥ ṽr,t > 0 and ṽj,t is the

jth largest eigenvalue of XtX
′
t

tN . As is well known, the principal components estimator is not consistent

for the true latent factors even under the normalization imposed above. As Bai (2003) and Stock and

Watson (2002) showed, for given t, F̃t is mean square consistent for a rotated version of Ft , where

the rotation matrix is defined as follows:

Ht = Ṽ −1
t

(
F̃ ′tFt
t

)(
Λ′Λ

N

)
. (2)

Given the estimated factors
{
f̃s,t : s = 1, . . . , t

}
, we then regress2 ys+1 onto ws and f̃s,t to get

forecasts of yt+1 of the form

ŷ2,t+1 = w′tθ̂t + f̃ ′t,tα̂t ≡ z̃′t,tδ̂t,

where

δ̂t =

(
t−1∑
s=1

z̃s,tz̃
′
s,t

)−1 t−1∑
s=1

z̃s,tys+1,

with z̃s,t =
(
w′s, f̃

′
s,t

)′
for s = 1, . . . , t− 1 and t = R, . . . , T − 1.

2.2 Test statistics

The statistics of interest are given by

ENC-Ff̃ =

∑T−1
t=R û1,t+1 (û1,t+1 − û2,t+1)

σ̂2 (3)

and

MSE-Ff̃ =

∑T−1
t=R

(
û2

1,t+1 − û2
2,t+1

)
σ̂2 , (4)

with

σ̂2 ≡ P−1
T−1∑
t=R

û2
2,t+1, (5)

where the forecast errors of the benchmark and alternative models are respectively denoted as:

û1,t+1 = yt+1 − ŷ1,t+1 = yt+1 − w′tβ̂t
2Our results remain valid when some of the additional predictors in the alternative model are observed as these will

not introduce new terms in the decomposition of the discrepancy between the statistics with known and estimated factors
presented below. We thank a referee for raising this possibility.
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and

û2,t+1 = yt+1 − ŷ2,t+1 = yt+1 − z̃′t,tδ̂t.

Let u1,t+1 and u2,t+1 denote these forecast errors when evaluated at the probability limits of β̂t and

δ̂t respectively. Finally, we will denote by ü1,t+1 and ü2,t+1 the analog out-of-sample forecast errors

based on the model where factors are observed, i.e.

ü1,t+1 = yt+1 − w′tβ̈t = û1,t+1,

given that3 β̈t = β̂t, and

ü2,t+1 = yt+1 − z′tδ̈t,

where δ̈t is the recursive OLS estimator obtained from regressing ys+1 on zs = (w′s, f
′
s)
′, for s =

1, . . . , t− 1, i.e.

δ̈t =

(
t−1∑
s=1

zsz
′
s

)−1 t−1∑
s=1

zsys+1.

Note that zt differs from z̃s,t because it depends on the observed factors fs and not the sample estimates

f̃s,t. This creates a discrepancy between ü2,t+1 and û2,t+1. Our main goal is to prove the asymptotic

equivalence between the statistics based on û1,t+1 and û2,t+1 and those based on ü1,t+1 and ü2,t+1,

which we call ENC-Ff and MSE-Ff .

Clark and McCracken (2001) derive the asymptotic distribution of the ENC-F statistic under

the null hypothesis H0 : E (u1,t+1(u1,t+1 − u2,t+1)) = 0 when all predictors are observed — that is,

when both wt and ft are observed. Similarly, McCracken (2007) derives the asymptotic distribution

of the MSE-F statistic under the null hypothesis H0 : E(u2
1,t+1 − u2

2,t+1) = 0 when all predictors

are observed. In the same environment, Inoue and Kilian (2007) derive the asymptotic distribution of

both statistics under a sequence of local alternatives. To prove asymptotic equivalence with estimated

factors, we follow Inoue and Kilian (2007) and maintain that the DGP linking the predictors to the

target variable y takes the form

yt+1 = w′tθ + f ′t(T
−1/2α) + ut+1 ≡ z′tδ + ut+1, t = 1, . . . , T , (6)

where we let4 δ ≡ δT =
(
θ′ T−1/2α′

)′
. Given (6), our results have implications under both the

null, for which α = 0, and under small deviations from the null for which α 6= 0. This result justifies

using the usual critical values when testing for equal predictability with estimated factors in the larger,

3By assumption, the benchmark model depends only on the observed regressors wt and therefore there is no discrep-
ancy between û1,t+1 and ü1,t+1. This would not be true if estimated factors were also present in the benchmark model.
In this case, extra terms would appear in Lemma 2.1 below. For simplicity, we do not consider this extension here.

4For simplicity, we omit the index T in δT . Similarly, we ignore the triangle array notation in equation (6) by omitting
the index T in yt+1,T and ut+1,T .
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nesting model. It also suggests that factor estimation error need not lead to any substantial differences

in the power of the test - at least when deviations from the null are small.

The first step in our proof is simply to establish an algebraic relationship between the out-of-sample

test statistics given in (3), (4), and (5) and their analogs based on ü1,t+1 and ü2,t+1.

We can write

ENC-Ff̃ = ENC-Ff + ENC-Ff

(
σ̈2

σ̂2 − 1

)
+

1

σ̂2

T−1∑
t=R

ü1,t+1 (ü2,t+1 − û2,t+1)

and

MSE-Ff̃ = MSE-Ff+MSE-Ff

(
σ̈2

σ̂2 − 1

)
− 2

σ̂2

T−1∑
t=R

(ü2,t+1 (û2,t+1 − ü2,t+1))− 1

σ̂2

T−1∑
t=R

(û2,t+1 − ü2,t+1)2 .

This decomposition allows us to identify a set of suffi cient conditions for the asymptotic equivalence

of the two sets of statistics (based on f̃ and on f , respectively).

Lemma 2.1 Suppose that

a)
∑T−1

t=R (û2,t+1 − ü2,t+1)2 = oP (1) .

b)
∑T−1

t=R ü2,t+1 (û2,t+1 − ü2,t+1) = oP (1) .

c)
∑T−1

t=R ü1,t+1 (ü2,t+1 − û2,t+1) = oP (1) .

d) σ̂2 − σ̈2 = oP (1) .

Then, it follows that ENC-Ff̃ = ENC-Ff + oP (1) and MSE-Ff̃ = MSE-Ff + oP (1) .

The proof of Lemma 2.1 is trivial and therefore omitted. Our next goal is to provide a set of

assumptions such that conditions a) through d) of Lemma 2.1 are verified. An important step in

that direction is to provide bounds on the mean squared factors estimation uncertainty over recursive

samples. But first we need to introduce our assumptions.

3 Assumptions

In this section, we state the assumptions that will be used to establish the asymptotic equivalence of

the test statistics with estimated factors (ENC-Ff̃ and MSE-Ff̃ ) and the analogous statistics with

known factors (ENC-Ff and MSE-Ff ). Throughout, we let M be a generic finite constant.

Assumption 1

6



a) For each s, E ‖fs‖16 ≤ M , Σf ≡ E (fsf
′
s) = Ir and Λ′Λ is a diagonal matrix with distinct entries

arranged in decreasing order.

b) supt
∥∥ 1
T

∑t
s=1 (fsf

′
s − Ir)

∥∥ = OP

(
1/
√
T
)
.

c)
∥∥∥Λ′Λ
N − ΣΛ

∥∥∥ = O
(

1/
√
N
)
such that λmin (ΣΛ) is bounded away from zero and bounded away from

infinity —that is, 0 < a < λmin (ΣΛ) < b <∞ for some constants a and b.

The first part of Assumption 1 a) requires fs to have finite moments of order 16. Although some of

our results could be derived under less stringent moment conditions (for instance, the results in Section

4.1 require only finite second moments), we will rely on these many moments in later parts of our

proofs and therefore we impose this condition from the beginning. The remaining part of Assumption

1 a) is a normalization condition often used in factor analysis. It implies that both the factors and the

factor loadings are orthogonal. See, in particular, Stock and Watson (2002) for a similar assumption

and more recently, Fan, Liao, and Mincheva (2013), Bai and Li (2012), and Bai and Ng (2013). Part

b) of Assumption 1 implies that T−1
∑T

s=1 fsf
′
s converges to Σf = Ir at

√
T -rate. This condition

follows under standard mixing conditions on fs by a maximal inequality for mixing processes. Part c)

of Assumption 1 requires that a nonnegligible fraction of the factor loadings is nonvanishing, implying

that factors are pervasive. We specify the rate at which Λ′Λ
N converges to ΣΛ, a diagonal matrix given

part a). For simplicity, we treat the factors loadings as fixed, but if the factor loadings were assumed

random, this would be the rate implied by the central limit theorem. See Han and Inoue (2015) for a

similar assumption.

Assumption 2

a) E (eit) = 0, E |eit|8 ≤M.

b) There exists a constant m > 0 such that λmin (Σe) > m, ‖Σe‖1 = λmax (Σe) < M , where Σe =

E (ete
′
t) .

c) γt,s ≡ E (e′tes/N) = 1
N

∑N
i=1E (eiteis) is such that γt,s = 0 whenever |t− s| > τ for some τ < ∞,

and
∣∣γt,s∣∣ ≤M for all (t, s).

d) For every (t, s) , E
(

1√
N

∑N
i=1 (eiteis − E (eiteis))

)16
≤M.

e) For every t, E
(∥∥∥ 1√

N

∑N
i=1 λieit

∥∥∥16
)
≤M.

f) 1
N

∑N
i,j=1

1
T

∑T
s1=1

∑T
s2=1 |cov (eis1ejs1 , eis2ejs2)| ≤M.
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Assumption 2 is rather standard in this literature, allowing for weak dependence of eit across i and

over t. Part b) of Assumption 2 corresponds to the approximate factor model of Chamberlain and

Rothschild (1983), imposing an upper bound on the maximum eigenvalue of the covariance matrix

of et = (e1t, . . . , eNt)
′ . It is satisfied if we assume that eit is independent across i, given the moment

conditions on eit. However, it does not require cross sectional independence and is implied by the

condition that max1≤j≤N
∑N

i=1 |E (eitejt)| ≤M, an assumption used by Bai (2003).

Part c) of Assumption 2 allows for serial correlation on eit but restricts it to be of the moving

average type. This is a stronger assumption than usual. The main reason we impose this assumption

is the need for tight uniform bounds on the time average of the product of the factors estimation error

f̃s,t −Htfs and us+1, the error term in the DGP for y. In particular, we need that

sup
t

∥∥∥∥∥t−1
t−1∑
s=1

(
f̃s,t −Htfs

)
us+1

∥∥∥∥∥ = OP

(
1√

RδN,R

)
,

where δ2
N,R = min (N,R). This in turn is satisfied if

sup
t
t−1

t∑
l=1

(
t−1∑
s=1

γl,sus+1

)2

= OP (1) ,

which follows under the assumption that γt,s = 0 whenever |t− s| > τ for some τ < ∞ (but not

necessarily if we impose only the more usual weak dependence assumption that T−1
∑T

l,s=1 γ
2
l,s ≤M).

Part d) of Assumption 2 strengthens Bai’s (2003) Assumption C.5 by requiring 16 instead of 4 finite

moments. Part e) is also a strengthened version of Assumption 3.d) by Gonçalves and Perron (2014),

where 16 instead of 2 finite moments are required. The relatively large number of moments we require

is explained by the fact that we use mean square convergence arguments to show the asymptotic

equivalence of our statistics. Since these are a function of squared forecast errors that depend on the

product of estimated factors and regression estimates, the 16 moments assumptions are the result of

an application of Cauchy-Schwarz inequality. Finally, Bai (2009) relies on an assumption similar to

part f) (see, in particular, his Assumption C.4) in the context of the interactive fixed effects model.

Assumptions 3 and 4 are new to the out-of-sample forecasting context.

Assumption 3

a) 1
N

∑N
i=1 supt

∥∥∥ 1√
T

∑t
s=1 fseis

∥∥∥2
= OP (1), where E (fseis) = 0.

b) 1
T

∑T
l=1 supt

∣∣∣ 1√
NT

∑t−1
s=1

∑N
i=1 (eileis − E (eileis))us+1

∣∣∣2 = OP (1), where E ((eileis − E (eileis))us+1) =

0.

c) supt

∥∥∥ 1√
NT

∑t−1
s=1

∑N
i=1 λieisus+1

∥∥∥2
= OP (1), where E (λieisus+1) = 0.
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d) 1
T

∑T
l=1 supt

∥∥∥ 1√
NT

∑t−1
s=1

∑N
i=1 (eileis − E (eileis)) zs

∥∥∥2
= OP (1) , where E ((eileis − E (eileis)) zs) =

0.

e) supt

∥∥∥ 1√
NT

∑t−1
s=1

∑N
i=1 λieisz

′
s

∥∥∥2
= OP (1), where E (λieisz

′
s) = 0.

Assumption 3 requires that several partial sums be bounded in probability, uniformly in t =

R, . . . , T . Since the summands have mean zero, this assumption is not very restrictive and is implied

by an application of the functional central limit theorem. For instance, we can verify that Assumptions

3 b) and c) hold under Assumptions 2 d) and e) if we assume that {ut} and {et} are independent of

each other and ut+1 is a martingale difference sequence, as we assume in Assumption 5 below.

Our next assumption requires that the partial sums in parts b) and c) of Assumption 3 have 8

finite moments.

Assumption 4

a) For each (l, t), E
∥∥∥ 1√

TN

∑t−1
s=1

∑N
i=1 (eileis − E (eileis))us+1

∥∥∥8
≤M.

b) For each t, E
∥∥∥ 1√

NT

∑t−1
s=1

∑N
i=1 λieisus+1

∥∥∥8
≤M.

Assumption 4 is a strengthening of Assumption 4 of Gonçalves and Perron (2014), according to

which E
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 (eileis − E (eileis))us+1

∥∥∥2
≤M and E

∥∥∥ 1√
NT

∑T
s=1

∑N
i=1 λieisus+1

∥∥∥2
≤M.

A suffi cient condition for Assumption 4 is that ut+1 is i.i.d., given Assumptions 2 d) and e), respectively.

Our assumption on ut+1 is nevertheless weaker, as we assume only that the regression innovation is a

martingale difference sequence. More formally, we impose the following assumption on ut+1.

Assumption 5 E
(
ut+1|F t

)
= 0, where F t = σ (yt, yt−1, . . . ;Xt, Xt−1, . . . ; zt, zt−1, . . .).

Assumption 5 is analogous to the martingale difference assumption in Bai and Ng (2006) when the

forecasting horizon is 1.

Assumption 6 a) E ‖zt‖16 ≤M, E
(
u8
t+1

)
≤M for all t = 1, . . . , T.

b) Let V (t) = t−1
∑t−1

s=1 zsus+1, where E (zsus+1) = 0. Then supt ‖V (t)‖ = OP

(
1/
√
T
)
and E

∥∥∥√TV (t)
∥∥∥8
≤

M for all t.

c) Let B0(t) ≡
(
t−1
∑t−1

s=1wsw
′
s

)−1
, B (t) ≡

(
t−1
∑t−1

s=1 zsz
′
s

)−1
, B0 = (E (wsw

′
s))
−1, and B =

(E (zsz
′
s))
−1. Then, supt ‖B0 (t)‖ = OP (1), supt ‖B (t)‖ = OP (1), supt ‖B0 (t)−B0‖ = OP

(
1/
√
T
)
,

and supt ‖B (t)−B‖ = OP

(
1/
√
T
)
.
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d) P,R→∞ such that P/R = O (1) .

Assumption 6 imposes conditions on the regressors and errors of the predictability regression model

based on the latent factors. In particular, Assumption 6 a) extends the moment conditions on the

factors assumed in Assumption 1 to the observed regressors wt. In addition, while it requires the

innovations ut+1 to have eight finite moments it permits conditional heteroskedasticity. Parts b) and

c) of Assumption 6 imply that supt

∥∥∥β̈t − θ∥∥∥ and supt

∥∥∥δ̈t − δ∥∥∥ are both OP (1/
√
T
)
, which is the

usual rate of convergence. These assumptions are implied by more primitive assumptions that ensure

the application of mixingale-type inequalities. Part d) is implied by the usual rate condition on P and

R according to which limP,R→∞
P
R = π, with 0 ≤ π <∞.

4 Theory

4.1 Properties of factors over recursive samples

As mentioned earlier, factor models are subject to a fundamental identification problem. In our setup,

this means that factors f̃s,t estimated at each forecasting origin t are consistent toward a rotation of the

true factors given by Htfs, where the rotation matrix Ht is time-varying. The asymptotic properties

of the rotation matrix Ht and its inverse (as well as the inverse of the eigenvalue matrix Ṽ −1
t ) are a

crucial step to proving the asymptotic negligibility of the factors estimation error in the out-of-sample

forecasting context. Lemmas A.5 and A.6 in Appendix A contain these results. These results are

crucial to bounding terms involving the estimated factors in the expansions of our test statistics.

The following theorem establishes the rates of convergence of the estimated factors over recursive

subsamples.

Theorem 4.1 Under Assumptions 1-6,

a) 1
P

∑T−1
t=R

∥∥∥f̃t,t −Htft

∥∥∥2
= OP

(
1/δ2

NR

)
, where δ2

N,R = min (N,R) .

b) supt

{
1
t

∑t
s=1

∥∥∥f̃s,t −Htfs

∥∥∥2
}

= OP
(
1/δ2

NR

)
.

Theorem 4.1 extends Lemma A.1 of Bai (2003) to the out-of-sample context. Just as Bai’s (2003)

result is crucial to proving the asymptotic theory of the method of principal components over one

sample when both N and T are large, Theorem 4.1 is crucial to proving the asymptotic theory of this

estimation method over recursive samples. Part a) of Theorem 4.1 shows that the time average over

the out-of-sample period of the squared deviations between the estimated factor f̃t,t and the rotated

factor Htft converges to zero at rate OP
(
1/δ2

N,R

)
, where δN,R = min

(√
N,
√
R
)
. Part b) shows that

10



the same rate of convergence applies uniformly over t = R, . . . , T to the time average of the squared

deviations between f̃s,t and Htfs for each recursive sample estimation period s = 1, . . . , t.

4.2 Asymptotic equivalence

This section’s main contribution is to show that Lemma 2.1 holds under the sequence of local alter-

natives implied by (6). In particular, we verify conditions a) through d), which involve the forecast

errors ü1,t+1, ü2,t+1, û1,t+1 and û2,t+1, and their respective differences.

Given the definitions of ü2,t+1 and û2,t+1, we have that

ü2,t+1 − û2,t+1 = z̃′t,tδ̂t − z′tδ̈t.

Let Φt = diag (Ik1 , Ht). Adding and subtracting appropriately yields

ü2,t+1 − û2,t+1 = (z̃t,t − Φtzt)
′Φ′−1

t

(
δ̈t − δ

)
+ z̃′t,t

(
δ̂t − Φ′−1

t δ̈t

)
+ (z̃t,t − Φtzt)

′Φ′−1
t δ. (7)

The first term in (7) measures the discrepancy between the “ideal” predictors at time t, given by

zt = (w′t, f
′
t)
′, and their estimated version given by z̃t,t =

(
w′t, f̃

′
t,t

)′
, interacted with the error in

estimating δ using δ̈t. The second term in (7) measures the impact of the factor estimation error on

the OLS estimators. The third term in (7) exists only under the alternative and hence captures

the impact of factor estimation error under the alternative. Given our assumption that there are no

generated regressors in the benchmark model, we can write this term as
(
f̃t,t −Htft

)′
H ′−1
t α/

√
T ,

given the definition of δ implicit in (6).

Our first goal is to show that
∑T−1

t=R (ü2,t+1 − û2,t+1)2 = oP (1). By Assumption 6, supt

∥∥∥δ̈t − δ∥∥∥ =

OP

(
1/
√
T
)
, whereas

1

T

T−1∑
t=R

‖z̃t,t − Φtzt‖2 =
1

T

T−1∑
t=R

∥∥∥f̃t,t −Htft

∥∥∥2
= OP

(
1/δ2

N,R

)
by Theorem 4.1. Thus, by an application of the Cauchy-Schwarz inequality, we can show that the sum

of the squared contributions from the first term in (7) is of order OP
(
1/δ2

N,R

)
. This is oP (1) given

that N,R→∞. Similarly, we can bound the sum of the squared contributions from the third term by

T−1∑
t=R

∥∥∥f̃t,t −Htft

∥∥∥2 ∥∥H ′−1
t

∥∥2
∥∥∥T−1/2α

∥∥∥2
≤ sup

t

∥∥H−1
t

∥∥2 ‖α‖2 1

T

T−1∑
t=R

∥∥∥f̃t,t −Htft

∥∥∥2
= OP

(
1/δ2

N,R

)
given Theorem 4.1. Thus, this term’s contribution is also oP (1) given that N,R→∞.

Finally, the sum of squared contributions from the second term is bounded by

T sup
t

∥∥∥δ̂t − Φ′−1
t δ̈t

∥∥∥2 1

T

T−1∑
t=R

‖z̃t,t‖2 ,
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where T−1
∑T−1

t=R ‖z̃t,t‖
2 = OP (1) under our assumptions. Thus, condition a) in Lemma 2.1 follows if

supt

∥∥∥δ̂t − Φ′−1
t δ̈t

∥∥∥2
= oP (1/T ) , as shown in the next lemma.

Lemma 4.1 Suppose Assumptions 1-6 hold. Then,

sup
t

∥∥∥δ̂t − Φ′−1
t δ̈t

∥∥∥ = OP

(
1√

RδN,T

)
.

Since Lemma 4.1 implies that supt

∥∥∥δ̂t − Φ′−1
t δ̈t

∥∥∥2
= OP

(
1

Rδ2N,T

)
= oP

(
1
T

)
, this result and the

above arguments imply that

T−1∑
t=R

(û2,t+1 − ü2,t+1)2 = OP

(
1

δ2
N,T

)
= oP (1) ,

which is condition a) of Lemma 2.1.

Next, we focus on condition b) of Lemma 2.1. Given the definition of ü2,t+1, we can write

ü2,t+1 = yt+1 − z′tδ̈t = yt+1 − z′tδ − z′t
(
δ̈t − δ

)
= ut+1 − z′t

(
δ̈t − δ

)
,

where ut+1 = yt+1 − z′tδ given (6). It follows that

T−1∑
t=R

ü2,t+1 (ü2,t+1 − û2,t+1) =
T−1∑
t=R

ut+1 (ü2,t+1 − û2,t+1)−
T−1∑
t=R

z′t

(
δ̈t − δ

)
(ü2,t+1 − û2,t+1) .

The second term is bounded by

T−1∑
t=R

∣∣∣z′t (δ̈t − δ)∣∣∣ |ü2,t+1 − û2,t+1| ≤
(
T−1∑
t=R

∣∣∣z′t (δ̈t − δ)∣∣∣2
)1/2(T−1∑

t=R

(ü2,t+1 − û2,t+1)2

)1/2

,

given the Cauchy-Schwarz inequality. Since the square of the first term is bounded by

T−1∑
t=R

∣∣∣z′t (δ̈t − δ)∣∣∣2 ≤ sup
t

∥∥∥√T (δ̈t − δ)∥∥∥2 1

T

T−1∑
t=R

‖zt‖2 ,

which is OP (1) under Assumption 6, condition b) is implied by condition a) and the next lemma.

Lemma 4.2 Suppose Assumptions 1-6 holds. If
√
T/N → 0, then

∑T−1
t=R ut+1 (ü2,t+1 − û2,t+1) =

oP (1).

Condition c) of Lemma 2.1 can be verified as follows. Adding and subtracting appropriately,

ü1,t+1 = yt+1 − w′tβ̈t = yt+1 − z′tδ + z′tδ − w′tβ̈t

= ut+1 + w′t

(
θ − β̈t

)
+ f ′t

(
T−1/2α

)
12



where δ =
(
θ′,
(
T−1/2α′

))′
. It follows that

T−1∑
t=R

ü1,t+1 (ü2,t+1 − û2,t+1) =
T−1∑
t=R

ut+1 (ü2,t+1 − û2,t+1) +
T−1∑
t=R

w′t

(
θ − β̈t

)
(ü2,t+1 − û2,t+1) (8)

+
T−1∑
t=R

f ′t

(
T−1/2α

)
(ü2,t+1 − û2,t+1) .

The first term in (8) is oP (1) from part b). The second term can be bounded by

T−1∑
t=R

‖wt‖
∥∥∥θ − β̈t∥∥∥ |ü2,t+1 − û2,t+1| ≤ sup

t

∥∥∥θ − β̈t∥∥∥ T−1∑
t=R

‖wt‖ |ü2,t+1 − û2,t+1|

≤ sup
t

(∥∥∥√T (θ − β̈t)∥∥∥)︸ ︷︷ ︸
=OP (1)

(
1

T

T−1∑
t=R

‖wt‖2
)1/2

︸ ︷︷ ︸
=OP (1)

(
T−1∑
t=R

(ü2,t+1 − û2,t+1)2

)1/2

︸ ︷︷ ︸
=oP (1) by part a)

,

where we can show that supt

(∥∥∥√T (θ − β̈t)∥∥∥) = OP (1) under our assumptions.

Finally, the third term in (8) can be bounded by

‖α‖
(

1

T

T−1∑
t=R

‖ft‖2
)1/2(T−1∑

t=R

(ü2,t+1 − û2,t+1)2

)1/2

,

which is oP (1) by part a).

Similarly, condition d) follows from conditions a) and b) since

σ̂2−σ̈2 = P−1
T−1∑
t=R

(
û2

2,t+1 − ü2
2,t+1

)
= P−1

T−1∑
t=R

(û2,t+1 − ü2,t+1)2+2P−1
T−1∑
t=R

ü2,t+1 (û2,t+1 − ü2,t+1) = OP

(
1

P

)
,

and P →∞. The next theorem contains our main theoretical result.

Theorem 4.2 Under Assumptions 1-6, if
√
T/N → 0 then ENC-Ff̃ = ENC-Ff +oP (1) and MSE-

Ff̃ = MSE-Ff + oP (1) .

This result justifies using the tabulated asymptotic critical values given in Clark and McCracken

(2001) for the ENC-F statistic and in McCracken (2007) for theMSE-F statistic. The rate restriction
√
T/N → 0 is the same as the one used by Bai and Ng (2006) to show that factor estimation uncertainty

disappears asymptotically when conducting inference on factor-augmented regression models. In our

context, this rate restriction is used to show that the difference between the out-of-sample test statistics

based on the estimated factors and those based on the latent factors is asymptotically negligible. It is

suffi cient for proving our result, but we have been unable to prove that it is necessary. It is certainly

possible that it is stronger than needed.
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Note that the asymptotic critical values of Clark and McCracken (2001) and McCracken (2007)

are computed assuming conditional homoskedasticity, whereas our asymptotic equivalence result holds

under conditional heteroskedasticity. Without this assumption, a different set of critical values should

be used. Clark and McCracken (2012) have proposed bootstrap critical values to approximate the

asymptotic distribution under conditional heteroskedasticity. Likewise, for the MSE − F statistic,

Hansen and Timmermann (2015) develop a simulation-based method for estimating asymptotically

valid critical values under conditional heteroskedasticity. It is likely that both of these methods are

valid in this context, but formal proofs are left for future research.

5 Simulations

In this section, we analyze the finite sample behavior of tests of equal predictive ability with estimated

factors. For this purpose, we use a data-generating process similar to the one in Clark and McCracken

(2001): (
ys
fs

)
=

(
0.5 b
0 0.5

)(
ys−1

fs−1

)
+

(
uy,s
uf,s

)
for s = 1, . . . , T, where the vector of errors is i.i.d. N(0, I2) and y0 = f0 = 0. The value of b will be

set to 0 for the size experiment and 0.3 for the power experiment.5

The panel of variables used to extract the factors is obtained as

xis = λifs + σeis,

where λi ∼ U(0, 1), eis ∼ N(0, σ2
i ), σ

2
i ∼ U(0.5, 1.5), and σ = 1.6

We consider as sample sizes N ∈ {10, 20, 50, 100, 200} and T ∈ {25, 50, 100, 200}.We report results

for three sample splits: π = P
R ∈ {0.2, 1, 2}. The number of replications is set at 100,000.

We test the predictive ability of factors using recursive windows. For each t = R, . . . , T − 1, we

estimate the parameters of the benchmark model:

ys+1 = β0 + β1ys + u1,s+1,

using data from s = 1, . . . , t− 1, while the factor-augmented model is given by

ys+1 = θ0 + θ1ys + αfs + u2,s+1, s = 1, . . . , t− 1,

5We also conducted an experiment with the autoregressive coeffi cient on ys set to 0 in both the benchmark and
alternative models. This specification is analogous to our empirical specification in the next section, but because the
results were similar, we decided not to report them. They are available from the authors upon request.

6We have also experimented with errors drawn from a Student distribution with 3 degrees of freedom to check
sensitivity to the strong moment conditions imposed in our assumptions. We also amplified estimation error in the factor
estimates by considering σ = 5. Results are qualitatively similar and are available upon request from the authors.

14



where we estimate fs with f̃s,t recursively using data up to time t, xis, i = 1, . . . , N , and s = 1, . . . , t.

We consider the ENC-Ff̃ andMSE-Ff̃ statistics. All tests are conducted at the 5% significance level.

The results are reported in Table 1 and in Figures 1 and 2. We report right-tail rejection probabil-

ities using the asymptotic critical values for each statistic for two cases: when the factor is known and

when the factor is estimated. The asymptotic critical values are from Clark and McCracken (2001)

for the ENC-F statistic and McCracken (2007) for the MSE-F statistic. The results for π = 0.2

are reported first, followed by π = 1, and π = 2. In each case, we report results in the Table for the

ENC-F and MSE-F, first with the factor assumed known and then with the factor estimated. In

the figures, the known factor case is represented with dotted lines, and the estimated factor case with

solid lines. The ENC −F statistic is in blue, and the MSE −F statistic is in red with dots. We also

draw a line at the nominal size of 5%.

The size results are reported in the top panel of Table 1 and in Figure 1. While there should be no

effect of changes in N for the observed factor case, we do see a little variation in the Table, but it is

suffi ciently small to be impossible to see in the figure. The main point however, is that, as predicted

by theory, the statistics behave very similarly under the null hypothesis regardless of whether the

factor is estimated or known. We do see some discrepancies for smaller values of N and T. However,

for N ≥ 50 or T ≥ 100, the size properties are almost identical. Overall, all tests have good size

properties, though there is a tendency to overreject for smaller values of T especially for T = 25. The

MSE-F statistic tends to be less subject to size distortions than the ENC-F test statistic.

The bottom panel of Table 1 and Figure 2 report power results for the two tests considered. This

panel and figure contain a very important result: despite our asymptotic equivalence result under local

alternatives, estimating the factor reduces power. For example, for N = 50, T = 50, and π = 0.2,

power of the MSE-F statistic is 41.7% if the factor is known, but 40.3% if the factor is estimated.

This is a general result for all values of N, T , and π. However, this loss in power is reduced when the

sample size, especially the cross-sectional dimension, increases. Again, for N ≥ 50, the loss of power

is marginal.

Table 1 and Figure 1 also contain other results found in the literature. For example, we see a

power advantage for the ENC-F statistic over theMSE-F statistic (see Clark and McCracken, 2001)

and that power is increasing in P which can be achieved by increasing T for fixed π or increasing π

for fixed T.
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6 Empirical results

In this section, we provide empirical evidence on the predictive content of macroeconomic factors for

the equity premium associated with the S&P 500 Composite Index. Others who have looked into

factor-based prediction of the equity premium include Bai (2010), Cakmakli and van Dijk (2010), and

Batje and Menkhoff (2012). Like us, they use monthly frequency data to investigate whether factor-

based model forecasts are more accurate than just using the historical mean. Unlike us, formal tests

of statistical significance are not necessarily conducted (though to be fair, prior to the current paper

a theoretical justification for doing so did not exist). In addition, in each of these three papers an

in-sample information criterion is used to select the “best”model prior to forecasting —an approach

we do not follow. Instead, we consider a range of possible models each defined by a given permutation

of the current estimated factors.

In our exercise, we construct factors f̃s,t using a large monthly frequency macroeconomic database

of 134 predictors documented in McCracken and Ng (2015).7 This dataset is designed to be repre-

sentative of those most frequently used in the literature on factor-based forecasting and appears to

be similar to those used in the papers cited above. If we let Pt+1 denote the value of the stock index

at the close of business on the last business day of month t+ 1, we construct our equity premium as

yt+1 = ln(Pt+1/Pt) − rt+1, where rt+1 denotes the 1-month Treasury bill rate.8 After transforming

the data to induce stationarity and truncating the dataset to avoid missing values, our dataset spans

1960:03 through 2014:12 for a total of T = 658 observations.

We construct our forecasting exercises with two goals in mind. First, we want to identify the

factors with the greatest predictive content for the equity premium. Toward this goal we consider

each of the first 8 macroeconomic factors (f̃1t, ..., f̃8t) as potential predictors.9 As shown later, the

second factor, which loads heavily on interest rate variables, is clearly the strongest predictor.

Second, following Ghysels, Horan, and Moench (2014), we investigate the importance of the “tim-

ing”of the estimated factors. In our reading of the factor-based forecasting literature (not limited to

the papers listed earlier), it is not always clear whether the time t factors are dated using calendar or

data-release time. Note that in equation (6), the dependent variable is associated with time t+1, while

7We extract the factors using the April 2015 vintage of FRED-MD. Four of the series are dropped to avoid the presence
of missing values. By doing so we can estimate the factors using precisely the same formulas given in the text.

8The 1-month Treasury bill rates are obtained from Kenneth French’s website
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

9As discussed in McCracken and Ng (2015), Factor 1 can be interpreted as a real activity/employment factor. Factor
2 is dominated by interest rate variables. Factor 3 is concentrated on price variables. Factors 4 and 5 are a mix of
housing and interest rate variables. Like Factor 1, Factor 6 concentrates on real activity/employment variables. Factor
7 is associated with stock market variables, while Factor 8 loads heavily on exchange rates.
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the factor is associated with time t. Since our dependent variable is observable immediately at the close

of business on the last business day of month t+ 1, the distinction between calendar and data-release

time is irrelevant. This is in sharp contrast to the data used to construct the factors. The dataset

used consists of macroeconomic series that are typically released with a 1-month delay. As such, the

factor estimates based on data associated with (say) April 2015 cannot literally be constructed until

May 2015 after the data is released. To evaluate the importance of this distinction, we conduct our

forecasting exercise once estimating the factors f̃s,t such that s and t represent calendar time (i.e., the

data are associated with months s and t) and once such that s and t represent data-release time (i.e.

the data is associated with months s− 1 and t− 1).

For all model comparisons, our benchmark model uses the historical mean as the predictor and

hence Model 1 takes the form

ys+1 = β + u1,s+1, s = 1, . . . , t− 1.

The competing models are similar but add estimated factors and hence take the form

ys+1 = θ + f̃ ′s,tα+ u2,s+1, s = 1, . . . , t− 1.

We consider all 28−1 = 255 permutations of models that include a single lag of at least 1 of the first 8

factors. For each we construct one-step-ahead forecasts and test the null hypotheses of equal predictive

ability at the 5% level using the MSE-F and ENC-F test statistics based on critical values taken

from Clark and McCracken (2001) and McCracken (2007). Note that the appropriate critical values

vary with the number of factors used in the competing model. All models are estimated recursively

by OLS. We consider two out-of-sample periods: 1985:01-2014:12 and 2005:01-2014:12. These imply

sample splits (R,P ) equal to (298, 360) and (438, 120), respectively.

Rather than report all of the potential pairwise comparisons, for each out-of-sample period and

for each definition of time t (calendar vs. data-release time), we report the results associated with

the 10 best-performing factor-based models. The results are reported in Table 2. The upper panel is

associated with calendar time, while the lower is associated with data-release time. For each of the

four sets of results we list (i) the factors in the model, (ii) the ratio of the factor-model MSE to the

benchmark model MSE, and (iii) the MSE-F and ENC-F statistics. For each pairwise comparison

between the benchmark and competing model, an asterisk is used to denote significance at the 5%

level. This indicator of significance should be treated with care however since it does not account for

the multiple testing problem created by our presentation of 255 pairwise comparisons.

The upper panel of Table 2 suggests the presence of predictability for a variety of factor-based

models. Despite the fact that the gains in forecast accuracy are nominally small, both the MSE-F
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and ENC-F tests indicate significant improvements relative to the benchmark. The predictive content

is largely concentrated in the second factor —a feature also documented in Bai (2010) and Batje and

Menkhoff (2012). Over the shorter, more recent, out-of-sample period the gains in forecast accuracy

are larger than before but still remain modest. Interestingly, it appears that the eighth factor has

become increasingly important for forecasting the equity premium and, in fact, the best 6 models all

include both the second and eighth factor.

All of that said, in the lower panel of Table 2 we find less predictive content, which suggests that

the timing used to estimate factors can play an important role in determining their usefulness for

forecasting. Over the longer out-of-sample period, exactly 6 of the 255 factor-based models have a

nominally smaller MSE than the benchmark (note that the ratio is reported to only two decimals)

and in only two instances is the improvement statistically significant based on either the MSE − F

or ENC − F . Over the shorter out-of-sample period, the evidence of predictability is a bit stronger.

As in the upper panel, the second and eighth factors seem to contain predictive content, providing an

improvement in forecast accuracy of about 2% that is significant at the 5% level regardless of which

test statistic we consider. Unlike the upper panel, the seventh factor shows up in roughly half of the

models and is one of the better predictors over the longer out-of-sample period. The seventh factor,

which loads heavily on stock market variables, shows up in only one model under calendar based

timing.

Overall, it seems the second factor, which loads heavily on interest rates, is the strongest and most

consistent predictor of the equity premium. This is consistent with extensive empirical results in the

literature on the ability of interest rates to forecast stock returns, see for example Hjalmarsson (2010)

for evidence for developed countries. Even so, the eighth factor, which loads heavily on exchange rate

variables, seems to be of increasing importance. Of course, one could certainly argue that the gains

in forecast accuracy are small but, as is common in the financial forecasting literature, even small

statistical improvements in forecast accuracy can provide large economic gains. On a final note, it is

interesting to note that the first factor, which loads heavily on real activity and employment variables,

never appears in Table 2. This is of independent interest since the first factor is the one most often

used in the literature on factor-based forecasting.

7 Conclusion

Factor-based forecasting is increasingly common at central banks and in academic research. The ac-

curacy of these forecasts is sometimes compared with other benchmark models using tests of equal

accuracy and encompassing for nested models developed in Clark and McCracken (2001) and Mc-
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Cracken (2007). In this paper, we establish conditions under which these tests remain asymptotically

valid when the factors are estimated recursively across forecast origins. While some of these condi-

tions are straightforward generalizations of existing theoretical work on factors, others are new and of

independent interest for applications that estimate factors recursively over time.

Simulation evidence supports the theoretical results showing that the size of the tests are typically

near their nominal level despite finite sample estimation error in the factors. Perhaps not surprisingly,

we find that this finite sample estimation error reduces power compared with a hypothetical case in

which the factors can be observed directly. The paper concludes with an empirical application in which

a large macroeconomic dataset is used to construct factors and forecast the equity premium. While

the predictive content is not high, we find significant evidence that the second factor has consistently

exhibited predictive content for the equity premium and that of late, the eighth factor has become

increasingly more relevant.
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A Appendix

This appendix contains two sections. First, we provide several lemmas useful to prove the results in

Section 4, followed by their proofs. Then we prove the results in Section 4.

A.1 Auxiliary lemmas

Our first set of results are instrumental in proving some of the auxiliary lemmas that follow. As in

Bai (2003), we use the following notation:

γl,s = E

(
e′les
N

)
=

1

N

N∑
i=1

E (eileis) ; ζ l,s =
1

N

N∑
i=1

(eileis − E (eileis)) ;

ηl,s =
f ′lΛ
′es

N
=

1

N

N∑
i=1

f ′lλieis, and ξl,s =
f ′sΛ

′el
N

=
1

N

N∑
i=1

f ′sλieil.

Moreover, for t = R, . . . , T, we let

Ut,T ≡ ut+1

(
T

t

)(
1√
T

t−1∑
s=1

zsus+1

)
,

and note that Ut,T is a martingale difference sequence array with respect to F t given Assumption 5.

Lemma A.1 Under Assumptions 1-6,

a) supt

(
1
t

∑t
l=1

(∑t−1
s=1 γl,sus+1

)2
)

= OP (1), where γl,s ≡ 1
N

∑N
i=1E (eileis) .

b) supt

(
1
t

∑t
l=1

(∑t−1
s=1 ζ l,sus+1

)2
)

= OP
(
T
N

)
, where ζ l,s ≡ 1

N

∑N
i=1 (eileis − E (eileis)) .

c) supt

(
1
t

∑t
l=1

(∑t−1
s=1 ηl,sus+1

)2
)

= OP
(
T
N

)
, where ηl,s ≡

f ′lΛ
′es
N = f ′l

1
N

∑N
i=1 λieis.

d) supt

(
1
t

∑t
l=1

(∑t−1
s=1 ξl,sus+1

)2
)

= OP
(
T
N

)
, where ξl,s ≡ ηs,l.

e) supt

(
1
t

∑t
l=1

∥∥∥∑t−1
s=1 γl,sz

′
s

∥∥∥2
)

= OP (1).

f) supt

(
1
t

∑t
l=1

∥∥∥∑t−1
s=1 ζ l,sz

′
s

∥∥∥2
)

= OP
(
T
N

)
.

g) supt

(
1
t

∑t
l=1

∥∥∥∑t−1
s=1 ηl,sz

′
s

∥∥∥2
)

= OP
(
T
N

)
.

Lemma A.2 Under Assumptions 1-6,

a) suptE
∥∥∥1
t

∑t
l=1 fl

(∑t−1
s=1 γl,sus+1

)∥∥∥4
= O (1).
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b) suptE
∥∥∥1
t

∑t
l=1 fl

(∑t−1
s=1 ζ l,sus+1

)∥∥∥4
= O

((
T
N

)2)
.

c) suptE
∥∥∥1
t

∑t
l=1 fl

(∑t−1
s=1 ηl,sus+1

)∥∥∥4
= O

((
T
N

)2)
.

d) suptE
∥∥∥1
t

∑t
l=1 fl

(∑t−1
s=1 ξl,sus+1

)∥∥∥4
= O

((
T
N

)2)
.

Lemma A.3 Under Assumptions 1-6,

a) 1
T

∑T
t=R ‖Ut,T ‖

2 = OP (1) .

b)
∑T

t=R

(
1
t

∑t
s=1 fsγs,t

)′
AUt,T = OP (1) , where A is any r × (r + k1) matrix of constants.

c)
∑T

t=R

(
1
t

∑t
s=1 fsζs,t

)′
AUt,T = OP

(√
T
N

)
.

d)
∑T

t=R

(
1
t

∑t
s=1 fsηs,t

)′
AUt,T = OP

(√
T
N

)
.

e)
∑T

t=R

(
1
t

∑t
s=1 fsξs,t

)′
AUt,T = OP

(√
T
N

)
.

Our next result provides bounds on the norms of A1s,t, A2s,t, A3s,t, and A4s,t, which are defined

by the following equality given in Bai (2003). Specifically, for each t = R, . . . , T and s = 1, . . . , t, we

can write

f̃s,t −Htfs = Ṽ −1
t

1

t

t∑
l=1

f̃l,tγl,s︸ ︷︷ ︸
≡A1s,t

+
1

t

t∑
l=1

f̃l,tζ l,s︸ ︷︷ ︸
≡A2s,t

+
1

t

t∑
l=1

f̃l,tηl,s︸ ︷︷ ︸
≡A3s,t

+
1

t

t∑
l=1

f̃l,tξl,s︸ ︷︷ ︸
≡A4s,t

 . (9)

Lemma A.4 Under Assumptions 1-6,

a) 1
P

∑T−1
t=R ‖A1t,t‖2 = OP

(
1
T

)
, whereas for j = 2, 3, 4, 1

P

∑T−1
t=R ‖Ajt,t‖

2 = OP
(

1
N

)
.

b) supt
1
t

∑t
s=1 ‖A1s,t‖2 = OP

(
1
R

)
, whereas for j = 2, 3, 4, supt

1
t

∑t
s=1 ‖Ajs,t‖

2 = OP
(

1
N

)
.

Lemma A.4 and part a) of the following result (which provides uniform bounds on Ṽ −1
t over

t = R, . . . , T ) are used to prove Theorem 4.1.

Lemma A.5 Under Assumptions 1-6, we have that (a) supt

∥∥∥Ṽ −1
t

∥∥∥ = OP (1) , and (b) supt ‖Ht‖q =

OP (1) , for any q > 0.

Our next result derives the convergence rates of Ht, H
−1
t , and Ṽ −1

t . Given the identification

condition Assumption 1 a), we show thatHt converges toH0t = diag (±1) at rate O (1/δN,R) uniformly

over t = R, . . . , T. A similar result holds for H−1
t and for Ṽ −1

t , which converge to H−1
0t and to V −1

0 ≡

Σ−1
Λ at rate O (1/δN,R) uniformly over t = R, . . . , T, respectively.
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Lemma A.6 Under Assumptions 1-6,

a) supt ‖Ht −H0t‖ = supt
∥∥H−1

t −H−1
0t

∥∥ = OP (1/δN,R), where H0t = diag (±1) and δN,R = min
(√

N,
√
R
)
.

b) supt

∥∥∥Ṽ −1
t − V −1

0

∥∥∥ = OP (1/δN,R), where V0 = ΣΛ > 0.

Next, we provide a result that is auxiliary in proving Lemma 4.1.

Lemma A.7 Under Assumptions 1-6,

a) supt

∥∥∥1
t

∑t−1
s=1A1s,tus+1

∥∥∥ = OP
(

1
R

)
whereas for j = 2, 3, 4, supt

∥∥∥1
t

∑t−1
s=1Ajs,tus+1

∥∥∥ = OP

(
1√
RN

)
.

b) supt

∥∥∥1
t

∑t−1
s=1A1s,tz

′
s

∥∥∥ = OP
(

1
R

)
, for j = 2, 3, supt

∥∥∥1
t

∑t−1
s=1Ajs,tz

′
s

∥∥∥ = OP

(
1√
RN

)
, and

supt

∥∥∥1
t

∑t−1
s=1A4s,tz

′
s

∥∥∥ = OP

(
1

δ2N,R

)
.

To prove Lemma 4.1, we need to introduce some additional notation. Let

B̂ (t) =

(
t−1

t−1∑
s=1

z̃s,tz̃
′
s,t

)−1

, and V̂ (t) = t−1
t−1∑
s=1

z̃s,tus+1,

and note that ys+1 = z′sδ + us+1 given (6). Moreover, adding and subtracting appropriately it is also

true that

ys+1 = z̃′s,tΦ
′−1
t δ − (z̃s,t − Φtzs)

′Φ′−1
t δ + us+1.

Therefore,

δ̂t = Φ′−1
t δ + B̂ (t) V̂ (t)− B̂ (t) t−1

t−1∑
s=1

z̃s,t (z̃s,t − Φtzs)
′Φ′−1

t δ and δ̈t = δ +B (t)V (t) ,

which implies that

δ̂t − Φ′−1
t δ̈t = B̂ (t) V̂ (t)− Φ′−1

t B (t)V (t)− B̂ (t) t−1
t−1∑
s=1

z̃s,t (z̃s,t − Φtzs)
′Φ′−1

t δ.

Thus, we can write

δ̂t − Φ′−1
t δ̈t = Φ′−1

t B (t) Φ−1
t

(
V̂ (t)− ΦtV (t)

)
+
(
B̂ (t)− Φ′−1

t B (t) Φ−1
t

)
V̂ (t)

−B̂ (t) t−1
t−1∑
s=1

z̃s,t (z̃s,t − Φtzs)
′Φ′−1

t δ, (10)

where the first term captures the factors estimation error in the score process and the second term

captures the factor estimation error in the (inverse) Hessian. The third term is equal to

−B̂ (t) t−1
t−1∑
s=1

z̃s,t

(
f̃s,t −Htfs

)′
H ′−1
t

α√
T
,
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given our assumption that there are no generated regressors in the benchmark model. This term

disappears under the null when α = 0 but is present under local alternatives.

The following result analyzes each term of δ̂t − Φ′−1
t δ̈t.

Lemma A.8 Suppose Assumptions 1-6 hold. Then,

a) supt

∥∥∥V̂ (t)− ΦtV (t)
∥∥∥ = OP

(
1√

RδN,T

)
.

b) supt

∥∥∥B̂ (t)− Φ′−1
t B (t) Φ−1

t

∥∥∥ = OP

(
1

δ2N,R

)
.

c) supt

∥∥∥V̂ (t)
∥∥∥ = OP

(
1√
T

)
.

d) supt

∥∥∥t−1
∑t−1

s=1 z̃s,t (z̃s,t − Φtzs)
′Φ′−1

t δ
∥∥∥ = OP

(
1√

TδN,T

)
.

Our next result is useful to prove Lemma 4.2. Given (7), we can write

T−1∑
t=R

ut+1 (ü2,t+1 − û2,t+1) =

T−1∑
t=R

ut+1 (z̃t,t − Φtzt)
′Φ′−1

t

(
δ̈t − δ

)
+

T−1∑
t=R

ut+1z̃
′
t,t

(
δ̂t − Φ′−1

t δ̈t

)
+

T−1∑
t=R

ut+1 (z̃t,t − Φtzt)
′Φ′−1

t δ. (11)

We analyze each piece separately. The following lemma contains the results.

Lemma A.9 Suppose Assumptions 1-6 hold. If
√
T/N → 0, then

a)
∑T−1

t=R ut+1 (z̃t,t − Φtzt)
′Φ′−1

t

(
δ̈t − δ

)
= oP (1) .

b)
∑T−1

t=R ut+1z̃
′
t,t

(
δ̂t − Φ′−1

t δ̈t

)
= oP (1) .

c)
∑T−1

t=R ut+1 (z̃t,t − Φtzt)
′Φ′−1

t δ = oP (1) .

A.2 Proofs of auxiliary lemmas

Proof of Lemma A.1. We start with a). Under Assumption 2 c), we can write

t−1∑
s=1

γl,sus+1 =
l+τ∑
s=l−τ

γl,sus+1,

where we let γl,s ≡ 0 if min (l, s) ≤ 0 or max (l, s) > t. By Cauchy-Schwarz,(
t−1∑
s=1

γl,sus+1

)2

=

(
l+τ∑
s=l−τ

γl,sus+1

)2

≤
l+τ∑
s=l−τ

γ2
l,s

l+τ∑
s=l−τ

u2
s+1 ≤ (2τ + 1) max

l,s

∣∣γ2
l,s

∣∣ l+τ∑
s=l−τ

u2
s+1 ≤M

l+τ∑
s=l−τ

u2
s+1,
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for some constant M , given Assumption 2 c), implying that

sup
t

1

t

t∑
l=1

(
t−1∑
s=1

γl,sus+1

)2
 ≤M sup

t

(
1

t

t∑
l=1

l+τ∑
s=l−τ

u2
s+1

)
= M

1

R

T−1∑
l=1

l+τ∑
s=l−τ

u2
s+1 = OP (1)

provided E
(
u2
s+1

)
≤M, which follows under Assumption 6 a).

Next, consider part b). We have that

sup
t

1

t

t∑
l=1

(
t−1∑
s=1

ζ l,sus+1

)2


=
1

N
sup
t

T
t

t∑
l=1

(
1√
NT

t−1∑
s=1

N∑
i=1

(eileis − E (eileis))us+1

)2


=
T

N

T

R

 1

T

T∑
l=1

sup
t

(
1√
NT

t−1∑
s=1

N∑
i=1

(eileis − E (eileis))us+1

)2
 = OP

(
T

N

)
under Assumption 3.b).

For c),

sup
t

1

t

t∑
l=1

(
t−1∑
s=1

ηl,sus+1

)2
 = sup

t

1

t

t∑
l=1

(
f ′l

t−1∑
s=1

1

N

N∑
i=1

λieisus+1

)2


≤ T

N
sup
t

1

t

t∑
l=1

‖fl‖2
∥∥∥∥∥ 1√

NT

t−1∑
s=1

N∑
i=1

λieisus+1

∥∥∥∥∥
2


≤ T

N
sup
t

(
1

t

t∑
l=1

‖fl‖2
)

︸ ︷︷ ︸
=OP (1)

sup
t

∥∥∥∥∥ 1√
NT

t−1∑
s=1

N∑
i=1

λieisus+1

∥∥∥∥∥
2

︸ ︷︷ ︸
=OP (1)

= OP

(
T

N

)
,

given in particular Assumption 3 c).

Finally, for d),

sup
t

1

t

t∑
l=1

(
t−1∑
s=1

ξl,sus+1

)2
 = sup

t

1

t

t∑
l=1

(
t−1∑
s=1

1

N

N∑
i=1

f ′sλieilus+1

)2


= sup
t

1

t

t∑
l=1

(
1

N

N∑
i=1

λ′ieil

t−1∑
s=1

fsus+1

)2


≤ sup
t

1

t

t∑
l=1

∥∥∥∥∥ 1

N

N∑
i=1

λ′ieil

∥∥∥∥∥
2 ∥∥∥∥∥

t−1∑
s=1

fsus+1

∥∥∥∥∥
2


=
1

R

T∑
l=1

∥∥∥∥∥ 1√
N

N∑
i=1

λ′ieil

∥∥∥∥∥
2

︸ ︷︷ ︸
=OP (1)

(
T

N

)
sup
t

∥∥∥∥∥ 1√
T

t−1∑
s=1

fsus+1

∥∥∥∥∥
2

︸ ︷︷ ︸
=OP (1)

= OP

(
T

N

)
,
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given Assumptions 2 e) and Assumption 6 b).

Part e) follows exactly as the proof of a) given Assumption 2 c) and the fact that E ‖zs‖2 ≤M by

Assumption 6 a).

Next, consider part f). We have that

sup
t

1

t

t∑
l=1

∥∥∥∥∥
t−1∑
s=1

ζ l,sz
′
s

∥∥∥∥∥
2
 =

T

N

T

R

 1

T

T∑
l=1

sup
t

∥∥∥∥∥ 1√
NT

t−1∑
s=1

N∑
i=1

(eileis − E (eileis)) z
′
s

∥∥∥∥∥
2
 = OP

(
T

N

)

under the analog of Assumption 3 b) with us+1 replaced with z′s (cf. Assumption 3 d)).

For g),

sup
t

1

t

t∑
l=1

∥∥∥∥∥
t−1∑
s=1

ηl,sz
′
s

∥∥∥∥∥
2
 = sup

t

1

t

t∑
l=1

∥∥∥∥∥f ′l
t−1∑
s=1

(
1

N

N∑
i=1

λieis

)
z′s

∥∥∥∥∥
2


≤ T

N
sup
t

1

t

t∑
l=1

‖fl‖2
∥∥∥∥∥ 1√

NT

t−1∑
s=1

N∑
i=1

λieisz
′
s

∥∥∥∥∥
2


≤ T

N
sup
t

(
1

t

t∑
l=1

‖fl‖2
)

︸ ︷︷ ︸
=OP (1)

sup
t

∥∥∥∥∥ 1√
NT

t−1∑
s=1

N∑
i=1

λieisz
′
s

∥∥∥∥∥
2

︸ ︷︷ ︸
=OP (1)

= OP

(
T

N

)
,

given in particular Assumption 3 e) (the analog of 3 c).

Proof of Lemma A.2. Starting with a), by the Cramer-Rao and Cauchy-Scwharz inequalities,

E

∥∥∥∥∥1

t

t∑
l=1

fl

(
t−1∑
s=1

γl,sus+1

)∥∥∥∥∥
4

≤ 1

t

t∑
l=1

E

‖fl‖4
∥∥∥∥∥
t−1∑
s=1

γl,sus+1

∥∥∥∥∥
4


≤ 1

t

t∑
l=1

(
E ‖fl‖8

)1/2

E ∥∥∥∥∥
t−1∑
s=1

γl,sus+1

∥∥∥∥∥
8
1/2

≤
(

1

t

t∑
l=1

E ‖fl‖8
)1/2

1

t

t∑
l=1

E

∥∥∥∥∥
t−1∑
s=1

γl,sus+1

∥∥∥∥∥
8
1/2

.

The first term in parenthesis is bounded given the moment conditions on fl. For the second term, by

the moving average-type assumption on γl,s, we have that for given l,

E

∥∥∥∥∥
t−1∑
s=1

γl,sus+1

∥∥∥∥∥
8

= E

∥∥∥∥∥
l+τ∑
s=l−τ

γl,sus+1

∥∥∥∥∥
8

≤ (2τ + 1)7
l+τ∑
s=l−τ

γ8
l,sE

(
u8
s+1

)
≤M,

given that
∣∣γl,s∣∣ ≤M and E

(
u8
s+1

)
≤M by Assumptions 2 c) and 6 a).
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For part b), following exactly the same steps as for a), we have that

1

t

t∑
l=1

E

∥∥∥∥∥
t−1∑
s=1

ζ l,sus+1

∥∥∥∥∥
8

=
1

t

t∑
l=1

E

∥∥∥∥∥
t−1∑
s=1

1

N

N∑
i=1

(eileis − E (eileis))us+1

∥∥∥∥∥
8

≤
(
T

N

)4 1

R

T∑
l=1

sup
R≤t≤T

E

∥∥∥∥∥ 1√
TN

t−1∑
s=1

N∑
i=1

(eileis − E (eileis))us+1

∥∥∥∥∥
8

,

which is O
((

T
N

)4)
given Assumption 4 a).

For part c),

sup
t
E

∥∥∥∥∥1

t

t∑
l=1

fl

(
t−1∑
s=1

ηl,sus+1

)∥∥∥∥∥
4

= sup
t
E

∥∥∥∥∥1

t

t∑
l=1

flf
′
l

1

N

t−1∑
s=1

N∑
i=1

λieisus+1

∥∥∥∥∥
4

≤ sup
t

1

t

t∑
l=1

E

‖fl‖8
∥∥∥∥∥ 1

N

t−1∑
s=1

N∑
i=1

λieisus+1

∥∥∥∥∥
4


≤ sup
l
E
(
‖fl‖16

)1/2

 T 4

N4
sup
t
E

∥∥∥∥∥ 1√
NT

t−1∑
s=1

N∑
i=1

λieisus+1

∥∥∥∥∥
8
1/2

= O

((
T

N

)2
)
,

given Assumptions 1 a) and 4 b).

Finally, for part d), we have that

sup
t
E

∥∥∥∥∥1

t

t∑
l=1

fl

(
t−1∑
s=1

ξl,sus+1

)∥∥∥∥∥
4

= sup
t
E

∥∥∥∥∥1

t

t∑
l=1

fl

(
1

N

N∑
i=1

λ′ieil

t−1∑
s=1

fsus+1

)∥∥∥∥∥
4

≤ T 2

N2
sup
t

1

t

t∑
l=1

E

‖fl‖4
∥∥∥∥∥ 1√

N

N∑
i=1

λieil

∥∥∥∥∥
4 ∥∥∥∥∥ 1√

T

t−1∑
s=1

fsus+1

∥∥∥∥∥
4


≤ T 2

N2
sup
t

1

t

t∑
l=1

E
‖fl‖8

∥∥∥∥∥ 1√
N

N∑
i=1

λieil

∥∥∥∥∥
8
1/2E ∥∥∥∥∥ 1√

T

t−1∑
s=1

fsus+1

∥∥∥∥∥
8
1/2

≤ T 2

N2

(
sup
l
E ‖fl‖16

)1/4
sup

l
E

∥∥∥∥∥ 1√
N

N∑
i=1

λieil

∥∥∥∥∥
16
1/4sup

t
E

∥∥∥∥∥ 1√
T

t−1∑
s=1

fsus+1

∥∥∥∥∥
8
1/2

= O

((
T

N

)2
)
,

given Assumptions 1 a), 2 e) and 6 b).

Proof of Lemma A.3. For part a), note that by definition of Ut,T ,

1

T

T∑
t=R

‖Ut,T ‖2 ≤
1

T

T∑
t=R

‖ut+1‖2 (T/R)2 sup
t

∥∥∥∥∥T−1/2
t−1∑
s=1

zsus+1

∥∥∥∥∥
2

= OP (1)

given Assumptions 6 a) and b).
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For part b), it suffi ces to show that

E

∥∥∥∥∥∥
T∑
t=R

(
1

t

t∑
l=1

flγl,t

)′
AUt,T

∥∥∥∥∥∥ = O (1) .

Using the triangle and Cauchy-Schwarz inequalities,

E

∥∥∥∥∥∥
T∑
t=R

(
1

t

t∑
l=1

flγl,t

)′
AUt,T

∥∥∥∥∥∥ ≤ ‖A‖E
(

T∑
t=R

‖Ut,T ‖
1

t

t∑
l=1

‖fl‖
∣∣γl,t∣∣

)

≤ ‖A‖ 1

R

T∑
t=R

T∑
l=1

E ‖Ut,T ‖ ‖fl‖
∣∣γl,t∣∣

≤ ‖A‖ 1

R

T∑
t=R

T∑
l=1

(
E ‖Ut,T ‖2

)1/2 (
E ‖fl‖2

)1/2 ∣∣γl,t∣∣
≤ ‖A‖

(
sup
t
E ‖Ut,T ‖2

)1/2(
sup
l
E ‖fl‖2

)1/2 1

R

T∑
t=R

T∑
l=1

∣∣γl,t∣∣
= O (1) ,

provided (i) suptE ‖Ut,T ‖2 = O (1), (ii) suplE ‖fl‖2 = O (1) , and (iii) 1
R

∑T
t=R

∑T
l=1

∣∣γl,t∣∣ = O (1).

(ii) follows by Assumption 1 a) and (iii) follows by Assumption 2 c). Next, we show that (i) follows

under our assumptions. By definition of Ut,T ,

sup
t
E ‖Ut,T ‖2 ≤ sup

t
E

∥∥∥∥∥ut+1

(
T

t

)(
T−1/2

t−1∑
s=1

zsus+1

)∥∥∥∥∥
2

≤ (T/R)2 sup
t
E

u2
t+1

∥∥∥∥∥T−1/2
t−1∑
s=1

zsus+1

∥∥∥∥∥
2


≤ (T/R)2

(
sup
t
E
(
u4
t+1

))1/2
sup

t
E

∥∥∥∥∥T−1/2
t−1∑
s=1

zsus+1

∥∥∥∥∥
4
1/2

,

implying that supR≤t≤T E ‖Ut,T ‖2 = O (1) since suptE
(
u4
t+1

)
≤M and suptE

∥∥∥T−1/2
∑t−1

s=1 zsus+1

∥∥∥4
≤

M under Assumptions 6 a) and b).

For part c), we can write

T∑
t=R

(
1

t

t∑
l=1

flζ l,t

)′
AUt,T =

T∑
t=R

ut+1Wt,T ,

where

Wt,T =

(
T

t

)(
1

t

1

N

t∑
l=1

N∑
i=1

fl (eileit − E (eileit))

)′
A

(
1√
T

t−1∑
s=1

zsus+1

)
is measurable with respect to F t. Thus, E

(
ut+1Wt,T |F t

)
= 0 given the martingale difference assump-
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tion 5 and it follows that

V ar

(
T∑
t=R

ut+1Wt,T

)
=

T∑
t=R

E
(
u2
t+1W2

t,T

)
≤
(

T∑
t=R

E
(
u4
t+1

))1/2

︸ ︷︷ ︸
=O(

√
T)

(
T∑
t=R

E
(
W4
t,T

))1/2

︸ ︷︷ ︸
=O

((
T
N2

)1/2)
= O

(
T

N

)
,

which suffi ces to prove the result. Note that

sup
t
E ‖Wt,T ‖4 = sup

t

(
T

t

)4

E

∥∥∥∥∥∥
(

1

t

1

N

t∑
l=1

N∑
i=1

fl (eileit − E (eileit))

)′
A

(
1√
T

t−1∑
s=1

zsus+1

)∥∥∥∥∥∥
4

≤
(
T

R

)4
sup

t
E

∥∥∥∥∥ 1√
T

t−1∑
s=1

zsus+1

∥∥∥∥∥
8
1/2

sup
t

E ∥∥∥∥∥1

t

1

N

t∑
l=1

N∑
i=1

fl (eileit − E (eileit))

∥∥∥∥∥
8
1/2

‖A‖4

= O
(
1/N2

)
,

where we have used Assumption 6 b) to bound the first term in the square root parentheses. The

second term can be bounded by

sup
t

1

t

t∑
l=1

E ‖fl‖8
∥∥∥∥∥ 1

N

N∑
i=1

(eileit − E (eileit))

∥∥∥∥∥
8
1/2

≤ sup
t

1

t

t∑
l=1

(
E ‖fl‖16

)1/2

E ∥∥∥∥∥ 1

N

N∑
i=1

(eileit − E (eileit))

∥∥∥∥∥
16
1/2


1/2

≤ sup
t

(
1

t

t∑
l=1

E ‖fl‖16

)1/4
1

t

t∑
l=1

E

∥∥∥∥∥ 1

N

N∑
i=1

(eileit − E (eileit))

∥∥∥∥∥
16
1/4

≤
(

sup
l
E ‖fl‖16

)1/4
 1

N8
sup
l,t
E

∥∥∥∥∥ 1√
N

N∑
i=1

(eileit − E (eileit))

∥∥∥∥∥
16
1/4

= O

(
1

N2

)
,

given Assumptions 1 a) and 2 d).

Next, consider part d). By replacing ηl,t and Ut,T , we can write

T∑
t=R

(
1

t

t∑
l=1

flηl,t

)′
AUt,T =

T∑
t=R

(
1

t

t∑
l=1

flf
′
l

1

N

N∑
i=1

λieit

)′
Aut+1

(
T

t

)(
1√
T

t−1∑
s=1

zsus+1

)
.

Adding and subtracting appropriately, we can decompose the term above as the sum of two terms,

χ1 ≡
T∑
t=R

(
1

N

N∑
i=1

λieit

)′(
1

t

t∑
l=1

flf
′
l − Ir

)′
Aut+1

(
T

t

)(
1√
T

t−1∑
s=1

zsus+1

)
and

χ2 =
T∑
t=R

(
1

N

N∑
i=1

λieit

)′
Aut+1

(
T

t

)(
1√
T

t−1∑
s=1

zsus+1

)
.
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We can bound χ1 by

‖χ1‖ ≤
(
T

R

)
‖A‖ sup

t

∥∥∥∥∥1

t

t∑
l=1

flf
′
l − Ir

∥∥∥∥∥ sup
t

∥∥∥∥∥ 1√
T

t−1∑
s=1

zsus+1

∥∥∥∥∥
T∑
t=R

‖ut+1‖
∥∥∥∥∥ 1

N

N∑
i=1

λieit

∥∥∥∥∥
≤ OP

(
1√
T

)
T

(
1

T

T∑
t=R

‖ut+1‖2
)1/2

 1

N

1

T

T∑
t=R

∥∥∥∥∥ 1√
N

N∑
i=1

λieit

∥∥∥∥∥
2
1/2

= OP

(√
T

N

)
,

given Assumptions 1 a) and b), 2 e), and 6 a). For χ2, we can write

χ2 =
T∑
t=R

ut+1χt,T ,

where

χt,T =

(
T

t

)(
1

N

N∑
i=1

λieit

)′
A

(
1√
T

t−1∑
s=1

zsus+1

)
is measurable with respect to F t. Since E

(
ut+1χt,T |F t

)
= 0 given the martingale difference assumption

5, it follows that

V ar

(
T∑
t=R

ut+1χt,T

)
=

T∑
t=R

E
(
u2
t+1χ

2
t,T

)
≤
(

T∑
t=R

E
(
u4
t+1

))1/2

︸ ︷︷ ︸
=O(

√
T)

(
T∑
t=R

E
(
χ4
t,T

))1/2

︸ ︷︷ ︸
=O

((
T
N2

)1/2)
= O

(
T

N

)
,

where

sup
t
E
∥∥χt,T∥∥4

= sup
t

(
T

t

)4

E

∥∥∥∥∥∥
(

1

N

N∑
i=1

λieit

)′
A

(
1√
T

t−1∑
s=1

zsus+1

)∥∥∥∥∥∥
4

≤
(
T

R

)4

‖A‖

sup
t
E

∥∥∥∥∥ 1√
T

t−1∑
s=1

zsus+1

∥∥∥∥∥
8
1/2

sup
t

 1

N4
E

∥∥∥∥∥ 1√
N

N∑
i=1

λieit

∥∥∥∥∥
8
1/2

= O
(
1/N2

)
,

given our assumptions. This proves that ‖χ2‖ = OP

(√
T
N

)
and concludes the proof of part d).

Finally, to prove part e), by replacing ξl,t and Ut,T , we can write

T∑
t=R

(
1

t

t∑
l=1

flξl,t

)′
AUt,T =

T∑
t=R

f ′tut+1

(
T

t

)(
1

t

t∑
l=1

(
1

N

N∑
i=1

λieil

)
f ′l

)
A

(
1√
T

t−1∑
s=1

zsus+1

)
=

T∑
t=R

ut+1f
′
tςt,T ,

where

ςt,T ≡
(
T

t

)(
1

t

t∑
l=1

(
1

N

N∑
i=1

λieil

)
f ′l

)
A

(
1√
T

t−1∑
s=1

zsus+1

)
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is measurable with respect to F t. Since E
(
ut+1f

′
tςt,T |F t

)
= 0, we can use the above argument to show

that V ar
(∑T

t=R vt+1ςt,T

)
= O

(
T
N

)
, given our assumptions.

Proof of Lemma A.4. Part a). For j = 1, . . . , 4, let

Ij ≡
1

P

T−1∑
t=R

‖Ajt,t‖2 with Ajt,t =
1

t

t∑
l=1

f̃l,tφj,l,t,

where φ1,l,t = γl,t, φ2,l,t = ζ l,t, φ3,l,t = ηl,t and φ4,l,t = ξl,t. We consider each term separately. Starting

with the first term,

I1 =
1

P

T−1∑
t=R

∥∥∥∥∥1

t

t∑
l=1

f̃l,tγl,t

∥∥∥∥∥
2

≤ 1

P

T−1∑
t=R

(
1

t

t∑
l=1

∥∥∥f̃l,t∥∥∥2
)(

1

t

t∑
l=1

γ2
l,t

)
≤ r 1

PR

T∑
t=1

T∑
l=1

γ2
l,t = O (1/T )

under Assumption 2 c) and given that T/R = O (1). Next,

I2 =
1

P

T−1∑
t=R

∥∥∥∥∥1

t

t∑
l=1

f̃l,tζ l,t

∥∥∥∥∥
2

≤ 1

P

T−1∑
t=R

(
1

t

t∑
l=1

∥∥∥f̃l,t∥∥∥2
)(

1

t

t∑
l=1

ζ2
l,t

)
≤ r 1

PR

T∑
t=1

T∑
l=1

ζ2
l,t = OP (1/N) ,

given Assumption 2 d). I3 and I4 follow similarly using the fact that

1

PR

T∑
t=1

T∑
l=1

η2
l,t =

1

PR

T∑
t=1

T∑
l=1

ξ2
l,t = OP (1/N) .

Part b). The proof follows the same argument as part a) and is therefore omitted.

Proof of Lemma A.5. We start with (a). Recall that Ṽt denotes the eigenvalue matrix of

XtX
′
t/tN for t = R, . . . , T, with its eigenvalues arranged in a non-increasing order: ṽ1,t ≥ ṽ2,t ≥ . . . ≥

ṽr,t. It follows that Ṽ −1
t = diag

(
ṽ−1
j,t

)
, where ṽ−1

1,t ≤ ṽ−1
2,t ≤ . . . ≤ ṽ−1

r,t . Hence,
∥∥∥Ṽ −1

t

∥∥∥2
= tr

(
Ṽ −2
t

)
=∑r

j=1 ṽ
−2
j,t ≤ rṽ

−2
r,t , where ṽr,t is the r

th largest eigenvalue of XtX
′
t/tN . Since

sup
t

∥∥∥Ṽ −1
t

∥∥∥ ≤ r1/2 sup
t

∣∣ṽ−1
r,t

∣∣ = r1/2 1

inft |ṽr,t|
,

it suffi ces to show that inft |ṽr,t| ≥ C > 0 for some constant C, with probability approaching 1. We

use an argument similar to that used by Fan et al. (2013; cf. Lemma C.4). First, note that for

t = R, . . . , T and s = 1, . . . , t, xs = Λfs + es, where xs = (x1s, . . . , xNs)
′ is N × 1 and a similar

definition applies to es. This implies that the N ×N covariance matrix of xs is equal to

Σ ≡ E
(
xsx
′
s

)
= ΛE

(
fsf
′
s

)
Λ′ + E

(
ese
′
s

)
= ΛΛ′ + Σe,

or equivalently, 1
NΣ = 1

NΛΛ′+ 1
NΣe, given that E (fseis) = 0 (by Assumption 3 a)) and the identifica-

tion condition Assumption 1. Given this assumption, the r×r matrix Λ′Λ
N is diagonal with distinct and

positive eigenvalues on the main diagonal. Since Λ′Λ and ΛΛ′ share the same nonzero eigenvalues, it

follows that ΛΛ′ has r nonzero eigenvalues, with the remaining eigenvalues equal to 0. By Proposition
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1 of Fan et al. (2013) (which relies on Weyl’s eigenvalue theorem), and given Assumption 1, we can

then show that for j = 1, . . . , r, the difference between the jth eigenvalue of Σ/N and the jth eigenvalue

of ΛΛ′/N is bounded by the maximum eigenvalue of Σe/N ; that is,∣∣λj (Σ/N)− λj
(
Λ′Λ/N

)∣∣ ≤ 1

N
‖Σe‖1 = O

(
1

N

)
= o (1) ,

given Assumption 2 b). By a second application of Weyl’s Theorem (cf. Fan et al., 2013, Lemma 1),

for each j = 1, . . . , r, ∣∣ṽj,t − λj (Λ′Λ/N)∣∣ ≤ ∥∥X ′tXt/tN −N−1Σ
∥∥

1
,

given that X ′tXt and XtX
′
t share the same nonzero eigenvalues. Thus,

ṽr,t ≥ λr
(
Λ′Λ/N

)
−
∥∥X ′tXt/tN −N−1Σ

∥∥
1
≥ λmin (ΣΛ) /2−

∥∥X ′tXt/tN −N−1Σ
∥∥

1
,

since |λj (Σ/N)− λj (Λ′Λ/N)| = o (1) and the fact that |λj (Λ′Λ/N)− λj (ΣΛ)| = o (1). It follows that

inf
t
|ṽr,t| ≥ λmin (ΣΛ) /2− sup

t

∥∥X ′tXt/tN −N−1Σ
∥∥

1
,

and hence it suffi ces to show that supt
∥∥X ′tXt/tN −N−1Σ

∥∥
1

= oP (1) . But X′tXt
tN − Σ

N = D1t +D2t +

D3t +D4t, where

D1t =
Λ

N

(
1

t

t∑
s=1

fsf
′
s − Ir

)
Λ′, D2t =

1

N

(
1

t

t∑
s=1

ese
′
s − Σe

)
,

D3t =
Λ

N

1

t

t∑
s=1

fse
′
s, and D4t = D′3t,

where we recall that E (fsf
′
s) = Ir by assumption. It follows that

sup
t

∥∥X ′tXt/tN −N−1Σ
∥∥

1
≤ sup

t
‖D1t‖+ sup

t
‖D2t‖+ 2 sup

t
‖D3t‖ ,

since ‖A‖1 ≤ ‖A‖ for any matrix A (see Horn and Johnson, 1985, p. 314). Starting with D1t, we have

that

sup
t
‖D1t‖ =

∥∥∥Λ/
√
N
∥∥∥2

︸ ︷︷ ︸
=tr(Λ′Λ/N)=O(1)

sup
t

∥∥∥∥∥
(
T

t

)(
1

T

t∑
s=1

(
fsf
′
s − Ir

))∥∥∥∥∥ ≤ C · TR sup
t

∥∥∥∥∥ 1

T

t∑
s=1

(
fsf
′
s − Ir

)∥∥∥∥∥
for some constant C. Since T/R = O (1) by assumption, it follows that supt ‖D1t‖ = oP (1) given that

supt
∥∥ 1
T

∑t
s=1 (fsf

′
s − Ir)

∥∥ = OP

(
1/
√
T
)

= oP (1) by Assumption 1. Next, consider D2t. We have

that for any ε > 0,

P

(
sup
t
‖D2t‖ > ε

)
≤

T∑
t=R

P (‖D2t‖ > ε) ≤ 1

ε2

T∑
t=R

E ‖D2t‖2 ,
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thus it suffi ces to prove that
∑T

t=RE ‖D2t‖2 = o (1). By the definition of the Frobenius norm, ‖A‖2 =

tr (A′A) =
∑N

i,j=1 a
2
ij for any N ×N matrix. Thus, for given t = R, . . . , T,

E ‖D2t‖2 =
1

N2

N∑
i,j=1

E

(
1

t

t∑
s=1

(eisejs − E (eisejs))

)2

=
1

N2

N∑
i,j=1

1

t2

t∑
s1=1

t∑
s2=1

cov (eis1ejs1 , eis2ejs2)

≤ T

R2

1

N

 1

N

N∑
i,j=1

1

T

T∑
s1=1

T∑
s2=1

|cov (eis1ejs1 , eis2ejs2)|

 ,

which implies that

T∑
t=R

E ‖D2t‖2 ≤
(
T

R

)2 1

N

 1

N

N∑
i,j=1

1

T

T∑
s1=1

T∑
s2=1

|cov (eis1ejs1 , eis2ejs2)|

 = O (1/N) = o (1) ,

given in particular Assumption 2 f). Finally, for D3t = D′4t, we have that

‖D3t‖2 ≤ 1

N

∥∥∥∥ Λ√
N

∥∥∥∥2

︸ ︷︷ ︸
≤C

∥∥∥∥∥∥∥
1

t

t∑
s=1

fse
′
s︸︷︷︸

r×N

∥∥∥∥∥∥∥
2

≤ C 1

N

N∑
i=1

∥∥∥∥∥1

t

t∑
s=1

fseis

∥∥∥∥∥
2

≤ C
1

R

(
T

R

)
1

N

N∑
i=1

∥∥∥∥∥ 1√
T

t∑
s=1

fseis

∥∥∥∥∥
2

= OP

(
1

R

)
= oP (1) ,

given Assumption 3 a) and the fact that T/R = O (1) .

To prove (b), we prove the result for q = 2 and note that this implies the result for any q > 0 since

sup
t
‖Ht‖q = sup

t

(
‖Ht‖2

)q/2
=

(
sup
t
‖Ht‖2

)q/2
= OP (1)

if supt ‖Ht‖2 = OP (1). By definition, for t = R, . . . , T, Ht = Ṽ −1
t

(
F̃ ′tFt
t

)(
Λ′Λ
N

)
, implying that

‖Ht‖ ≤
∥∥∥Ṽ −1

t

∥∥∥∥∥∥ F̃ ′tFtt ∥∥∥∥∥∥Λ′Λ
N

∥∥∥ , by the fact that ‖A ·B‖ ≤ ‖A‖ · ‖B‖. Thus,
sup
t
‖Ht‖2 ≤ sup

t

∥∥∥Ṽ −1
t

∥∥∥2
sup
t

∥∥∥∥∥ F̃ ′tFtt
∥∥∥∥∥

2 ∥∥∥∥Λ′Λ

N

∥∥∥∥2

,

where the first factor is OP (1) given part a) and
∥∥∥Λ′Λ
N

∥∥∥ = O (1) under Assumption 1 c). Thus, it

suffi ces to show that supt

∥∥∥ F̃ ′tFtt ∥∥∥2
= OP (1) . By the Cauchy-Schwarz inequality,∥∥∥∥∥ F̃ ′tFtt

∥∥∥∥∥
2

=

∥∥∥∥∥t−1
t∑

s=1

f̃s,tf
′
s

∥∥∥∥∥
2

≤ t−1
t∑

s=1

∥∥∥f̃s,t∥∥∥2

︸ ︷︷ ︸
=r

t−1
t∑

s=1

‖fs‖2 ≤ r · t−1
t∑

s=1

‖fs‖2 ,

implying that

sup
t

∥∥∥∥∥ F̃ ′tFtt
∥∥∥∥∥

2

≤ r
(
T

R

)
T−1

T∑
s=1

‖fs‖2 = OP (1)
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since supsE ‖fs‖2 = O (1) by Assumption 1 a).

Proof of Lemma A.6. For part a), we follow the proof of result (2) in Bai and Ng (2013; cf.

Appendix B, p. 27). In particular, by the definition of Ht, we can show that for t = R, . . . , T,

HtH
′
t = Ir + C1t + C2t + C3t,

where

C1t = −1

t

t∑
s=1

f̃s,t

(
f̃s,t −Htfs

)′
, C2t = −1

t

t∑
s=1

(
f̃s,t −Htfs

)
f ′sH

′
t

and

C3t = −Ht

(
1

t

t∑
s=1

fsf
′
s − Ir

)
H ′t.

It follows that

sup
t
‖C1t‖ ≤ sup

t


(

1

t

t∑
s=1

∥∥∥f̃s,t∥∥∥2
)1/2(

1

t

t∑
s=1

∥∥∥f̃s,t −Htfs

∥∥∥2
)1/2


= r1/2 sup

t

(
1

t

t∑
s=1

∥∥∥f̃s,t −Htfs

∥∥∥2
)1/2

= OP (1/δN,R) ,

given Theorem 4.1. Similarly,

sup
t
‖C2t‖ ≤

(
sup
t

1

t

t∑
s=1

‖fsHt‖2
)1/2(

sup
t

1

t

t∑
s=1

∥∥∥f̃s,t −Htfs

∥∥∥2
)1/2

= OP (1/δN,R) ,

by Theorem 4.1 and the fact that the first factor can be bounded by(
sup
t

1

t

t∑
s=1

‖fsHt‖2
)1/2

≤ sup
t
‖Ht‖2

(
1

R

T∑
s=1

‖fs‖2
)1/2

= OP (1)

given Lemma A.5.b). Finally, for C3t we have that

sup
t
‖C3t‖ ≤ sup

t
‖Ht‖2 sup

t

∥∥∥∥∥1

t

t∑
s=1

fsf
′
s − Ir

∥∥∥∥∥ = OP

(
1/
√
T
)

given Assumption 1 b) and the fact that T/R = O (1) . This shows that HtH
′
t = Ir + OP (1/δN,R) ,

where the remainder is uniform over t = R, . . . , T. We can now follow the argument in Bai and Ng

(2013) to show that Ht = H0t + OP (1/δN,R) uniformly over t = R, . . . , T , where H0t is a diagonal

matrix with ±1 on the main diagonal. Note that we are not assuming exactly the same identifying

restrictions as Bai and Ng’s (2013) condition PC1. The difference is that we assume that Σf = Ir

instead of assuming that F ′tFt/t = Ir for each t. This explains why we get only the rate 1/δN,R instead

of 1/δ2
N,R. For part b), note that we can show that

Ṽt =
Λ′Λ

N
+OP (1/δN,R)
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by exactly the same argument as Bai and Ng (2013, p. 27). Given our Assumption 1 b), we can write

Ṽt = ΣΛ +OP (1/δN,R) (12)

uniformly over t. Since Ṽ −1
t − Σ−1

Λ = Ṽ −1
t

(
ΣΛ − Ṽt

)
Σ−1

Λ , it follows that

sup
t

∥∥∥Ṽ −1
t − Σ−1

Λ

∥∥∥ ≤ sup
t

∥∥∥Ṽ −1
t

∥∥∥ sup
t

∥∥∥ΣΛ − Ṽt
∥∥∥∥∥Σ−1

Λ

∥∥ = OP (1)OP (1/δN,R)O (1)

given Lemma A.5 b) and (12).

Proof of Lemma A.7. Part a). We rely on Lemma A.1. In particular, for j = 1, . . . , 4,

∥∥∥∥∥1

t

t−1∑
s=1

Ajs,tus+1

∥∥∥∥∥ =

∥∥∥∥∥ 1

t2

t∑
l=1

f̃l,t

(
t−1∑
s=1

φj,l,sus+1

)∥∥∥∥∥ ≤ 1

t

1

t

t∑
l=1

∥∥∥f̃l,t∥∥∥2

︸ ︷︷ ︸
=r


1/21

t

t∑
l=1

∥∥∥∥∥
t−1∑
s=1

φj,l,sus+1

∥∥∥∥∥
2
1/2

=
1

t

√
r

1

t

t∑
l=1

∥∥∥∥∥
t−1∑
s=1

φj,l,sus+1

∥∥∥∥∥
2
1/2

,

where we let φj,l,s be one of
{
γl,s, ζ l,s, ηl,s, ξl,s

}
depending on j = 1, 2, 3, 4. By Lemma A.1.a) through

d), it then follows that

sup
t

∥∥∥∥∥1

t

t−1∑
s=1

Ajs,tus+1

∥∥∥∥∥ ≤ 1

R

√
r

sup
t

1

t

t∑
l=1

∥∥∥∥∥
t−1∑
s=1

φj,l,sus+1

∥∥∥∥∥
2
1/2

= OP

(
1

R

)
if j = 1,

whereas it is OP
(

1
R

√
T√
N

)
= O

(
1√
RN

)
for j = 2, 3, 4, given that T/R = O (1) .

Part b). The same arguments follow by relying on Lemma A.1 e), f), and g). For the last term

involving A4s,t, the analogue of Lemma A.1 d) when we replace us+1 with z′s does not hold because

we cannot claim that supt

∥∥∥ 1√
T

∑t−1
s=1 fsz

′
s

∥∥∥2
= OP (1) since E (fsz

′
s) = (E (fsw

′
s) , E (fsf

′
s)) 6= 0. Thus,

we need a more refined analysis. Replacing A4s,t with its definition yields

sup
t

∥∥∥∥∥t−1
t−1∑
s=1

A4s,tz
′
s

∥∥∥∥∥ = sup
t

∥∥∥∥∥t−1
t−1∑
s=1

t−1
t∑
l=1

f̃l,t

(
1

N

N∑
i=1

λ′ieil

)
fsz
′
s

∥∥∥∥∥
= sup

t

∥∥∥∥∥t−1
t∑
l=1

f̃l,t

(
1

N

N∑
i=1

λ′ieil

)
t−1

t−1∑
s=1

fsz
′
s

∥∥∥∥∥
≤ sup

t

∥∥∥∥∥t−1
t−1∑
s=1

fsz
′
s

∥∥∥∥∥ sup
t

∥∥∥∥∥t−1
t∑
l=1

f̃l,t

(
1

N

N∑
i=1

λ′ieil

)∥∥∥∥∥ ,
where supt

∥∥∥t−1
∑t−1

s=1 fsz
′
s

∥∥∥ is bounded under Assumption 6. By adding and subtracting appropriately,
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we can write

sup
t

∥∥∥∥∥t−1
t∑
l=1

f̃l,t

(
1

N

N∑
i=1

λ′ieil

)∥∥∥∥∥ ≤ sup
t

∥∥∥∥∥t−1
t∑
l=1

(
f̃l,t −Htfl

)( 1

N

N∑
i=1

λ′ieil

)∥∥∥∥∥
+ sup

t
‖Ht‖ sup

t

∥∥∥∥∥t−1
t∑
l=1

fl

(
1

N

N∑
i=1

λ′ieil

)∥∥∥∥∥ .
The first term can be shown to be OP (1/δN,R) × OP

(
1/
√
N
)
given Theorem 4.1 and the fact that

1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 λ

′
ieil

∥∥∥2
= OP (1) under our assumptions. Thus, this term is OP

(
1/δ2

N,R

)
. For the

second term, given that supt ‖Ht‖ = OP (1), it suffi ces that

sup
t

∥∥∥∥∥t−1
t∑
l=1

fl

(
1

N

N∑
i=1

λ′ieil

)∥∥∥∥∥ =

(
T

R

)
1√
TN

sup
t

∥∥∥∥∥ 1√
TN

t∑
l=1

N∑
i=1

flλ
′
ieil

∥∥∥∥∥ = OP

(
1/
√
TN

)
,

which follows under Assumption 3 e). This concludes the proof of part b).

Proof of Lemma A.8. Part a). Given the equality (9) and the definitions of V̂ (t) and V (t),

we have that

V̂ (t)−HtV (t) =
1

t

t−1∑
s=1

(z̃s,t − Φtzs)us+1 =

(
0

1
t

∑t−1
s=1

(
f̃s,t −Htfs

)
us+1

)
,

which implies that

sup
t

∥∥∥V̂ (t)−HtV (t)
∥∥∥ = sup

t

∥∥∥∥∥1

t

t−1∑
s=1

(
f̃s,t −Htfs

)
us+1

∥∥∥∥∥
≤ sup

t

∥∥∥Ṽ −1
t

∥∥∥ 4∑
j=1

sup
t

∥∥∥∥∥1

t

t−1∑
s=1

Ajs,tus+1

∥∥∥∥∥ = OP

(
1

R

)
+OP

(
1√
RN

)
= OP

(
1√

RδN,R

)
,

by Lemmas A.5 and A.7.

Part b). Given the equality A−1 − B−1 = A−1 (B −A)B−1, and the fact that supt

∥∥∥B̂ (t)
∥∥∥ =

OP (1) and supt
∥∥Φ′−1

t B (t) Φ−1
t

∥∥ ≤ supt
∥∥Φ−1

t

∥∥2
supt ‖B (t)‖ = OP (1), it suffi ces to consider

B̂−1 (t)− ΦtB
−1 (t) Φ′t = t−1

t−1∑
s=1

(
z̃s,tz̃

′
s,t − Φtzsz

′
sΦ
′
t

)
= F1t + F2t + F ′2t,

where

F1t = t−1
t−1∑
s=1

(z̃s,t − Φtzs) (z̃s,t − Φtzs)
′ and F2t = t−1

t−1∑
s=1

(z̃s,t − Φtzs) z
′
sΦ
′
t.

By the triangle inequality and Theorem 4.1,

‖F1t‖ ≤ t−1
t−1∑
s=1

‖z̃s,t − Φtzs‖2 = t−1
t−1∑
s=1

∥∥∥f̃s,t −Htfs

∥∥∥2
= OP

(
1

δ2
N,T

)
.
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For F2t, note that

F2t = t−1
t−1∑
s=1

(z̃s,t − Φtzs) z
′
sΦ
′
t =

(
0

t−1
∑t−1

s=1

(
f̃s,t −Htfs

)
z′sΦ

′
t

)
,

where f̃s,t −Htfs = Ṽ −1
t (A1s,t +A2s,t +A3s,t +A4s,t). Thus,

F2t = Ṽ −1
t

(
t−1

t−1∑
s=1

(A1s,t +A2s,t +A3s,t +A4s,t) z
′
s

)
Φ′t,

which given Lemma A.7 is bounded in norm by

sup
t
‖F2t‖ ≤ sup

t

∥∥∥Ṽ −1
t

∥∥∥ sup
t
‖Φt‖

4∑
j=1

sup
t

∥∥∥∥∥1

t

t−1∑
s=1

Ajs,tz
′
s

∥∥∥∥∥ = OP

(
1

R

)
+OP

(
1√
RN

)
+OP

(
1√
RN

)
+OP

(
1

δ2
N,R

)
,

which is OP
(
δ−2
N,R

)
.

Part c). We have that

sup
t

∥∥∥V̂ (t)
∥∥∥ ≤ sup

t

∥∥∥V̂ (t)− ΦtV (t)
∥∥∥+ sup

t
‖Φt‖ sup

t
‖V (t)‖ ,

where supt ‖V (t)‖ = OP

(
1/
√
T
)
given Assumption 6 b).

Part d). Since there are no factors in the benchmark model, we can write

t−1
t−1∑
s=1

z̃s,t (z̃s,t − Φtzs)
′Φ′−1

t δ = t−1
t−1∑
s=1

z̃s,t

(
f̃s,t −Htfs

)′
H ′−1
t

(
T−1/2α

)
,

where we have used the local-to-zero parametrization of the DGP given in (6). It follows that

sup
t

∥∥∥∥∥t−1
t−1∑
s=1

z̃s,t

(
f̃s,t −Htfs

)′
H ′−1
t

(
T−1/2α

)∥∥∥∥∥
≤ sup

t

∥∥H−1
t

∥∥T−1/2 ‖α‖ sup
t

∥∥∥∥∥t−1
t−1∑
s=1

z̃s,t

(
f̃s,t −Htfs

)∥∥∥∥∥
≤ sup

t

∥∥H−1
t

∥∥T−1/2 ‖α‖ sup
t

(
t−1

t−1∑
s=1

‖z̃s,t‖2
)1/2

sup
t

(
t−1

t−1∑
s=1

∥∥∥f̃s,t −Htfs

∥∥∥2
)1/2

= OP

((√
TδN,R

)−1
)
.

Proof of Lemma A.9. Part a). Given that δ̈t − δ = B (t)V (t), we can write

T−1∑
t=R

ut+1 (z̃t,t − Φtzt)
′Φ′−1

t

(
δ̈t − δ

)
=

T−1∑
t=R

ut+1 (z̃t,t − Φtzt)
′Φ′−1

t B (t)V (t) = A1 +A2,

where

A1 =

T−1∑
t=R

ut+1 (z̃t,t − Φtzt)
′Φ′−1

0t BV (t) , and A2 =

T−1∑
t=R

ut+1 (z̃t,t − Φtzt)
′ (Φ′−1

t B (t)− Φ′−1
0t B

)
V (t) .
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Let B = (E (zsz
′
s))
−1 and note that by Assumption 6, supt ‖B (t)−B‖ = OP

(
1/
√
T
)
. By the triangle

and Cauchy-Schwarz inequalities,

|A2| ≤
T−1∑
t=R

|ut+1| ‖z̃t,t − Φtzt‖
∥∥Φ′−1

t B (t)− Φ′−1
0t B

∥∥ ‖V (t)‖

≤ sup
t

∥∥Φ′−1
t B (t)− Φ′−1

0t B
∥∥ sup

t
‖V (t)‖T

(
1

T

T∑
t=1

u2
t+1

)1/2(
1

T

T∑
t=1

‖z̃t,t − Φtzt‖2
)1/2

= OP

(
1

δN,T

)
OP

(
1√
T

)
O (T )OP

(
1

δN,T

)
= OP

( √
T

δ2
N,T

)
= oP (1) ,

if
√
T/N → 0, where we have used Theorem 4.1 to bound 1

T

∑T
t=1 ‖z̃t,t − Φtzt‖2, and where (1)

supt
∥∥Φ′−1

t B (t)− Φ′−1
0t B

∥∥ = OP (1/δN,T ), (2) supt ‖V (t)‖ = OP

(
1/
√
T
)
, (3) 1

T

∑T
t=1 u

2
t+1 = OP (1)

hold under our assumptions. To see (1), note that

sup
t

∥∥Φ′−1
t B (t)− Φ′−1

0t B
∥∥ ≤ sup

t

∥∥Φ−1
t − Φ−1

0t

∥∥ sup
t
‖B (t)‖+ sup

t

∥∥Φ−1
0t

∥∥ sup
t
‖B (t)−B‖

= OP (1/δN,T ) +OP

(
1/
√
T
)

= OP (1/δN,T ) ,

given Assumption 6 and the fact that supt
∥∥Φ−1

t − Φ−1
0t

∥∥ is bounded by supt
∥∥H−1

t −H−1
0t

∥∥, which is
OP (1/δNT ) by Lemma A.6; (2) and (3) follow easily under Assumption 6. For A1, note that given

that z̃t,t − Φtzt =

(
0′,
(
f̃t,t −Htft

)′)
and Φ0t = diag (Ik1 , H0t), with H0t = diag (±1), we can write

(z̃t,t − Φtzt)
′Φ′−1

0t B =
(
f̃t,t −Htft

)′
H0tC,

where C is a r × (r + k1) submatrix of B containing its last r rows. It follows that

A1 =

T−1∑
t=R

ut+1

(
f̃t,t −Htft

)′
H0tCV (t) =

1√
T

T−1∑
t=R

(
f̃t,t −Htft

)′
H0tC

(√
TV (t)ut+1

)
︸ ︷︷ ︸

≡Ut,T

,

where we note that Ut,T is a martingale difference sequence array with respect to F t given Assumption

5. Given the decomposition (9), we can write

f̃t,t −Htft = V −1
0 (A1t,t +A2t,t +A3t,t +A4t,t) +

(
Ṽ −1
t − V −1

0

)
(A1t,t +A2t,t +A3t,t +A4t,t) ,

which implies that we can decompose A1 into the sum of A1.1 and A1.2 with

A1.1 =
1√
T

T−1∑
t=R

(A1t,t +A2t,t +A3t,t +A4t,t)
′ V ′−1

0 H0tCUt,T ,

A1.2 =
1√
T

T−1∑
t=R

(A1t,t +A2t,t +A3t,t +A4t,t)
′
(
Ṽ −1
t − V −1

0

)′
H0tCUt,T .
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We can prove that ‖A1.2‖ = OP

( √
T

δ2N,T

)
= oP (1) if

√
T/N → 0, given that supt

∥∥∥Ṽ −1
t − V −1

0

∥∥∥ =

OP

(
1

δNT

)
by Lemma A.6; that 1

T

∑T−1
t=R ‖Ajt,t‖

2 = OP

(
1

δ2NT

)
for all j = 1, . . . , 4 by Lemma A.4 a),

and given that 1
T

∑T
t=R ‖Ut,T ‖

2 = OP (1) by Lemma A.3 a). So, we concentrate on A1.1. We can

decompose

A1.1 = R1 +R2 +R3 +R4 ≡
4∑
j=1

Rj

with obvious definitions. Let φ1,l,t = γl,t, φ2,l,t = ζ l,t, φ3,l,t = ηl,t, and φ4,l,t = ξl,t. Given the definition

of Ajt,t for j = 1, . . . , 4, we can write

Ajt,t =
1

t

t∑
l=1

f̃l,tφj,l,t = H0t
1

t

t∑
l=1

flφj,l,t +
1

t

t∑
l=1

(
f̃l,t −H0tfl

)
φj,l,t, (13)

which implies that

Rj =
1√
T

T−1∑
t=R

(
1

t

t∑
l=1

flφj,l,t

)′
V −1

0 CUt,T+
1√
T

T−1∑
t=R

1

t

t∑
l=1

(
f̃l,t −H0tfl

)′
φj,l,tV

′−1
0 H0tCUt,T ≡ R1j+R2j ,

where we have used the fact that V0 is diagonal under our assumptions and H0t = diag (±1) to

write H ′0tV
′−1

0 H0t = V −1
0 when defining R1j . By Lemma A.3, we can conclude that R11 = OP

(
1√
T

)
,

whereas R1j = OP

(
1√
N

)
for j = 2, 3, 4. For R2j , note that

‖R2j‖ ≤
√
T
∥∥V −1

0

∥∥ sup
t
‖H0t‖

1

T

T∑
t=R

‖Ut,T ‖
∥∥∥∥∥1

t

t∑
l=1

(
f̃l,t −H0tfl

)′
φj,l,t

∥∥∥∥∥
≤
√
T
∥∥V −1

0

∥∥ sup
t
‖H0t‖

(
1

T

T∑
t=R

‖Ut,T ‖2
)1/2

 1

T

T∑
t=R

∥∥∥∥∥1

t

t∑
l=1

(
f̃l,t −H0tfl

)′
φj,l,t

∥∥∥∥∥
2
1/2

≤
√
T
∥∥V −1

0

∥∥ sup
t
‖H0t‖

(
sup
t

1

t

t∑
l=1

∥∥∥f̃l,t −H0tfl

∥∥∥2
)1/2(

1

T

T∑
t=R

‖Ut,T ‖2
)1/2(

1

TR

T∑
t=1

T∑
l=1

φ2
j,l,t

)1/2

.

Note that 1
TR

∑T
t=1

∑T
l=1 γ

2
l,t = O (1/T ) under Assumption 2 c), whereas 1

TR

∑T
t=1

∑T
l=1 φ

2
j,l,t =

OP (1/N) for j = 2, 3, and 4 under Assumptions 2 d) and e). Moreover,

sup
t

1

t

t∑
l=1

∥∥∥f̃l,t −H0tfl

∥∥∥2
= sup

t

1

t

t∑
l=1

∥∥∥f̃l,t −Htfl + (Ht −H0t) fl

∥∥∥2

≤ 2

{
sup
t

1

t

t∑
l=1

∥∥∥f̃l,t −Htfl

∥∥∥2
+ sup

t
‖Ht −H0t‖2

1

R

T∑
l=1

‖fl‖2
}

= OP
(
1/δ2

N,R

)
+OP

(
1/δ2

N,R

)
= OP

(
1/δ2

N,R

)
,

by Lemma A.6 and Theorem 4.1. Since 1
T

∑T
t=R ‖Ut,T ‖

2 = OP (1) by Lemma A.3 a), it follows that

‖R2j‖ = OP

(
1

δNT

)
when j = 1,
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whereas for j ≥ 2,

‖R2j‖ = OP

( √
T

δNT
√
N

)
,

which is OP
(

1√
N

)
if δNT =

√
T and OP

(√
T
N

)
if δNT =

√
N. Thus, A1.1 = OP

(
1

δNT

)
+OP

(√
T
N

)
=

oP (1) if
√
T/N → 0, which concludes part a).

Part b). Given the decomposition of δ̂t − Φ′−1
t δ̈t in (10), we can write

T−1∑
t=R

ut+1z̃
′
t,t

(
δ̂t − Φ′−1

t δ̈t

)
= B1 + B2 + B3,

where

B1 =

T−1∑
t=R

ut+1z̃
′
t,tΦ
′−1
t B (t) Φ−1

t

(
V̂ (t)− ΦtV (t)

)
, B2 =

T−1∑
t=R

ut+1z̃
′
t,t

(
B̂ (t)− Φ′−1

t B (t) Φ−1
t

)
V̂ (t) ,

and

B3 = −
T−1∑
t=R

ut+1z̃
′
t,tB̂ (t) t−1

t−1∑
s=1

z̃s,t (z̃s,t − Φtzs)
′Φ′−1

t δ.

We can easily show that B2 = OP

( √
T

δ2NT

)
= oP (1) if

√
T/N → 0, given in particular Lemma A.8 b)

and c). For B1, note that we can show that under our assumptions,

B1 =
T−1∑
t=R

ut+1z
′
tBΦ0t

(
V̂ (t)− ΦtV (t)

)
+OP

(√
T

δ2
NT

)
≡ C +OP

(√
T

δ2
NT

)
.

This follows by first replacing z̃t,t with Φtzt + (z̃t,t − Φtzt) and then replacing B (t) Φ−1
t with BΦ−1

0t +(
B (t) Φ−1

t −BΦ−1
0t

)
, where we note that Φ−1

0t = Φ0t. The extra terms can be shown to be OP
( √

T
δ2NT

)
by applying Theorem 4.1 and Lemma A.8. Notice that we can write

V̂ (t)− ΦtV (t) = t−1
t−1∑
s=1

(z̃s,t − Φtzs)us+1 =

(
0

t−1
∑t−1

s=1

(
f̃s,t −Htfs

)
us+1

)

=

(
0k1×r
Ir×r

)
︸ ︷︷ ︸

≡J

Ṽ −1
t

4∑
j=1

(
t−1

t−1∑
s=1

Ajs,tus+1

)
.

With this notation,

C =

T−1∑
t=R

ut+1z
′
tBΦ0tJṼ

−1
t

4∑
j=1

(
t−1

t−1∑
s=1

Ajs,tus+1

)
≡ C1 + C2,

where

C1 =
T−1∑
t=R

ut+1z
′
tBΦ0tJV

−1
0

4∑
j=1

(
t−1

t−1∑
s=1

Ajs,tus+1

)
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and

C2 =
T−1∑
t=R

ut+1z
′
t (BΦ0tJ)

(
Ṽ −1
t − V −1

0

) 4∑
j=1

(
t−1

t−1∑
s=1

Ajs,tus+1

)
.

We can easily show that C2 = OP

( √
T

δ2NT

)
by the usual inequalities, given Lemmas A.6 b) and A.7 a)

and b). Consider C1. We have that C1 =
∑4

j=1 Sj , where

Sj =

T−1∑
t=R

ut+1z
′
tΨ0t

(
t−1

t−1∑
s=1

Ajs,tus+1

)
, where Ψ0t ≡ BΦ0tJV

−1
0 .

Given the definition of Ajs,t, by adding and subtracting appropriately (see (13) with s = t), we can

write Sj = S1j + S2j , where

S1j =
T−1∑
t=R

ut+1z
′
tΨ0tH0t

1

t

t−1∑
s=1

1

t

t∑
l=1

flφj,l,sus+1

and

S2j =
T−1∑
t=R

ut+1z
′
tΨ0t

1

t

t−1∑
s=1

1

t

t∑
l=1

(
f̃l,t −H0tfl

)
φj,l,sus+1.

It follows that

sup
t
|S2j | ≤ sup

t
‖Ψ0t‖

1

R

T−1∑
t=R

‖ut+1zt‖ sup
t

∥∥∥∥∥1

t

t∑
l=1

(
f̃l,t −H0tfl

) t−1∑
s=1

φj,l,sus+1

∥∥∥∥∥
≤ sup

t
‖Ψ0t‖

1

R

T−1∑
t=R

‖ut+1zt‖
(

sup
t

1

t

t∑
l=1

∥∥∥f̃l,t −H0tfl

∥∥∥2
)1/2

sup
t

1

t

t∑
l=1

(
t−1∑
s=1

φj,l,sus+1

)2
1/2

.

By Lemma A.7, the last factor is OP (1) when j = 1, which implies that supt |S2j | = OP (1/δNT ) for

this value of j. For j = 2, 3, and 4, Lemma A.1 implies that the last factor is OP
(√

T/N
)
, which

implies that supt |S2j | = OP (1/δNT )OP

(√
T/N

)
= oP (1) if

√
T/N → 0. Hence, we conclude that

C1 =
4∑
j=1

S1j + oP (1) ,

where we can write

S1j =
1

T

T−1∑
t=R

sj,t+1

with sj,t+1 ≡ ut+1z
′
tZjt and Zjt = Ψ0tH0t

(
T
t

)
1
t

∑t−1
s=1

∑t
l=1 flφj,l,sus+1. Noting that Zjt is a func-

tion of σ (zt, zt−1, . . . ;ut, ut−1, . . . ; et, et−1, . . .) and that this information set is identical to F t =

σ (zt, zt−1, . . . ; yt, yt−1, . . . ;Xt, Xt−1, . . .), given that yt+1 = z′tδ + ut+1 and that Xt = Λft + et, it
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follows that E
(
sj,t+1|F t

)
= 0 by Assumption 5. Thus,

V ar (S1j) =
1

T 2

T−1∑
t=R

E
(
s2
j,t+1

)
=

1

T 2

T−1∑
t=R

E
[(
ut+1z

′
tZjt

)2]
≤ 1

T 2

T−1∑
t=R

E
[∥∥ut+1z

′
t

∥∥2 ‖Zjt‖2
]

≤ 1

T 2

T−1∑
t=R

(
E
∥∥ut+1z

′
t

∥∥4
)1/2 (

E ‖Zjt‖4
)1/2

≤ 1

T

(
sup
t
E ‖Zjt‖4

)1/2 1

T

T−1∑
t=R

(
E
∥∥ut+1z

′
t

∥∥4
)1/2

.

We can check that suptE ‖Z1t‖4 = OP (1) and suptE ‖Zjt‖4 = OP

(
(T/N)2

)
for j = 2, 3, 4 by Lemma

A.2. Since E ‖ut+1z
′
t‖

4 ≤ M by Assumption 6, it follows that V ar (S1j) is equal to O (1/T ) when

j = 1 and O (1/N) when j = 2, 3, or 4. This shows that S1j = oP (1) and concludes the proof that

B1 = oP (1) . Finally, we show that B3 = oP (1) . This term can be written as

B3 = −
T−1∑
t=R

ut+1z̃
′
t,tB̂ (t) t−1

t−1∑
s=1

z̃s,t

(
f̃s,t −Htfs

)′
H ′−1
t

α√
T
.

By adding an subtracting appropriately, we can show that

B3 = −
T−1∑
t=R

ut+1z
′
tBΦ0tt

−1
t−1∑
s=1

zs

(
f̃s,t −Htfs

)′
H ′−1
t

α√
T

+OP

( √
T

δ2
N,T

)
.

By using the decomposition for f̃s,t −Htfs, the leading term of B3 is asymptotically equal to

−
T−1∑
t=R

ut+1z
′
tBΦ0t

(
t−1

t−1∑
s=1

zs (A1s,t + . . .+A4s,t)
′
)
V −1

0 H ′−1
0t

α√
T

We can then use the triangle inequality and Lemma A.7 b) to bound this term by a term of order

OP

(√
T/δ2

N,T

)
= oP (1) given the rate restriction

√
T/N → 0. This completes the proof of part b).

Part c). We can write

T−1∑
t=R

ut+1 (z̃t,t − Φtzt)
′Φ′−1

t δ

=

T−1∑
t=R

ut+1

(
f̃t,t −Htft

)′
H ′−1
t

α√
T

=

T−1∑
t=R

ut+1

(
f̃t,t −Htft

)′
H ′−1

0t

α√
T

+

T−1∑
t=R

ut+1

(
f̃t,t −Htft

)′ (
H−1
t −H−1

0t

)′ α√
T
.

The second term can be bounded by OP

(√
T/δ2

NT

)
= oP (1) if

√
T/N → 0 by using the same

arguments as those used in part a) of this lemma to show that A2 = oP (1) . Similarly, we can prove

that the first term is oP (1) by relying on the same arguments as those used in part a) to show that

A1 = oP (1).
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A.3 Proof of results in Section 4

Proof of Theorem 4.1. Part a). By (9), it follows that

1

P

T−1∑
t=R

∥∥∥f̃t,t −Htft

∥∥∥2
=

1

P

T−1∑
t=R

∥∥∥Ṽ −1
t (A1t,t +A2t,t +A3t,t +A4t,t)

∥∥∥2

≤ 4 sup
t

∥∥∥Ṽ −1
t

∥∥∥2
(

1

P

T−1∑
t=R

‖A1t,t‖2 +
1

P

T−1∑
t=R

‖A2t,t‖2 +
1

P

T−1∑
t=R

‖A3t,t‖2 +
1

P

T−1∑
t=R

‖A4t,t‖2
)

where supt

∥∥∥Ṽ −1
t

∥∥∥2
= OP (1) by Lemma A.5. The result now follows by Lemma A.4.a), which shows

that the first term inside the parentheses is OP (1/T ), whereas the remaining terms are OP (1/N) .

Part b). The proof follows exactly the same reasoning as part a), given Lemma A.4.b).

Proof of Lemma 4.1. The proof is immediate given Lemma A.8.

Proof of Lemma 4.2. The proof is immediate given (11) and Lemma A.9.

Proof of Theorem 4.2. The proof follows from Lemma 2.1, given Lemmas 4.1 and 4.2 and the

arguments described in the main text.
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T N ENC-F(f) ENC-F(f^) MSE-F(f) MSE-F(f^) ENC-F(f) ENC-F(f^) MSE-F(f) MSE-F(f^) ENC-F(f) ENC-F(f^) MSE-F(f) MSE-F(f^)

10 11.8 11.4 10.1 9.9 9.6 9.2 6.7 6.8 10.0 9.4 5.8 6.1
20 11.9 11.6 10.2 10.0 9.6 9.3 6.8 6.7 9.9 9.7 5.8 5.9

25 50 11.9 11.8 10.2 10.2 9.7 9.6 6.8 6.8 10.1 10.0 5.7 5.8
100 11.7 11.8 10.1 10.0 9.6 9.6 6.7 6.8 10.0 9.9 5.7 5.7
200 12.1 12.1 10.3 10.4 9.7 9.6 6.8 6.8 10.0 10.0 5.8 5.8

10 8.4 8.3 7.8 7.8 7.0 6.8 6.0 5.9 7.2 6.9 5.2 5.4
b = 0 20 8.5 8.6 8.0 8.1 7.1 7.1 5.9 6.0 7.3 7.2 5.3 5.4
(size) 50 50 8.3 8.4 7.8 7.9 7.1 7.0 6.0 5.9 7.2 7.0 5.2 5.2

100 8.4 8.4 7.9 7.8 7.0 6.9 5.9 5.9 7.2 7.2 5.2 5.2
200 8.3 8.4 7.7 7.8 6.9 6.9 5.9 5.9 7.1 7.1 5.1 5.1

10 6.6 6.6 6.7 6.6 6.0 5.9 5.5 5.5 5.9 5.8 5.2 5.2
20 6.7 6.7 6.7 6.7 6.0 6.0 5.5 5.5 5.9 5.9 5.1 5.1

100 50 6.8 6.7 6.8 6.8 6.0 5.9 5.5 5.4 5.9 5.9 5.1 5.1
100 6.7 6.7 6.7 6.7 6.0 6.0 5.6 5.6 5.9 5.9 5.2 5.2
200 6.8 6.8 6.7 6.8 6.0 6.1 5.6 5.6 6.0 6.0 5.2 5.2

10 5.9 5.9 6.1 6.1 5.4 5.4 5.3 5.3 5.2 5.1 5.0 4.9
20 6.1 6.0 6.2 6.2 5.4 5.5 5.3 5.3 5.2 5.3 5.0 5.1

200 50 6.0 6.0 6.1 6.2 5.4 5.5 5.3 5.3 5.3 5.3 5.0 5.0
100 5.9 6.0 6.2 6.1 5.5 5.5 5.2 5.3 5.3 5.3 5.0 5.0
200 6.0 6.0 6.2 6.3 5.5 5.5 5.3 5.2 5.4 5.4 5.1 5.1

10 35.7 28.7 29.0 23.7 38.0 28.8 28.7 22.0 37.3 27.9 27.1 20.8
20 35.6 32.1 29.2 26.3 37.9 32.9 28.5 25.1 37.1 32.0 27.0 23.5

25 50 35.8 34.4 28.8 27.7 38.0 36.0 28.7 27.4 37.3 35.3 27.2 26.0
100 35.9 35.1 29.1 28.6 37.7 36.8 28.4 27.7 37.1 36.2 27.0 26.3
200 35.7 35.3 28.9 28.7 37.9 37.5 28.6 28.3 37.3 36.7 27.2 26.7

10 51.4 41.3 41.5 33.8 60.7 47.4 48.8 38.3 61.9 47.9 51.0 39.7
20 51.3 46.3 41.3 37.5 60.7 54.2 48.9 43.9 61.7 54.9 51.0 45.6
50 51.5 49.5 41.4 40.0 60.7 58.2 49.0 47.0 61.9 59.1 51.2 48.9

b = 0.3 50 100 51.4 50.3 41.4 40.6 60.8 59.5 49.0 48.0 61.8 60.5 51.2 50.1
(power) 200 51.6 51.1 41.6 41.2 60.7 59.9 48.7 48.2 61.7 61.1 51.0 50.4

10 73.6 62.9 58.0 49.9 88.0 76.5 74.4 63.5 89.1 77.3 79.7 68.0
20 73.6 68.6 58.1 54.0 87.6 82.6 74.1 69.2 88.8 83.8 79.2 74.1
50 73.3 71.5 57.6 56.2 88.0 86.1 74.1 72.2 89.1 87.3 79.5 77.5

100 100 73.4 72.4 57.8 56.9 87.9 87.0 74.2 73.3 88.9 88.1 79.4 78.4
200 73.7 73.3 58.1 57.8 87.9 87.4 74.2 73.7 89.0 88.5 79.3 78.9

10 92.2 85.3 74.8 67.6 99.2 96.1 92.2 85.7 99.5 96.8 96.0 90.6
20 92.2 89.2 74.6 71.3 99.1 98.2 92.2 89.4 99.5 98.7 95.9 93.8
50 92.2 91.1 74.7 73.4 99.2 98.9 92.1 91.1 99.4 99.2 95.9 95.3

200 100 92.2 91.6 74.7 74.0 99.1 99.0 92.0 91.6 99.5 99.3 95.8 95.5
200 92.2 91.9 74.5 74.2 99.2 99.1 92.1 91.8 99.4 99.4 95.8 95.6

Table 1. Size and power for MSE-F and ENC-F (%)

π = 0.2 π = 2π = 1



Table 2: Factor-based forecasting of the equity premium

Calendar time

1985:01 - 2014:12 2005:01 - 2014:12

Model Ratio MSE-F ENC-F Model Ratio MSE-F ENC-F

2 0.98 5.52* 7.14* 2, 8 0.95 5.73* 5.49*
2, 6 0.99 4.82* 6.21* 2, 6, 8 0.96 5.51* 4.87*
2, 8 0.99 4.71* 8.05* 2, 5, 8 0.96 5.46* 5.41*
2, 6, 8 0.99 4.22* 7.21* 2, 5, 6, 8 0.96 5.26* 4.79*
2, 4 0.99 3.56* 5.99* 2, 4, 8 0.96 4.66* 3.47*
2, 3 0.99 3.42* 7.43* 2, 4, 5, 8 0.96 4.45* 3.39*
2, 4, 8 0.99 3.28* 6.89* 2 0.97 4.33* 4.21*
2, 7 0.99 3.15* 6.88* 2, 5 0.97 3.99* 4.11*
2, 3, 6 0.99 3.12* 6.58* 2, 6 0.97 3.86* 3.50*
2, 3, 8 0.99 2.97* 8.32* 2, 4, 6, 8 0.97 3.56* 2.86*

Data-release time

1985:01 - 2014:12 2005:01 - 2014:12

Model Ratio MSE-F ENC-F Model Ratio MSE-F ENC-F

2, 7 0.99 2.47* 3.08* 2, 8 0.98 2.51* 2.17*
2, 6, 7 1.00 1.51 2.69 2, 4, 8 0.98 2.36* 2.48*
2 1.00 1.47 2.25* 2, 7, 8 0.98 2.21* 1.79*
2, 7, 8 1.00 0.94 2.77 2, 4, 7, 8 0.98 2.15* 2.09*
2, 6 1.00 0.07 1.87 2 0.98 2.03* 1.77*
2, 6, 7, 8 1.00 0.07 2.41 2, 4 0.98 1.83* 2.05*
7 1.00 -0.09 0.80 2, 7 0.99 1.68* 1.38*
2, 3, 7 1.00 -0.10 2.50 2, 4, 7 0.99 1.58 1.66*
2, 4, 7 1.00 -0.13 2.28 2, 3, 8 0.99 1.26 1.90*
2, 8 1.00 -0.15 1.95 2, 3, 4, 8 0.99 1.17 2.21*

Note: The table reports empirical evidence regarding the use of factor-based models for pre-
dicting the equity premium at the one-month horizon. Only the top 10 models, by MSE, are
reported. The top panel uses factors estimates dated by calendar time while the lower panel
uses factor estimates dated by data-release time. Model denotes which factors are included in
a given model. Ratio denotes MSE(factor)/MSE(benchmark). An asterisk next to the values
of the MSE-F and ENC-F denote significant at the 5% level.
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