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Abstract

Continued consolidation of the U.S. banking industry and general increase in the
size of banks has prompted some policymakers to consider policies to discourage banks
from getting larger, including explicit caps on bank size. However, limits on the size of
banks could entail economic costs if they prevent banks from achieving economies of
scale. The extent of scale economies in banking remains unclear. This paper presents
new estimates of returns to scale for U.S. banks based on nonparametric, local-linear
estimation of bank cost, revenue and profit functions. We present estimates for both
2006 and 2014 to compare the extent of scale economies in banking some six years
after the financial crisis and four years after enactment of the Dodd-Frank Act with
scale economies prior to the crisis. We find that a high percentage of banks faced
increasing returns to scale in cost in both years, including all of the 10 largest bank
holding companies. Revenue and profit economies vary more across banks, though in
both years nearly all banks could increase revenue and profit by becoming larger.

∗Wheelock: Research Department, Federal Reserve Bank of St. Louis, P.O. Box 442, St. Louis, MO 63166–
0442; wheelock@stls.frb.org. Wilson: Department of Economics and School of Computing, Division of Com-
puter Science, Clemson University, Clemson, South Carolina 29634–1309, USA; email pww@clemson.edu.
This research was conducted while Wilson was a visiting scholar in the Research Department of the Federal
Reserve Bank of St. Louis. We thank the Cyber Infrastructure Technology Integration group at Clemson
University for operating the Palmetto cluster used for our computations. We thank three anonymous ref-
erees for comments, and Peter McCrory and Paul Morris for research assistance. The views expressed in
this paper do not necessarily reflect official positions of the Federal Reserve Bank of St. Louis or the Federal
Reserve System. JEL classification nos.: G21, L11, C12, C13, C14. Keywords: banks, returns to scale, scale
economies, nonparametric, regression.



1 Introduction

The financial crisis of 2007–08 raised new concerns about the size and complexity of the

world’s largest banking organizations. Many of the largest banks are now considerably

bigger than they were before the crisis. For example, on December 31, 2006, the largest

U.S. bank holding company (Citigroup) had total consolidated assets of $1.9 trillion, while

two others (Bank of America and JPMorgan Chase) also had more than $1 trillion of assets.

By contrast, on December 31, 2014, the largest holding company (JPMorgan Chase) had

$2.6 trillion of assets and four others had assets in excess of $1.5 trillion.

Are banks destined to become ever larger and, if so, is that cause for concern? The

answer to this question depends, in part, on why banks have been getting larger. The policy

implications are likely different if banks are growing larger to exploit technologically-driven

scale economies than if government policies that encourage large size or excessive risk taking

are driving bank growth. Of particular concern is the perception that regulators consider

very large banks “too-big-to-fail” (TBTF), which would provide an implicit funding subsidy

to banks that exceed a certain size threshold. The Dodd-Frank Wall Street Reform and

Consumer Protection Act of 2010 was intended to eliminate TBTF by establishing a formal

process for resolving failures of large financial institutions, as well as by imposing a tighter

financial regulatory regime. However, some economists and policymakers argue that Dodd-

Frank does not go far enough to contain TBTF, and that banks should be subject to firm

caps on their size (e.g., Fisher and Rosenblum, 2012). The imposition of size limits on banks

could have a downside, however, if they prevent banks from achieving economies of scale

(as noted, e.g., by Stern and Feldman, 2009). Hence, the extent to which there are scale

economies in banking is an important question that has attracted renewed interest among

researchers and policy makers.

Conventional wisdom, based largely on studies that use data from the 1980s and 1990s,

holds that banks exhaust scale economies at low levels of output, e.g., $100–$300 million of

total assets. However, several recent studies find evidence of increasing returns to scale (IRS)

among much larger banks, including banks with more than $1 trillion of assets. Improved

estimation methods and data could explain the difference in findings between older studies

and more recent ones.1 However, recent advances in technology and changes in regulation are

1 Studies of scale economies in banking from the 1980s and before typically relied on estimation of translog
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often thought to have favored larger banks, and perhaps increased the size range over which

banks could experience IRS (Berger, 2003; Mester, 2005). Wheelock and Wilson (2009) find

that larger banks experienced larger gains in productivity over 1985–2004 than did smaller

banks. Feng and Serletis (2009) find similar evidence for 1998–2005. These studies suggest

that technological advances may have also generated IRS for banks.

Using a variety of methodologies and datasets, several recent studies find more evidence

of substantial economies of scale in banking, with some finding that even very large banks

operate under IRS (e.g., Wheelock and Wilson, 2012; Hughes and Mester, 2013; and Kovner

et al., 2014 for U.S. banks, and Becalli et al., 2015 for European banks). However, other

studies are less conclusive (e.g., Feng and Zhang, 2014; Restrepo-Tobón and Kumbhakar,

2015) and questions remain.

Most studies use data on banks from before the financial crisis of 2007–08 or just shortly

thereafter. However, many of the largest U.S. banks have continued to grow even larger since

the crisis, perhaps to the point of exhausting potential scale economies. Moreover, changes

in bank regulation, notably the Dodd-Frank Act of 2010, may have affected the extent of

scale economies available for U.S. banks by altering the environment in which banks operate.

Hence, the findings of studies that use recent data might differ from those using older data,

especially for the largest banks. Further, most studies estimate returns to scale (RTS) from

the perspective of bank cost; few consider whether there are RTS in terms of bank revenues or

profits. Although estimates of RTS from a cost perspective provide an indication of whether

society’s resources are employed efficiently in providing banking services, economies of scale

in revenue or profit are of concern to bank shareholders, as well as to policymakers interested

in the forces driving industry consolidation.

This paper presents new estimates of RTS for U.S. banks and bank holding companies

(BHCs). In so doing, the paper contributes new information by comparing estimates of RTS

for the largest banks in 2014—some six years after the financial crisis and four years after

the enactment of Dodd-Frank—with estimates for 2006 and earlier years. Further, the paper

is unique in estimating RTS in terms of revenue and profit, as well as cost. Several studies

or other parametric specifications of bank cost functions. However, subsequent studies, including the present
paper, find that the translog function is a misspecification of bank cost relationships and therefore can lead
to erroneous estimates of returns to scale (RTS). See McAllister and McManus (1993) and Wheelock and
Wilson (2001) for discussion and evidence on the bias introduced by estimating bank scale economies from
a translog cost function.
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have estimated revenue and profit relationships for banks to study such topics as revenue

economies of scope (Berger et al., 1996), profit efficiency (e.g., Berger and Mester, 1997),

and profit productivity (Berger and Mester, 2003). In addition to economies of scope, Berger

et al. (1996) estimate revenue ray-scale economies for a sample of banks using data for 1978,

1984 and 1990. That study finds evidence of significant revenue scale economies in 1978

and 1984, especially for banks with less than $500 million of assets, but not in 1990. We

are unaware of any more recent studies that examine revenue or profit scale economies for

banks. Berger and Mester (2003) argue, however, that studies that ignore revenues when

evaluating bank performance may be misleading. For example, Berger and Mester (2003)

find that during the 1990s, banks became less productive in terms of cost (essentially that

cost per unit of output rose after controlling for output quantities, input prices, and various

environmental conditions), but more productive at generating profits. Berger and Mester

(2003) attribute this finding to efforts by banks to increase profits by providing more or

better quality services that raise their revenues by more than they increase costs. Similarly,

an examination of the evolution of RTS from a revenue or profit perspective could provide a

more complete picture of scale economies in banking than a focus solely on cost economies

of scale.

We use a nonparametric, local-linear estimator to estimate cost, revenue and profit rela-

tionships from which we derive estimates of RTS. The nonparametric approach avoids the

potential for functional-form specification error associated with parametric estimation. Al-

though nonparametric estimators are plagued by the “curse of dimensionality,” i.e., slow

convergence rates (compared to parametric estimators) that become exponentially slower

with more model dimensions, we take steps to mitigate this problem. Specifically, we es-

timate our models using a large dataset consisting of over one million observations on all

U.S. commercial banks for 1984–2014, and we employ principal components techniques to

reduce the dimensions of our empirical models.

Our estimation methodology is similar to that of Wheelock and Wilson (2012). How-

ever, whereas Wheelock and Wilson (2012) estimate RTS for U.S. banks in 2006 and focus

exclusively on scale economies in terms of cost, here we estimate RTS in both 2006 and

2014 (as well as 1984 and 1999) and test formally for changes over time. Hence, we pro-

vide evidence about the extent of scale economies in banking—especially for the very largest
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banking organizations—in the post-financial crisis environment. Further, we estimate RTS

in revenue and profit, as well as cost, and report estimates for alternative models to gauge

the sensitivity of our estimates to specification of the cost, revenue and profit functions.

Despite the growth in size of many of the largest banks during and since the financial

crisis, we find that the very largest banks operated under IRS in terms of cost in 2014. In fact,

our estimates indicate that many of the largest banks experienced statistically significant

increases in their scale elasticities between 2006.Q4 and 2014.Q4. Among all banks that

were in existence in both 2006 and 2014, some 40 percent more faced IRS in 2014.Q4 than

in 2006.Q4, while only a few banks experienced decreasing returns to scale (DRS) in either

period. Our results for revenue and profit economies are more mixed. Higher percentages of

banks faced constant returns to scale (CRS) or DRS in revenue or profit than in cost. Our

estimates indicate that while some of the largest 10 banks faced CRS or DRS in revenue

and profit, others faced IRS. However, even among those operating under DRS, we find

that revenues and profits still increase with expanded output levels, albeit at a less than

proportionate rate.

The next section describes the microeconomic specification of our cost, revenue, and profit

functions and introduces statistics to measure RTS. Section 3 introduces the econometric

specification, and Section 4 discusses the nonparametric methods we use for estimation and

inference. Section 5 presents our empirical findings, and conclusions are given in Section 6.

2 Microeconomic Specification

To establish notation, let x ∈ R
p
+ and y ∈ R

q
+ denote column-vectors of p input quantities

and q output quantities, respectively. Let w ∈ Rp denote the column-vector of input prices

corresponding to x, and let r ∈ Rq denote the column-vector of output prices corresponding

to y. Then variable costs are given by C := w′x, which firms (banks) seek to minimize

with respect to x, subject to h(x,y) = 0 where h(·, ·) represents the product-transformation

function that determines the possibilities for transforming input quantities x into output

quantities y. Solution to the constrained minimization problem yields a mapping R
q
+×Rp 7→

R
p
+ such that x = x(y,w); substitution into C = w′x yields

C = w′x = w′x(y,w) = C(y,w) (2.1)
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where C(y,w) is the variable cost function.

The story so far is part of the standard microeconomic theory of the firm (e.g., see

Varian, 1978). Under perfect competition in output markets, the same body of theory implies

that banks maximize revenue R := r′y with respect to output quantities, again subject to

h(x,y) = 0, yielding the solution y = y(r,x). Substitution then yields R = r′y(r,x) =

Rs(x, r), i.e., a standard revenue function that maps input quantities and output prices to

revenue. Conditions on h(x,y) required for existence of the revenue (and profit) function(s)

are discussed by Fuss and McFadden (1978) and Laitinen (1980).

Banking studies, however, often estimate alternative revenue or profit functions where

revenue (or profit) are functions of output levels and input prices. As discussed, for example,

by Berger and Mester (1997), the alternative revenue and profit functions provide a means of

controlling for unmeasured differences in output quality across banks, imperfect competition

in bank output markets (which gives banks some pricing power), any inability of banks to

vary output quantities in the short-run, and inaccuracy in the measurement of output prices.

Estimates of economies of scale from alternative revenue and profit function provide

information about the extent to which revenue (or profit) rises for a given increase in output,

holding input prices constant. Berger et al. (1996) describe the assumptions underlying

standard and alternative revenue functions, and the validity of those assumptions for banks.

The standard form assumes that banks are price takers. The alternative form, by contrast,

assumes that banks have some pricing power, and views banks as having greater on-going

flexibility in setting output prices than output levels. Based on a review of available evidence,

Berger et al. (1996) conclude that some two-thirds of bank revenues are associated with

services that reflect a degree of price-setting behavior, and they proceed by viewing banks

as negotiating prices and fees, where feasible, to maximize revenues and profits for given

levels of output. They argue that this model better represents how banks actually operate

than the perfectly-competitive model which underlies standard revenue and profit functions.

Berger and Mester (1997, 2003) elaborate further on the advantages of the alternative form

of the revenue and profit function. For example, they note that in addition to admitting

the possibility that banks have some degree of pricing power, the alternative form can be

informative about bank performance when there are unmeasured differences in the quality

of bank services across banks, when banks are unable to adjust their sizes quickly, or when
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output prices are not measured accurately. Indeed, bank input prices are, for the most part,

more readily observed in bank call report data than output prices. The absence of output

price information for the vast majority of banks means that standard revenue or profit

functions cannot be estimated (unless outputs are aggregated to an even greater degree than

they already are in our models).

Following Berger et al. (1996) and others, we assume that banks maximize revenue with

respect to output prices r, subject to g(y,w, r) = 0, where g() is an implicit function

representing the bank’s opportunities for transforming given output levels y and input prices

w into output prices r. Solution of this constrained optimization problem yields a mapping

R
q
+×Rp 7→ Rq such that r = r(y,w); then R = r′y = r(y,w)′y = R(y,w), where R(y,w)

is the alternative revenue function introduced by Berger et al. (1996).

Turning to profits, let P =
[
r′ w′

]′
and Q =

[
y′ −x′

]′
. Standard theory suggests

that firms operating in perfectly competitive input and output markets maximize profit

π := P ′Q with respect to Q, subject to h(x,y) = 0. Solution of the constrained optimization

problem yields Q = Q(P ); substituting this back into the profit function π = P ′Q gives

π = P ′Q(P ) = πs(w, r), i.e., the standard profit function that maps input and output

prices into profit. Under imperfect competition in output markets, however, banks maximize

profit with respect to input quantities x and output prices r, subject to h(x,y) = 0 and

g(y,w, r) = 0. The solution results in a mapping R
q
+ × Rp 7→ R

p
+ such that x = x(y,w),

and a mapping R1
+ × Rp 7→ Rq such that r = r(y,w). Substituting these into the profit

function gives

π = P ′Q =
[
r(y,w)′ w′

] [
y′ −x(y,w)′

]′
= π(y,w) (2.2)

where π(y,w) is the alternative profit function that maps output quantities and input prices

to profit.

Note that the cost function C(y,w) must be homogeneous of degree one with respect to

input prices w since the cost minimization problem implies that factor demand equations

must be homogeneous of degree zero in input prices. However, there is no such requirement

for the alternative revenue and profit functions. Without additional assumptions, the al-

ternative revenue and profit functions are neither homogeneous with respect to input prices

w nor homogeneous with respect to output quantities y. See Berger et al. (1996) and

Restrepo-Tobón and Kumbhakar (2014) for discussion.
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To measure RTS using the cost function, we define

EC,i := (δC(yi,wi)− C(δyi,wi)) (δC(yi,wi))
−1 (2.3)

where δ > 1 is a constant and yi is the observed vector of output quantities produced by

the ith bank facing observed input prices wi. Clearly, EC,i < 1. The statistic EC,i measures

expansion-path scale economies as the difference between δ times the cost of producing

output quantities yi and the cost of producing output quantities scaled by the factor δ. The

difference is normalized by dividing by δC(yi,wi). If EC,i > (=, <) 0 then bank i faces IRS

(CRS, DRS) in terms of cost.

To interpret the magnitude of EC,i, rearrange terms in (2.3) to obtain

ηC,i := δ (1− EC,i) = C(δyi,wi)/C(yi,wi). (2.4)

Hence if firm i increases its output by a factor δ > 1, its cost increases by a factor (1−EC,i)δ.
For example, if δ = 1.1 and EC,i = 0.05, then firm i incurs a 4.5-percent increase in cost

when it increases its output level by 10 percent since 1.1× (1− 0.05) ≈ 1.045. Alternatively,

ηC , i defined in (2.4) can be interpreted as a type of “pseudo-elasticity.” For δ = 1.1 (i.e., for

a 10-percent increase in output levels), costs increase by (ηC,i × 100)-percent, and the firm

faces IRS (CRS, DRS) if ηC,i < (=, >) 1.1.2

As in many empirical studies, one of the revenue measures introduced below in Section 3

consists of net revenues and can take negative values. Of course, profits can also be negative.

Therefore, to measure RTS from the revenue and profit functions, we define

ER,i := (R(δyi,wi)− δR(yi,wi)) (δ|R(yi,wi)|)−1 (2.5)

and

Eπ,i := (π(δyi,wi)− δπ(yi,wi)) (δ|π(yi,wi)|)−1 . (2.6)

In the definitions of ER,i and Eπ,i, the constant factor δ multiplies output levels y in the

first term in the numerator, in contrast to the definition of EC,i in (2.3), where δ multiplies

2 The measure defined in (2.4) has an additional interpretation. Some algebra reveals that EC,i (>,=, <) 1
iff EC,i (<,=, >) 1− δ−1. For δ = 1.1, (1− δ−1) ≈ 0.09091. Hence values of EC,i less than 0.09091 indicate
that a 10 percent increase in output levels results in an increase in total (variable) cost, whereas values of
EC,i greater than 0.09091 indicate that a 10 percent increase in output reduces cost. Of course, it is probably
unlikely, but perhaps not impossible, for an increase in output to reduce total cost.
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output levels y in the second numerator term. Similarly, δ multiplies the second term in the

numerators of ER,i and Eπ,i, rather than the first term as in (2.3). These differences reflect

the fact that banks attempt to maximize revenue and profit but minimize cost.

Clearly, ER,i > (=, <) 0 implies IRS (CRS, DRS) and similarly for values of Eπ,i. More-

over, following the logic in footnote 2 above, it is easy to show that (for δ = 1.1) increasing

output levels by 10 percent increases revenue or profit, even if at a decreasing rate, whenever

ER,i or Eπ,i is greater than −0.09091. The denominators in (2.5) and (2.6) involve absolute

values to account for the possibility that measured revenue or profit can be negative as men-

tioned above. Consider the scale measure Eπ,i defined in (2.6); similar reasoning applies to

the scale measure ER,i defined in (2.5). Suppose π(yi,wi) > 0 and π(δyi,wi) > 0, as in the

most common (by far) scenario.3 Then (2.6) can be rearranged to define

ηπ,i := (1 + Eπ,i)δ = π(δyi,wi)/π(yi,wi). (2.7)

Clearly, in this case Eπ,i ≥ −1. For δ = 1.1, increasing output levels by 10 percent leads to

an (ηπ,i×100) percent change in profits. Hence, for δ = 1.1, values ηπ,i > (=, <) 1.1 indicate

IRS (CRS, DRS). Moreover, increasing output levels by a factor δ > 0 leads to an increase

in profit whenever ηπ,i > 1. Using similar reasoning, it is easy to define ηR,i := (1 + ER,i)δ =

R(δyi,wi)/R(yi,wi), whose interpretation is analogous to ηπ,i.

The next section provides details on variable specifications and the specific models we

estimate in order to obtain predicted values with which to estimate the returns-to-scale

measures defined in (2.3)–(2.6). Later, Section 4 describes how we estimate the models

presented in the next section and how we make inferences.

3 Econometric Specification

Specifying versions of the cost function C(y,w) and the revenue and profit functions R(y,w)

and π(y,w) for estimation in order to obtain estimates of the returns-to-scale measures EC,i,
ER,i, and Eπ,i involves choices on two dimensions: (i) definitions of response and explanatory

variables, and (ii) functional forms. Regarding the latter choice, we use fully nonparametric

3 Negative values of revenue or profit affects how the values of the returns-to-scale measures ER,i and Eπ,i
should be interpreted; see A for details.
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estimation methods, discussed further below in Section 4, which avoids the need to impose

specific functional forms.

Our specification of right-hand-side (RHS) explanatory variables closely follows Wheelock

and Wilson (2012) and most of the banking literature. We define five inputs and five outputs

that, with one exception (the measure of off-balance sheet output), are those used by Berger

and Mester (2003). Specifically, we define the following output quantities: consumer loans

(Y1), real estate loans (Y2), business and other loans (Y3), securities (Y4), and off-balance

sheet items (Y5) consisting of net non-interest income.4

We define four variable input quantities: purchased funds, consisting of the sum of total

time deposits of $100,000 or more, foreign deposits, federal funds purchased, demand notes,

trading liabilities, other borrowed money, mortgage indebtedness and obligations under capi-

talized leases, and subordinated notes and debentures (X1); core deposits, consisting of total

deposits less time deposits of $100,000 or more (X2); labor services, measured by the number

of full-time equivalent employees on payroll at the end of each quarter (X3); and physical

capital (X4). The first input quantity, X1, is intended to capture non-core deposit (and

non-equity) sources of investment funds for the bank (see Berger and Mester (2003) for more

detail). We measure the corresponding prices (W1, . . . , W4) by dividing total expenditure

on the given input by its quantity.5 We include financial equity capital (EQUITY ) as a

quasi-fixed input; as discussed by Berger and Mester (2003), inclusion of EQUITY controls

somewhat for differences in risk across banks. As an additional control for risk differences,

we also include a measure of non-performing assets (NPER) consisting of (i) total loans and

lease financing receivables past due 30 days or more and still accruing, (ii) total loans and

lease financing receivables not accruing and (iii) other real estate owned. With the exception

of labor input (which is measured as full-time equivalent employees) and off-balance sheet

output (which is measured in terms of net flow of income), our inputs and outputs are stocks

measured by dollar amounts reported on bank balance sheets, consistent with the widely

4 Of the commonly used measures of off-balance sheet output, net non-interest income is the most
consistently measurable across banks and over time. However, as a net, rather than gross measure of
income, it is potentially a biased measure of off-balance sheet output because losses would appear to reduce
off-balance sheet output. Data that would permit calculation of a gross measure of non-interest income are
not available. See Clark and Siems (2002) for discussion of alternative measures of off-balance sheet activity.

5 Unlike Wheelock and Wilson (2012), we do not subtract deposit fee income from interest on deposits
of less than $100,000 when calculating W2 because doing so would imply negative prices for a large number
of banks in the low interest rate environment that prevailed after 2007.
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used intermediation model of Sealey and Lindley (1977).

In addition to the variables defined above, we index quarters 1984.Q1 through 2015.Q2

by setting T = 1 for 1984.Q1, T = 2 for 1984.Q2, . . ., T = 116 for 2015.Q2. Although

T is an ordered, categorical variable, we treat it as continuous since it can assume a wide

range of possible values. The regulatory environment and the production technology of

banking changed a great deal over the nearly 30 years covered by our data; including T

as an explanatory covariate allows functional forms to change over time. Two features

of our estimation strategy allow a great deal of flexibility. First, because we use a fully

nonparametric estimation method, we impose no constraints on how T might interact with

other explanatory variables. Second, the local nature of our estimator means that when we

estimate cost at a particular point in time, observations from distant time periods will have

little or no effect on the estimate. Typical approaches that involve estimation of a fully

parametric translog cost functions by OLS or some other estimation procedure are not local

in the sense that when cost is estimated at some point in the data space, all observations

contribute to the estimate with equal weight. Moreover, the typical approach requires the

imposition of a specific functional form a priori for any interactions among explanatory

variables.6

To control for differences in costs associated with holding company affiliation, we define

M = 1 for commercial banks that are owned by a multi-bank holding company (M = 0

otherwise).7 In a fully parametric setting, one might include a binary dummy variable such

as M and perhaps allow for interactions with a few continuous variables. In our nonpara-

metric paradigm, however, we impose no constraints on how M might interact with other

explanatory variables. As discussed in Appendix D, we use a bandwidth specific to the bi-

nary dummy variable to optimize the amount of smoothing across the two categories of data

identified by M ∈ {0, 1}.
Turning to the response variables, we consider three different specifications of bank costs.

The first is given by C1 := W1X1 + W2X2 + W3X3 and corresponds to the measure used in

Wheelock and Wilson (2012) to facilitate comparison with earlier results. Our second cost

6 The local nature of our estimator is discussed in more detail below in Section 4 and in Appendix D.
7 In addition to controlling for holding company membership, Wheelock and Wilson (2012) included

dummy variables to reflect historical branching restrictions on banks. We do not include controls for branch-
ing regulations here, however, since full interstate branching has been in effect since 1999.
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measure adds the cost of physical capital to C1 so that C2 := W1X1 +W2X2 +W3X3 +W4X4.

Whereas Wheelock and Wilson (2012) treat physical capital as a quasi-fixed input, this

specification treats it as a variable input. Our third measure of cost, C3 := total interest

expense + total non-interest expense, is an even more expansive measure of banks’ costs. As

such, C3 may include some fixed as well as variable costs, but as seen below in Section 5, this

makes little qualitative difference in our empirical results. Tables B.1 and B.7 in Appendix

B shows that the correlation among the three cost variables is 0.9866 or greater.

We also estimate RTS using two measures of revenue. The first measure is similar to the

definition used by Berger and Mester (2003) and is given by R1 := total interest income +

total non-interest income + realized gains (losses) on held-to-maturity securities + realized

gains (losses) on available-for-sale securities − provision for loan and lease losses − provision

for allocated transfer risk reserves. The second measure, R2 := total interest income +

total non-interest income, omits the adjustments made by Berger and Mester. The second

measure is analogous to C3 in that both are expansive measures of cost and revenue. As

shown in Appendix B, the two revenue measures are highly correlated, with correlations of

0.9934 or greater.

Given our two measures of revenue and our two preferred measures of cost, we consider

four measures of profit: π1 := R1 − C2, π2 := R1 − C3, π3 := R2 − C2 and π4 := R2 − C3.

As shown in Appendix B, correlations among the four profit measures range from 0.7796 to

0.9772. Consequently, we expect more differences among RTS estimates for profit than for

either cost or revenue.

All of the specifications for cost, revenue, and profit include as right-hand side (RHS)

variables the vector y :=
[
Y1 Y2 Y3 Y4 Y5

]
of output quantities defined above. When es-

timating the cost function, we also include w1 :=
[
W2

W1

W3

W1
X4 T M EQUITY NPER

]
,

when using C1, or w2 :=
[
W2

W1

W3

W1

W4

W1
T M EQUITY NPER

]
when using C2 or C3.

In each case, the price of purchased funds (W1) serves as the numeraire (we also divide the

cost measure on the left-hand side (LHS) by W1 to ensure homogeneity with respect to input

prices). As discussed in Section 2, we do not impose linear homogeneity when estimating

the revenue and profit functions. Consequently, we include on the RHS (in addition to y)

w3 :=
[
W1 W2 W3 W4 T M EQUITY NPER

]
when estimating revenue and profit

functions.

11



All of the cost, revenue and profit functions are of the form

Y= m(y,w) + ε (3.1)

where Y represents one of our dependent variables discussed above, w represents one of

w1, w2 or w3 (depending on the LHS variable), and ε is a stochastic error term with

E(ε | y,w) = 0 so that so that m(·, ·) is a conditional mean function. In addition, we

assume densities of the continuous RHS variables are twice continuously differentiable at each

point where the conditional mean function is estimated, but otherwise make no functional

form assumptions regarding m(·, ·). We assume the LHS, dependent variable Y satisfies the

moment condition E(|Y|2+ν | y,w) exists for some ν > 0 and is continuous at (y,w) when

the conditional mean function is estimated at (y,w). One may view the conditional mean

functions that we estimate as either parametric but of unknown form, or nonparametric (i.e.,

infinitely parameterized). We provide details on estimation and inference below in Section

4 and in Appendix D.

Given a set of RHS variables, our minimal assumptions on the response function m(y,w)

and inclusion of the time variable T allow for far more flexibility than any parametric model.

In banking and other industry studies, it has become fashionable in recent years to specify

parametric models that allow (to some degree) heterogeneity in the technology across firms

(examples include Orea and Kumbhakar, 2004 and Poghosyan and Kumbhakar, 2010). Al-

though we maintain an assumption of continuity, our nonparametric specification and local

estimation method means that m(y,w) can be quite different for different firms. In addi-

tion, the interaction of time T in the response function is left unspecified, allowing far more

flexibility than in typical parametric specifications.

To construct the variables described above, we use data on U.S. commercial banks for

1984.Q1–2015.Q2 from the quarterly call reports filed by all commercial banks and the

quarterly FR-Y9C reports filed by bank holding companies (BHCs). We use the season-

ally adjusted, quarterly gross domestic product implicit price deflator to convert all dollar

amounts to constant 2015 dollars. We assemble two datasets for estimation. In the first, we

use only data on commercial banks; after pooling data across 126 quarters and deleting ob-

servations with missing or implausible values, 1,115,892 observations remain for estimation.

In the second dataset, we replace banks that are members of multi-bank holding companies

12



with their parent holding company for 2000.Q1–2015.Q2.8 Summary statistics are provided

in Tables B.2–B.6 (for the bank-only data) and in Tables B.8–B.12 (for the bank + BHC

data) of Appendix B.

4 Details on Estimation and Inference

Various approaches exist for estimating conditional mean functions such as those in the

models described above in Section 3. A common approach is to specify a fully parametric

translog functional form for the conditional mean function and then estimate the parameters

via least-squares methods. However, our data easily reject the translog specification using

specification tests similar to those used by Wheelock and Wilson (2001, 2012); see Appendix

C for details.

Rejection of the translog functional form is hardly surprising. The translog function is

merely a quadratic in log-space, which limits the variety of shapes the conditional mean

function is permitted to take. Further, the translog is derived from a Taylor expansion of

the cost (or revenue, or profit) function around the means of the data; one should not expect

it to fit well data that are highly variable and highly skewed, as is the case with U.S. banking

data.9 Several studies have noted that the parameters of a translog function are unlikely

to be stable when the function is fit globally across units of widely varying size; see, for

example, Guilkey et al. (1983) and Chalfant and Gallant (1985) for Monte Carlo evidence,

and Cooper and McLaren (1996) and Banks et al. (1997) for empirical evidence involving

consumer demand, Wilson and Carey (2004) for empirical evidence involving hospitals, and

McAllister and McManus (1993), Mitchell and Onvural (1996), and Wheelock and Wilson

(2001, 2012) for empirical evidence involving banks.

8 Due to changes in reporting requirements for holding companies over time, we are unable to construct the
variables we use for estimation using the FR-Y9C holding company data prior to 2000.Q1. When estimating
RTS for 2006.Q4 and 2014.Q4 using the second dataset, the local nature of our estimator (as discussed below
in Section 4) ensures that our estimates for these two periods depend primarily on observations in the period
where we observe holding company data. One should take care, however, when comparing these estimates
with estimates from 1984.Q4 or 1999.Q4.

9 The summary statistics for banks’ total assets given in Tables A.2–A.5 in Appendix B reveal that the
distribution of banks’ sizes is heavily skewed to the right. In fact, estimates of Pearson’s moment coefficient of
skewness for total assets in each of 118 quarters range from 31.42 to 49.96. Moreover, skewness is increasing
over time, despite the consolidation in the industry over the years covered by our data. Regressing the
skewness coefficients for each quarter on the time variable T yields a positive estimate of the slope coefficient,
0.01557, that is significantly different from zero at .1 significance.
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We use fully nonparametric methods to avoid likely specification errors. Although non-

parametric methods are less efficient than parametric methods in a statistical sense when

the true functional form is known, nonparametric estimation avoids the risk of specification

error when the true functional form is unknown, as in the present application. We use fully

nonparametric local-linear estimators modified along the lines of Li and Racine (2004), Wil-

son and Carey (2004) and Wheelock and Wilson (2011, 2012) to handle discrete covariates.

Both the local-linear estimator as well as the Nadaraya-Watson kernel regression estimator

(Nadaraya, 1964; Watson, 1964) are examples of local order-p polynomial estimators with

p = 1 and 0, respectively. For a locally-fit polynomial of order p used to estimate a condi-

tional mean function, going from an even value to an odd value of p results in a reduction

of bias with no increase in variance (e.g., see Fan and Gijbels (1996) for discussion). Hence,

we use a local-linear estimator to estimate conditional mean functions, resulting in lower

asymptotic mean square error than one would obtain with the Nadaraya-Watson estimator.

Nonparametric regression models can be viewed as infinitely parameterized; as such, any

parametric regression model (such as an assumed translog functional form) is nested within

a nonparametric regression model. Clearly, adding more parameters to a parametric model

affords greater flexibility. Nonparametric regression models represent the limiting outcome

of adding parameters, and may be viewed as the most general encompassing model that a

particular parametric specification might be tested against.10

Most nonparametric estimators suffer from the “curse of dimensionality,” i.e., convergence

rates fall as the number of model dimensions increases. The convergence rate of our local-

linear estimator is n1/(4+d) where d is the number of distinct, continuous RHS variables.

Although the convergence rate is unaffected by the inclusion of the binary dummy variable

M , there are d = 11 RHS variables in our cost function models and d = 12 RHS variables in

our revenue and profit function models. The slow convergence rate of our estimator means

that for a given sample size, the order (in probability) of the estimation error we incur with

10 Several methods for nonparametric regression exist. Cogent descriptions of nonparametric regression
and the surrounding issues are given by Fan and Gijbels (1996, chapter 1), Härdle and Linton (1999), and
Henderson and Parmeter (2015). Härdle and Mammen (1993) propose a test of a parametric regression
against a nonparametric alternative where the test statistic is an estimate of the integrated square difference
between the two regressions. Although we do not implement the Härdle and Mammen test in order to avoid
computational expense, it seems almost certain the test would reject the translog parametric model in view
of the results from our simple specification tests discussed above and in the separate Appendix C.
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our nonparametric estimator will be larger than the order of the estimation error one would

achieve using a parametric estimator in a correctly specified model with the usual parametric

rate n1/2. However, our nonparametric estimation strategy avoids specification error that

would likely render meaningless any results that might be obtained using a misspecified

model. We adopt the view of Robinson (1988), who argues that parametric models are likely

misspecified and should be viewed as root-n inconsistent instead of root-n consistent.11

To mitigate the curse of dimensionality in our application, we (i) use a large sample with

more than one million observations and (ii) employ a simple dimension-reduction method.

Multicollinearity among regressors is often viewed as an annoyance, but here we use the mul-

ticollinearity in our data to reduce dimensionality, thereby increasing the convergence rate

of our estimators and reducing estimation error. We do this by transforming the continuous

RHS variables in each model to principal components space. Principal components are or-

thogonal and eigensystem analysis can be used to determine the information content of each

principal component. In each model we estimate, we sacrifice a small amount of information

by using only the six principal components of the continuous RHS variables that correspond

to the six largest eigenvalues, hence reducing the number of continuous RHS variables in

our regressions from 11 or 12 to six. In our bank-only dataset, The six principal compo-

nents account for approximately 91.03 percent of the independent linear information in the

cost function model with C1, 90.12 percent in the cost functions with C2 or C3, and 88.52

percent in the revenue and profit functions. With our second dataset (banks and BHCs),

these percentages are 91.24, 90.35, and 88.64, respectively. The transformation to principal-

components space can be inverted, and the interpretation of the estimators of the conditional

mean functions in each model based on six principal components of the (continuous) RHS

variables is straightforward because our estimator is fully nonparametric. Additional details

about our principal components transformation and nonparametric estimation strategy are

provided in Appendix D.

To use the local-linear estimator we must select two bandwidth parameters to control

11 Convergence results for nonparametric estimators are often expressed in terms of order of convergence
in probability. Briefly, for a sequence (in n) of estimators θ̂n of some scalar quantity θ, we can write

θ̂ = θ + Op(n
−a) when θ̂ converges to θ at rate na, and we say that the estimation error is of order in

probability n−a. This means that the sequence of values na|θ̂n − θ| is bounded in the limit (as n → ∞) in
probability. See Serfling (1980) or Simar and Wilson (2008) for additional discussion.
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the smoothing over continuous and discrete dimensions in the data. We use least-squares

cross-validation to choose the bandwidths. This amounts to choosing bandwidth values that

minimize an estimate of mean integrated square error. In the continuous dimensions, we use

a κ-nearest-neighbor bandwidth and a spherically symmetric Epanechnikov kernel function.

This means that when we estimate cost, revenue, or profit at any fixed point of interest in

the space of the RHS variables, only the κ observations closest to the fixed point of interest

can influence estimated cost at that point. In addition, among these κ observations, the

influence that a particular observation has on estimated cost diminishes with distance from

the point at which cost is being estimated. Our estimator is thus a local estimator, and

is very different than typical, parametric, global estimation strategies (e.g., OLS, maximum

likelihood, etc.) where all observations in the sample influence (with equal weight) estimation

at any given point in the data space. Moreover, because we use nearest-neighbor bandwidths,

our bandwidths automatically adapt to variation in the sparseness of data throughout the

support of our RHS variables.

For statistical inference about our estimates of RTS, we use the wild bootstrap intro-

duced by Härdle (1990) and Härdle and Mammen (1993), which allows us to avoid making

specific distributional assumptions. We estimate confidence intervals along the lines used in

Wheelock and Wilson (2011, 2012). Although our estimators are asymptotically normal, the

asymptotic distributions depend on unknown parameters; the bootstrap allows us to avoid

the need to estimate these parameters, which would introduce additional noise.12

5 Empirical Results

We estimate the three cost specifications, two revenue specifications, and four profit spec-

ifications described in Section 3 using both the bank-only and the bank+BHC data sets.

Tables 1–4 focus on estimates from the combined bank and BHC data; we report results ob-

tained with the bank-only data set in separate, online appendices. Overall, results obtained

with the two data sets are broadly similar.

In each case, we use the methods described in Section 4 and Appendix D to obtain

estimates of cost, revenue, and profit. We substitute these into the RTS measures defined in

12 Additional details about our inference methods are given in the separate, on-line Appendix D.
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Section 2 to obtain estimates ÊC,i, ÊR,i and Êπ,i as well as estimates η̂C,i, η̂R,i and η̂π,i of the

pseudo-elasticities defined in Section 2. We use the bootstrap methods discussed in Section

4 and described in Appendix D to make inference about the corresponding true values of

the RTS measures and corresponding pseudo-elasticities.

Table 1 provides an overview of results from our estimation for 1984.Q4, 1999.Q4, 2006.Q4

and 2014.Q4. For each of the nine models, the table reports the number of banks for which

we reject CRS (at .05 significance) in favor of IRS or DRS, or for which we cannot reject

CRS in each quartile of total assets in each period.13 For the same models and periods,

Tables 2–3 report institution-specific estimates of the pseudo elasticities defined in Section

2 for the 10 largest banks in each quarter. For the 10 largest banks in 2014.Q4 that were

also present in 2006.Q4, Table 4 shows whether the change in the bank’s RTS is statistically

significant (at the .05 level) and, if so, the direction of the change.

We first examine results from the three cost function specifications described in Section 3.

Turning to the counts in Table 1, first consider results from cost models 1–3. Across the four

quartiles, the numbers of banks for which we can reject CRS in favor of DRS are small, never

exceeding 44, which amounts to 3.6 percent of the banks in our sample in the 4th quartile

for 2014.Q4. With model 1, whose specification closely resembles the model estimated by

Wheelock and Wilson (2012), the number of banks for which we reject CRS in favor of IRS

is roughly 3–4 times the number of banks for which we are unable to reject CRS in each of

the four quarters. This differs a bit from the results in Wheelock and Wilson (2012), where

in almost every case CRS was rejected in favor of IRS. However, there are two differences

here. First, the data have been extended in the present study through the financial crisis

to 2015.Q2, whereas the data used by Wheelock and Wilson (2012) ended in 2006.Q4. The

additional data cover a turbulent period in the industry, which might explain why it is harder

to obtain estimates precise enough to reject CRS than was the case in Wheelock and Wilson

(2012). The second difference is likely minor, and involves the way the price of core deposits

(W2) is computed here, which differs from the computation in Wheelock and Wilson (2012)

as explained in footnote 5 in Section 3.

Recall from the discussion in Section 3 that among our three measures of cost, the first

has the tightest link with the RHS variables, whereas C2 and C3 involve more expansive

13 See the separate Appendix E for similar counts at .1 and .01 significance.
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measures of cost. The differences in estimates from models 2 and 3 are small. The results

for models 2 and 3 given in Table 1 are somewhat less dramatic than the results for model 1

in the sense that we are unable to reject CRS for a larger number of banks than with model

1. On the other hand, it remains true with both models 2 and 3 that we reject CRS in favor

of DRS in only a very small number of cases. Hence, the evidence from models 1, 2 and 3 all

suggests that almost all banks face either CRS or IRS in terms of cost. This is true across

each of the four quarters examined, even though the distribution of firms’ sizes as reflected

by total assets shifted rightward over time.14

The results for each of models 1–3 are also similar across the four size-quartiles. However,

due to the skewness of the distribution of total assets, the fourth quartile represents a much

larger range than the other three quartiles. Turning to Tables 2–3, the results for models

1–3 reveal that almost all of the estimates of the pseudo-elasticities defined in Section 2

are significantly less than 1.1 (at the .01 level), indicating IRS in cost. In only one case

(Key Bank in 1999.Q4) is there an estimate significantly greater than 1.1, indicating DRS.

Although there is some variation in magnitudes, the results are qualitatively similar across

the three cost models. They are also qualitatively similar to results in Wheelock and Wilson

(2012) and Hughes and Mester (2015), both of which find evidence of IRS among the largest

banks.15

Now return to Table 1 and consider results from our two revenue models (models 4–5).

Results from the estimated revenue functions differ from those of our cost functions. For

both models 4–5, we are unable to reject CRS for a majority of banks in any quarter or

size quartile. However, across the four quarters, there are clearly more banks in the first

three size-quartiles for which we reject CRS in favor of IRS than in favor of DRS. In the

largest size-quartile, and in each of the four quarters, we reject CRS in favor of DRS more

frequently than in the first three quartiles. While there are some differences across the two

models, they give broadly similar results.

14 Figures B.1 (banks only) and B.2 (banks + BHCs) in Appendix B show kernel estimates of the density
of total assets for 1984.Q4, 1999.Q4, 2006.Q4 and 2014.Q4 where the rightward shift over time is apparent.

15 We obtained similar results and observations for estimates based on the banks-only sample; see Appendix
E, Tables E.6–E.7. A referee suggested there might be a “break” in our RTS estimates around $50 billion
of assets due to regulatory and enforcement differences for banks beyond this threshold. However, Tables
E.8–E.11 (for banks only) and Tables E.34–E.37 (for banks + BHCs) in the separate Appendix E give
pseudo-elasticity estimates for the 100 largest institutions in each quarter, and there is no obvious indication
of a break at $50 billion of assets.
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Now turn again to Tables 2–3 and examine results from models 4–5. Note that the esti-

mated pseudo-elasticities in Table 2 for 1984.Q4 and 1999.Q4 are all less than 1.1, indicating

DRS, and most are significantly different from 1.1 at .01 or better (with only four excep-

tions). However, all but two estimates (both in 1984.Q4) are greater than 1.0, indicating

that increases in scale lead to increases in revenue, athough by a less than proportionate

rate.

The results for revenue in 2006.Q4 and 2014.Q4 given in Table 3 are more mixed than

the results for 1984.Q4 and 1999.Q4. In Table 3, five estimates are statistically significantly

greater than 1.1 (indicating IRS), but for only one bank (Bank of America in 2006.Q4) are

the estimates significantly greater than 1.1 for both models. In most cases the significant

estimates lie between 1.0 and 1.1, indicating DRS, but that revenues continue to rise with

higher output levels.

We have seen so far that our cost models suggest that almost all firms in our sample faced

IRS or CRS in each of the four quarters examined. We have also seen that more banks up to

the 75th percentile of total assets face IRS in revenue than face DRS in revenue, but most

face CRS. Larger numbers of banks in the largest-size quartile face DRS in revenue than

in the first three quartiles, but most face CRS. The remaining empirical question revolves

around how these effects might offset each other to determine RTS in profit.

Return again to Table 1, focusing on results for the four profit models (models 6–9). In

broad terms, the counts for each period and size-quartile are similar across the four profit

models. Moreover, the patterns are similar to those for the revenue models 4–5. In all four

size-quartiles, we do not reject CRS for a majority of firms. Among banks in the first three

quartiles, when we reject CRS, it is most frequently in favor of IRS. This is less true for

banks in the fourth quartile for 1984.Q4 and 1999.Q4, though not for 2014.Q4 (results for

2006.Q4 vary across the four models).

Now turn once again to Tables 2–3. As with the revenue models 4–5, the results for

profit models 6–9 are more mixed than those for the cost models. For both 1984.Q4 and

1999.Q4, shown in Table 2, most of the statistically significant pseudo-elasticity estimates lie

between 1.0 and 1.1, indicating DRS but also that an increase in output produces an increase

in profits, though by a less than proportionate amount. Results for 2006.Q4 and 2014.Q4,

shown in Table 3, are somewhat more variable, though a majority of estimates again lie
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between 1.0 and 1.1. A few estimates exceed 1.1, however, especially among the largest four

banks. While these estimates indicate IRS in profit for the very largest banks, the results

are obviously not robust across the different specifications. Looking across the estimates for

cost, revenue and profit economies, the results for the largest banks most strongly indicate

IRS in cost. Since we find little or no evidence of IRS in revenues, it is not particularly

surprising that we also find little evidence of IRS in profits and less consistency overall in

the results for profit economies.

Finally, turn to Table 4 where we report statistically significant (at the .05 level) changes

in estimated RTS pseudo-elasticities from 2006.Q4 to 2014.Q4 for the 10 largest firms in our

data in 2014.Q4 that were also present in 2006.Q4.16 The results here indicate only whether

a significant change occurred, and if so the direction of the change. Information about the

starting point is given in Table 3 and in Appendix E, Tables E.36 and E.37.

Results in Table 4 are similar across the three cost models, and identical for models 2–

3. In a majority of cases, we detect statistically significant increases in pseudo-elasticities,

indicating a general tendency for the largest banks to face greater IRS in 2014.Q4 than in

2006.Q4 The estimates indicate statistically significant declines in estimated RTS elasticities

for only two firms (Wells Fargo and Fifth Third, models 2-3).

Not surprisingly, we find few cases of statstically significant changes in pseudo-elasticities

from the revenue and profit models. For the most part, any changes that are statistically

significant are in the same direction across models. We see similar results for both revenue

and profit. Except for JPMorgan Chase and Bank of America, revenue and profit models

indicate changes in the same direction for each firm. Citigroup, Wells Fargo, experienced

increasing elasticities for both revenue and profit, and Fifth Third saw improved RTS in

revenue. On the other hand, US Bank Corp, PNC, and TD Bank saw declines in RTS

elasticities in either revenue, profit, or both.17

16 Note that the list of firms in Table 4 is different from the firms listed for 2014.Q4 in Table 3 due to
mergers and attrition.

17 In Appendix E, Tables E.14 (banks only) and E.40 (banks + BHCs) give, for each of the 9 models
estimated, counts of firms that experienced a statistically significant change in RTS between 2006.Q4 and
2014.Q4. In addition, Tables E.18–E.26 (for banks only) and Tables E.44–E.52 (for banks + BHCs) give
transition matrices for each of the nine models estimated and the numbers of institutions facing IRS, CRS,
or DRS in 2006.Q4 versus 2014.Q4. For the cost models, at .05 significance, there are 2,778 to 2,783 changes,
with 1,544 to 1,632 improvements and 1,151 to 1,234 declines in RTS. For the revenue models, there are 2,382
and 2,668 significant changes with models 4 and 5 (respectively), with 1,127 and 1,269 increases and 1,255
and 1,399 decreases. The results are more variable across the profit models, with 919 to 2,239 significant
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6 Conclusions

As the number of banks has declined since 1984.Q4, the size of banks has grown considerably,

by roughly an order of magnitude between 1984.Q4 and 2014.Q4. Despite the growth in

bank size, we find considerable evidence that the largest U.S. banks continue to operate

under increasing returns to scale in terms of cost, as they did in 2006 and even earlier. It

is perhaps not surprising that large banks faced IRS in earlier years, given that institutions

grew larger, but it is interesting that even in 2014.Q4, IRS in terms of cost have not been

exhausted by the largest institutions.

The evidence for RTS in revenue and profit is more mixed. Still, our estimates suggest

that relatively small numbers of banks with total assets below the largest 25 percent face

DRS, with the rest facing CRS or IRS. We find somewhat fewer banks facing IRS among

those larger than the 75th percentile of total assets, and that the proportion facing IRS

declined over time. Results for the 10 largest banks are somewhat mixed. We find that some

that faced IRS in revenue and profit, especially in 2006 and 2014, but others faced CRS or

DRS. However, in cases where banks faced DRS, we find that banks could still increase their

revenue and profit by increasing output levels, albeit by less than proportionate amounts.

Our estimates indicate that the turmoil of 2007-08 appears to have had little impact on

RTS for most U.S. banks, in terms of cost, revenue or profit. Many of the largest banks in

the United States became even larger during the financial crisis of 2007-08 and in subsequent

years. The Dodd-Frank Act of 2010 is intended to ensure that even the largest banks can

be liquidated if they are insolvent. However, the Act has not been put to the test and

some critics argue that more aggressive measures are needed to limit the size of banks. Our

results suggest that capping banks’ size would incur opportunity costs in terms of foregone

changes, 401 to 887 increases, and 518 to 1,352 decreases. Overall, a majority of changes in cost RTS are
improvements, while changes in revenue RTS are almost even and changes in profit RTS are more often
downward. The transition matrices shown in Table E.47 obtained from estimates of the cost models 2–3
indicate that among institutions existing in both 2006.Q4 and 2014.Q4 in our sample of banks and BHCs,
roughly 40 percent more institutions faced significant (at .05) IRS in 2014.Q4 than in 2006.Q4, while few
faced DRS in either period. Results from our revenue and profit models in Tables E.48 and E.49 are more
mixed. In terms of revenue, Table E.48 indicates that the number of institutions for which we cannot reject
(at .05) CRS is smaller in 2014.Q4 than in 2006.Q4, but the numbers facing either IRS or DRS are larger in
2014.Q4 than in 2006.Q4. In terms of profit, Table E.49 shows that estimates from each of our four profit
models indicate that the number of institutions facing DRS is larger in 2014.Q4 than in 2006.Q4, while the
change in numbers facing IRS varies across the four models.
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advantages from IRS in terms of cost, as well as reduced revenue and profits. There may

be good reasons to limit banks’ size, but any such advantages should be weighed against

the costs. Wheelock and Wilson (2012) made a similar observation, and the results here

confirm that the trade-off still exists, even after the turmoil in 2007–08 and after the largest

institutions have grown still larger.
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