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Abstract

This paper explores the estimation of a class of life-cycle discrete choice intergenerational models. It

proposes a new semiparametric estimator. It shows that it is
√
N -consistent and asymptotically normally

distributed. We compare our estimator with a modified version of the full solution maximum likelihood

estimator (MLE) in a Monte Carlo study. Our estimator performs comparably to the MLE in a finite

sample but greatly reduces the computational cost. The paper documents that the quantity-quality

trade-offs depend on the household composition and specialization in the household. Using the proposed

estimator, we estimate a dynastic model that rationalizes these observed patterns. (JEL classification:

C13, J13, J22, J62)



1 Introduction

The importance of parents’altruism toward their children and children’s altruism toward their parents

has long been recognized as an important factor underlying the economic behavior of individuals. Eco-

nomic models that incorporate these intergenerational links are normally referred to as dynastic models.

Many important economic behaviors —and hence the welfare effect of many public policies —critically

depend on whether these intergenerational links are explicitly modeled. For example, several papers have

documented that (i) the distribution of wealth is more concentrated than that of labor earnings and (ii)

it is characterized by a smaller of fraction of households owning a larger fraction of total wealth over

time. There are different models of intergenerational transfers explaining the persistence in wealth and

income across generations (for example, the Loury, 1981, model of transmission of human capital and

the Laitner, 1992, model of bequests); however, in these models fertility is exogenous. Barro and Becker

(1988, 1989) develop dynastic models with endogenous fertility; however, in their models endogenizing

fertility leads to a lack of persistence in earnings and wealth because wealthier households have more

children and therefore intergenerational transfers do not depend on wealth and income. The data clearly

show persistence in income across generations. Subsequently, dynastic models with endogenous fertility

that capture the intergenerational persistence of income and wealth have been analyzed extensively, but

such models have not been estimated mainly because of computational feasibility considerations. This

paper develops an estimator for dynastic models of intergenerational transfers and estimates a model

quantifying the different factors generating the persistence of income.

Our framework incorporates several types of dynastic models. In some models fertility is endogenous,

as in Barro and Becker (1988, 1989), but, they cannot generate persistence of wealth across generations.

Other models capture intergenerational transfers and persistence in wealth across generations but fertility

is exogenous, as in Laitner (1992) and Loury (1981). Alvarez (1999) combines the main features of the

above-mentioned models by incorporating the fertility decision into the Laitner (1981) and Loury (1992)

intergenerational transfer models. On the other hand, some models, as Laitner (1981), incorporate an

elaborate finite life-cycle model for adults in each generation, while in other models there is one period

of childhood and one period of adulthood. The framework we study incorporates all these elements and

develops a model in which altruistic parents make discrete choices of birth, labor supply, and discrete

and continuous investment in children. In particular, to accommodate many models in the literature,
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parents choose time with children and a continuous monetary investment in their children every year over

their life-cycle. The model can also be extended to include bequests. The model is a partial equilibrium

model, and as in most dynastic models and in the basic setup, there is one decision- maker in a household;

however, we show that it can be easily extended to a unitary household.1 In summary, the framework

includes a rich class of dynastic models that include investment in children’s human capital, monetary

transfers, unitary households, endogenous fertility, and a life-cycle within each generation.

While the study of dynastic models has been widespread in the economic literature, these studies

have been largely theoretical or quantitative theory. However, the estimation of these models and the

use of these estimated models to conduct counterfactual policy analysis are nonexistent. There are two

main reasons for this gap; the first is data limitation and the second is computational feasibility. Ideally,

one would need data on the choices and characteristics of multiple generations linked across time to

estimate these dynastic models. The number of generations needed for estimation can be reduced to

two by analyzing the stationary equilibrium properties of these model. Recently data on the choices and

characteristics of at least two generations have become available in the National Longitudinal Survey of

Youth (NLSY79), Panel Study of Income Dynamics (PSID), and a number of European administrative

datasets.

There are two main estimators used in the literature to estimate dynamic discrete choice models:

full solution method using the "nested fixed point" algorithm (NFXP) (see Wolpin, 1984; Miller, 1984;

Pakes, 1986; and Rust, 1987, for early examples) and "conditional choice probability" (CCP) (see Hotz

and Miller, 1993; Altug and Miller, 1998; and Aguirregabiria, 1999) estimators that do not require the

solution to the fixed points. More recently Aguirregabiria and Mira (2002) showed that an appropri-

ately formed CCP-based estimator, "nested pseudo likelihood" (NPL), is asymptotically equivalent to

an NFXP estimator. The major limitation of the NFXP estimation procedure is that it suffers from the

curse of dimensionality (i.e., as the number of states in the state space increases, the number of compu-

tations increases at a rate faster than linear). Dynastic models add an additional loop to this estimation

procedure: a nested fixed point squared. Therefore, this estimation procedure suffers from the curse of

dimensionality squared. However, even with a CCP estimator or an NPL estimator, estimation of the

intergenerational model requires dealing with further complications that are not present in single-agent

1 In a companion paper, we extend the current framework to incorporate non-unitary households (Gayle, Golan, and
Soytas , 2014).
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dynamic discrete choice models.

The main diffi culty is deriving the representation of the value functions of the problem. This diffi culty

is associated with the non-standard nature of the problem. An intergenerational model has finite periods

in the life-cycle in each generation and infinitely many generations are linked by the altruistic preferences.

This framework does not fit into a finite horizon dynamic discrete choice model since in the last period,

there is a continuation value associated with the next generation’s problem that is linked to the current

generation by the transfers and the discount factor. Therefore, we need to find a representation for the

next generation’s continuation value if we want to treat the problem as a standard finite-period problem

and solve by backward induction2. In this paper, we propose a new estimation procedure that enables

us to derive representations of the period value functions in terms of period primitives. In particular,

we show that an appropriately defined alternative representation of the continuation value enables us to

apply a CCP estimator to the intergenerational model. This estimation technique makes this estimation

and empirical assessment of proposed counterfactual policy reform feasible within the dynastic framework.

We derive the asymptotic distribution for the proposed estimator and compare its performance with

a nested fixed point estimator in a monte Carlo study. We propose two multi stage semiparametric

estimators: a pseudo maximum likelihood estimator (PML) and a generalized method of moment (GMM)

estimator. As is standard in this class of estimators, we show that the finite dimensional structural

parameters are root-n consistent and asymptotically normally distributed. This is so even though a

number of the first-stage estimates are of infinite dimensional parameters. We also derive the explicit

formula for the asymptotic variance and show how to estimate the asymptotic standard errors. In the

Monte Carlo study, we demonstrate that our estimators have good small-sample properties that compare

favorably to a full solution NFXP estimator. For this comparison we use the PML estimator so that our

results would be more comparable to those of the NFXP maximum likelihood estimator.

As shown by Jones, Tertilt, and Schoonbroodt (2010), different assumptions lead to different im-

plications for fertility and quantity-quality trade-offs of children (that is, the number of children and

their outcomes). Therefore, whether an observed pattern of fertility and the quantity-quality trade-offs

2Obviously, we can always solve the problem by NFXP if we assume the next generation’s period 0 value function is the
same as the current generation’s value function in period 0. This is another way of saying the problem is stationary in the
generations. In this case, the solution to the dynamic programming problem requires solving the fixed point problem for the
period value functions. However, as one can easily anticipate, we encounter the same computational burden of full solution.
Therefore our specific interest is CCP-type estimators.
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observed in the data are consistent with a particular version of the dynastic model is an empirical ques-

tion. In the empirical section of this paper, we document that the quantity-quality trade-offs depend

on the household composition and specialization patterns within the household. While fertility generally

declines with education of the women due to the higher opportunity cost of time, this is not the case for

married women in our data. For married women, fertility increases with more education due to house-

hold division of labor and wealth effects. However, in households where the husband has less than a high

school education, the number of children declines with the wife’s education. Patterns of specialization are

stronger in households with more educated husbands and in white households. We use the GMM version

of the estimator developed in this paper to estimate a dynastic model of intergenerational transmission

of human capital with unitary households. The estimated model can rationalize these patterns, which

depend on parameter estimates of the model, and match the data well. In particular, the estimated model

captures the labor supply, time with children, and fertility decisions of households, demonstrating that

it is a useful framework for policy analysis.

Dynastic models have been used to study numerous topics in economics. These topics include ex-

plaining the cross-sectional correlation between parental wages and fertility (see Jones, Schoonbroodt, and

Tertilt, 2010, for a detailed overview of this literature), the relationship between inequality and growth

(see, e.g., De la Croix and Doepke, 2003), the relationship between human capital formation and social

mobility (see Heckman and Mosso, 2014, for a survey of this literature), the relation among bequests,

saving, and the distribution of wealth and earnings (see De Nardi, 2004; Cagetti and De Nardi, 2008,

among others),3 and the optimality of different ways of funding social security. These models have been

used to shed light on the effect of education, child care subsidies, child labor regulations, and wealth and

income redistribution policies on individual welfare. Reviewing this vast and diverse literature is beyond

the scope of this paper; however, a short review of two of the literature segments will suffi ce to illustrate

the need to estimate these models and hence the wide applicability of our estimation technique.

The first segment explains the widespread negative cross-sectional correlation between parental wage

and fertility. The basic dynastic model as formulated by Barro and Becker (1989) cannot explain this

negative correlation because wealthier parents increase the number of off spring, keeping transfer levels

3For example, De Nardi (2004) model explicitly focuses on the transmission of physical and human capital from parents
to children and intergenerational links. She shows that such a model can can induce savings behavior that generates a
distribution of wealth that (i) is much more concentrated than that of labor earnings and (ii) also makes the rich keep large
amounts of assets in old age to leave bequests to their descendants.
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the same as less wealthy parents. Attempts in the literature to account for this negative correlation

range from appropriately calibrating the model parameters so that the substitution effects are larger

than the income effects, introducing the quality of children as a choice variable with an appropriate

assumption about the cost of child-rearing (Becker and Lewis, 1973; Becker and Tomes,1976; Moav

2005),4 to introducing non-homotheticity in preferences (see, e.g., Galor and Weil, 2000; Greenwood and

Seshadri, 2002; or Fernandez, Guner, and Knowles, 2005). As summarized in Alvarez (1999), depending

on the functional form assumptions of the primitives and values of the structural parameters, dynastic

models could generate the negative correlation between parental wages and fertility.5 Therefore, whether

the basic dynastic model can explain this negative cross-sectional correlation between parental wages and

fertility is an empirical question requiring careful exploration of the source of identification and estimation

(see Gayle, Golan, and Soytas, 2014; 2015, for examples of these types of analysis).

The effects of the social security system on both capital accumulation and wealth distribution have

been of great interest to economists and policy- makers for decades (see, for instance, Kotlikoff and

Summers, 1981; Caballé and Luisa, 2003; among others). However, the optimal form of funding social

security may depend on whether or not these intergenerational links are explicitly modelled. For example,

Fuster, Imrohoroglu, and Imrohoroglu (2007) argue that when households insure members in the same

family line, privatizing social security without compensation is favored by 52% of the population. If social

security participants are fully compensated for their contributions and the transition to privatization is

financed by a combination of debt and a consumption tax, 58% experience a welfare gain. These gains and

the resulting public support for social security reform depend critically on a flexible labor market. If the

elasticity of the labor supply is low, then support for privatization disappears. Therefore, it is important to

estimate these models because policy implications often depend on the value of key structural parameters.

In Fuster, Imrohoroglu and Imrohoroglu (2007) the key structural parameter was the elasticity of labor

supply, but in other models it may be the altruism parameters themselves.

The rest of the paper is organized as follows. Section 2 presents the basic genderless life-cycle dynastic

model with only discrete choices. Section 3 presents the generic estimator of the life-cycle model, presents

the small sample properties, and derives asymptotic properties of the estimator. Section 4 extends the

4See Jones, Schconbroodt, and Tertilt (2010, section 5.2).
5Recently Mookherjie, Prina, and Ray (2012) demonstrated that incorporating dynamic analysis of return to human

capital can help explain the negative cross-sectional correlation between parental wages and fertility.
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framework to include continuous choices and transfers, intra-household behaviors, and gender. Section

5 presents the basic framework of our empirical application. Section 6 presents our empirical results.

Section 7 concludes, and all proofs are provided in an appendix.

2 Theoretical Framework

The theoretical framework is developed to allow for estimation of a rich group of dynastic models and

allows us to address many relevant policy questions. This section develops a model of altruistic parents

who make transfers to their children. The transfers are discrete and can allow for (i) discrete time

investment in children and (ii) monetary investment with discrete levels. Section 4 extends this basic

framework to allow for continuous choices and transfers. This allows us to use the framework to analyze

bequests or any continuous monetary transfers by parents to their children. We incorporate two important

aspects of the problem. First, fertility is endogenous. Endogenous fertility has important implications

for intergenerational transfers and the quantity-quality trade-offs made by parents when they choose

transfers as the well as number of offspring. Second, we include a life-cycle for each generation. The

life-cycle is important to understanding fertility behavior, spacing of children, and the timing of different

types of investments. This section analyzes a model with one genderless decision-maker. We later extend

this framework to a unitary household.6

We build on previous dynastic models that analyze transfers and intergenerational transmission of

human capital. In some models, such as Loury (1981) and Becker and Tomes (1986), fertility is exogenous,

whereas in others, such as Becker and Barro (1988) and Barro and Becker (1989), fertility is endogenous.

The Barro-Becker framework is extended in our model by incorporating a life-cycle behavior model,

based on previous work, such as Heckman, Hotz and Walker (1985) and Hotz and Miller (1988), into

an infinite-horizon model of dynasties. Our life-cycle model includes individuals choices about time

allocation decisions, investments in children, and fertility. We formulate a partial equilibrium discrete

choice model that incorporates life-cycle considerations of individuals from each generation into the larger

framework. Adults in each generation derive utility from their own consumption, leisure, and the utility

of their adult offspring. The utility of adult offspring is determined probabilistically by the educational

6Treatment of households, with two decision-makers (with separate utility functions), marriage, and divorce, is involved
and is beyond the scope of this paper. See Gayle, Golan, and Soytas (2014) for more details on one such model.
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outcome of childhood, which in turn is determined by parental time and monetary inputs during early

childhood, parental characteristics (such as education), and luck. Parents make decisions in each period

about fertility, labor supply, time spent with children, and monetary transfers. For simplicity, the only

intergenerational transfers are transfers of human capital, as in Loury (1981). However, the framework

can include any other choice of transfer that is discrete. We assume no borrowing or savings for simplicity.

In the model adults live for T periods. Each adult from generation g ∈ {0, ...∞} makes discrete

choices about labor supply (ht), time spent with children (dt), and birth (bt), in every period t = 1...T .

For labor time individuals choose no work, part-time, or full-time (ht ∈ (0, 1, 2)); for time spent with

children individuals choose none, low, or high (dt ∈ (0, 1, 2)). The birth decision is binary (bt ∈ (0, 1)).

The individual does not make any choices during childhood, when t = 0. All the discrete choices can be

combined into one set of mutually exclusive discrete choice, represented as k, such that k ∈ (0, 1...17).

Let Ikt be an indicator for a particular choice k at age t; Ikt takes the value 1 if the kth choice is chosen

at age t and 0 otherwise. These indicators are defined as follows:

I0t = I{ht = 0}I{dt = 0}I{bt = 0}, I1t = I{ht = 0}I{dt = 0}I{bt = 1}, ...,

I16t = I{ht = 1}I{dt = 2}I{bt = 1}, I17t = I{ht = 2}I{dt = 2}I{bt = 1}. (1)

Since these indicators are mutually exclusive, then
∑17

k=0 Ikt = 1. We define a vector, x, to include the

time-invariant characteristics of the individual’s education, skill, and race. Incorporating this vector, we

further define the vector z to include all past discrete choices as well as time-invariant characteristics,

such that zt = ({Ik1}17k=0 , ..., {Ikt−1}
17
k=0 , x).

We assume the utility function is the same for adults in all generations. An individual receives utility

from discrete choice and from consumption of a composite good, ct. The utility from consumption and

leisure is assumed to be additively separable because the discrete choice, Ikt, is a proxy for leisure and

is additively separable from consumption. The utility from Ikt is further decomposed into two additive

components: a systematic component, denoted by u1kt(zt), and an idiosyncratic component, denoted

by εkt. The systematic component associated with each discrete choice k represents an individual’s

net instantaneous utility associated with the disutility from market work, the disutility/utility from

parental time investment, and the disutility/utility from birth. The idiosyncratic component represents
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a preference shock associated with each discrete choice k that is transitory in nature. To capture this

feature of εkt, we assume that the vector (ε0t, .., ε17t) is independent and identically distributed across the

population and time and is drawn from a population with a common distribution function, Fε(ε0t, .., ε17t).

The distribution function is assumed to be absolutely continuous with respect to the Lebesgue measure

and has a continuously differentiable density.

Per-period utility from the composite consumption good is denoted u2t(ct, zt). We assume that

u2t(ct, zt) is concave in c; that is, ∂u2t(ct, zt)/∂ct > 0 and ∂2u2t(ct, zt)/∂c
2
t < 0. Implicit in this speci-

fication is the intertemporally separable utility from the consumption good, but not necessarily for the

discrete choices, since u2t is a function of zt, which is itself a function of past discrete choices but is not

a function of the lagged values of ct.

Altruistic preferences are introduced under the same assumption as the Barro-Becker model: Parents

obtain utility from their adult offspring’s expected lifetime utility. Two separable discount factors capture

the altruistic component of the model. The first, β, is the standard rate of time preference parameter,

and the second, λN1−ν , is the intergenerational discount factor, where N is the number of offspring an

individual has over her lifetime. Here λ (0 < λ < 1) should be understood as the individual’s weighting of

her offsprings’utility relative to her own utility.7 The individual discounts the utility of each additional

child by a factor of 1 − ν, where 0 < ν < 1 because we assume diminishing marginal returns from

offspring.8

We let earnings (wt) be given by the earnings function wt(zt, ht), which depends on the individual’s

time-invariant characteristics, choices that affect human capital accumulated with work experience, and

the current level of labor supply (ht). The choices and characteristics of parents are mapped onto their

offspring’s characteristics (x′) via a stochastic production function of several variables. The offspring’s

characteristics are affected by their parents’time-invariant characteristics, their parents’monetary and

time investments, and the presence and timing of siblings. These variables are mapped into the child’s

skill and educational outcome by the function M(x′|zT+1) where zT+1 includes all parental choices and

characteristics and contains information on the choices of time inputs and monetary inputs. Because zT+1

also contains information on all birth decisions, it captures the number of siblings and their ages. We

7Technically this definition is assuming the parent has one period left in her lifetime and has only one child.
8Note that this formulation can be written as an infinite discounted sum (over generations) of per-period utilities as in

the Barro-Becker formulation.
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assume there are four mutually exclusive educational outcomes for offspring: less than high school (LH),

high school (HS), some college (SC), and college (Coll). Therefore, M(x′|z
T+1

) is a mapping of parental

inputs and characteristics into a probability distribution over these four outcomes.

We normalize the price of consumption to 1. Raising children requires parental time (dt) and market

expenditure. The per-period cost of expenditures for raising a child is denoted pcnt. Therefore, the

per-period budget constraint is given by

wt ≥ ct + pcnt. (2)

The sequence of optimal choice for both discrete choice and consumption is denoted as Iokt and cot ,

respectively. We can thus denote the expected lifetime utility at time t = 0 of a person with characteristics

x in generation g, excluding the dynastic component, as

UgT (x) = E0

[∑T
t=0 β

t[
∑17

k=0 I
o
kt{u1kt(zt) + εkt}+ u2t(c

o
t , zt)]|x

]
. (3)

The total discounted expected lifetime utility of an adult in generation g including the dynastic component

is

Ug(x) = UgT (x) + βTλN−νE0
[∑N

n=1 Ug+1,n(x′n)|x
]
, (4)

where Ug+1,n(x′n) is the expected utility of child n (n = 1, .., N) with characteristics x′. In this model,

individuals are altruistic and derive utility from their offspring’s utility, subject to discount factors β and

λN1−ν .

To simplify presentation of the model, we assume that pcnt is proportional to an individual’s current

earnings and the number of children, but we allow this proportion to depend on the state variables.

This assumption allows us to capture the differential expenditures on children made by individuals with

different incomes and characteristics. Practically, this allows us to proxy for differences in social norms

of child-rearing among different socioeconomic classes.9 Explicitly, we assume that

pcnt = αNc(zt)(N t+bt)wt(x, ht) (5)

and, incorporating the assumption that individuals cannot borrow or save and equation (5), the budget

9 In general, individuals can choose expenditures on children, but we do not observe spending in our data used for
estimation in this proposal.

9



constraint becomes

wt(x, ht) = ct + αNc(zt)(N t+bt)wt(x, ht). (6)

Solving for consumption from equation (6) and substituting for consumption in the utility equation, we

can rewrite the third component of the per-period utility function, specified as u2kt(zt), as a function of

just zt as follows;

u2kt(zt)=ut[wt(x, ht)− αNc(zt)(N t+bt)wt(x, ht), zt]. (7)

Note that the discrete choices now map into different levels of utility from consumption. Therefore, we can

eliminate the consumption decision as choice and write the systematic contemporary utility associated

with each discrete choice k as

ukt(zt) = u1kt(zt) + u2kt(zt). (8)

Incorporating the budget constrain manipulation, we can rewrite equation (3) as

UgT (x) = E0

[∑T
t=0 β

t∑17
k=0 I

o
kt[ukt(zt) + εkt]|x

]
. (9)

Alvarez (1999) analyzes and generalizes the conditions under which dynastic models with endogenous

fertility lead to intergenerational persistence in income and wealth. Following his analysis, we show

which assumptions are relaxed in our model and lead to persistence in income. The first is constant cost

per child. In our model, the per-period costs of raising a child and transferring human capital is the

cost described in equations (5) and (6), as well as the opportunity cost of time investment in children:

w(x, 1−dt− leisuret). Time investment in children and labor market time are modeled as discrete choice

with three levels. This introduces nonlinearity. Even if we were able to capture the proportional increase

in time with children as the number of children increases, the nonlinearity in labor supply decisions

implies that the opportunity cost of time investment in children is not linear. Thus, the cost of transfer

of human capital per child is not constant. Furthermore, in contrast to standard dynastic models and

those analyzed in Alvarez (1999), we incorporate dynamic elements of the life-cycle that involve age effect

and experience. The opportunity cost of time with children therefore incorporates returns to experience,

which are nonlinear. The nonlinearity involved in labor supply is realistic; parents labor market time is

often not proportional to the number of children they have, and hours in the labor market for a given
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wage rate are not always flexible and depend on occupation. Furthermore, fertility decisions are made

sequentially, and due to age effects, the cost of a child varies over the life-cycle. The second condition

is non-separability in preferences, aggregation of the utilities from children, and the feasible set. In

our model, the latter is relaxed; that is, the separability of the feasible set across generations. This is

because the opportunity costs of the children depend on their education and labor market skills. However,

education and labor market skills of children are linked with their parents’skills and education through

the production function of education.

2.1 Optimal Discrete Choice

The individual then chooses the sequence of alternatives yielding the highest utility by following the

decision rule I(zt, εt), where εt is the vector (ε0t, ..., ε17t). The optimal decision rules are given by

Io(zt, εt) = arg max
I
EI

[
T∑
t=0

βt{
17∑
k=0

Ikt[ukt(zt) + εkt]}+ βTλN−ν
N∑
n=1

Ug+1,n(x′n)|x
]
, (10)

where the expectations are taken over the future realizations of z and ε induced by Io. In any period

t < T , the individual’s maximization problem can be decomposed into two parts: the utility received at

t plus the discounted future utility from behaving optimally in the future. Therefore, we can write the

value function of the problem, which represents the expected present discounted value of lifetime utility

from following Io, given zt and εt, as

V (zt+1, εt+1) = max
I
EI

(
T∑

t′=t+1
βt
′−t

17∑
k=0

Ikt′ [ukt′(zt′) + εkt′ ] + βT−t
′
λN−ν

N∑
n=1

Ug+1,n(x′n)|zt, εt

)
. (11)

By Bellman’s principle of optimality, the value function can be defined recursively as

V (zt, εt) = max
I

[
17∑
k=0

Ikt {ukt(zt) + εkt + βE(V (zt+1, εt+1)|zt, Ikt = 1)}
]

=
17∑
k=0

Iokt(zt, εt)[ukt(zt) + εkt] + β
∑
z′

∫
V (z′, ε)f(ε)dεF (z′|zt, Iokt = 1)], (12)

where f(ε) is the continuously differentiable density of Fε(ε0t, .., ε17t), and F (z′|zt, Ikt = 1) is a transition

function for state variables, which is conditional on choice k. In this simple version, the transitions of the

state variables are deterministic given the choices of labor market experience, time spent with children,
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and number of children.

Since εt is unobserved, we further define the ex ante (or integrated) value function, V (zt), as the

continuation value of being in state zt before εt is observed by the individual. Therefore, V (zt) is given

by integrating V (zt, εt) over εt. Defining the probability of choice k at age t by pk(zt) = E[Iokt = 1|zt],

the ex ante value function can be written as

V (zt) =
∑17

k=0 pk(zt)
[
ukt(zt) + Eε[εkt|Ikt = 1, zt] + β

∑
z′ V (z′)F (z′|zt, Ikt = 1)

]
. (13)

In this form, V (zt) is now a function of the CCPs, the expected value of the preference shock, the per-

period utility, the transition function, and the ex ante continuation value. All components except the

conditional probability and the ex ante value function are primitives of the initial decision problem. By

writing the CCPs as a function of just the primitives and the ex ante value function, we can characterize

the optimal solution of problem (i.e., the ex ante value function) as implicitly dependent on just the

primitives of the original problem.

To create such a model we define the conditional value function, υk(zt), as the present discounted

value (net of εt) of choosing k and behaving optimally from period t = 1 onward:

υk(zt) = ukt(zt) + β
∑

z′ V (z′)F (z′|zt, Ikt = 1). (14)

The conditional value function is the key component to the CCPs. Equation (10) can now be rewritten

using the individual’s optimal decision rule at t to solve

Io(zt, εt) = arg max
I

∑17
k=0 Ikt[υk(zt) + εkt]. (15)

Therefore, the probability of observing choice k, conditional on zt, is pk(zt) and is found by integrating

overt εt in the decision rule in equation (15):

pk(zt) =

∫
Io(zt, εt)fε(εt)dεt =

∫ [∏
k 6=k′ 1{υk(zt)− υk′(zt) ≥ εkt−εtk′}

]
fε(εt)dεt. (16)

Therefore, pk(zt) is now entirely a function the primitives of the model (i.e., ukt(zt), β, F (zt+1|zt, Ikt = 1),

and fε(εt)) and the ex ante value function. Hence substituting equation (16) into equation (13) gives an

12



implicit equation defining the ex ante value function as a function of only the primitives of the model.

3 A Generic Estimator of the Life-Cycle Dynastic Discrete Choice

Model

We use a partial solution, multi stage estimation procedure to accommodate the non-standard features

of the model. By assuming stationarity across generations and discrete state space in the dynamic

programming problem, we obtain an analytic representation of the valuation function. The alternative

valuation function depends on the CCPs, the transition function of the state variable, and the structural

parameters of the model. In the first stage, we estimate the CCPs and the transition function. The

second stage forms either moment conditions or likelihood functions to estimate the remaining structural

parameters using a PML or a GMM, respectively. For each iteration in the estimation procedure the

CCP is used to generate a valuation representation to form the terminal value in the life-cycle problem,

which can then be solved by backward induction to obtain the life-cycle valuation functions.

3.1 An Alternative Representation of the Problem

The alternative representation of the continuation value of the intergenerational problem is developed

below. The Hotz and Miller estimation technique for standard single-agent problems is adapted to the

dynastic problem using the following representation.

Proposition 1 There exists an alternative representation for the ex ante conditional value function at

time t that is a function of just the primitives of the problem and the CCPs:

υk(zt) = ukt(zt) +
∑T

t′=t+1 β
t′−t∑17

s=0

∑
zt′
ps(zt′)[ust′(zt′) + Eε(εst′ |Ist′ = 1, zt′)]F

o
k (zt′ |zt)

+λβT−tNT
−ν∑NT

n=1

∑
x V (x)

∑KT
s=0

∑
zT
Mn
k (x′|zT )ps(zT )F ok (zT |zt), (17)

where F ok (zt′ |zt) is the t′ − t period-ahead optimal transition function, recursively defined as

F ok (zt′ |zt) =

 F (zt′ |zt, Ikt = 1) for t′ − t = 1∑17
r=0

∑
zt′−1

pr(zt′−1)F (zt′ |zt′−1, Irt′−1 = 1)F ok (zt′−1|zt) for t′ − t > 1,
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where NT is the number of children induced from ZT , KT is the number of possible choice combinations

available to the individual in the terminal period (in which birth is no longer feasible), and Mn
k (x′|zT ) =

M(x′|zT ) conditional on IkT = 1 for the nth child born in a parent’s life-cycle.

Let ek(p, z) represent the expected preference shocks conditional on choice k being optimal in state

z. The expected preference shocks are written in this notation to convey the shock as a function of the

CCPs (see Hotz and Miller, 1993). For example, in the type 1 extreme value case, ek(p, z) is given by

γ − ln[pk(z)], where γ is Euler’s constant. From the representation in Proposition 1 we can define the ex

ante conditional lifetime utility at period t, excluding the dynastic component as

Uk(zt) = ukt(zt) +
T∑

t′=t+1
βt
′−t

17∑
s=0

∑
zt′
ps(zt′)[ust′(zt′) + es(p, zt′)]F

o
k (zt′ |zt).

Because Uk(zt) is a function of just the primitives of the problem and the CCPs, we can write an

alternative representation for the ex ante value function at time t:

V (zt) =
17∑
k=0

pk(zt)[Uk(zt) + ek(p, zt) + λβT−tNT
−ν

NT∑
n=1

∑
x
V (x)

KT∑
s=0

∑
zT

Mn
k (x′|zT )ps(zT )F ok (zT |zt)]. (18)

Equation (18) is satisfied at every state vector zt. The problem is stationary over generations, so

zt = x at period t = 0 because there is no history of decisions in the state space, and hence the initial

state space has finite support on the integers {1, ..., X}. We define the optimal lifetime intergenerational

transition function as Mo
k (x′|x) =

∑NT
n=1

∑KT
s=0

∑
zT
ps(zT )Mn

k (x′|zT )F ok(zT |x). The matrix Mo
k can be

interpreted as the probability that an average descendant of the individual with characteristic x′, given

that his parents have characteristics x, chooses decision k in the first period and behaves optimally from

period 1 to T of the parent’s life-cycle. Now, we can express the components of equation (18) in vector

14



or matrix form:

V0 =



V (1)

.

.

.

V (X)


, U(k) =



Uk(1)

.

.

.

Uk(X)


, E(k) =



ek(p, 1)

.

.

.

ek(p,X)


, P (k) =



pk(1)

.

.

.

pk(X)


,

ιX =



1

.

.

.

1


Xx1

, and Mo(k) =



Mo
k (1|1) ... Mo

k (X|1)

.

.

.

Mo
k (1|X) ... Mo

k (X|X)


Using these components the vector of the ex ante value function can be expressed as

V0 =
∑17

k=0 P (k)⊗ [U(k) + E(k) + λβTN−νT Mo(k)]V0 (19)

where ⊗ refers to element-by-element multiplication. Rearranging the terms and solving for V0, we obtain

V0 = [IX − λβTN−νT
∑17

k=0{P (k)ι′X} ⊗Mo(k)]−1
∑17

k=0 P (k)[U(k) + E(k)], (20)

where IX denotes the X×X identity matrix. Equation (20) is based on the dominant diagonal property,

which implies that the matrix IX − λβTN−νT
∑17

k=0{P (k)ι′X} ⊗Mo(k) is invertible.

3.2 Estimation

We parameterized the period utility by a vector θ2, ukt(zt, θ2); the period transition on the observed states

is parameterized by a vector θ3, F (zt|zt−1, IkT = 1, θ3); the intergenerational transitions on permanent

characteristics is parameterized by a vector θ5, Mn(x′|zT+1, θ4); and the earnings function is character-

ized by a vector θ5, wt(x, ht, θ5). Therefore, the conditional value functions, decision rules, and choice

probabilities now also depend on θ ≡ (θ2, θ3, θ4, θ5, β, λ, ν). Standard estimates of dynamic discrete choice

models involve forming the likelihood functions from the CCPs derived in equation (16). This involves
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solving the value function for each iteration of the likelihood function. The method used to solve the

valuation function depends on the nature of the optimization problems and normally falls into one of two

cases

(i) Finite-horizon problems: The problem has an end date (as in a standard life-cycle problem); hence

future value function is obtained by backwards recursion.

(ii) Stationary infinite-horizon problem: The valuation is obtained by a contraction mapping.

A dynastic discrete choice model in unusual because it involves both a finite-horizon problem and an

infinite-horizon problem. Solving both problems for each iteration of the likelihood function is compu-

tationally infeasible for all but the simplest of models. We avoid solving the stationary infinite-horizon

problem in estimation by replacing the terminal value in the life-cycle problem with equation (20). This

convert the problem into a finite-horizon problem that can be solved by backward recursion since the

flow utility function is

υk(zT ) = ukT (zT ) + λNT
−ν∑

x V (x)
∑NT

n=1M
n
k (x′|zT ). (21)

Since ukT (zT ) is parameterized by θ2, the transition Mn
k (x′|zT ) is known since it can be estimated from

the data. Observing Fε(ε0t, .., ε17t) and calculating V (x) via equation (20),10 we can calculate the ex

ante value function at T using V (zT ) =
∑17

k=0

∫
I0kI(zT , εT )[υk(zT ) + εkT ]fε(εT )dεT . The conditional

value function for T − 1 is given by υk(zT−1) = ukT−1(zT−1) + β
∑

zT
V (zT )F (zT |zT−2, IkT = 1). This is

continued backward given υk(zT−1) to form value function at T − 2, and so on.

The backward induction procedure outlined above shows that only Mn
k (x′|zT ) in equations (21) and

(20) depends on the next generation’s outcome. Thus, we can estimate the intergenerational problem with

only two generations of data, as is the case in the standard stationary discrete choice models (see Rust,

1987, for example). To estimate the intergenerational problem we let Idtg, zdtg, and εdtg, respectively,

indicate the choice, observed state, and unobserved state at age t in the generation g of dynasty d.

Forming the CCPs for each individual in the first observed generation of dynasty d at all ages t yields

10This manipulation is possible because the alternative value function in equation (20) is a function of only the parameters
of the model and the CCP. Since the CCP can be estimated directly from the data, backward recursion becomes possible
because the decision in the last period, T, is similar to a static problem when the value of children is replaced with equation
(20).
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the components necessary for estimation. Estimation proceeds in two steps.

Step 1: In the first step we estimate the CCP, transition, and earnings functions necessary to com-

pute the inversion in equation (20). The expectation of observed choices conditional on the observed

state variable gives an empirical analog to the CCPs at the true parameter values of the problem, θo1,

allowing us to estimate the CCPs; we denote this estimate by ̂pk(zdt1). We also estimate θ3, θ4, and θ5,

which parameterize the transition and earnings functions F (zt|zt−1, IkT = 1, θ3), Mn(x′|zT+1, θ4), and

wt(x, ht, θ5) respectively in this step.

Step 2: The second step can be estimated two ways, the first is a PML and the second is a GMM.

We can use a PML method and not a pure maximum likelihood estimator because part of the likelihood

function is concentrated out using the data. With D dynasties, the PML estimates of θ0 = (θ2, β, λ, ν)

are obtained via

θ̂0PML = arg max
θ0

(∑D
dt1=1

∑T
t=0

∑17
k Idt1 ln[pk(zdt1; θ0, θ̂3, θ̂4, θ̂5)]

)
, (22)

where pk(zdt1; θ0, θ̂3, θ̂4, θ̂5) is the CCP defined in equation (16) with the conditional value function

replaced with υk(zdt1, θ0, θ̂3, θ̂4, θ̂5), which is calculated by backward recursion using the estimated choice

probabilities and the transition functions outlined in Step 1.

An alternative second-step GMM estimator is formed using the inversion found in Hotz and Miller

(1993). Under the assumption that ε is distributed independently and identically as type I extreme

values, then the Hotz and Miller inversion implies that

log
(
pk(zdt1; θ0, θ̂3, θ̂4, θ̂5)/pK(zdt1; θ0, θ̂3, θ̂4, θ̂53)

)
= υk(zdt1, θ0, θ̂3, θ̂4, θ̂5)− υK(zdt1, θ0, θ̂3, θ̂4, θ̂5) (23)

for any normalized choiceK.We can use ̂pk(zdt1), estimated from Step 1, to form an empirical counterpart

to equation (23) and estimate the parameters of our model. The moment conditions can be obtained

from the difference in the conditional valuation functions calculated for choice k and the base choice 0.

The following moment conditions are produced for an individual at age t ∈ {17, ...., 55}:

ξjdt(θ0) ≡ υk(zdt1, θ0, θ̂3, θ̂4, θ̂5)− υ0(zdt1, θ0, θ̂3, θ̂4, θ̂5)− ln
[
̂pk(zdt1)/ ̂p0(zdt1)

]
. (24)

17



Therefore, there are 17 orthogonality conditions and thus j = 1, ..., 17. Letting ξdt(θ0) be the vector of

moment conditions at t, these vectors are defined as ξdt(θ0) = (ξ1dt(θ0), ξ2dt(θ0), ...ξ17dt(θ0))
′. Therefore,

E[ξdt(θ
o
0)|zdt] converges to 0 for every consistent estimator of true CCPs, pk(zdt1; ; θ0, θ̂3, θ̂4, θ̂5), for t ∈

{17, ..., 55}, and where θo0 is the true parameter of the model. Define ξd(θ0) ≡ (ξd1(θ0)
′, ..., ξdT (θ0)

′)′

as the vector of moment restrictions for a given individual over time and define a weight matrix as

Φ(θ0) ≡ Et[ξd(θ0)ξd(θ0)′]. Then the GMM estimate of θ0 is obtained via

θ̂02SGMM = arg min
θ0

[1/D
∑D

d=1 ξd(θ0)]
′Φ̂[1/D

∑D
d=1 ξd(θ0)]. (25)

where Φ̂ is a consistent estimator of Φ(θo).

3.3 Monte Carlo Study

To compare the dynamics of the model in a numerical example and to examine the performance of the

estimation, we use a simple human capital investment model with intergenerational transfers that has

the two-period model structure of Section 1. We generate simulated data from the model for given

parameter values, compare the dynamics, and estimate the model parameters for the generated dataset.

We estimated the parameters using the FNXP and PML estimators described above. The estimations

are repeated for both algorithms for different specifications of the model in terms of sample size (i.e.,

for 1000, 10000, 20000, 40000). The number of structural parameters estimated including the discount

factors is 3.

For illustrative purposes we start with the model in which the period utility function, uk(zt), has

the following linear form: The individual chooses whether to invest or not Ik ∈ {0, 1} in each period

t ∈ {0, 1}. We assume that individuals may have only one child, N ≤ 1, and receive the following utilities

associated with each choice:

uk(zt) =

 zt if k = 0

(1− θ)zt if k = 1


where Fε(εt) is the choice-specific, unobservable part of the utility and assumed to be independently

distributed type 1 extreme value.

The value of the vector zt is subject to change each period because of different choices made in

each period and because individual characteristics (e.g., skill and education) given in the vector x, may
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transition over time. In the example environment, the individual starts the life-cycle with a particular set

of character traits, which can be denoted as zt ∈ (0.5, 0.6, 0.7, 0.8, 0.9). Note that at t = 0 the individual

has not made any choices yet, so the vector z0 depends fully on initial characteristics x. The value of z1

is given by the transformation function Fk(zt|zt−1) that given by the transition matrix:

F0(zt|zt−1) =



0.85 0.13 0.02 0 0

0.04 0.85 0.09 0.02 0

0.01 0.04 0.85 0.09 0.01

0 0.01 0.05 0.85 0.09

0 0 0 0 1


and

Fk(zt|zt−1) =



1 0 0 0 0

0.1 0.9 0 0 0

0.13 0.27 0.6 0 0

0.01 0.11 0.28 0.6 0

0 0.04 0.13 0.23 0.6


.

The individual’s traits in the next period are determined by the probabilities in the corresponding row,

where each row corresponds to one of the initial values z0 ∈ (0.5,0.6,0.7,0.8,0.9), and each column rep-

resents character traits in the next period, z1 ∈ (0.5,0.6,0.7,0.8,0.9). The transition is such that an

individual with character traits z0 = 0.5 who chooses not to have a child such that the choice vector

I0 = 0 will have characteristics z1 = 0.5 with a probability of 0.85. In this simplified model, the next

generation’s initial characteristics z′0 depend only on the sum of the financial investment decisions in the

life-cycle.

The educational outcome of the offspring is determined by the intergenerational transition function:

M(z′0 | zT+1) =


1 0 0 0 0

0 0.1 0.4 0.4 0.1

0 0 0.04 0.06 0.9

 ,

where zT+1 can take values in {0,1,2}. The next generation’s starting character traits are determined by
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the probabilities given in the row, where each row corresponds to one of the values of zT+1 ∈ (0, 1, 2)

and the first row represents investment level zT+1 = 0. If the individual invests nothing, then the next

generation will have the lowest consumption value with complete certainty. The transition is such that

an individual who opts to invest twice in the life-cycle has a probability of 0.9 that the next generation

will start his life-cycle with the characteristics z′0 = 0.9.

We simulated the model for a given value of the parameters of the model, (θ2, β, λ) = (0.25, 0.8, 0.95),

where θ is the structural parameter of interest that gives the marginal cost of investment, and λ and β

are the generational and time discount factors, respectively. We solve the dynamic problem for datasets

of 1000, 10000, 20000, 40000 individual dynasties and repeat the simulation 100 times. For the CCP

estimation, the initial consistent estimates are estimated nonparametrically using the generated sample.

Next, we estimate the model by NFP and PML.11 Table 1 presents the results of the estimation for

each specification. Not surprisingly, we find that the finite-sample properties of the estimators improve

monotonically with sample size. In the NFP estimation, the mean square error (MSE) of θ drops quickly

as the sample size increases. The results for the discount factors are similar: MSEs fall as the sample

size increases. In the PML estimation, we observe a similar pattern for all estimators. We obtain similar

results from the NFP and PML estimations. For the sample size of 1000, the PML estimate of the MSE

of θ0 is 0.00249 compared with 0.00288 from the NFP. The PML estimate of the MSE of λ is 0.01253

compared with 0.00901, and the PML estimate of the MSE of β is 0.00396 compared with 0.00305. For

the sample sizes of 10000, 20000 and 40000, the MSEs obtained from PML estimation is lower than

the MSEs obtained from the NFP, but the magnitudes are still very close. In terms of biases, the two

estimation algorithms are also quite similar. The major difference between the two estimation algorithms

is computational time, which varies greatly between the NSP and PML even though we simulate a very

simple model. The average computational time for the NFP for a sample of 1000 is 347.6 seconds, but

it is only 0.65 seconds for the PML estimation, meaning the PML was 530 times faster. For the sample

size of 40000, computation times are 509.8 and 12.6 seconds for the NFP and PML, respectively, a ratio

of 40.4.
11As illustrated in the estimation section, intergenerational models at the final step can be estimated either by the PML

or GMM method. For this simulation study we used the PML because it is more comparable to the full solution maximium
likelihood.
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3.4 Large-Sample Properties

It is well known in the econometric literature that under certain regularity conditions, pre-estimation

has no impact on the consistency of the parameters in the subsequent steps of a multistage estimation

(Newey, 1984; Newey and McFadden, 1994; Newey, 1994). The asymptotic variance, however, is affected

by the pre-estimation. To conduct inference in this type of estimation, one has to correct the asymptotic

variance for the pre-estimation. The method used to correct the variance in the final step of estimation

depends on whether the pre-estimation parameters are of finite or infinite dimension. Unfortunately,

our estimation strategy combines both finite and infinite dimensional parameters. Combining results

from two sources (Newey, 1984; Newey and McFadden, 1994), however, allows us to derive the corrected

asymptotic variance for our estimator.

We proposed two estimators: PML estimator and a GMM estimator. The PML estimator can also

be written as a GMM-estimator by using the first-order conditions of the optimization problem as the

moment conditions. As such, we will derive only the large sample property for a moment-based estimator

where the moments can be either the first conditions of the PML-estimator defined in equation (22)

or the orthogonal conditions defined in equation (24). For ease of notation, we use the same notation

to represents these two types of orthogonality conditions. Following Newey (1984), we can write the

sequential-moment conditions for the first- and third-step estimation as a set of joint moment conditions:

ξd(Zd, θ0, θ3, θ4, θ5, ψ) = [ξdF (Zd, θ3), ξdM (Z, θ4), ξdW (Z, θ5), ξd(Zd, θ0, θ3, θ4, θ5, ψ)]′ ,

where ξdF (Zd, θ3) is the orthogonality conditions from the estimation of the life-cycle transition func-

tion, ξdM (Z, θ4) is the orthogonality conditions from the estimation of the generation transition func-

tion, ξdW (Z, θ5) is the orthogonality conditions from the estimation of the earnings equation, and

ξd(Zd, θ0, θ3, θ4, θ5, ψ) is the moment conditions from the second-step estimation defined in equation

(24). Regardless of the estimation method used to estimate θ3, θ4, and θ5, they can always be expressed

as moment conditions. Let θ = (θ0, θ3, θ4, θ5)
′, with the true value denoted by θo. Each element of

the infinite dimensional parameter, ψ, can be written as a conditional expectation. Redefine each el-

ement as ψk(zk) = fzk(zk)E
[
Ĩdk | zk

]
, where Ĩdkt = [1, Idkt]

′ for the estimation of pk(zdt). Therefore,

ψk(D)(zk) = 1
D

∑D
d=1 ĨdkJδN (zk − zkd). The conditions below ensure that ψ(D) is close enough to ψo for D
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large enough —in particular that
√
D
∥∥∥ψ(N) − ψo∥∥∥2 converges to zero.

Assumption 1: There is a version of ψo(z) that is continuously differentiable of order κ,

greater than the dimension of z, and ψo1(z) = fz(z) is bounded away from 0.

Assumption 2:
∫
J(u) du = 1 and for all j < κ,

∫
J(u)

(
j⊗
s=1

u

)
du = 0.

Assumption 3: The bandwidth, δD, satisfies Dδ
2 dim(z)
D /(ln(D))2 →∞ and Dδ2κD → 0.

Assumption 4: There exists a Ψ(Z), ε > 0, such that

∥∥∇θξd(Z, θ, ψ)−∇θξd(Z, θo, ψo)
∥∥ ≤ Ψ(Z) [‖θ − θo‖ε + ‖ψ − ψo‖ε]

and E[Ψ(Z)] <∞.

Assumption 5: θ(D) → θo with Θo in the interior of its parameter space.

Assumption 6: (Boundedness)

(i) Each element of ξd(Z, θ, ψ) is bounded almost surely: E[
∥∥ξd(Z, θ, ψ)

∥∥2] <∞;
(ii) pdkt ∈ (0, 1), for all k.

(iii) ξdF (Zd, θ3), ξdM (Z, θ4), and ξdW (Z, θ5) are continuously differentiable in θ3, θ4, and θ5,

respectively.

Proposition 2 Under Assumptions 1—6 and the influence, Φ(Z), defined in the appendix,

√
N
(
θ(D) − θo

)
⇒ N(0,Σ(θo)),

where

Σ(θo) = E
[
∇θξd(Z)Ω−1d ∇θξd(Z)′

]−1
E
[
∇θξd(Z)Ω−1d

{
ξd(Z) + Φ(Z)

}{
ξd(Z) + Φ(Z)

}′
Ω−1d ∇θξd(Z)′

]
×E

[
∇θξd(Z)Ω−1d ∇θξd(Z)′

]−1
.

Assumptions 1—6 are standard in the semiparametric literature; see Newey and McFadden (1994) for

details. One can now use Proposition 2 to calculate the standard errors for all the parameters in our
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estimation. The proof of Proposition 2 follows from checking the conditions for Theorem 8.12 from Newey

and McFadden (1994).

4 Extensions

The dynastic framework developed so far in this paper has three major drawbacks. First, parts of the

parental investment and transfers from parents to children are monetary in nature. Monetary invest-

ment and/or parental transfers, such as paying for college or purchasing a house for their children, are

most naturally characterized as a continuous choice. Second, the framework assumes that gender does

not matter. However, there are significant differences in the cost, choices, and opportunities over an

individual’s lifetime that are gender specific. Third, which is related to gender but not specific to it, is

that individuals normally form households and it take a man and a woman to reproduce, and fertility

is central to the model. In this section, we consider extensions to the basic framework that account for

these three shortcomings.

4.1 Continuous Choice and Transfer

For the estimation technique developed above to be applicable to a dynastic framework two features

must be present. First, all choices must be discrete and second, all systematic state variables, at the

initial stage and in every period during the life-cycle, must have a discrete support. We replace these

assumptions with two weaker assumptions. The first is that there must be at least one discrete choice

variable. This requirement is easily satisfied as birth decision is naturally discrete. The second is that the

initial systematic state variable (i.e., endowment that an individual starts adult life with) must belong

to a finite set with discrete support. This is weaker than the original assumption and is a less restrictive

requirement; it is satisfied in a non trivial number of economic dynastic models —for example, in models

where human capital is the major intergenerational transfers and even in models of bequests once the

amount transferred is discretized. In practice, in most dynamic programing models the state space in

normally discretized. This requirement, however, relaxes the assumption that state space is discrete for

the entire lifetime and that all choice variables are discrete. While bequests and initial wealth still must

be discrete, the framework allows for any transfers and investments the parents make during their lifetime

and map into discrete initial conditions of the child, such as education, houses, or other assets that are
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discrete in nature.

We extend our framework by assuming that we observed data on the per-period expenditures of raising

a child, pcnt, which is continuous. Let us further assume that this expenditure is potentially productive:

higher expenditure increases the probability of a higher level of education of the child. We redefine the vec-

tor of state variable z to capture these new assumptions, zt = ({Ik1}17k=0 , ..., {Ikt−1}
17
k=0 , pcn1, ..., pcnt−1, x)

with x ∈ {x1, ..., x|X|}, a discrete set with finite support. As before, M(x′ | zT+1) is the intergenerational

transition probability of x conditional on a parent’s endowment, x, and the parent’s choices over his/her

lifetime.

Let Iokt and pcont be the sequence of optimal choice over the parent’s lifetime. Also, redefine the

systematic part of current utility in equation(8) as

ukt(zt, pcnt)=u1kt(zt) + ut[wt(x, ht)− pcnt, zt]. (26)

Then the lifetime expected utility excluding the dynastic component at the start of an adult’s life becomes

UgT (x) = E0

[∑T
t=0 β

t[
∑17

k=0 I
o
kt{u1kt(zt, pc

o
nt) + εkt}]|x

]
. (27)

As before, we can write the value function of the problem, which represents the expected present dis-

counted value of lifetime utility from following Io and pcont, given zt and εt, as

V (zt+1, εt+1) = max
I,pcnt

EI,pcn

({∑T
t′=t+1 β

t′−t∑17
k=0 Ikt′ [ukt′(zt′ , pcnt′) + εkt′ ]

+βT−t
′
λN−ν

∑N
n=1ET [Ug+1,n(x′n)|zT+1]

}
|zt+1, εt+1

)
. (28)

By Bellman’s principle of optimality, the value function can be defined recursively as

V (zt, εt) =
∑17

k=0

(
Iokt(zt, εt)[ukt(zt, pc

o
nt(zt)) + εkt] + β

∫ [∫
V (z′, ε)fε(ε)dε

]
dFk(z

′|zt, pc)]
)
,

where fε(ε) is the continuously differentiable density of Fε(ε0t, .., ε17t), and Fk(z′|zt, pc) is a transition

function for state variables that is conditional on choices Iokt = 1 and pcont = pc. Note that Iokt(zt, εt)

is a function of zt and εt, while pcont(zt) is a function of only zt. This is a consequence of the additive

separability of the preferences shock, which will not affect the continuous choice as demonstrated below.
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The ex ante value function is then

V (zt) =
∑17

k=0 pk(zt)
[
ukt(zt, pc

o
nt(zt)) + Eε[εkt|Ikt = 1, zt] + β

∫
V (z′)dFk(z

′|zt, pc)
]
. (29)

In this form, V (zt) is now a function of the CCPs, the continuous choice decision rule, the expected value

of the preference shock, the per-period utility, the transition function, and the ex ante continuation value.

All components expect the conditional probability, the continuous choice decision rule and the ex ante

value function are primitives of the initial decision problem. By writing the CCPs and the continuous

choice decision rule as a function of just the primitives and the ex ante value function, we can characterize

the optimal solution of problem (i.e., the ex ante value function) as implicitly dependent on the primitives

of the original problem. Let us define the conditional value function, υk(zt, pcnt), as

υk(zt) = max
pcnt

[
ukt(zt, pcnt) + β

∫
V (z′)dFk(z

′|zt, pc)
]
. (30)

Therefore, the probability of observing choice k, conditional on zt, pk(zt), is still given by

pk(zt) =
∫ [∏

k 6=k′ 1{υk(zt)− υk′(zt) ≥ εkt−εtk′}
]
fε(εt)dεt. (31)

However, the optimal continuous choice is found in two steps. First, find the optimal choice conditional

on Ikt = 1, called pcknt(zt). This is characterized by the following Euler equation:

∂ukt(zt, pcnt)

∂pcnt
= −β

∂
∫
V (z′)dFk(z

′|zt, pc)
∂pcnt

. (32)

Then substitute it into the conditional valuation function:

υk(zt) =
[
ukt(zt, pcknt(zt)) + β

∫
V (z′)dFk(z

′|zt, pc)
]
, (33)

and find the optimal discrete choice:

Io(zt, εt) = arg max
I

∑17
k=0 Ikt[υk(zt) + εkt].

Finally, we obtain the optimal continuous choice by sets pcont(zt) = pcknt(zt) if Iokt(zt, εt) = 1.
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We now can find an alternative valuation function that is a function of only pk(zt), pcknt(zt), and the

primitives of the model. We can now state a more general version of Proposition 3.

Proposition 3 There exists an alternative representation for the ex ante conditional value function at

time t that is a function of only the primitives of the problem and the CCPs as follows:

υk(zt) = ukt(zt, pcknt(zt))

+
T∑

t′=t+1
βt
′−t

17∑
s=0

∫
[ps(zt′)[ust′(zt′ , pcknt′(zt)) + Eε(εst′ |Ist′ = 1, zt′)]dF

o
k (zt′ |zt)

+λβT−tNT
−ν

NT∑
n=1

∑
x
V (x)

∑KT
s=0

∫
[Mn

k (x′|zT )ps(zT )]dF ok (zT |zt), (34)

where F ok (zt′ |zt) is the t′ − t period-ahead optimal transition function, recursively defined as

F ok (zt′ |zt) =


F (zt′ |zt, Ikt = 1, pcknt(zt)) for t′ − t = 1

17∑
r=0

∑
zt′−1

pr(zt′−1)F (zt′ |zt′−1, Irt′−1 = 1, pcknt′−1(zt′−1))F
o
k (zt′−1|zt) for t′ − t > 1,

where NT is the number the children induced from ZT , KT is the number of possible choice combinations

available to the individual in the terminal period (in which birth is no longer feasible) and Mn
k (x′|zT ) =

M(x′|zT ) conditional on IkT = 1 for the nth child born in a parent’s life-cycle.

This representation is similar to the one in Proposition 3 except that the inclusion of pcknt(zt) and the

replacement of an integral for a summation deal with the continuous state variables over the life-cycle.

The inversion —and hence the estimation —follows through as before except we now need a first-stage

consistent estimate of pcknt(zt) as well. This is obtained as pcknt(zt) = E[pcnt|zt, Ikt = 1]. See Altug and

Miller (1998) and Gayle and Golan (2012) for applications with continuous and discrete choices.

4.2 Household and Gender

We extend the basic framework to include household decisions and gender. To the best of our knowledge,

no other paper estimates dynastic models with household decisions. There are many model of household

decisions; here we show how to extend the model to incorporate a unitary decisions-maker. The framework

can be extended to deal with collective household decisions: see Gayle, Golan, and Soytas (2014) for an

application of this estimation technique to a non corporative collective model of household behavior. Let
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an individual’s gender, subscripted as σ, take the value of m for a male and f for a female: σ = {f,m}.

Gender is included in the vector of invariant characteristics xσ. Let K describe the number of possible

combinations of actions available to each household. Individuals get married at time 0, and for simplicity

we assume there is no divorce (see Gayle, Golan, and Soytas, 2014 for an application with marriage and

divorce). Households are assumed to live for T periods and die together. Time 0 is normalized to account

for the normal age gap between married couples, which would imply that men have a longer childhood

than women. All individual variables and earnings are indexed by the gender subscript σ. We omit the

gender subscript when a variable refers to the household (both spouses). The state variables are extended

to include the gender of the offspring. Let the vector ζt indicate the gender of a child born at age t, where

ζt = 1 if the child is a female and ζt = 0 otherwise. The vector of state variables is expanded to include

the gender of the offspring is as follows:

zt = ({Ik1}Kk=0 , ..., {Ikt−1}
K
k=0 , ζ0, .., ζt−1, xf , xm).

We assume households invest time and money in the children in the household. The function

wσt(zt, hσt) denotes the earnings function; the only difference from the single-agent problem is that

gender is included in zt and can thus affect earnings. The total earnings is the sum of individual earn-

ings as wt(zt, ht) = w1t(zt, hft) + w2t(zt, hmt), where ht = (hft, hmt). The educational outcome of the

parents’offspring is mapped from the same parental inputs as the single-agent model: income and time

investment, number of older and younger siblings, and parental characteristics such as education, race,

and labor market skills. In this extension, gender is also included as a parental characteristic. Thus, the

production function is still denoted by M(x′|z
T+1

), where zT+1 represents the state variables at the end

of the parents’life-cycle, T .

In the household, the total per-period expenditures cannot exceed the combined income of the spouses.

The budget constraint for the household is given by

wt ≥ ct + αNc(zt)(N t+bt)wt(zt, ht). (35)

The right-hand side of equation (35) represents expenditures on personal consumption of the parents,

ct, and on children. Parents pay for the children living in their household, regardless of the biological
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relationship, and do not transfer money to any biological children living outside the household.

As in the single-agent model, we can eliminate the continuous choice in the lifetime utility problem so

that households face a purely discrete choice problem. Recall that the budget constraint for the household,

assuming no borrowing or saving, is

wt(zt, ht)− αN (zt)(N t+bt)wt(zt, ht) = ct, (36)

and, as in the single-agent problem, we may substitute for consumption in u2 and obtain the following

household utility function:

ukt(zt) = θk(zt) + ut[wt(zt, ht)(1− αN (zt)(N t+bt)), zt]. (37)

For notation simplicity, let xf ∈ {f}Ff=1, xm ∈ {m}Mm=1, and Pfm be the probability that a type-f

female marries a type-m male at age 0. We can then define the expected lifetime utility for a type-(f,m)

household at age 0, excluding the dynastic component, as:

UT (f,m) = E0

[∑T
t=0 β

t∑K
k=0 I

0
kt{ukt(zt) + εkt}

]
, (38)

and the expected lifetime utility for a type-(f,m) household at age 0 as

U(f,m) = UT (f,m) + βTλE0

[
N−ν

∑N
n=1

∑F
f ′=1

∑M
m′=1 Pf ′m′Un(f ′,m′)|f,m

]
. (39)

As in the single individual version of the model, we can define the expected present discounted value

of the lifetime utility of the household at any period t as

V (zt, εt) = max
I
EI

(
T∑

s=t+1
βs−t

K∑
k=0

Iks[uks(zs) + εks] + βT−sλN−ν
N∑
n=1

F∑
f ′=1

M∑
m′=1

Pf ′m′Un(f ′,m′)|zt, εt

)
.

(40)

This can be written recursively as

V (zt, εt) =
∑K

k=0 I
o
kt(zt, εt)[ukt(zt) + εkt] + β

∑
z′
∫
V (z′, ε)fε(ε)dεF (z′|zt, Iokt = 1)],
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where fε(ε) is the continuously differentiable density of Fε(ε0t, .., ε17t), F (z′|zt, Ikt = 1) is a transition

function for state variables conditional on choice k, and Iokt(zt, εt) is the optimal household decision rule.

Similar to equation (48), we can define the conditional choice household probability as pk(zt) = E[Iokt =

1|zt] and the ex ante value function as

V (zt) =
∑K

k=0 pk(zt)
[
ukt(zt) + Eε[εkt|Ikt = 1, zt] + β

∑
z′ V (z′)F (z′|zt, Ikt = 1)

]
. (41)

The rest of the estimation carries through as in the single individual case.

The addition of the two household members to the model captures important issues of the degree of

specialization in housework and labor market work in households with different composition of education

levels between it members. The importance of which spouse spends time with the children (and the

amount of time) depends on the production function of the education of children and whether the time

of spouses are complements or substitutes. Furthermore, we capture patterns of assortative mating that

may amplify the persistence of income across generations relative to a more random matching pattern.

Since in our model there is a potential correlation of the cost of transfers to children (time input) with

both parents’characteristics, assortative mating patterns imply that if children of more educated parents

are more likely to be more educated, they are also more likely to have a more educated spouse, which

increases the family resources and their children’s educational outcomes.

5 Empirical Application

To illustrate the estimation method, we estimate the unitary household model developed in the previous

section and analyze the relationship among household composition (education of the spouses), fertility,

and children outcomes. The relationship among fertility, income, and the quantity-quality trade-off of

children depends on assumptions of the model and on the parameters estimate and the surpluses gener-

ated in the different types of households. The model parameters, therefore, have important implications

for policies affecting fertility, the labor supply, and the quantity-quality trade-off of children; we demon-

strate our estimation method can successfully allow for estimation of a realistic model with important

implications.

We estimate the model using a dataset compiled from the Panel Study of Income Dynamics (PSID).
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The PSID provides a large panel of matched data on individuals labor market hours, earnings, housework

hours, marriage, and childbirth histories for overlapping cohorts and generations. Our initial sample from

the PSID contains 423,631 individual-year observations. When an observation was missing for a parent

or spouse, the entire panel for that household was excluded. To select relevant data we began by creating

a variable called "Relationship to Head [of household]" and setting the variable equal to “head,”“wife,”

“son”, or “daughter” based on survey responses. We further narrowed the sample to white and black

individuals between 17 and 55 years of age, taking age 17 as a lower bound for high school graduates

and age 55 as the upper bound for fertility decisions. We excluded individuals with less than 5 years

of sequential observations because the earnings equation we plan to estimate requires a least 4 observed

labor market participation decisions. Finally, we excluded all observations of parents whose children were

older than 16 years in the first panel wave to ensure the data represent parental investment in a child’s

early life. These exclusions reduced the number of individual-year observations to 139,827 and produced

a sample of panel data containing 12,051 individual males and 17,744 individual females, all of whom

were observed for at least 5 years during our sample period.

Table 2 presents the summary statistics for our sample. Column (1) summarizes the overall sample,

Column (2) shows data only for parents, and Column (3) summarizes data of their children. The first

generation is on average 7 years older than the second generation. As a consequence, a higher proportion

are married in the first generation. The male-to-female ratio is similar across generations (about 55

percent female), and this ratio is higher in our sample than in the general population because females

are more likely to maintain responsibility for children in cases of divorce. Our sample contains a higher

proportion of blacks than the general population, which is consistent with PSID survey procedures, and

the second generation has an even higher proportion of blacks than the first generation (about 29 percent

in the second and 20 percent in the first generation) because of higher fertility rates among blacks in

our sample. There are no significant differences across generations in completed years of education. The

second generation in our sample has a lower average age than the first generation, so the second generation

also has a lower marriage rate and a lower average number of children, annual labor income, labor market

hours, housework hours, and mean time spent with children. Our second-generation sample spans the

same age range, 17 to 55, as the first sample.

For the estimation, we retain only married households and include the married individuals as of age
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25 with all the individual years of observations whenever the family is intact up to age 40. Further, to

account for the time and monetary investments during the early years of the child’s life after birth, we

exclude individuals who already have a child by age 25. This lowers the sample from 123,074 (this sample

includes all single and married individuals from age 17 to age 55) to 19,792 individual-year observations.

Table 3 describes the key variables by race, spouse’s gender and education. We consider only couples of

the same race. Overall, the number of children (yearly average) is increasing with the level of education for

males and females. Among whites 45% of males and 43.2% of females have completed a college education.

Less than 3% of white males and 1.5% of white females have less than a high school diploma. For blacks,

16.2% and 25.3% of males and females, respectively, have college degrees and 11.6% and 5.8% of males

and females, respectively, have less than a high school diploma. Annual labor market hours increase with

education except for college-educated females. However, annual income increases with education. Annual

time spent with children generally increases with education except for white husbands with some college

and black husbands with a college degree.

5.1 Empirical Implementation

This section describes the choice set specifications and functional forms of the model that we estimate.

We assume that all individuals enter the first period of the life-cycle married. That is, they transition

into a married household immediately after becoming adults. When individuals transition into a married

household, their spouses’characteristics are drawn from the known matching function G(x−σ| xσ). The

matching function depends on the individual’s state variables —for example, it separately captures the

effect of the number of children and past actions that affect labor market experience on the spouse’s

characteristics.

We set the number of an adult’s periods in each generation to T = 30 and measure the individual’s

age where t = 0 is age 25 because at this age most individuals would have completed their education

and started their family. As discussed earlier, we assume that parents receive utility from adult children,

whose educational outcome is revealed at the last period of their life regardless of the birth date of the

children. This assumption is similar to the Barro-Becker assumptions. We avoid situations where the

outcome of an older child is revealed while parents make fertility and time investment decisions to ensure

that (i) these decisions are not affected by adult children outcomes and (ii) adult children’s behavior and
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choices do not affect investment in children and fertility of the parents, in which case solutions to the

problems are significantly more complicated and it is not clear whether a solution exists.

The three levels of labor supply correspond to working 40 hours a week; individuals working fewer

than 3 hours per week are classified as not working, individuals working between 3 and 20 hours per week

are classified as working part-time, while individuals working more than 20 hours per week are classified

as working full-time. There are three levels of parental time spent with children corresponding to no time,

low time, and high time. To control for the fact that females spend significantly more time with children

than males, we use a gender-specific categorization. We use the 50th percentile of the distribution of

parental time spent with children as the threshold for low versus high parental time with children, and

the third category is 0 time with children. This classification is done separately for males and females.

Finally, birth is a binary variable; it equals 1 if the mother gives birth in that year and 0 otherwise.

Therefore, the household choices are a combination of labor supply and time with children for males and

females in the household plus the birth decision.

Labor Market Earnings An individual’s earnings depend on the subset of his or her characteristics,

zσt. These include age, age squared, and dummy variables indicating whether the individual has completed

high school, some college, or college (or more) education interacted with age, respectively; the omitted

category is less than high school. Let ησ be the individual-specific ability, which is assumed to be

correlated with the individual-specific time-invariant observed characteristics. Earnings are assumed to

be the marginal productivity of workers and are assumed to be exogenous, linearly additive, and separable

across individuals in the economy. The earnings equations are given by

wσt = exp(δ0σzσt +
∑ρ

s=0 δ
pt
σ,s

∑
kt−s∈HPσ Ikt−sσ +

∑ρ
s=1 δ

ft
σ,s

∑
kt−s∈HFσ Ikt−sσ + ησ), (42)

where HPσ and HFσ are the set of choices for part-time and full-time work, respectively. Therefore,

the earnings equation depends on experience accumulated while working part-time or full-time and the

current level of labor supply. Thus, δptσ,s and δ
ft
σ,s capture the depreciation of the value of human capital

accumulated while working part-time or full time, respectively. In the estimation, we assume ρ = 4 given

that the effect of experience with higher lags is insignificant (Gayle and Golan, 2012; Gayle and Miller,

2013).
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Production function of children We assume that race is transmitted automatically to children and

rule out interracial marriages and fertility. This is done because of insuffi cient interracial births in our

sample to study this problem. Therefore, parental home hours when the child is young affect the future

educational outcome of the child, which is denoted by Ed′σ
12, and innate ability, η′σ, both of which affect

the child’s earnings (see equation (42)).The state vector for the child in the first period of the life-cycle

is determined by the intergenerational state transition function M(x′|zT+1); specifically, we assume that

M(x′|zT+1) =
[
Pr(η′σ | Ed′σ), 1

]
Pr(Ed′σ | zT+1). (43)

Thus, we assume that the parental inputs and characteristics (parental education and fixed effects) de-

termine educational outcomes according to the probability distribution Pr(Ed′σ | zT+1). In our empirical

specification, the state vector of inputs, zT+1, contains the parental characteristics, the cumulative in-

vestment variables (low time and high time with children) of each parent up to period T , the permanent

income of each parent, and the number of a child siblings. In the data, we observe only total time de-

voted to children each period; thus, we assign each child age 5 or younger in the household the average

time investment, assuming all young children in the household receive the same time input. Parental

characteristics include the education of the father and mother, their individual-specific effects, and race.

Once the education level is determined, it is assumed that the ability η′σ is determined according to

the probability distribution Pr(η′σ | Ed′σ). The above form of the transition allows us to estimate the

equations separately for the production function of children given as the first two probabilities and the

marriage market matching given as the last term.

Contemporaneous utility We assume that the per-period utility from consumption is linear; there-

fore, equation (37), the utility for a single parent from consumption and children (after substituting the

budget constraint), becomes

ukt(zt) = θk(zt) + αwt(zt, ht)− ααN (zt)(N t+bt), (44)

12Level of education, Edσ, is a discrete random variable in the model where it can take 4 different values: less than high
school (LHS), high school (HS), some college (SC), and college (COL).
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where θk(zt) are the coeffi cients associated with each combination of time allocation choice, thus capturing

the differences in the value of nonpecuniary benefits/costs associated with the different activities. The

vector of decisions includes birth; thus, we allow the utility associated with different time allocations to

depend on whether or not there is a birth. As discussed earlier, this utility captures not only the level of

leisure but also the nonpecuniary costs/benefits associated with the different activities. For example, we

do not rule out that time spent with children may be valued and that the nonpecuniary costs/benefits

depend on birth events and levels of labor supply.

We assume no borrowing and saving, one consumption good with price normalized to 1, and risk

neutrality. The first term represents the utility from a parent’s own consumption. The second term,

however, represents the net utility/costs from having young children in the household. In general, given

our assumptions, we can use a budget constraint to derive the coeffi cients on income and number of

children and a separate, nonpecuniary utility from children and monetary costs. However, since we do

not have data on consumption or expenditures on children, the coeffi cients on the number of children

also capture nonpecuniary utility from children and cannot be identified separately from the monetary

costs of raising children. The interaction of income with the number of children and education captures

differences in the costs of raising children by the socioeconomic status of the parents. By assuming

a linear utility function, we abstract from risk aversion and insurance considerations that may affect

investment in children, fertility, as well as the labor supply. For families, we ignore the insurance aspects

of marriage and divorce. While these issues are potentially important, we abstract from them and focus

on transmission of human capital. The no borrowing and savings assumption is extreme and allows us to

test (i) whether income is important in the production function of education of children and (ii) whether

the timing of income is important.

6 Empirical Results

This section presents results of estimation and analysis of the structural model. First, we present estimates

from Step 1 of our estimation procedure. Second, we present estimates from Step 2 of the estimation,

which is estimated using the Hotz et al. (1994) extension of the Hotz and Miller (1993) estimator13. Third,

13We use the Hotz et al. (1994) estimator instead of the original Hotz and Miller (1993) estimator because the forward
simulation used in the former significantly reduces the computational burden involved in computing the life-cycle component
of the dynastic model.

34



we present results that assess how well our model fits the data. Finally, we present the counterfactual

values of each type of household, which also can be interpreted as the return to parental investment in

children; the valuation function of the children includes the value of their education, earnings, as well as

the spouse they married and his or her income.

6.1 First-Stage estimation

The first-stage estimation include estimates of the earnings equation, the unobserved skills function,

the intergenerational education production function, and the marriage assignment functions. All these

functions are fundamental parameters of our model and are estimated outside the estimation of the

preferences, discount factors, and the net costs of raising children. The first-stage estimates also include

equilibrium objects such as the CCPs. Below we present estimates on the main earnings equation, the

unobserved skills function, and the intergenerational education production function. The estimates of

the marriage assignment functions and the CCPs are included in a supplementary appendix.

Earnings equation and unobserved skills Table 4 presents the estimates of the earnings equation

and the function of unobserved (to the econometrician) individual skill (see also Gayle, Golan, and Soytas,

2014). The top panel of the first column shows that the age-earnings profile is significantly steeper for

higher levels of completed education; the slope of the age-log-earnings profile for a college graduate is

about 3 times that of an individual with less than a high school education. However, the largest gap is for

college graduates; the age-log-earnings profile for a college graduate is about twice that of an individual

with only some college. These results confirm that there are significant returns to parental time investment

in children in terms of the labor market because parental investment significantly increases the likelihood

of higher education outcomes, which significantly increases lifetime labor market earnings.

The bottom panel of the first column and the second column of Table 4 show that male full-time

workers earn 2.6 times more than part-time male workers and female full-time workers earn 2.3 times

more than females part-time workers (see also Gayle, Golan, and Soytas (2014)). It also shows that

there are significant returns to past full-time employment for both genders; however, females have higher

returns to full-time labor market experience than males. The same is not true for part-time labor market

experience; males’earnings are lower if they worked part-time in the past, while there are positive returns

to the most recent female part-time experience. However, part-time experiences 2 and 3 years in the past
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are associated with lower earnings for females; these rates of earnings reduction are, however, lower

than those for males. These results are similar to those in Gayle and Golan (2012) and perhaps reflect

statistical discrimination in the labor market in which past labor market history affects employers’beliefs

about workers’ labor market attachment in the presence of hiring costs.14 These results imply there

are significant costs in the labor market in terms of the loss of human capital from spending time with

children, if spending more time with children comes at the expense of working more in the labor market.

These costs may be smaller for females than males because part-time work reduces compensation less for

females than for males. If a female works part-time for 3 years, for example, she loses significantly less

human capital than a male working part-time for 3 years instead of full-time. This difference may give

rise to females specializing in child care; this specialization comes from the labor market and production

function of a child’s outcome, as is the current wisdom.

The unobserved skill (to the econometrician) is assumed to be a parametric function of the strictly

exogenous time-invariant components of the individual variables. This assumption is used in other papers

(e.g., MaCurdy, 1981; Chamberlain, 1986; Nijman and Verbeek, 1992; Zabel, 1992; Newey, 1994; Altug

and Miller, 1988; and Gayle and Viauroux, 2007). It allows us to introduce unobserved heterogeneity to

the model while still maintaining the assumption on the discreteness of the state space of the dynamic

programming problem needed to estimate the structural parameters from the dynastic model. The

Hausman test statistic shows that we cannot reject this correlated fixed effect specification. Column

(3) of Table 4 presents the estimate of skills as a function of unobserved characteristics; it shows that

blacks and females have lower unobserved skills than whites and males. This could capture labor market

discrimination. Education increases the level of skills but it increases at a decreasing rate with the level

of completed education. The rates of increase for blacks and females with some college and a college

degree are higher than those of their white and male counterparts. This pattern is reversed for blacks

and females with a high school diploma. Notice that skills are another transmission mechanism through

which parental time investment affects labor market earnings in addition to education.

Intergenerational education production function A well-known problem with the estimation of

production functions is the simultaneity of the inputs (time spent with children and income). As is clear

from the structural model, the intergenerational education production function suffers from a similar

14These results are also consistent with part-time jobs difffering more than full-time jobs for males than for females.

36



problem. However, because the output of the intergenerational education production (i.e., completed

education level) is determined across generations while the inputs, such as parental time investment, are

determined over the life-cycle of each generation, we can treat these inputs as predetermined and use

instruments from within the system to estimate the production function.

Table 5 presents results of a three-stage least squares estimation of the system of individual educational

outcomes; the estimates of the two other stages are in the supplementary appendix. The system includes

the linear probabilities of the education outcomes, Pr(Ed′σ | zT+1), as well as the labor supply, income,

and time spent with children equations. The estimation uses the mother’s and father’s labor market

hours over the first 5 years of the child’s life as well as linear and quadratic terms of the mother’s and

father’s age on the child’s fifth birthday as instruments. The estimation results show that controlling for

all inputs, a child whose mother has a college education has a higher probability of obtaining at least

some college education and a significantly lower probability of not graduating from high school relative

to a child with a less educated mother; while the probability of graduating from college is also larger, it is

not statistically significant. If a child’s father, however, has some college or a college education, the child

has a higher probability of graduating from college. This is consistent with the findings of Rios-Rull and

Sanchez-Marcus (2002).

We measure parental time investment as the sum of the parental time investment over the first 5

years of the child’s life. The total time investment (i.e., the sum of the per-period investment of the

first 5 years of a child’s life) is a variable that ranges between 0 and 10 because low yearly parental

investment is coded as 1 and high yearly parental investment is code as 2. The results in Table 5 show

that while a mother’s time investment significantly increases the probability of a child graduating from

college or having some college, a father’s time investment significantly increases the probability of the

child graduating from high school or having some college. These estimates suggest that while a mother’s

time investment increases the probability of a high educational outcome, a father’s time investment

truncates low educational outcome. However, the time investment of both parents is productive in terms

of their children’s education outcomes. It is important to note that mothers’and fathers’hours spent with

children are at different margins, with mothers spending significantly more hours than fathers. Thus, the

magnitudes of the discrete levels of time investment of mothers and fathers are not directly comparable

since low and high investment of time differs across genders.
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6.2 Second-Stage estimation

This section presents estimates of the intergenerational and intertemporal discount factors, the preference

parameters, and child care cost parameters. Table 6 presents the discount factors. It shows that the

intergenerational discount factor, λ, is 0.795. This implies that in the second-to-last period of the parent’s

life, a parental valuation of their child’s utility is 79.5% of their own utility. The estimated value is in the

same range of values obtained in the literature calibrating dynastic model (Rios-Rull and Sanchez-Marcos,

2002; Greenwood, Guner, and Knowles, 2003). However, these models do not include the life-cycle. The

estimated discount factor, β, is 0.81. The discount factor is smaller than typical calibrated values;

however, the few papers that have estimated it find similar values (e.g., Arcidiacono, Sieg, and Sloan,

2006, find it to be 0.8).15 Lastly, the discount factor associated with the number children, υ, is 0.25 which

implies that the marginal increase in value from the second child is 0.68 and from the third child is 0.60.

Table 6 also presents the marginal utility of income, which is positive and increasing with the number

of children except for a household with a college graduate wife and a husband with at least a high school

education. Also, a husband’s education decreases the marginal utility of income for families with children.

The marginal utility of income for families with children is also lower for black families.

The right panel of Table 6 presents our estimates of the disutility/utility from various combination

of household choices. As is usual in discrete choice models, these are estimated relative to an outside

choice, which is both spouses not (i) working, (ii) giving birth, or (iii) spending any time with young

children. We also use an additive specification in which the costs of birth, work and time with children are

additively separable. First, every labor supply choice of the household carries with it a disutility relative

to the reference choice except for households in which both spouses work full-time (which statistically is

no different from disutility/utility reference) and when the wife does not work and the husband works

full-time. In the data, if both spouses spend low time with children and there is no birth, then both

spouses are equally likely to be observed working full-time than not working —hence the equal utility

for both sets of choices. Second, there are no distinct patterns to utility from time with children; these

estimates are highly nonlinear, perhaps reflecting that it is a mixture of leisure and disutility. However,

giving birth provides a positive utility. This implies that, although parents get utility from the quality

of their children, they also get some instantaneous utility from a birth.

15We are not aware of dynastic models in which the time discount factor is estimated.
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6.3 Model Fit and Value of Different Household

In this section, we first assess the ability of our model to reproduce the basic stylized facts by race, gender,

and marital status as summarized in Section 2. We assess how well our model predicts the choices of

labor supply, home hours with young children, and birth. Our model is over identified and passes the

standard over identifying restrictions J-test. In the estimation, the CCPs are targeted; in the model fit

analysis, we simulate a sample of individuals and determine whether the individuals in our simulated

sample behave like the individuals in our data. In some regards, this exercise is equivalent to a graphical

summary of our model’s over identification test. Next, we calculate the counterfactual value of different

household types to determine whether it can rationalize the observed marriage pattern in the data.

Table 7 presents the model’s fit. The model matches the labor supply patterns between gender and

across race well. While it also matches the variation across race and gender for parental time with

children, the levels are not similar in all cases. In examining the birth decisions, the model produces the

differences in birth rates across households of different race, but it underpredicts the fecundity of whites

by about a half. This lower birth rate is partly rationalized by the lower time with children predicted

by the model. Nevertheless, our empirical model specification is very parsimonious: We do not include

race, education, or marital status in the preference parameters for the disutility/utility of the different

choices. In addition, the only unobserved heterogeneity is estimated from the earnings equations. Still,

the model performs well in replicating the data based primarily on the economic interactions embodied

in it.

Next, we turn to the value of different household types. Tables 8A and 8B present the valuation of a

household by education for whites and blacks, respectively. The tables show that overall the value typically

increases with both spouses’education. The exception is black households in which both members have

some college education; these households have higher values than black households in which both members

have a college degree. To further understand the differential valuations across households, recall that the

utility function depends on number of children, household income, and levels of leisure (although there are

non-monotonicities in the estimates of utility from different activities). Household income is increasing

with both spouses’s education in most cases. The relationships between number of children and valuation

differences across households are not as straightforward and involves not only the number of children but

also the "quality" of children. The number of children is increasing with husband’s education because
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children are a normal good, and we therefore expect the demand to increases in income. However, the

number of children is not always increasing in wife’s education. To understand variation in fertility

across households types, it is important to account for the fact that the costs of children involves time

investment. The opportunity cost of time is what is typically used to explain why more educated women

have less children despite the fact that they have higher wages.

In the data, the number of children, in general, is higher for less educated women, and more educated

women invest more time per child. However, our sample is composed of married and cohabiting couples,

and for married women, the average number of children does not always decline with the wife’s educa-

tion. Our estimation results demonstrate that the quantity-quality trade-off depends on the household

structure.

Time allocation and specialization patterns are central to understanding the quantity-quality trade-

off, fertility, and investment in children. Consider first households in which the husband’s education is

the lowest (less than high school) and highest (college). For households in which the husband has less

than a high school education, the wife’s labor market hours increase with her education and the number

of children decreases with her education. If the wife has a college education, then the husband’s home

hours and time with children are higher than the wife’s. When the husband has a college education, the

wife’s hours decrease with her level of education and the number of children she has is higher than that of

wives with the same education and less than a high-school-educated husband. Home hours and time with

children are always substantially higher than for their husbands. Thus, households in which the husband

has less than a high school education are less specialized than households in which the husband has a

college degree. This is because the household’s earnings capacity is increasing with husband’s education.

Similar patterns are seen in black households in which the husband has less than a high school

education, but the number of children is higher. In black households in which the husband has a college

education, the wife’s labor market hours increase with her level of education while, for a similar white

household, the wife’s labor market hours decrease with her level of education. At the same time the

number of children increases with the white wife’s level of education. The differences in patterns are due

to the fact that college-educated black males earn less than college-educated white males, which implies

differences in the income effect in households.

The patterns are less pronounced for households in which the husband has at most some college
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education and at least a college diploma. For example, for husbands with a high school diploma, their

wives’labor supply increases with their level of education up to some college and then decreases. The

number of children increases, so there is less specialization than in households with college-educated

husbands but more specialization than in households in which the husband has less than a high school

education. The same patterns, but less pronounced, hold in black households.

7 Conclusion

This paper develops an estimator for discrete choice dynastic models that partially overcomes the curse

of dimensionality of dynastic models by exploiting properties of the stationary equilibrium. It provides a

framework to estimate a rich class of dynastic models including investment in children’s human capital,

monetary transfers, unitary households, endogenous fertility, and a life-cycle within each generation.

Under certain conditions, we show that the framework can also accommodate continuous choice variables.

The paper extends methods used in the literature for the estimation of single-agent non-dynastic models

to the dynastic setting. This estimation technique makes this estimation and empirical assessment of

proposed counterfactual policy reform feasible. The paper compares the performance of the proposed

estimator with a nested fixed point estimator using simulations and finds that estimates are close to

nested fixed point estimates as the sample increases but the computation time is reduced substantially.

The paper then provides an application of a unitary household model in which households choose labor

supply, time with children, and fertility; human capital is transmitted across generations by monetary

and time investments of the parents. We find that quantity-quality trade-offs depend on the household

composition and specialization patterns in the household. While fertility declines with the education of

women due to a higher opportunity cost of time (see Jones, Tertilt, and Schoonbroodt 2010), this is

not the case for married women in our data. For married women, fertility increases with education due

to household division of labor and wealth effects. However, in households where the husband has less

than a high school education, the number of children declines with the wife’s education. Patterns of

specialization are stronger in households with more educated husbands and in white households. Our

model can rationalize these patterns, which depend on parameter estimates of the model16 and matches

16As shown by Jones, Tertilt, and Schoonbroodt (2010), different assumptions lead to different implications for fertility
and the quantity-quality trade-off of children.
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the data well. In particular, it captures the labor supply, time with children, and fertility decisions of

households, demonstrating it is a useful framework for policy analysis.

A Appendix

Proof of Proposition 1. Recall the conditional value function in equation (14):

υk(zt) = ukt(zt) + β
∑
zt+1

V (zt+1)F (zt+1|zt, Ikt = 1) (45)

We begin by noting that

V (zt+1) =
17∑
s=0

ps(zt+1)

[
ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1) + β

∑
zt+2

V (zt+2)F (zt+2|zt+1, Ist+1 = 1)

]
.

(46)
Substituting equation (46) into

∑
zt+1

V (zt+1)F (zt+1|zt, Ikt = 1) gives

∑
zt+1

V (zt+1)F (zt+1|zt, Ikt = 1) =
∑
zt+1

17∑
s=0

ps(zt+1) [ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1)]F (zt+1|zt, Ikt = 1)

+β
∑
zt+1

17∑
s=0

ps(zt+1)

[∑
zt+2

V (zt+2)F (zt+2|zt+1, Ist+1 = 1)

]
F (zt+1|zt, Ikt = 1).

Substituting the above into equation (45) gives:

υk(zt) = ukt(zt) + β
∑

zt+1

∑17
s=0 ps(zt+1) [ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1)]F (zt+1|zt, Ikt = 1)

+β2
∑

zt+1

∑17
s=0 ps(zt+1)

[∑
zt+2

V (zt+2)F (zt+2|zt+1, Ist+1 = 1)
]
F (zt+1|zt, Ikt = 1). (47)

Similarly,

V (zt+2) =
17∑
r=0

pr(zt+2)

[
urt+2(zt+2) + Eε(εrt+2|Irt+2 = 1, zt+2) + β

∑
z+3

V (zt+3)F (zt+3|zt+2, Irt+2 = 1)

]
.

(48)
Then ∑

zt+2
V (zt+2)F (zt+2|zt+1, Ist+1 = 1) =∑

zt+2

∑17
r=0 pr(zt+2) [urt+2(zt+2) + Eε(εrt+2|Irt+2 = 1, zt+2)]F (zt+2|zt+1, Irt+1 = 1)

+β
∑

zt+2

∑17
r=0 pr(zt+2)

[∑
z+3 V (zt+3)F (zt+3|zt+2, Irt+2 = 1)

]
F (zt+2|zt+1, Ist+1 = 1). (49)
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Substituting equation (48) into equation (47) gives

υk(zt) = ukt(zt) + β
∑

zt+1

∑17
s=0 ps(zt+1) [ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1)]F (zt+1|zt, Ikt = 1)

+β2
∑

zt+1

∑17
s=0 ps(zt+1)

∑
zt+2

∑17
r=0 pr(zt+2) [urt+2(zt+2) + Eε(εrt+2|Irt+2 = 1, zt+2)]

×F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1)

+β3
∑

zt+1

∑17
s=0 ps(zt+1)

∑
zt+2

∑17
r=0 pr(zt+2)

∑
z+3 V (zt+3)F (zt+3|zt+2, Irt+2 = 1)

×F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1) (50)

With out loss of generality (WLOG) we assume t+ 3 = T ; then

V (zT , εT ) = max
I
E
(∑17

k=0 IkT [ukT (zT ) + εkT + λN−νk
∑Nk

n=1

∑
xn
Ug+1,n(xn)]|zT , εT

)
.

Now

V (zT ) =
∫
V (zT , εT )fε(εT )dεT

=
∫

max
I
E

(
17∑
j=0

IjT [ujT (zT ) + εjT + λN−νj

Nj∑
n=1

∑
xn
Ug+1,n(xn)]|zT , εT

)
fε(εT )dεT

=
17∑
j=0

pj(zT )[ukT (zT ) + Eε(εjT |zT , IjT = 1)

+ λN−νj

Nj∑
n=1

∑
xn

Ug+1,n(xn)M(x′n|zT , IjT = 1)]. (51)

We know from the value function representation that Ug+1,n(xn) = V (xn); therefore,

V (zT ) =
17∑
j=0

pj(zT )[ujT (zT ) + Eε(εjT |zT , IjT = 1] + λN−νj

Nj∑
n=1

∑
xn

V (xn)M(xn|zT , IjT = 1)]. (52)
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Substituting the above into equation (50) and rearranging gives

υk(zt) = ukt(zt) + β
∑
zt+1

17∑
s=0

ps(zt+1) [ust+1(zt+1) + Eε(εst+1|Ist+1 = 1, zt+1)]F (zt+1|zt, Ikt = 1)

+β2
∑
zt+2

17∑
r=0

pr(zt+2) [urt+2(zt+2) + Eε(εrt+2|Irt+2 = 1, zt+2)]

×
∑
zt+1

17∑
s=0

ps(zt+1)F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1)

+β3
∑
zT

17∑
j=0

pj(zT )[ujT (zT ) + Eε[εjT |zT , IjT = 1]
17∑
r=0

∑
zt+2

pr(zt+2)F (zt+3|zt+2, Irt+2 = 1)

×
17∑
s=0

∑
zt+1

ps(zt+1)F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1)

+λβ3
∑
zT

17∑
j=0

pj(zT )N−νj

Nj∑
n=1

∑
xn

V (x
′
n)M(x′n|zT , IjT = 1)

∑
zt+2

17∑
r=0

pr(zt+2)F (zT |zt+2, Irt+2 = 1)

×
∑
zt+1

17∑
s=0

ps(zt+1)F (zt+2|zt+1, Ist+1 = 1)F (zt+1|zt, Ikt = 1). (53)

Using the definition of the optimal transition function, the above simplifies to

υk(zt) = ukt(zt) + β
17∑
s=0

∑
zt+1

ps(zt+1) [ust+1(zt+1) + Eε[εst+1|Ist+1 = 1, zt+1]]F
o(zt+1|zt, Ikt = 1)

+β2
17∑
s=0

∑
zt+2

ps(zt+2) [urs+2(zt+2) + Eε[εst+2|Ist+2 = 1, zt+2]]F
o(zt+2|zt, Ikt = 1)

+β3
17∑
s=0

∑
zT

ps(zT )[usT (zT ) + Eε[εsT |zT , IsT = 1]]F o(zT |zt, Ikt = 1)

+λβ3
17∑
s=0

∑
zT

ps(zT )N−νs
Ns∑
n=1

∑
xn

V (xn)M(xn|zT , IsT = 1)F o(zT |zt, Ikt = 1) (54)

The assumption that parents are infertile in the final period of their life-cycle simplifies to

υk(zt) = ukt(zt) + β
17∑
s=0

∑
zt+1

ps(zt+1) [ust+1(zt+1) + Eε[εst+1|Ist+1 = 1, zt+1]]F
o(zt+1|zt, Ikt = 1)

+β2
17∑
s=0

∑
zt+2

ps(zt+2) [urs+2(zt+2) + Eε[εst+2|Ist+2 = 1, zt+2]]F
o(zt+2|zt, Ikt = 1)

+β3
17∑
s=0

∑
zT

ps(zT )[usT (zT ) + Eε[εsT |zT , IsT = 1]]F o(zT |zt, Ikt = 1)

+λβ3N−ν
N∑
n=1

∑
xn

V (xn)
KT∑
s=0

∑
zT

M(xn|zT , IsT = 1)ps(zT )F o(zT |zt, Ikt = 1). (55)

Proof of Proposition 2. We first check the various boundedness requirements of Theorem 8.12 in
Newey and McFadden (1994). By assumption 6(i), we have that E[

∥∥ξd(Z, θ, ψ)
∥∥2] < ∞. It is obvious

by inspection that ξd(Z, θ, ψ) is continuously differentiable in θ and by Assumption 6 (ii) and (iii) that
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E[∇θξd(Z, θ, ψ)] < ∞. Additionally, ∇ψψξd(Z, θo, ψo) is also bounded: E[
∥∥∇ψψξd(Z, θo, ψo)∥∥] < ∞.

Second, consider a pointwise Taylor expansion for the jth element of ξd(Z, θ, ψ),

ξ
j
(Z,ψ) = ξ

j
(Z,ψo) +∇ψξ

j
(Z,ψo)(ψ(z)− ψo(z)) + (ψ(z)− ψ0(z))′∇ψψξ

j
(Z,ψo)(ψ(z)− ψo(z))

+o(‖ψ(z)− ψo(z)‖2),

where the norm over ψ is the sup-norm. Next, note that∣∣∣ξj(Z,ψ)− ξj(Z,ψ0)∇ψξ
j
(Z,ψo)(ψ(z)− ψo(z))

∣∣∣ ≤ ∥∥∥(ψ(z)− ψo(z))′∇ψψξ
j
(Z,ψo)(ψ(z)− ψo(z))

∥∥∥
+o(‖ψ(z)− ψo(z)‖2)

≤ ‖ψ − ψo‖2
∥∥∥∇ψψξj(Z,ψo)∥∥∥+ o(‖ψ − ψo‖2),

using the triangle inequality and the Cauchy-Schwartz inequality. Therefore, for ‖ψ − ψo‖ small enough,∣∣∣ξj(Z,ψ)− ξj(Z,ψo)−∇ψξ
j
(Z,ψ0)(ψ(z)− ψo(z))

∣∣∣ ≤ ‖ψ − ψo‖2 ∥∥∥∇ψψξj(Z,ψo)∥∥∥ ,
so that ∥∥ξ(Z,ψ)− ξ(Z,ψ0)−∇ψξ(Z,ψo)(ψ(z)− ψo(z))

∥∥ ≤ ‖ψ − ψo‖2
∥∥∇ψψξ(Z,ψo)∥∥∥∥ξ(Z,ψ)− ξ(Z,ψo)−∇ψξ(Z,ψo)(ψ(z)− ψo(z))

∥∥ ≤ ‖ψ − ψ0‖2
∥∥∇ψψξ(Z,ψo)∥∥ ;

hence Γ(Z,ψ − ψo) = ∇ψξ(Z,ψ0)(ψ(z) − ψo(z)) and Ψ(Z) =
∥∥∇ψψξ(Z,ψo)∥∥. It follows that both

Γ(Z,ψ−ψo) and Ψ(Z) are bounded from the boundedness conditions established above. Next we establish
the form of the influence function. Note that we have∫

Γ(Z,ψ)F0( dω) =

∫
fz(z)E[∇ψξ(Z,ψo) | z]ψ(z) dz =

∫
υ(z)ψ(z),

where υ(z) = fz(z)E[∇ψξ(Z,ψ0) | z]. So, by the arguments on page 2208 of Newey and McFadden
(1994), we have the influence function for ξ(ω, ψ(D)):

Φ(z) = υ(z)− E
[
υ(z)Ĩ

]
= fz(z)E

[
∇ψξ(Z,ψo) | z

]
− E

[
fz(z)E[∇ψξ(Z,ψo) | z]Ĩ

]
.

Again by the boundedness of ∇ψξ(Z,ψ0), it follows that
∫
‖υ(z)‖ dz < ∞. Finally, Assumption 5

guarantees that the Jacobian term converges.
Proof of Proposition 3.

This result follows immediately by combining the results in Proposition 1, with the replacement of
the summation over zt+1 with the integral over zt+1.

References

[1] Aguirregabiria, Victor. "The Dynamics of Markups and Inventories in Retailing Firms." Review of
Economic Studies 66(2) (1999): 275-308.

[2] Aguirregabiria, Victor, and Pedro Mira. "Swapping the Nested Fixed Point Algorithm: A Class of
Estimators for Discrete Markov Decision Models." Econometrica 70(4) (2002): 1519-1543.

45



[3] Arcidiacono, Peter, Holger Sieg, and Frank Sloan. "Living Rationally Under the Volcano? An
Empirical Analysis of Heavy Drinking and Smoking." International Economic Review 48(1) (2007):
37-65.
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Table 1: Simplified Discrete Choice Monte Carlo Simulation Results

Pseudo Maximum Likelihood Nested Fixed Point (ML)

Sample size Sample size
1,000 10,000 20,000 40,000 1,000 10,000 20,000 40,000

θ = 0.25

Mean 0.24473 0.24935 0.24886 0.24881 0.22714 0.24571 0.23320 0.24477
Std. Dev. 0.04991 0.01328 0.00915 0.00668 0.04884 0.01354 0.02135 0.01019
Bias -0.00527 -0.00065 -0.00114 -0.00119 -0.02286 -0.00429 -0.01680 -0.00523
MSE 0.00249 0.00017 0.00008 0.00005 0.00288 0.00020 0.00073 0.00013

λ = 0.8

Mean 0.80425 0.79745 0.79797 0.79673 0.77538 0.78966 0.76934 0.78855
Std. Dev. 0.11241 0.03175 0.02157 0.01587 0.09211 0.03244 0.03656 0.02063
Bias 0.00425 -0.00255 -0.00203 -0.00327 -0.02462 -0.01034 -0.03066 -0.01145
M.S.E. 0.01253 0.00100 0.00046 0.00026 0.00901 0.00115 0.00226 0.00055

β = 0.95

Mean 0.94208 0.95245 0.95037 0.95136 0.93441 0.95227 0.94603 0.95027
Std. Dev. 0.06276 0.01893 0.01301 0.00934 0.05322 0.01983 0.01820 0.01236
Bias -0.00792 0.00245 0.00037 0.00136 -0.01559 0.00227 -0.00397 0.00027
MSE 0.00396 0.00036 0.00017 0.00009 0.00305 0.00039 0.00034 0.00015
Avg. Comp.
time

0.65 2.88 6.06 12.60 347.6 376.4 467.5 509.8

Note: The pseudo maximum likelihood corresponds to the estimation conducted by the new estimator using
PML and maximum likelihood (ML) estimation is by the nested fixed point (NFXP). All simulations were conducted
usingthe programming language GAUSS on a 2-CPU 1.66-GHz, 3-GB RAM laptop computer. The Unit of time is
seconds. The mean, empirical standard deviation, bias, and mean squared error (MSE) of each parameter estimate
are reported in the respective column for each sample size. The bias and the MSE are calculated relative to the
original data-generating value of the parameter. The data-generating value of the parameter is also reported at the
center of the summary statistics block for that parameter.
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Table 2: Summary Statistics for Full Sample

Full sample Parents Children
Variable N Mean N Mean N Mean

(1) (2) (3)

Female 115,280 0.545 86,302 0.552 28,978 0.522
Black 115,280 0.223 86,302 0.202 28,978 0.286
Married 115,280 0.381 86,302 0.465 28,978 0.131
Age (yr) 115,280 26.155 86,302 27.968 28,978 20.756

(7.699) (7.872) (3.511)
Education (years completed) 115,280 13.438 86,302 13.516 28,978 13.209

(2.103) (2.138) (1.981)
No. of children 115,280 0.616 86,302 0.766 28,978 0.167

(0.961) (1.028) (0.507)
Annual labor income ($ US 2005) 114,871 16,115 86,137 19,552 28,734 5,811

(24,622) (26,273) (14,591)
Annual labor market hours 114,899 915 86,185 1078 28,714 424

(1041) (1051) (841)
Annual housework hours 66,573 714 58,564 724 8,009 641

(578) (585) (524)
Annual time spent on children (hr) 115,249 191 86,275 234 28,974 63.584

(432) (468) (259)
Number of individuals 12,318 6,813 5,505

Note: Standard deviations are listed in parentheses. Data are from the Family-Individual File of the Michigan
Panel Study of Income Dynamics (PSID) and include individuals surveyed between 1968 and 1997. Column (1)
contains the summary statistics for the full sample; column (2) contains the summary statistics for the parents
generation; column (3) contains the summary statistics of the offspring of the parents in column (2). There are
fewer observations for annual housework hours than time spent on children because single individuals with no
children are coded as missing for housework hours but by definition are set to 0 for time spent on children.
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Table 3: Summary Statistics for the Estimation Sample

Whites
Wife Husband

LHS HS SC COL LHS HS SC COL
Age (yr) 31.05 31.08 31.26 32.09 31.13 31.18 31.41 31.94
No. of children 0.74 0.86 0.82 1.00 0.82 0.84 0.92 0.95
Annual labor income ($ US 2005) 8,265 16,634 20,443 26,550 32,457 42,688 47,701 64,807
Annual labor market hours 828 1200 1268 1189 1995 2161 2149 2262
Annual housework hours 1267 1068 946 954 339 375 374 382
Annual time spent on children (yr) 270.2 279.6 294.6 359.9 78.2 86.4 77.2 92.5
No. of observations 204 3,758 4,524 7,586 406 3,942 3,780 7,944
No. of individuals 24 432 536 753 51 473 437 784
Percentage 1.4 24.8 30.7 43.2 2.9 27.1% 25.0 44.9

Blacks
Wife Husband

LHS HS SC COL LHS HS SC COL
Age (yr) 32.56 31.14 31.19 31.98 31.75 31.43 31.19 31.81
No. of children 0.31 0.54 0.91 0.93 0.83 0.75 0.73 0.93
Annual labor income ($ US 2005) 8,526 14,358 20,300 32,608 21,426 33,327 35,421 55,125
Annual labor market hours 974 1279 1548 1638 1837 1999 2054 2152
Annual housework hours 925 938 889 891 251 338 445 397
Annual time spent on children (yr) 121.0 153.5 238.0 289.2 60.0 77.1 126.0 71.0
No. of observations 189 1,052 1,418 1,061 456 1,438 1,103 723
No. of individuals 28 148 184 122 56 196 152 78
Percentage 5.8 30.7 38.2 25.3 11.6 40.7 31.5 16.2

Note: Data from the Family-Individual File of the Michigan Panel Study of Income Dynamics (PSID), and
include individuals surveyed between 1968 and 1997. This sample is restricted to individuals who are married by
age 25 and have no children at that time. These individuals are included in the sample whenever they are married
until age 40. LHS indicates completed education of less than high school; HS indicates completed education of
high school but not college; SC indicates completed education of some college but not a graduate; COL indicates
completed education of at least a college degree.
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Table 4: Estimates of Earnings Equation: Dependent Variable: Log of Yearly Earnings

Variable Estimate Variable Estimate Variable Estimate
Demographic Variables Fixed Effect

Age squared -4.0e-4 Female x Full-time work -0.125 Black -0.154
(1.0e-5) (0.010) (0.009)

Age x LHS 0.037 Female x Full-time work (t− 1) 0.110 Female -0.484
(0.002) (0.010) (0.007)

Age x HS 0.041 Female x Full-time work (t− 2) 0.025 HS 0.136
(0.001) (0.010) (0.005)

Age x SC 0.050 Female x Full-time work (t− 3) 0.010 SC 0.122
(0.001) (0.010) (0.006)

Age x COL 0.096 Female x Full-time work (t− 4) 0.013 COL 0.044
(0.001) (0.010) (0.006)

Current and Lags of Participation Female x Part-time work (t− 1) 0.150 Black x HS -0.029
Full-time work 0.938 (0.010) (0.010)

(0.010) Female x Part-time work (t− 2) 0.060 Black x SC 0.033
Full-time work (t− 1) 0.160 (0.010) (0.008)

(0.009) Female x Part-time work (t− 3) 0.040 Black x COL 0.001
Full-time work (t− 2) 0.044 (0.010) (0.011)

(0.010) Female x Part-time work (t− 4) -0.002 Female x HS -0.054
Full-time work (t− 3) 0.025 (0.010) (0.008)

(0.010) Individual specific effects Yes Female x SC 0.049
Full-time work (t− 4) 0.040 (0.006)

(0.010) Female x COL 0.038
Part-time work (t− 1) -0.087 (0.007)

(0.010) Constant 0.167
Part-time work (t− 2) -0.077 (0.005)

(0.010)
Part-time work (t− 3) -0.070

(0.010)
Part-time work (t− 4) -0.010 Hausman Statistics 2296

(0.010) Hausman p-value 0.000
No. of Observations 134,007
No. of Individuals 14,018
R2 0.44 0.278
Note: Standard errors are listed in parentheses. LHS indicates completed education of less than high school;

HS indicates completed education of high school but not college; SC indicates completed education of some college
but not a graduate; COL indicates completed education of at least a college degree.
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Table 5: Three- Stage Least Squares Estimation of the Education Production Function

Variable
High
School Some

College

College

High school father 0.063 0.003 -0.002
(0.032) (0.052) (0.0435

Some college father 0.055 0.132 0.055
(0.023) (0.038) (0.031)

College father -0.044 0.008 0.120
(0.032) (0.051) (0.042)

High school mother 0.089 0.081 -0.019
(0.040) (0.065) (0.052)

Some college mother 0.007 -0.041 0.017
(0.030) (0.049) (0.039)

College mother 0.083 0.120 0.040
(0.036) (0.057) (0.047)

Mother’s time -0.014 0.080 0.069
(0.021) (0.034) (0.027)

Father’s time 0.031 0.100 0.026
(0.019) (0.029) (0.025)

Mother’s labor income -0.025 -0.013 0.005
(0.009) (0.014) (0.011)

Father’s Labor Income 0.001 0.001 0.002
(0.003) (0.004) (0.003)

Female -0.002 0.135 0.085
(0.017) (0.028) (0.022)

Black 0.020 0.082 0.043
(0.039) (0.063) (0.051)

No. of siblings under age 3 -0.014 -0.107 -0.043
(0.017) (0.027) (0.022)

No. of siblings between age 3 and 6 -0.029 -0.047 -0.012
(0.019) (0.030) (0.025)

Constant 0.855 -0.231 -0.359
(0.108) (0.172)] (0.140)]

Observations 1335 1335 1335

Note: Standard errors are listed in parenthesss; the excluded class is less than high school. Data are from the
Family-Individual File of the Michigan Panel Study of Income Dynamics (PSID), and include individuals surveyed
between 1968 and 1997. Instruments: Mother’s and father’s labor market hours over the child’s first 8 years of life,
linear and quadratic terms of mother’s and father’s age when the child was 5 years old.
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Table 6: Structural Estimates of Discount factors and Utility Parameter

Variable Estimates Variable Estimates
Discount factors Disutility/Utility of Choices

β 0.816 Wife Husband
(0.002) Labor supply

λ 0.795 No work Part -time -0.512
(0.200) (0.005)

υ 0.248 No work Full-time 0.207
(0.168) (0.009)

Marginal Utility of Income Part-time No work -2.023
Family labor income 0.480 (0.003)

(0.004) Part-time Part-time -1.168
Children x Family labor income -0.466 (0.009)

(0.066) Part-time Full-time -0.605
Children x HS x Family labor income 1.216 (0.008)

(0.065) Full-time No work -0.408
Children x SC x Family labor income 1.279 (0.007)

(0.066) Full-time Part-time -1.24532
Children x COL x Family labor income 1.300 (0.011)

(0.065) Full-time Full-time 0.001
Children x HS spouse x Family labor income -1.017 (0.010)

(0.066) Time with children
Children x SC spouse x Family labor income -0.995 Low Medium 0.502

(0.066) (0.014)
Children x COL Sspouse x Family labor income -0.992 Low High 0.564

(0.066) (0.013)
Children x Black x Family Labor Income -0.108 Medium Low -0.169

(0.004) (0.008)
Medium Medium 0.129

(0.010)
Medium High 0.593

(0.013)
High Low -0.364

(0.007)
High Medium 0.353

(0.011)
High High -0.140

(0.012)
Birth 0.701

(0.025)
Note: Standard errors are listed in parentheses. LHS indicates completed education of less than high school;

HS indicates completed education of high school but not college; SC indicates completed education of some college
but not a graduate; COL indicates completed education of at least a college degree. The excluded choice is no
work, no time with children, and no birth for both spouses.
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Table 7: Model fit

Labor Supply Time with young children Birth
Whites

Wife
Data Model Data Model

No work 0.2634 0.2599 Low 0.6363 0.8315
Part-time 0.1596 0.1622 Medium 0.2257 0.0531
Full-time 0.5770 0.5779 High 0.1380 0.0470

Data Model
Husband No birth 0.9014 0.9551

Data Model Data Model Birth 0.0986 0.04493
No work 0.0290 0.0250 Low 0.8237 0.9592
Part time 0.0306 0.0361 Medium 0.1008 0.0238
Full time 0.9404 0.9390 High 0.0755 0.0170

Blacks
Wife

Data Model Data Model
No work 0.1998 0.1309 Low 0.6837 0.9046
Part time 0.1002 0.2150 Medium 0.2192 0.0497
Full time 0.7000 0.6541 High 0.0971 0.0457

Data Model
Husband No birth 0.8955 0.9249

Data Model Data Model Birth 0.1045 0.07507
No work 0.0640 0.0596 Low 0.8338 0.9729
Part time 0.0423 0.0555 Medium 0.0744 0.0123
Full time 0.8937 0.8850 High 0.0919 0.0148
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Table 8A: Value of Households by Education: Whites

(Husband’s education = LHS) (Husband’s education = HS)
Wife’s education LHS HS SC COL LHS HS SC COL
Value of household (model) 9.26 15.70 16.59 18.24 10.61 17.45 16.25 19.28
Wife:
Annual labor income ($ US 2005) 12,963 8,668 22,626 50,861 4,458 16,879 20,358 23,176
Annual labor market hours 1,152 738 1,354 2,255 680 1,276 1,373 1,238
Annual housework hours 1,303 1,167 845 358 1,312 1,075 974 1,036
Annual time spent on children (hr) 392.0 270.1 233.2 3.5 190.1 280.2 321.8 381.5
Husband:
Annual labor income ($ US 2005) 12,087 29,918 48,163 41,368 42,308 38,796 44,856 49,397
Annual labor market hours 978 1,969 2,576 2,261 2,301 2,150 2,115 2,249
Annual housework hours 541 312 282 421 441 351 398 393
Annual time spent on children (hr) 231.8 48.8 58.3 94.6 70.7 79.0 97.7 88.8
Family
No. of children 1.16 0.77 0.67 0.00 0.58 0.86 0.81 1.02
No. of observations 57 232 107 10 98 1,900 1,232 712
Percentage 5.9 52.9 37.3 3.9 2.5 49.9 32.6 15.0

(Husband’s education = SC) (Husband’s education = COL)
Wife’s education LHS HS SC COL LHS HS SC COL
Value of household (model) 10.86 18.04 16.68 20.49 12.96 13.88 21.14 23.23
Wife:
Annual labor income ($ US 2005) 16,390 19,706 20,868 26,125 6,311 13,969 19,989 27,027
Annual labor market hours 1,148 1,315 1,338 1,300 480 957 1,123 1,156
Annual housework hours 1,066 1,016 923 896 1,183 1,089 953 958
Annual time spent on children (hr) 230.7 263.5 275.6 336.5 328.7 307.2 295.6 363.0
Husband:
Annual labor income ($ US 2005) 77,647 42,250 46,056 53,432 41,635 55,702 62,101 66,808
Annual labor market hours 2,119 2,084 2,139 2,210 2,444 2,142 2,230 2,284
Annual housework hours 395 371 389 357 47 369 383 384
Annual time spent on children (hr) 135.5 85.4 78.2 68.8 6.3 87.2 102.8 90.5
Family
No. of children 0.30 0.98 0.82 1.02 0.62 1.00 0.88 0.98
No. of observations 20 993 1,502 1,265 29 633 1,683 5,599
Percentage 0.9 24.0 43.2 31.8 0.6 8.2 22.2 69.0

Note: LHS indicates completed education of less than high school; HS indicates completed education of high
school but not college; SC indicates completed education of some college but not a graduate; COL indicates
completed education of at least a college degree.
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Table 8B: Value of Households by Education: Blacks

(Husband’s education = LHS) (Husband’s education = HS)
Wife’s education LHS HS SC COL LHS HS SC COL
Value of household (model) 10.26 16.93 16.65 19.03 13.13 18.98 21.22 22.09
Wife:
Annual labor income ($ US 2005) 3,444 12,019 12,626 32,819 9,371 14,976 20,439 31,957
Annual labor market hours 525 1,105 1,376 2,266 1,060 1,332 1,579 1,603
Annual housework hours 1,208 973 1,108 745 747 917 819 763
Annual time spent on children (hr) 224.4 139.4 318.3 0.0 51.0 138.3 214.0 220.9
Husband:
Annual labor income ($ US 2005) 16,367 23,054 21,226 25,079 18,817 31,851 34,041 41,888
Annual labor market hours 1,768 1,873 1,820 1,863 1,824 1,996 1,974 2,151
Annual housework hours 187 185 357 335 405 312 339 396
Annual time spent on children (hr) 26.5 33.7 108.0 83.5 96.2 70.5 77.2 90.3
Family
No. of children 0.33 0.59 1.42 0.40 0.26 0.72 0.94 0.79
No. of observations 75 207 154 20 77 616 554 191
Percentage 21.4 44.6 28.6 5.4 5.6 43.4 37.2 13.8

(Husband’s education = SC) (Husband’s education = COL)
Wife’s education LHS HS SC COL LHS HS SC COL
Value of household (model) -10.47 19.66 23.19 23.00 -16.01 22.81 25.86 24.89
Wife:
Annual labor income ($ US 2005) 16,883 14,159 20,856 30,422 20,344 24,382 34,397
Annual labor market hours 1,679 1,284 1,557 1,687 1,369 1,571 1,592
Annual housework hours 729 973 879 913 865 937 932
Annual time spent on children (hr) 59.8 217.8 230.6 312.4 121.1 261.2 311.0
Husband:
Annual labor income ($ US 2005) 26,914 31,666 34,900 39,267 48,971 48,512 58,075
Annual labor market hours 2,156 1,878 2,032 2,177 2,203 2,011 2,205
Annual housework hours 362 498 410 473 225 426 394
Annual time spent on children (hr) 70.0 155.4 97.0 156.9 12.4 78.6 70.9
Family
No. of children 0.68 0.77 0.71 0.94 0.20 0.85 0.98
No. of observations 37 204 509 353 0 25 201 497
Percentage 3.3 19.7 48.7 28.3 0.0 10.3 26.9 62.8

Note: LHS indicates completed education of less than high school; HS indicates completed education of high
school but not college; SC indicates completed education of some college but not a graduate; COL indicates
completed education of at least a college degree.
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TABLE 1-A: EDUCATION PRODUCTION FUNCTION- THREE STAGE LEAST SQUARES

(Standard Errors in Parenthesis)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES FLInc MLInc HSH SC COL MTime FTime MWHours FWHours

F.W.Hours 8.287 0.116 0.244 0.038
(0.755) (0.207) (0.269) (0.372)

F. HS -97.1 0.063 0.003 -0.002 0.319 0.016 0.604 -0.894
(98.5) (0.032) (0.052) (0.043) (0.226) (0.298) (0.581) (13.15)

F. SC -134 0.055 0.132 0.055 0.045 -0.225 -0.044 13.38
(106) (0.023) (0.038) (0.031) (0.157) (0.201) (0.289) (14.10)

F. COL 296 -0.044 0.008 0.120 -0.155 1.048 -1.125 -24.49
(139) (0.032) (0.051) (0.042) (0.243) (0.267) (0.324) (19.88)

F. Age 5 -4.922 0.682
(6.646) (0.894)

F. Age 5 Sq. 0.134 -0.017
(0.185) (0.025)

F. Age 5 Cube -0.001 0.001
(0.002) (0.001)

F. Age 5× F. HS 7.519 0.241
(8.549) (1.139)

F. Age 5× F. SC 12.170 -1.233
(9.410) (1.249)

F. Age 5× F. COL -28.09 2.031
(12.04) (1.712)

F. Age 5× F. HS Sq. -0.180 -0.012
(0.242) (0.032)

F. Age 5× F. SC Sq. -0.350 0.037
(0.272) (0.036)

F. Age 5× F. COL Sq. 0.855 -0.055
(0.341) (0.048)

F. Age 5× F. HS Cube 0.001 0.0012
(0.002) (0.001)

F. Age 5× F. SC Cube 0.003 -0.0014
(0.003) (0.001)

F. Age 5× F. COL Cube. -0.008 0.001
(0.003) (0.001)

MWHours 1.331 -0.339 0.522 -0.003
(0.075) (0.110) (0.126) (0.041)

M. HS -29.53 0.089 0.081 -0.019 0.921 -0.328 -7.282 0.059
(37.67) (0.040) (0.065) (0.052) (0.278) (0.389) (33.765) (0.219)

M. SC 44.86 0.007 -0.041 0.017 0.942 0.270 2.930 0.207
(39.80) (0.030) (0.049) (0.039) (0.168) (0.273) (34.794) (0.136)

M. COL -46.14 0.083 0.120 0.040 0.133 -0.693 11.450 0.247
(57.96) (0.036) (0.057) (0.047) (0.218) (0.263) (53.920) (0.154)

M. Age 5 -1.315 1.082
(3.068) (2.721)

M. Age 5 Sq. 0.031 -0.021
(0.093) (0.083)

M. Age 5 Cube -0.001 0.001
(0.001) (0.002)

M. Age 5×M. HS 2.137 1.062
(3.547) (3.191)

M. Age 5×M. SC -4.125 -0.545
(3.820) (3.344)

M. Age 5×M. COL 3.474 -0.304
(5.448) (5.100)

M. Age 5×M. HS Sq. -0.046 -0.039
(0.109) (0.098)

M. Age 5×M. SC Sq. 0.122 0.027
(0.121) (0.106)

M. Age 5×M. COL Sq. -0.080 -0.013
(0.169) (0.159)

M. Age 5×M. HS Cube 0.001 0.001
(0.001) (0.001)

M. Age 5×M. SC Cube -0.001 -0.001
(0.001) (0.001)

M. Age 5×M. COL Cube. 0.001 0.001
(0.002) (0.002)
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TABLE 1-A (CONTINUED): EDUCATION PRODUCTION FUNCTION- THREE STAGE LEAST SQUARES

(Standard Errors in Parenthesis)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES FLInc MLInc HSH SC COL MTime FTime MWHours FWHours

MTime -0.014 0.080 0.069 0.068 -1.030
(0.0210 (0.035) (0.027) (0.197) (0.153)

FTime 0.031 0.100 0.027 -0.009 -0.063
(0.019) (0.029) (0.025) (0.134) (0.095)

MLInc -0.025 -0.013 0.005
(0.009) (0.014) (0.011)

F LInc 0.001 0.001 0.002
(0.003) (0.004) (0.003)

Female -0.002 0.135 0.085 0.022 -0.034
(0.017) (0.028) (0.022) (0.107) (0.150)

Black 0.020 0.082 0.043 -0.726 0.111 0.326 -0.470
(0.039) (0.063) (0.051) (0.206) (0.328) (0.347) (0.114)

Siblings <3 -0.014 -0.107 -0.043 0.434 0.176
(0.017) (0.027) (0.022) (0.089) (0.163)

3>Siblings≤6 -0.029 -0.047 -0.012 0.004 0.307
(0.019) (0.030) (0.025) (0.132) (0.169)

NHSFM 0.267 0.280
(0.652) (0.296)

NSCFM 0.199 -0.283
(0.414) (0.161)

NCOLFM 0.373 0.083
(0.455) (0.193)

Constant -10.11 14.95 0.855 -0.231 -0.359 4.199 -2.678 -8.298 1.089
(77.65) (32.66) (0.108) (0.172) (0.140) (2.076) (2.724) (28.60) (10.43)

N 1,335 1,335 1,335 1,335 1,335 1,335 1,335 1,335 1,335

Note: FLInc (MLInc) is the total labor income of the father (mother) in the first 5 years of the child’s life. HSH =1 if the

child has more than a high school education and =0 otherwise. SC=1 if the child has more than some college education,

and =0 otherwise. COL=1 if the child graduated from college and =0 otherwise. FTime (MTime) is total time investment

of the father (mother) in the first 5 years of the child’s life (sum of discrete variables which take the values 0,1,2).

MWhours (FWhours) is the total work hours of the mother (father) in the first 5 years of the child’s life (sum of discrete

variables which take the values 0,1,2). F. HS (M. HS)=1 if father (mother) of the child is at least a high graduate, and =0

otherwise. F. SC (M. SC)=1 if father (mother) of the child has at least some college education, and =0 otherwise. F. COL

(M. COL)=1 if father (mother) of the child is a college graduate and =0 otherwise. F. Age 5 (M. Age 5) is the age of the

father (mother) when the child was 5 years old. Female =1 if the child is a female and =0 otherwise). Black =1 if the

child is black, and =0 otherwise. Siblings <3 is the number of siblings who are less 3 years of age when the child was

less than 6 years old. 3>Siblings≤6 is the number of siblings who are between the ages of 3 and 6 when the child was

less than 6 years of age.
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TABLE 2-A: PROBABILITY OF HUSBAND’S LABOR MARKET HISTORY

(Standard Errors in Parenthesis)

Work (t − 1) Work (t − 2) Work (t − 3) work (t − 4)

Variable Part Time Full Time Part Time Full Time Part Time Full Time Part Time Full Time

Spouse Part-time (t − 2) 2.477 1.318

(0.174) (0.117)

Spouse Full-time (t − 2) 2.638 3.563

(0.157) (0.086)

Spouse Part-time (t − 3) 0.615 -0.111 2.792 1.689

(0.220) (0.156) (0.188) (0.124)

Spouse Full-time (t − 3) 0.313 0.861 3.007 4.012

(0.198) (0.126) (0.171) (0.088)

Spouse Part-time (t − 4) 0.816 -0.079 1.174 0.238 3.706 2.451

(0.229 (0.169) (0.208) (0.152) (0.166) (0.119)

Spouse Full-time (t − 4) 0.203 0.181 0.64 1.18 4.026 5.184

(0.184) (0.120) (0.167) (0.098) (0.137) (0.076)

Spouse HS -0.098 0.201 -0.129 0.208 -0.195 0.133 -0.204 0.149

(0.134) (0.087) (0.142) (0.091) (0.148) (0.095) (0.145) (0.071)

Spouse SC -0.17 0.224 -0.307 0.194 -0.326 0.127 -0.412 0.143

(0.147) (0.093) (0.155) (0.097) (0.161) (0.101) (0.159) (0.075)

Spouse COL -0.112 0.296 -0.155 0.299 -0.141 0.262 -0.008 0.239

(0.162) (0.100) (0.168) (0.104) (0.172) (0.107) (0.165) (0.080)

Spouse Age Group 2 -0.099 0.168 0.027 0.52 0.742 1.198 9.471 5.059

(0.175) (0.082) (0.239) (0.098) (0.376) (0.155) (0.134) (1.001)

Spouse Age Group 3 -0.253 0.065 0.064 0.491 0.518 1.206 9.82 5.767

(0.205) (0.104) (0.265) (0.114) (0.394) (0.166) (0.160) (1.002)

Spouse Age Group 4 -0.462 -0.053 -0.255 0.378 0.183 1.003 9.618 5.733

(0.24) (0.126) (0.296) (0.135) (0.418) (0.180) (0.205) (1.003)

Spouse Age Group 5 -0.418 -0.195 -0.199 0.305 0.264 1.051 9.458 5.632

(0.261) (0.146) (0.316) (0.153) (0.436) (0.196) (0.234) (1.005)

Spouse Age Group 6 -0.478 -0.274 -0.277 0.272 0.025 0.81 9.328 5.549

(0.294) (0.169) (0.344) (0.177) (0.459) (0.216) (0.273) (1.008)

Spouse Age Group 7 -0.223 -0.244 -0.172 0.251 0.63 1.044 9.112 4.987

(0.338) (0.199) (0.381) (0.204) (0.488) (0.241) (0.303) (1.011)

Spouse Age Group 8 -0.639 -0.605 0.051 0.241 0.674 1.067 9.591 5.249

(0.458) (0.274) (0.484) (0.298) (0.571) (0.331) (0.398) (1.021)

Black -0.022 -0.197 -0.146 -0.335 -0.077 -0.302 -0.168 -0.476

(0.092) (0.056) (0.096) (0.056) (0.097) (0.057) (0.093) (0.040)

HS -0.362 -0.159 -0.402 -0.22 -0.326 -0.146 -0.544 -0.43

(0.158) (0.104) (0.167) (0.104) (0.174) (0.110) (0.170) (0.081)

SC -0.514 -0.35 -0.565 -0.447 -0.573 -0.37 -0.914 -0.835

(0.169) (0.109) (0.178) (0.109) (0.186) (0.116) (0.183) (0.086)

COL -0.567 -0.303 -0.634 -0.412 -0.542 -0.37 -0.99 -0.965

(0.188) (0.120) (0.197) (0.120) (0.202) (0.126) (0.195) (0.093)

Age 0.13 0.073 0.197 0.09 0.239 0.121 0.348 0.371

(0.064) (0.033) (0.070) (0.034) (0.069) (0.038) (0.064) (0.029)

Age squared -0.002 -0.001 -0.003 -0.001 -0.003 -0.001 -0.004 -0.004

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

4



TABLE 2-A (CONTINUED): PROBABILITY OF HUSBAND’S LABOR MARKET HISTORY

(Standard Errors in Parenthesis)

Work (t − 1) Work (t − 2) Work (t − 3) work (t − 4)
Variable Part Time Full Time Part Time Full Time Part Time Full Time Part Time Full Time

Number of children 0.656 0.731 1.094 1.283 0.755 1.197 0.201 0.759
(0.171) (0.110) (0.165) (0.102) (0.170) (0.102) (0.173) (0.077)

Number of children Sq. -0.138 -0.201 -0.241 -0.331 -0.11 -0.25 0.083 -0.060
(0.058) (0.038) (0.056) (0.036) (0.059) (0.039) (0.059) (0.030)

Number of female children -0.055 -0.014 -0.056 0.009 -0.089 0.019 -0.075 0.014
(0.082) (0.055) (0.082) (0.056) (0.081) (0.054) (0.071) (0.037)

Age of 1st child -0.064 -0.053 -0.088 -0.089 -0.067 -0.081 -0.015 -0.037
(0.019) (0.011) (0.018) (0.012) (0.018) (0.012) (0.016) (0.008)

Age of 2nd child -0.02 0.013 -0.023 0.012 -0.028 -0.01 -0.047 -0.057
(0.026) (0.015) (0.026) (0.016) (0.025) (0.016) (0.022) (0.012)

Age of 3rd child 0.09 0.041 0.085 0.044 0.043 0.013 -0.031 -0.046
(0.037) (0.024) (0.038) (0.027) (0.037) (0.026) (0.031) (0.018)

Age of 4th child -0.165 -0.024 -0.072 0.039 0.016 0.085 0.006 0.145
(0.110) (0.053) (0.090) (0.064) (0.096) (0.072) (0.090) (0.060)

Time spent 1st child 0.054 0.025 0.066 0.034 0.111 0.09 0.221 0.200
(0.028) (0.018) (0.028) (0.019) (0.029) (0.019) (0.025) (0.012)

Time spent 2nd child -0.030 -0.017 -0.044 -0.038 -0.06 -0.054 -0.004 0.039
(0.036) (0.024) (0.036) (0.025) (0.037) (0.025) (0.033) (0.017)

Time spent 3rd child -0.085 -0.018 -0.079 -0.001 -0.09 -0.028 -0.039 0.005
(0.053) (0.037) (0.057) (0.043) (0.057) (0.044) (0.044) (0.025)

Time spent 4th child 0.277 0.116 0.281 0.141 0.129 0.075 -0.046 -0.199
(0.124) (0.080) (0.116) (0.091) (0.127) (0.098) (0.098) (0.068)

Part-time (t − 1) 1.234 1.315 0.119 0.116 -0.257 -0.211 -0.147 -0.215
(0.143) (0.089) (0.147) (0.084) (0.148) (0.087) (0.140) (0.064)

Part-time (t − 2) 0.073 -0.11 1.493 1.569 0.306 0.314 0.139 0.051
(0.165) (0.110) (0.162) (0.099) (0.166) (0.097) (0.147) (0.068)

Part-time (t − 3) -0.184 -0.337 0.004 -0.287 1.531 1.559 0.251 0.363
(0.17) (0.116) (0.175) (0.117) (0.166) (0.107) (0.161) (0.071)

Part-time (t − 4) 0.007 -0.156 -0.209 -0.472 -0.229 -0.512 1.337 1.334
(0.163) (0.111) (0.163) (0.112) (0.166) (0.107) (0.148) (0.073)

Full-time (t − 1) 1.171 1.198 -0.067 -0.186 -0.427 -0.306 -0.307 -0.295
(0.122) (0.069) (0.130) (0.069) (0.132) (0.073) (0.131) (0.055)

Full-time (t − 2) -0.219 -0.28 1.489 1.642 0.25 0.166 -0.153 -0.091
(0.151) (0.093) (0.152) (0.083) (0.160) (0.085) (0.154) (0.063)

Full-time (t − 3) -0.405 -0.342 -0.427 -0.502 1.349 1.52 0.215 0.099
(0.168) (0.108) (0.160) (0.096) (0.159) (0.088) (0.159) (0.063)

Full-time (t − 4) -0.006 -0.048 -0.300 -0.322 -0.519 -0.699 1.154 1.242
(0.149) (0.096) (0.145) (0.089) (0.137) (0.081) (0.138) (0.055)

Constant t − 4.325 -1.813 -6.444 -3.278 -8.069 -5.176 -18.653 -12.945
(0.902) (0.467) (0.989) (0.486) (1.045) (0.534) (0.934) (1.088)

N 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college. Age group 1 contains

individuals ages 18 to 23; Age group 2 contains individuals ages 24 to 28; Age group 3 contains individuals ages 29 to

33; Age 4 contains individuals ages 34 to 38; Age group 5 contains individuals ages 39 to 43; Age group 7 contains

individuals ages 49 to 52, and age group 8 contains individuals older than 53.
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TABLE 3-A: PROBABILITY OF HUSBAND’S EDUCATION

(Standard Errors in Parenthesis)

Variables HS SC COL Variables HS SC COL

Spouse Age Group 2 0.219 0.696 1.12 Number of children 0.033 -0.052 -0.064
(0.105) (0.122) (0.171) (0.093) (0.100) (0.110)

Spouse Age Group 3 -0.081 0.68 1.313 Number of children Sq. -0.054 -0.041 -0.068
(0.124) (0.141) (0.187) (0.029) (0.031) (0.035)

Spouse Age Group 4 -0.553 0.376 1.045 Number of female children 0.089 0.251 0.122
(0.145) (0.162) (0.207) (0.040) (0.043) (0.046)

Spouse Age Group 5 -0.994 0.059 0.769 Age of 1st child -0.014 -0.023 -0.032
(0.161) (0.178) (0.222) (0.010) (0.010) (0.011)

Spouse Age Group 6 -1.498 -0.304 0.479 Age of 2nd child 0.066 0.085 0.051
(0.183) (0.198) (0.240) (0.014) (0.015) (0.015)

Spouse Age Group 7 -2.297 -1.326 -0.315 Age of 3rd child -0.048 -0.102 -0.056
(0.202) (0.218) (0.260) (0.019) (0.021) (0.022)

Spouse Age Group 8 -2.604 -2.076 -1.153 Age of 4th child -0.095 0.048 -0.012
(0.246) (0.282) (0.316) (0.049) (0.054) (0.053)

Black -0.429 -0.763 -1.844 Time spent 1st child -0.019 -0.064 -0.064
(0.050) (0.055) (0.064) (0.014) (0.015) (0.016)

HS 1.43 1.749 2.242 Time spent 2nd child 0.051 0.062 0.109
(0.066) (0.085) (0.155) (0.020) (0.021) (0.021)

SC 1.606 2.815 4.055 Time spent 3rd child -0.127 -0.067 -0.05
(0.077) (0.094) (0.159) (0.024) (0.025) (0.026)

COL 2.592 4.136 6.730 Time spent 4th child 0.24 0.016 0.064
-0.152 -0.16 -0.203 (0.065) (0.070) (0.069)

Age (0.072) (0.100) 0.013 Constant 0.418 -0.65 -4.618
-0.038 -0.041 -0.044 (0.533) (0.578) (0.643)

Age Squared. 0.003 0.003 0.002
-0.001 -0.001 -0.001

Part-time (t − 1) 0.088 0.131 0.049
(0.083) (0.088) (0.094)

Part-time (t − 2) 0.087 0.114 0.094
(0.092) (0.098) (0.103)

Part-time (t − 3) 0.107 0.084 0.106
(0.097) (0.102) (0.108)

Part-time (t − 4) 0.135 0.146 0.127
(0.094) (0.099) (0.103)

Full-time (t − 1) 0.17 0.118 -0.105
(0.072) (0.077) (0.084)

Full-time (t − 2) 0.106 0.098 -0.022
(0.086) (0.092) (0.100)

Full-time (t − 3) 0.018 0.042 -0.019
(0.091) (0.097) (0.104)

Full-time (t − 4) 0.151 0.151 0.105
(0.081) (0.086) (0.092)

N 31,043 31,043 31,043 N 31,043 31,043 31,043

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college. Age group 1 contains

individuals ages 18 to 23; Age group 2 contains individuals ages 24 to 28; Age group 3 contains individuals ages 29 to

33; Age 4 contains individuals ages 34 to 38; Age group 5 contains individuals ages 39 to 43; Age group 7 contains

individuals ages 49 to 52, and age group 8 contains individuals older than 53.
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TABLE 4-A: PROBABILITY OF HUSBAND’S AGE GROUP

(Standard Errors in Parenthesis)

Variables Age Group
2 3 4 5 6 7 8

Black 0.279 0.28 0.371 0.394 0.493 0.642 1.044
(0.091) (0.102) (0.110) (0.117) (0.128) (0.146) (0.184)

HS -0.626 -1.004 -1.013 -0.76 -0.583 -0.779 -0.125
(0.126) (0.155) (0.179) (0.204) (0.231) (0.269) (0.408)

SC -0.532 -0.91 -0.958 -0.821 -0.533 -0.411 0.334
(0.140) (0.167) (0.191) (0.215) (0.242) (0.279) (0.415)

COL -0.158 -0.645 -0.846 -0.751 -0.668 -0.875 -0.581
(0.191) (0.216) (0.236) (0.258) (0.282) (0.316) (0.448)

Age 1.46 1.864 1.449 0.628 -0.318 -1.35 -1.621
(0.392) (0.440) (0.471) (0.476) (0.469) (0.456) (0.455)

Age Squared -0.021 -0.019 -0.005 0.011 0.027 0.042 0.046
(0.009) (0.010) (0.011) (0.011) (0.011) (0.010) (0.010)

Part-time (t − 1) 0.043 0.123 0.052 0.078 -0.035 -0.05 -0.542
(0.128) (0.143) (0.155) (0.167) (0.187) (0.229) (0.361)

Part-time (t − 2) 0.204 0.298 0.209 0.272 0.168 0.506 -0.486
(0.180) (0.190) (0.201) (0.212) (0.232) (0.272) (0.410)

Part-time (t − 3) 0.454 0.489 0.579 0.576 0.584 0.624 0.197
-0.307 -0.311 -0.317 -0.324 -0.337 -0.364 -0.468

Part-time (t − 4) 0.787 0.920 0.987 0.975 0.945 0.954 1.284
-0.522 -0.523 -0.526 -0.529 -0.536 -0.55 -0.61

Full-time (t − 1) 0.156 0.166 0.144 0.226 (0.021) 0.245 (0.003)
-0.098 -0.112 -0.125 -0.141 -0.163 -0.204 -0.322

Full-time (t − 2) 0.481 0.5 0.473 0.456 0.435 0.658 0.06
(0.148) (0.159) (0.171) (0.188) (0.213) (0.266) (0.413)

Full-time (t − 3) 0.413 0.437 0.498 0.41 0.495 0.396 0.199
(0.210) (0.216) (0.225) (0.238) (0.258) (0.302) (0.442)

Full-time (t − 4) 0.278 0.57 0.519 0.436 0.51 0.392 1.164
(0.284) (0.285) (0.290) (0.296) (0.308) (0.331) (0.456)

Number of children 0.215 0.285 0.18 -0.26 -0.603 -0.983 -1.568
(0.358) (0.371) (0.379) (0.388) (0.406) (0.447) (0.572)

Number of children Sq. -0.122 -0.128 -0.128 -0.102 -0.138 -0.161 -0.019
(0.247) (0.250) (0.251) (0.253) (0.256) (0.265) (0.297)

Number of female children -0.259 -0.471 -0.541 -0.567 -0.536 -0.377 -0.274
(0.143) (0.149) (0.152) (0.154) (0.157) (0.163) (0.188)

Age of 1st child -0.067 -0.036 0.009 0.069 0.104 0.114 0.097
(0.102) (0.103) (0.103) (0.104) (0.104) (0.104) (0.105)

Age of 2nd child 0.654 0.657 0.696 0.739 0.771 0.786 0.785
(0.509) (0.510) (0.510) (0.510) (0.510) (0.510) (0.511)

Age of 3rd child 9.065 9.07 9.045 9.042 9.075 9.092 9.043
(2.016) (2.017) (2.017) (2.017) (2.017) (2.017) (2.018)

Age of 4th child 1.048 1.275 1.317 1.198 1.23 1.288 1.445
(0.409) (0.099) (0.054) - (0.042) (0.051) (0.081)

Time spent 1st child 0.173 0.211 0.23 0.219 0.216 0.195 0.222
(0.062) (0.063) (0.064) (0.065) (0.066) (0.068) (0.072)

Time spent 2nd child -0.313 -0.271 -0.262 -0.266 -0.278 -0.269 -0.301
(0.290) (0.290) (0.291) (0.291) (0.291) (0.292) (0.293)

Time spent 3rd child -4.631 -4.585 -4.534 -4.472 -4.458 -4.444 -4.359
(1.417) (1.417) (1.417) (1.417) (1.417) (1.417) (1.418)

Time spent 4th child 1.2 1.445 1.363 1.544 1.606 1.622 1.329
(1.356) (1.319) (1.319) (1.318) (1.319) (1.320) (1.326)

Constant t − 19.777 -30.357 -30.477 -22.548 -10.274 6.371 9.241
(4.099) (4.766) (5.315) (5.485) (5.340) (4.989) (4.964)

N 31,043 31,043 31,043 31,043 31,043 31,043 31,043

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college. Age group 1 contains

individuals ages 18 to 23; Age group 2 contains individuals ages 24 to 28; Age group 3 contains individuals ages 29 to

33; Age 4 contains individuals ages 34 to 38; Age group 5 contains individuals ages 39 to 43; Age group 7 contains

individuals ages 49 to 52, and age group 8 contains individuals older than 53.
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TABLE 5-A: PROBABILITY OF WIFE’S LABOR MARKET HISTORY

(Standard Errors in Parenthesis)

Work (t − 1) Work (t − 2) Work (t − 3) Work (t − 4)

Variable Part Time Full Time Part Time Full Time Part Time Full Time Part Time Full Time

Spouse Part-time (t − 2) 1.914 1.656

(0.061) (0.061)

Spouse Full-time (t − 2) 2.025 3.6

(0.075) (0.062)

Spouse Part-time (t − 3) 0.479 0.017 1.993 1.814

(0.071) (0.069) (0.062) (0.063)

Spouse Full-time (t − 3) 0.036 0.397 2.378 4.044

(0.085) (0.074) (0.080) (0.068)

Spouse Part-time (t − 4) 0.439 0.26 0.677 0.284 2.214 2.077

(0.070) (0.068) (0.066) (0.068) (0.058) (0.058)

Spouse Full-time (t − 4) 0.169 0.593 0.197 0.795 2.582 4.595

(0.073) (0.064) (0.075) (0.065) (0.065) (0.056)

Spouse HS 0.233 0.411 0.179 0.445 0.153 0.42 0.305 0.713

(0.103) (0.091) (0.109) (0.100) (0.114) (0.106) (0.107) (0.078)

Spouse SC 0.372 0.509 0.275 0.5 0.263 0.47 0.434 0.778

(0.109) (0.096) (0.115) (0.106) (0.120) (0.111) (0.113) (0.081)

Spouse COL 0.518 0.705 0.452 0.697 0.401 0.621 0.62 0.923

(0.116) (0.103) (0.121) (0.111) (0.126) (0.116) (0.119) (0.085)

Spouse Age Group 2 -0.036 0.346 0.413 0.816 1.02 1.346 9.323 10.984

(0.112) (0.091) (0.142) (0.110) (0.226) (0.168) (0.085) (0.065)

Spouse Age Group 3 -0.1 0.33 0.321 0.761 1.016 1.386 9.518 11.665

(0.134) (0.114) (0.160) (0.129) (0.239) (0.183) (0.103) (0.076)

Spouse Age Group 4 0.008 0.274 0.355 0.733 1.074 1.397 9.585 11.78

(0.152) (0.131) (0.176) (0.145) (0.251) (0.195) (0.125) (0.091)

Spouse Age Group 5 0.062 0.321 0.573 0.866 1.143 1.447 9.688 11.763

(0.169) (0.146) (0.191) (0.158) (0.262) (0.205) (0.143) (0.105)

Spouse Age Group 6 -0.083 0.193 0.454 0.666 1.197 1.462 9.898 11.99

(0.198) (0.172) (0.217) (0.184) (0.279) (0.220) (0.172) (0.127)

Spouse Age Group 7 -0.362 -0.202 0.198 0.538 1.04 1.313 9.985 12.139

(0.265) (0.222) (0.279) (0.229) (0.325) (0.253) (0.242) (0.174)

Spouse Age Group 8 0.294 0.339 0.786 0.356 0.929 1.197 10.129 11.705

(0.476) (0.403) (0.466) (0.426) (0.527) (0.412) (0.420) (0.298)

Black -0.194 0.227 -0.22 0.304 -0.274 0.311 -0.261 0.379

(0.064) (0.052) (0.067) (0.054) (0.069) (0.055) (0.063) (0.039)

HS 0.056 0.151 0.013 0.087 0.01 0.122 0.041 0.136

(0.094) (0.079) (0.099) (0.086) (0.103) (0.088) (0.098) (0.069)

SC 0.003 0.087 -0.013 0.046 0.023 0.149 0.059 0.133

(0.101) (0.085) (0.105) (0.092) (0.109) (0.095) (0.103) (0.073)

COL 0.067 -0.101 -0.035 -0.204 -0.013 -0.088 0.027 -0.122

(0.105) (0.091) (0.110) (0.096) (0.114) (0.099) (0.108) (0.077)

Age 0.032 0.079 0.056 0.112 0.027 0.061 0.108 0.146

(0.040) (0.033) (0.042) (0.035) (0.045) (0.037) (0.044) (0.030)

Age squared 0 -0.001 -0.001 -0.002 0 -0.001 -0.001 -0.002

(0.001) - (0.001) - (0.001) (0.001) (0.001) -
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TABLE 5-A (CONTINUED): PROBABILITY OF WIFE’S LABOR MARKET HISTORY

(Standard Errors in Parenthesis)

Work (t − 1) Work (t − 2) Work (t − 3) Work (t − 4)
Variable Part Time Full Time Part Time Full Time Part Time Full Time Part Time Full Time

Number of children 0.025 -0.97 0.43 -1.035 0.687 -0.349 1.005 0.399
(0.092) (0.081) (0.093) (0.086) (0.093) (0.087) (0.087) (0.063)

Number of children Sq. -0.052 0.149 -0.173 0.106 -0.217 -0.087 -0.259 -0.327
(0.029) (0.026) (0.030) (0.028) (0.030) (0.029) (0.027) (0.022)

Number of female children -0.031 -0.048 0.003 -0.046 -0.005 -0.043 -0.014 -0.074
(0.036) (0.033) (0.037) (0.035) (0.036) (0.035) (0.033) (0.026)

Age of 1st child -0.01 0.055 -0.026 0.052 -0.032 0.018 -0.032 -0.012
(0.011) (0.008) (0.010) (0.009) (0.010) (0.008) (0.009) (0.006)

Age of 2nd child 0.043 0.039 0.036 0.05 0.028 0.044 0.009 0.036
(0.012) (0.009) (0.012) (0.009) (0.011) (0.009) (0.010) (0.007)

Age of 3rd child 0.01 -0.019 0.034 0.013 0.041 0.046 0.037 0.081
(0.016) (0.014) (0.017) (0.014) (0.016) (0.014) (0.014) (0.011)

Age of 4th child 0.09 0.027 0.12 0.043 0.098 0.075 0.058 0.072
(0.035) (0.032) (0.035) (0.033) (0.033) (0.033) (0.028) (0.024)

Time spent 1st child 0.001 0.017 0.005 0.04 0.008 0.03 0.028 0.069
(0.014) (0.012) (0.014) (0.013) (0.014) (0.013) (0.012) (0.009)

Time spent 2nd child 0.048 0.064 0.039 0.053 0.029 0.035 0.024 0.009
(0.018) (0.016) (0.018) (0.016) (0.017) (0.016) (0.016) (0.012)

Time spent 3rd child -0.001 0.023 0.024 0.031 0.017 0.06 -0.01 0.084
(0.028) (0.024) (0.028) (0.025) (0.027) (0.025) (0.024) (0.019)

Time spent 4th child -0.078 -0.066 -0.032 -0.008 -0.004 0.043 0.043 0.212
(0.060) (0.052) (0.059) (0.050) (0.057) (0.050) (0.058) (0.048)

Part-time (t − 1) 1.625 1.673 0.28 0.47 0.208 -0.135 -0.312 -0.533
(0.191) (0.134) (0.193) (0.152) (0.205) (0.164) (0.206) (0.145)

Part-time (t − 2) -0.245 -0.603 1.953 2.023 0.562 0.672 0.342 0.088
(0.177) (0.142) (0.202) (0.148) (0.211) (0.166) (0.218) (0.141)

Part-time (t − 3) 0.032 -0.229 -0.204 -0.536 1.967 2.092 0.456 0.534
(0.172) (0.154) (0.184) (0.150) (0.214) (0.155) (0.216) (0.137)

Part-time (t − 4) 0.121 -0.42 0.127 -0.481 -0.086 -0.728 2.123 2.116
(0.160) (0.142) (0.158) (0.142) (0.175) (0.138) (0.203) (0.118)

Full-time (t − 1) 1.82 1.831 0.099 0.291 -0.059 -0.204 -0.474 -0.418
(0.152) (0.093) (0.157) (0.115) (0.176) (0.125) (0.179) (0.121)

Full-time (t − 2) -0.369 -0.783 2.09 2.198 0.384 0.604 0.173 0.124
(0.129) (0.102) (0.168) (0.112) (0.184) (0.135) (0.198) (0.117)

Full-time (t − 3) -0.015 -0.153 -0.433 -0.814 2.095 2.252 0.381 0.538
(0.136) (0.115) (0.136) (0.108) (0.184) (0.121) (0.194) (0.112)

Full-time (t − 4) -0.105 -0.511 -0.014 -0.415 -0.292 -1.088 2.302 2.213
(0.116) (0.102) (0.116) (0.097) (0.120) (0.090) (0.177) (0.094)

Constant t − 4.074 -4.121 -5.471 -5.825 -6.176 -6.056 -16.01 -17.369
(0.633) (0.519) (0.673) (0.557) (0.735) (0.606) (0.720) (0.494)

N 27,541 27,541 27,541 27,541 27,541 27,541 27,541 27,541

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college. Age group 1 contains

individuals ages 18 to 23; Age group 2 contains individuals ages 24 to 28; Age group 3 contains individuals ages 29 to

33; Age 4 contains individuals ages 34 to 38; Age group 5 contains individuals ages 39 to 43; Age group 7 contains

individuals ages 49 to 52, and age group 8 contains individuals older than 53.
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TABLE 6-A: PROBABILITY OF WIFE’S EDUCATION

(Standard Errors in Parenthesis)

Variables HS SC COL Variables HS SC COL

Spouse Age Group 2 0.642 1.045 1.96 Number of children -0.25 -0.521 -0.515
(0.117) (0.130) (0.172) (0.113) (0.121) (0.128)

Spouse Age Group 3 1.074 1.719 3.173 Number of children Sq. 0.037 0.089 0.17
(0.154) (0.168) (0.206) (0.036) (0.039) (0.040)

Spouse Age Group 4 1.035 1.931 3.841 Number of female children 0.16 0.226 0.06
(0.180) (0.194) (0.232) (0.048) (0.051) (0.054)

Spouse Age Group 5 0.883 1.862 4.36 Age of 1st child -0.004 -0.071 -0.17
(0.212) (0.226) (0.263) (0.013) (0.014) (0.015)

Spouse Age Group 6 0.579 1.523 4.683 Age of 2nd child -0.019 -0.018 0.028
(0.271) (0.286) (0.317) (0.014) (0.015) (0.016)

Spouse Age Group 7 -0.113 0.58 4.291 Age of 3rd child 0.016 -0.051 -0.066
(0.393) (0.417) (0.441) (0.019) (0.021) (0.021)

Spouse Age Group 8 -0.413 -0.195 2.914 Age of 4th child -0.106 0.011 -0.032
(0.664) (0.743) (0.777) (0.033) (0.038) (0.036)

Black -0.421 -0.005 -0.266 Time spent 1st child 0.037 0.08 0.09
(0.064) (0.068) (0.077) (0.018) (0.019) (0.020)

HS 1.573 2.106 3.875 Time spent 2nd child -0.044 -0.025 -0.062
(0.067) (0.087) (0.247) (0.022) (0.023) (0.025)

SC 2.451 3.81 5.816 Time spent 3rd child -0.009 0.044 -0.045
(0.104) (0.118) (0.258) (0.030) (0.033) (0.035)

COL 2.464 4.44 8.064 Time spent 4th child 0.636 0.528 0.575
(0.163) (0.170) (0.285) (0.101) (0.103) (0.103)

Age -0.274 -0.327 -0.283 Constant 4.268 3.241 -1.119
(0.056) (0.059) (0.064) (0.836) (0.882) (1.001)

Age Squared. 0.004 0.005 0.004 N 27,541 27,541 27,541
(0.001) (0.001) (0.001)

Part-time (t − 1) -0.178 -0.206 -0.231
(0.183) (0.200) (0.223)

Part-time (t − 2) -0.267 -0.353 -0.355
(0.195) (0.212) (0.231)

Part-time (t − 3) -0.384 -0.472 -0.426
(0.200) (0.219) (0.235)

Part-time (t − 4) -0.234 -0.456 -0.418
(0.186) (0.203) (0.214)

Full-time (t − 1) 0.021 0.032 0.204
(0.136) (0.149) (0.169)

Full-time (t − 2) 0.023 0.002 0.03
(0.149) (0.162) (0.180)

Full-time (t − 3) -0.008 0.004 -0.026
(0.155) (0.168) (0.182)

Full-time (t − 4) 0.057 -0.047 -0.103
(0.134) (0.144) (0.154)

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college. Age group 1 contains

individuals ages 18 to 23; Age group 2 contains individuals ages 24 to 28; Age group 3 contains individuals ages 29 to

33; Age 4 contains individuals ages 34 to 38; Age group 5 contains individuals ages 39 to 43; Age group 7 contains

individuals ages 49 to 52, and age group 8 contains individuals older than 53.
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TABLE 7-A: PROBABILITY OF WIFE’S AGE GROUP

(Standard Errors in Parenthesis)

Variables Age Group
2 3 4 5 6 7 8

Black 0.328 0.362 0.365 0.408 0.38 -0.326 -2.372
(0.087) (0.103) (0.113) (0.126) (0.151) (0.230) (0.708)

HS 0.596 0.865 1.119 1.694 2.025 2.076 3.663
(0.118) (0.150) (0.174) (0.202) (0.245) (0.337) (1.333)

SC 0.964 1.384 1.648 2.219 2.403 2.469 3.027
(0.129) (0.162) (0.186) (0.212) (0.256) (0.351) (1.270)

COL 1.676 2.563 3.265 4.245 4.949 5.285 5.462
(0.154) (0.183) (0.205) (0.231) (0.271) (0.357) (1.288)

Age 1.225 2.846 4.701 5.79 5.015 3.426 2.204
(0.059) (0.096) (0.131) (0.221) (0.395) (0.444) (0.312)

Age Squared -0.016 -0.037 -0.059 -0.069 -0.057 -0.037 -0.022
(0.001) (0.002) (0.002) (0.003) (0.005) (0.005) (0.004)

Part-time (t − 1) 0.14 0.012 0.084 0.023 0.242 -0.046 2.113
(0.189) (0.250) (0.314) (0.372) (0.489) (0.663) (1.258)

Part-time (t − 2) 0.25 0.092 0.082 0.16 -0.339 0.731 2.264
(0.224) (0.266) (0.328) (0.388) (0.533) (0.716) (1.031)

Part-time (t − 3) 0.158 0.081 -0.101 0.008 0.147 0.185 0.695
(0.246) (0.280) (0.328) (0.395) (0.535) (0.744) (0.724)

Part-time (t − 4) 0.18 0.401 0.224 0.147 -0.063 1.061 0.056
(0.243) (0.265) (0.305) (0.368) (0.479) (0.680) (0.702)

Full-time (t − 1) 0.323 0.292 0.395 0.25 0.17 -0.52 1.635
(0.106) (0.178) (0.244) (0.293) (0.432) (0.580) (1.244)

Full-time (t − 2) 0.312 0.259 0.282 0.154 -0.022 0.921 1.508
(0.107) (0.168) (0.243) (0.301) (0.485) (0.667) (0.945)

Full-time (t − 3) -0.033 0.171 -0.051 0.044 0.217 -0.172 -0.35
(0.120) (0.165) (0.229) (0.296) (0.479) (0.728) (0.682)

Full-time (t − 4) 0.668 1.065 1.013 0.891 0.63 1.095 -0.111
(0.124) (0.148) (0.196) (0.254) (0.357) (0.625) (0.589)

Number of children -1.204 -1.667 -2.222 -3.101 -4.326 -6.034 -3.809
(0.314) (0.327) (0.336) (0.351) (0.395) (0.561) (2.149)

Number of children Sq. 0.622 0.678 0.767 0.824 0.848 1.039 -1.26
(0.236) (0.239) (0.240) (0.242) (0.250) (0.287) (1.109)

Number of female children 0.099 0.185 0.289 0.297 0.286 0.109 -0.271
(0.114) (0.121) (0.124) (0.128) (0.135) (0.153) (0.298)

Age of 1st child 0.458 0.625 0.737 0.82 0.912 0.97 0.932
(0.075) (0.076) (0.077) (0.077) (0.078) (0.080) (0.093)

Age of 2nd child -0.6 -0.554 -0.517 -0.44 -0.377 -0.314 -0.102
(0.224) (0.225) (0.226) (0.227) (0.227) (0.227) (0.237)

Age of 3rd child -0.343 -0.168 -0.121 -0.057 0.031 0.081 0.582
(0.322) (0.316) (0.317) (0.317) (0.317) (0.318) (0.356)

Age of 4th child 0.933 0.652 0.575 0.617 0.67 0.635 0.127
(0.959) (0.944) (0.944) (0.945) (0.945) (0.948) (1.024)

Time spent 1st child 0.017 0.027 0.04 0.035 0.027 0.041 0.043
(0.053) (0.055) (0.056) (0.057) (0.059) (0.065) (0.110)

Time spent 2nd child 0.066 0.111 0.144 0.182 0.244 0.295 0.539
(0.112) (0.113) (0.114) (0.114) (0.116) (0.120) (0.163)

Time spent 3rd child 0.306 0.278 0.242 0.245 0.296 0.348 0.501
(0.631) (0.628) (0.628) (0.628) (0.629) (0.630) (0.651)

Time spent 4th child 0.016 -0.055 -0.018 -0.041 -0.058 -0.133 0.039
(1.000) (0.978) (0.979) (0.979) (0.980) (0.993) (0.995)

Constant t − 20.427 -50.609 -88.272 -115.728 -105.685 -76.427 -55.783
(0.849) (1.451) (2.222) (4.438) (8.491) (9.702) (6.651)

N 27,541 27,541 27,541 27,541 27,541 27,541 27,541

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college. Age group 1 contains

individuals ages 18 to 23; Age group 2 contains individuals ages 24 to 28; Age group 3 contains individuals ages 29 to

33; Age 4 contains individuals ages 34 to 38; Age group 5 contains individuals ages 39 to 43; Age group 7 contains

individuals ages 49 to 52, and age group 8 contains individuals older than 53.
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TABLE 8-A: PROBABILITIES OF HUSBAND WITH YOUNG CHILDREN CHOICES

(Standard Errors in Parenthesis)

Variables 2 3 4 5 6 7 8 9

Black -0.226 -0.582 -0.261 -0.582 -0.773 -0.297 -0.338 -0.43
(0.236) (0.187) (0.337) (0.321) (0.192) (0.284) (0.300) (0.192)

HS 0.146 0.588 0.475 0.772 0.779 -0.387 0.315 0.665
(0.317) (0.252) (0.530) (0.517) (0.267) (0.367) (0.386) (0.268)

SC 0.605 0.858 0.832 0.631 1.054 -0.173 0.335 0.988
(0.359) (0.292) (0.581) (0.598) (0.307) (0.434) (0.441) (0.307)

COL 1.233 1.784 1.763 1.854 2.302 0.903 1.576 2.017
(0.527) (0.453) (0.793) (0.743) (0.462) (0.595) (0.625) (0.464)

Age -0.195 -0.197 -0.064 0.083 -0.158 0.015 0.105 -0.256
(0.235) (0.192) (0.330) (0.310) (0.196) (0.313) (0.263) (0.196)

Age Squared 0.001 0.001 0.001 -0.004 0.001 -0.001 -0.002 0.002
(0.003) (0.003) (0.005) (0.005) (0.003) (0.005) (0.004) (0.003)

Part-time (t − 1) 2.084 1.032 0.646 1.095 1.108 -0.133 0.848 0.959
(0.466) (0.306) (0.527) (0.605) (0.353) (0.412) (0.434) (0.343)

Part-time (t − 2) 0.197 -0.618 0.04 0.716 -0.434 -0.658 -0.05 -0.597
(0.471) (0.362) (0.581) (0.680) (0.389) (0.483) (0.559) (0.387)

Part-time (t − 3) 0.791 0.325 1.437 0.6 0.044 0.472 1.511 0.418
(0.541) (0.436) (0.713) (0.751) (0.454) (0.577) (0.565) (0.452)

Part-time (t − 4) -0.436 -0.528 -0.196 -0.11 -0.593 0.434 -0.458 -0.707
(0.521) (0.396) (0.634) (0.694) (0.415) (0.548) (0.526) (0.412)

Full-time (t − 1) 2.61 3.515 0.236 1.634 3.628 -0.319 1.047 3.288
(0.469) (0.310) (0.586) (0.594) (0.342) (0.421) (0.473) (0.333)

Full-time (t − 2) 0.149 0.497 -0.589 1.076 0.729 -0.434 0.011 0.657
(0.446) (0.337) (0.664) (0.637) (0.353) (0.459) (0.558) (0.351)

Full-time (t − 3) 0.646 0.634 1.349 -0.207 0.221 0.516 1.261 0.55
(0.469) (0.372) (0.792) (0.734) (0.383) (0.522) (0.560) (0.382)

Full-time (t − 4) 0.028 0.479 -0.06 0.453 0.591 0.962 -0.232 0.282
(0.434) (0.352) (0.571) (0.642) (0.360) (0.509) (0.470) (0.361)

Number of children -1.664 -2.237 -1.144 -3.365 -2.419 -1.44 -1.741 -2.53
(0.655) (0.543) (0.986) (0.744) (0.550) (0.724) (0.695) (0.551)

Number of children Sq. 0.515 0.589 0.328 0.906 0.609 0.52 0.349 0.606
(0.223) (0.185) (0.305) (0.258) (0.188) (0.233) (0.227) (0.188)

Number of female children -0.187 -0.15 0.027 -0.057 -0.114 -0.359 0.035 -0.192
(0.175) (0.135) (0.255) (0.252) (0.137) (0.204) (0.201) (0.138)

Age of 1st child 0.03 0.01 -0.119 -0.177 -0.04 -0.147 -0.298 -0.153
(0.064) (0.050) (0.103) (0.116) (0.051) (0.082) (0.127) (0.053)

Age of 2nd child -0.004 0.118 -0.219 0.239 0.071 -0.233 0.344 0.119
(0.139) (0.115) (0.269) (0.198) (0.118) (0.210) (0.206) (0.121)

Age of 3rd child -0.545 -0.522 0.777 -1.88 -0.482 -0.398 -0.577 -0.506
(0.288) (0.237) (0.385) (0.751) (0.242) (0.342) (0.393) (0.246)

Age of 4th child -0.903 -0.403 -20.082 -0.871 -0.757 -0.297 -0.07 -0.45
(0.688) (0.304) (3.857) (0.746) (0.367) (0.573) (0.526) (0.352)

Time spent 1st child -0.172 -0.124 0.308 0.23 0.113 0.107 0.15 0.239
(0.069) (0.052) (0.100) (0.097) (0.053) (0.074) (0.084) (0.053)

Time spent 2nd child -0.047 0.09 -0.194 0.259 0.198 0.424 0.285 0.3
(0.110) (0.078) (0.191) (0.167) (0.078) (0.126) (0.124) (0.079)

Time spent 3rd child 0.277 0.018 0.043 0.558 0.19 0.348 0.163 0.328
(0.206) (0.158) (0.257) (0.520) (0.160) (0.237) (0.194) (0.161)

Time spent 4th child -0.153 -0.206 9.796 1.153 0.092 -1.106 0.271 0.045
(0.378) (0.328) (2.137) (0.659) (0.330) (0.528) (0.362) (0.332)

12



TABLE 8-A (CONTINUED): PROBABILITIES OF HUSBAND WITH YOUNG CHILDREN CHOICES

(Standard Errors in Parenthesis)

Variables 2 3 4 5 6 7 8 9

Spouse Age 0.151 0.053 0.181 -0.018 -0.017 0.283 -0.138 0.057

(0.265) (0.210) (0.380) (0.282) (0.213) (0.321) (0.287) (0.214)

Spouse Age Squared -0.002 -0.001 -0.003 0.002 0 -0.005 0.001 -0.001

(0.004) (0.003) (0.006) (0.005) (0.003) (0.005) (0.005) (0.003)

Spouse HS 0.202 0.293 -0.291 -0.348 0.3 -0.461 -0.147 0.447

(0.361) (0.292) (0.550) (0.480) (0.305) (0.395) (0.414) (0.310)

Spouse SC -0.45 -0.136 -0.601 -1.081 0.034 -1.133 -0.538 0.117

(0.398) (0.317) (0.548) (0.531) (0.331) (0.448) (0.457) (0.336)

Spouse COL -0.384 0.1 -1.264 -1.519 0.294 -1.446 -0.442 0.223

(0.551) (0.465) (0.961) (0.726) (0.475) (0.609) (0.631) (0.479)

Spouse Part-time (t − 1) 0.693 0.453 -0.69 0.936 0.616 1.125 1.083 0.767

(0.371) (0.317) (0.817) (0.513) (0.321) (0.516) (0.455) (0.323)

Spouse Part-time (t − 2) -0.127 -0.347 -1.458 -0.246 -0.284 -0.173 -0.245 -0.315

(0.396) (0.330) (0.849) (0.512) (0.334) (0.515) (0.468) (0.335)

Spouse Part-time (t − 3) 0.115 0.2 -0.121 -0.269 0.133 -0.438 0.029 0.256

(0.404) (0.338) (0.763) (0.551) (0.343) (0.595) (0.469) (0.344)

Spouse Part-time (t − 4) -0.52 -0.586 -0.762 -0.686 -0.544 -1.407 -0.543 -0.539

(0.371) (0.304) (0.657) (0.541) (0.308) (0.502) (0.445) (0.310)

Spouse Full-time (t − 1) 0.429 0.574 0.118 1.183 0.934 1.093 1.754 1.072

(0.368) (0.314) (0.485) (0.438) (0.318) (0.468) (0.411) (0.318)

Spouse Full-time (t − 2) 0.118 -0.309 -0.303 -0.9 -0.297 0.225 -0.489 -0.465

(0.419) (0.353) (0.674) (0.524) (0.357) (0.523) (0.473) (0.359)

Spouse Full-time (t − 3) 0.314 0.616 1.153 0.775 0.508 0.751 0.017 0.677

(0.422) (0.361) (0.672) (0.543) (0.364) (0.499) (0.459) (0.366)

Spouse Full-time (t − 4) -0.376 -0.348 -0.917 -0.214 -0.276 -1.059 -0.449 -0.379

(0.372) (0.309) (0.525) (0.510) (0.313) (0.446) (0.432) (0.314)

Spouse Time spent 1st child 0.029 0.063 -0.195 0.125 0.025 -0.022 0.07 0.059

(0.071) (0.057) (0.107) (0.098) (0.058) (0.093) (0.087) (0.058)

Spouse Time spent 2nd child 0.051 0.07 0.473 -0.219 0.1 0.107 0.034 0.054

(0.099) (0.076) (0.187) (0.160) (0.078) (0.169) (0.111) (0.079)

Spouse Time spent 3rd child 0.145 0.138 -0.818 0.352 0.116 -0.021 0.19 0.119

(0.169) (0.129) (0.302) (0.307) (0.133) (0.252) (0.221) (0.136)

Spouse Time spent 4th child 1.055 0.694 1.441 0.327 0.807 0.921 0.611 0.712

(0.452) (0.212) (0.507) (0.507) (0.245) (0.298) (0.345) (0.244)

Constant 0.691 4.653 -2.285 -1.05 3.565 -3.275 0.615 4.064

(3.186) (2.455) (4.764) (3.913) (2.521) (3.972) (3.565) (2.535)

N 13,073 13,073 13,073 13,073 13,073.000 13,073 13,073 13,073

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college.

13



TABLE 9-A: PROBABILITIES OF HUSBAND WITHOUT YOUNG CHILDREN CHOICES

(Standard Errors in Parenthesis)

Variables 2 3 Variables 2 3

Black -0.133 -0.363 Spouse Age -0.26 -0.225
(0.173) (0.135) (0.112) (0.092)

HS 0.5 0.617 Spouse Age Squared 0.003 0.003
(0.254) (0.192) (0.002) (0.001)

SC 0.278 0.697 Spouse HS 0.498 0.368
(0.285) (0.215) (0.322) (0.250)

COL 0.802 0.881 Spouse SC 0.634 0.48
(0.312) (0.243) (0.339) (0.264)

Age -0.211 -0.161 Spouse COL 0.554 0.47
(0.117) (0.089) (0.374) (0.294)

Age Squared 0.002 0.002 Spouse Part-time (t − 1) 2.122 0.914
(0.002) (0.001) (0.310) (0.238)

Part-time (t − 1) 2.122 0.914 Spouse Part-time (t − 2) 0.009 -0.768
(0.310) (0.238) (0.401) (0.318)

Part-time (t − 2) 0.009 -0.768 Spouse Part-time (t − 3) 0.364 0.02
(0.401) (0.318) (0.426) (0.354)

Part-time (t − 3) 0.364 0.02 Spouse Part-time (t − 4) 0.856 0.047
(0.426) (0.354) (0.401) (0.333)

Part-time (t − 4) 0.856 0.047 Spouse Full-time (t − 1) 3.002 4.143
(0.401) (0.333) (0.327) (0.250)

Full-time (t − 1) 3.002 4.143 Spouse Full-time (t − 2) -0.252 0.051
(0.327) (0.250) (0.402) (0.319)

Full-time (t − 2) -0.252 0.051 Spouse Full-time (t − 3) -0.058 0.264
(0.402) (0.319) (0.433) (0.362)

Full-time (t − 3) -0.058 0.264 Spouse Full-time (t − 4) 0.945 0.394
(0.433) (0.362) (0.372) (0.310)

Full-time (t − 4) 0.945 0.394 Spouse Time spent 1st child -0.012 -0.015
(0.372) (0.310) (0.050) (0.035)

Number of children -0.463 -0.622 Spouse Time spent 2nd child -0.032 0.089
(0.621) (0.476) (0.059) (0.043)

Number of children Sq. 0.243 0.245 Spouse Time spent 3rd child 0.033 -0.048
(0.234) (0.187) (0.097) (0.071)

Number of female children 0.088 0.026 Spouse Time spent 4th child -0.163 -0.12
(0.166) (0.123) (0.199) (0.169)

Age of 1st child -0.002 0.025 Constant 6.598 7.568
(0.034) (0.023) (1.435) (1.101)

Age of 2nd child -0.027 -0.027
(0.036) (0.026) N 14,484 14,484

Age of 3rd child -0.116 -0.095
(0.074) (0.055)

Age of 4th child 0.172 0.132
(0.148) (0.117)

Time spent 1st child -0.073 -0.07
(0.051) (0.038)

Time spent 2nd child 0.151 0.092
(0.060) (0.046)

Time spent 3rd child -0.028 0.192
(0.144) (0.120)

Time spent 4th child -0.196 -0.327
(0.196) (0.161)

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college.
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TABLE 10-A: PROBABILITIES OF INFERTILE WIFE’S WITHOUT YOUNG CHILDREN CHOICES

CONDITIONAL ON HUSBAND CHOICES

(Standard Errors in Parenthesis)

Variables 2 3 Variables 2 3

Black -2.030 -1.664 Spouse Age 0.662 -0.109
(1.010) (0.783) (1.646) (1.386)

HS -0.175 0.902 Spouse Age Squared -0.006 0.001
(1.357) (1.012) (0.017) (0.014)

SC 0.637 2.001 Spouse HS 8.479 -0.422
(1.370) (1.006) (1.001) (0.807)

COL 0.502 2.183 Spouse SC 8.143 -0.703
(1.384) (1.056) (1.011) (0.862)

Age -0.211 -0.283 Spouse COL 7.497 -1.828
(0.095) (0.093) (1.075) (0.947)

Part-time (t − 1) 2.465 2.729 Spouse Part-time (t − 1) -0.648 0.489
(0.662) (0.640) (1.343) (1.224)

Part-time (t − 2) 0.338 -0.313 Spouse Part-time (t − 2) -0.513 -1.269
(0.706) (0.733) (1.148) (0.959)

Part-time (t − 3) 1.592 1.361 Spouse Part-time (t − 3) -2.390 -1.648
(0.727) (0.780) (1.036) (1.003)

Part-time (t − 4) -0.345 -0.035 Spouse Part-time (t − 4) 2.741 0.304
(0.675) (0.671) (1.490) (0.893)

Full-time (t − 1) 2.702 5.154 Spouse Full-time (t − 1) 0.145 0.446
(0.681) (0.586) (0.814) (0.759)

Full-time (t − 2) -0.050 0.577 Spouse Full-time (t − 2) 0.074 -0.187
(0.787) (0.748) (0.912) (0.667)

Full-time (t − 3) 2.228 1.840 Spouse Full-time (t − 3) -1.725 -1.079
(0.970) (0.909) (1.044) (0.652)

Full-time (t − 4) -0.901 0.151 Spouse Full-time (t − 4) 2.464 -0.059
(0.832) (0.809) (1.378) (0.721)

No of children 0.030 0.015 Spouse Time spent 1st child 0.174 0.094
(0.589) (0.432) (0.170) (0.178)

Nor of female children 0.264 0.268 Spouse Time spent 2nd child -0.173 -0.028
(0.300) (0.251) (0.190) (0.186)

Age of 1st child 0.108 0.115 Spouse Time spent 3rd child -0.079 -0.078
(0.066) (0.061) (0.132) (0.078)

Age of 2nd child -0.204 -0.074 Spouse Time spent 4th child -8.145 -0.164
(0.082) (0.075) (1.703) (0.208)

Time spent 1st child -0.315 -0.329 Spouse Choice 2 1.568 4.197
(0.129) (0.120) (2.129) (1.798)

Time spent 2nd child 0.318 0.080 Spouse Choice 3 -0.184 -0.468
(0.146) (0.119) (0.861) (0.827)

Constant 8.219 13.684
N 852 852 (40.430) (34.265)

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college.
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TABLE 11-A: PROBABILITIES OF INFERTILE WIFE WITH YOUNG CHILDREN CHOICE CONDITIONAL ON

HUSBAND CHOICES

(Standard Errors in Parenthesis)

VARIABLES 3 5 7 11 13

Black -41.954 -44.106 -18.952 -39.072 -33.689
(0.743) (0.684) (1.172) (0.845) (1.113)

Constant 16.362 16.65 17.343 15.956 15.263
(0.583) (0.515) (0.353) (0.704) (1.022)

N 24 24 24 24 24

Note: Due to low number of observations for this group of females with young children over the age of 45 in the data,

only explanatory variable used is the race.
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TABLE 12-A: PROBABILITIES OF FERTILE WIFE WITHOUT YOUNG CHILDREN CHOICES CONDITIONAL ON

HUSBAND CHOICES

(Standard Errors in Parenthesis)

VARIABLES 2 3 4 8 9 10 14 15 16

Black -0.145 -0.075 0.686 -0.189 0.042 0.609 -0.596 -0.486 0.855
(0.088) (0.070) (0.137) (0.173) (0.230) (0.164) (0.203) (0.367) (0.241)

HS 0.371 0.777 0.426 0.331 2.170 0.719 0.309 0.524 0.095
(0.131) (0.116) (0.303) (0.255) (1.036) (0.416) (0.281) (0.662) (0.565)

SC 0.546 1.068 0.535 0.176 2.531 1.220 0.483 0.795 0.361
(0.140) (0.124) (0.312) (0.289) (1.055) (0.427) (0.305) (0.669) (0.568)

COL 0.755 1.286 0.307 0.124 2.643 1.572 0.612 1.098 0.640
(0.156) (0.139) (0.342) (0.325) (1.068) (0.445) (0.330) (0.722) (0.590)

Age -0.124 -0.095 0.198 0.495 0.228 -0.027 0.352 -0.323 -0.032
(0.057) (0.048) (0.140) (0.157) (0.235) (0.154) (0.152) (0.271) (0.227)

Age Squared 0.002 0.001 -0.005 -0.010 -0.004 -0.001 -0.007 0.004 -0.000
(0.001) (0.001) (0.002) (0.003) (0.004) (0.003) (0.003) (0.005) (0.004)

Part-time (t − 1) 1.755 1.422 1.401 0.579 1.812 1.383 0.078 1.350 1.544
(0.102) (0.097) (0.256) (0.192) (0.284) (0.275) (0.214) (0.338) (0.340)

Part-time (t − 2) 0.552 0.270 0.756 0.454 -0.146 0.853 0.628 0.685 0.834
(0.123) (0.112) (0.289) (0.283) (0.383) (0.381) (0.266) (0.455) (0.501)

Part-time (t − 3) 0.418 0.053 -0.065 0.072 0.079 0.013 0.059 0.470 -0.035
(0.134) (0.126) (0.300) (0.328) (0.438) (0.377) (0.338) (0.541) (0.639)

Part-time (t − 4) 0.200 0.072 0.023 0.624 0.382 0.105 -0.084 0.277 -1.861
(0.128) (0.118) (0.328) (0.293) (0.386) (0.313) (0.337) (0.489) (1.069)

Full-time (t − 1) 1.888 3.417 2.791 -0.170 1.670 2.168 -0.605 0.221 1.739
(0.116) (0.099) (0.207) (0.216) (0.290) (0.249) (0.250) (0.379) (0.325)

Full-time (t − 2) 0.209 0.707 1.174 0.797 0.325 1.657 0.709 0.965 1.013
(0.141) (0.120) (0.239) (0.255) (0.329) (0.290) (0.262) (0.457) (0.435)

Full-time (t − 3) 0.144 0.239 0.100 0.361 0.683 0.747 0.279 1.027 0.683
(0.151) (0.131) (0.266) (0.292) (0.361) (0.276) (0.312) (0.498) (0.526)

Full-time (t − 4) -0.022 0.345 0.545 0.256 0.092 -0.135 0.046 -0.019 0.221
(0.133) (0.113) (0.230) (0.267) (0.325) (0.228) (0.279) (0.410) (0.402)

No of children 0.267 0.048 1.966 1.318 2.824 0.808 1.738 3.355 0.083
(0.131) (0.112) (0.503) (0.592) (0.775) (0.475) (0.620) (0.575) (1.118)

Nor of female children -0.111 -0.148 -0.698 -0.094 -0.028 -0.258 -0.179 -0.254 0.356
(0.069) (0.060) (0.277) (0.340) (0.421) (0.287) (0.331) (0.537) (0.530)

Age of 1st child -0.009 0.042 -0.229 -0.093 -0.278 -0.037 -0.338 -0.381 -0.218
(0.016) (0.012) (0.063) (0.072) (0.095) (0.055) (0.111) (0.080) (0.122)

Age of 2nd child 0.029 0.023 -0.089 -0.405 -0.294 -0.012 0.036 -0.210 -0.128
(0.019) (0.015) (0.091) (0.162) (0.160) (0.096) (0.119) (0.209) (0.241)

Age of 3rd child 0.004 0.001 0.177 0.090 -4.732 -0.115 -0.790 -4.240 -0.240
(0.034) (0.028) (0.122) (0.338) (0.359) (0.252) (0.190) (0.393) (0.353)

Age of 4th child -0.066 -0.076 -3.581 -1.656 -0.249 -12.529 -0.857 -0.829 -1.641
(0.067) (0.073) (0.408) (0.340) (0.327) (0.000) (0.222) (0.355) (0.368)

Time spent 1st child -0.024 -0.074 -0.237 -0.139 -0.123 -0.003 0.057 -0.032 0.305
(0.022) (0.018) (0.091) (0.087) (0.137) (0.066) (0.085) (0.124) (0.115)

Time spent 2nd child -0.016 -0.014 -0.158 0.045 -0.175 -0.221 -0.196 -0.231 -0.277
(0.027) (0.022) (0.107) (0.183) (0.160) (0.128) (0.141) (0.201) (0.368)

Time spent 3rd child -0.016 0.004 -1.082 -0.128 -2.356 0.096 0.251 -2.258 0.329
(0.037) (0.032) (0.457) (0.250) (0.705) (0.207) (0.112) (0.734) (0.330)

Time spent 4th child 0.016 0.042 -0.438 -0.573 -1.066 -9.049 -1.700 -0.941 -1.513
(0.078) (0.082) (0.573) (0.219) (0.000) (0.000) (0.801) (0.000) (0.806)
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TABLE 12-A (CONTINUED): PROBABILITIES OF FERTILE WIFE WITHOUT YOUNG CHILDREN CHOICES

CONDITIONAL ON HUSBAND CHOICES

(Standard Errors in Parenthesis)

Variables 2 3 4 8 9 10 14 15 16

Spouse Age 0.039 -0.010 0.084 -0.077 0.101 0.076 -0.047 0.522 0.256
(0.051) (0.041) (0.101) (0.117) (0.167) (0.148) (0.119) (0.254) (0.196)

Spouse Age Squared -0.001 0.000 -0.001 0.001 -0.003 -0.002 -0.000 -0.009 -0.005
(0.001) (0.001) (0.002) (0.002) (0.003) (0.002) (0.002) (0.004) (0.003)

Spouse HS 0.147 0.197 0.525 0.129 -0.373 0.498 0.072 0.482 0.390
(0.126) (0.103) (0.242) (0.234) (0.411) (0.308) (0.266) (0.565) (0.455)

Spouse SC 0.338 0.179 0.360 0.103 0.357 0.281 -0.147 0.573 0.348
(0.134) (0.112) (0.257) (0.256) (0.406) (0.321) (0.295) (0.581) (0.460)

Spouse COL 0.435 0.106 0.182 0.398 0.342 -0.050 -0.096 0.624 -0.087
(0.143) (0.121) (0.291) (0.293) (0.423) (0.340) (0.317) (0.586) (0.531)

Spouse Part-time (t − 1) -0.618 -0.828 -0.171 0.561 -1.008 -0.437 -0.736 0.255 0.578
(0.213) (0.185) (0.368) (0.386) (0.621) (0.488) (0.577) (0.629) (0.710)

Spouse Part-time (t − 2) -0.608 -0.505 -0.770 -0.400 -0.197 -1.349 -0.423 0.837 -11.938
(0.248) (0.199) (0.439) (0.479) (0.575) (0.645) (0.567) (0.579) (0.705)

Spouse Part-time (t − 3) -0.083 -0.146 -0.260 0.082 0.029 0.005 -0.337 -1.042 0.731
(0.258) (0.208) (0.519) (0.468) (0.544) (0.585) (0.618) (0.833) (0.751)

Spouse Part-time (t − 4) -0.162 -0.199 -1.030 -0.417 -0.237 -0.424 0.491 0.110 -0.178
(0.261) (0.214) (0.580) (0.508) (0.597) (0.534) (0.456) (0.793) (0.836)

Spouse Full-time (t − 1) -0.738 -1.181 -0.599 0.537 -0.475 -0.461 0.347 0.434 0.331
(0.121) (0.105) (0.198) (0.212) (0.315) (0.236) (0.241) (0.438) (0.354)

Spouse Full-time (t − 2) -0.292 -0.308 -0.521 -0.165 0.018 -0.388 0.022 -0.036 -0.953
(0.145) (0.122) (0.219) (0.234) (0.307) (0.253) (0.260) (0.408) (0.382)

Spouse Full-time (t − 3) 0.043 -0.058 -0.034 0.043 -0.146 -0.168 0.318 -0.872 -0.137
(0.170) (0.143) (0.275) (0.277) (0.353) (0.298) (0.291) (0.459) (0.468)

Spouse Full-time (t − 4) -0.045 -0.117 -0.423 -0.495 -0.447 -0.310 -0.251 -0.062 -0.037
(0.156) (0.128) (0.250) (0.260) (0.342) (0.270) (0.271) (0.446) (0.381)

Spouse Time spent 1st child 0.002 0.039 0.090 -0.233 -0.035 0.022 0.011 -0.324 -0.038
(0.027) (0.022) (0.075) (0.113) (0.111) (0.075) (0.071) (0.165) (0.118)

Spouse Time spent 2nd child 0.017 0.031 -0.018 0.157 -0.129 -0.194 -0.074 0.305 0.354
(0.031) (0.025) (0.134) (0.249) (0.144) (0.130) (0.110) (0.170) (0.216)

Spouse Time spent 3rd child 0.006 0.001 -38.384 -0.043 -0.839 -112.041 0.147 -0.886 -1.344
(0.047) (0.041) (1.019) (0.336) (0.658) (0.000) (0.090) (0.475) (0.530)

Spouse Time spent 4th child 0.111 0.057 -0.559 -0.299 -0.279 -3.836 -0.371 -0.305 -0.266
(0.100) (0.095) (0.520) (0.344) (0.000) (0.000) (0.279) (0.000) (0.309)

Spouse Choice2 1.874 1.264 0.887 -0.463 1.374 1.628 -0.748 1.752 0.044
(0.200) (0.186) (0.515) (0.550) (0.641) (1.240) (0.653) (1.181) (1.267)

Spouse Choice3 1.153 1.559 1.425 0.347 0.917 2.954 0.046 1.449 1.021
(0.145) (0.120) (0.368) (0.300) (0.515) (1.018) (0.309) (1.059) (0.739)

Spouse Choice4 -2.748 -6.012 12.033 13.024 -1.046 14.364 13.123 -0.259 13.050
(0.253) (0.541) (0.884) (0.484) (0.598) (1.272) (0.560) (1.037) (1.219)

Spouse Choice5 -2.820 -5.301 13.532 12.760 13.377 14.761 12.387 -0.886 -1.014
(0.244) (0.503) (0.632) (0.503) (0.979) (1.223) (0.766) (1.176) (0.861)

Spouse Choice6 -2.715 -8.798 18.009 16.786 17.699 20.235 16.905 18.485 18.105
(0.321) (0.650) (1.066) (1.033) (1.124) (1.426) (1.028) (1.462) (1.245)

Spouse Choice7 -3.792 -6.767 12.021 10.787 -1.545 14.392 12.402 13.584 13.008
(0.301) (0.497) (0.769) (1.155) (0.664) (1.189) (0.665) (1.202) (1.161)

Spouse Choice8 -2.954 -4.812 11.508 -2.134 -1.230 14.222 13.146 13.355 -0.994
(0.346) (0.410) (0.948) (0.434) (0.681) (1.190) (0.590) (1.703) (0.793)

Spouse Choice9 -3.961 -6.860 17.641 17.188 17.981 20.772 17.763 19.016 19.061
(0.292) (0.417) (0.461) (0.399) (0.584) (1.044) (0.368) (1.100) (0.761)

Constant t − 1.115 -0.661 -8.212 -7.749 -10.421 -7.456 -6.153 -9.389 -8.838
(0.743) (0.622) (1.848) (1.996) (3.299) (2.714) (2.124) (3.879) (2.903)

N 16,983 16,983 16,983 16,983 16,983 16,983 16,983 16,983 16,983

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college.

18



T
A

B
L

E
1

3
-A

:
P

R
O

B
A

B
IL

IT
IE

S
O

F
F

E
R

T
IL

E
W

IF
E

’S
W

IT
H

Y
O

U
N

G
C

H
IL

D
R

E
N

C
H

O
IC

E
S

C
O

N
D

IT
IO

N
A

L
O

N
H

U
S

B
A

N
D

C
H

O
IC

E
S

(S
ta

n
d

ar
d

E
rr

o
rs

in
P

ar
en

th
es

is
)

v
ar

ia
b

le
s

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

B
la

ck
-0

.2
7

3
0

.0
2

4
0

.0
0

2
-0

.5
4

4
-0

.5
1

4
-0

.0
2

0
-0

.1
9

0
-0

.1
1

8
0

.1
3

5
-0

.7
7

0
-0

.9
3

8
0

.0
3

5
-0

.5
2

7
-0

.8
9

4
0

.1
4

3
(0

.1
6

2
)

(0
.1

2
0

)
(0

.1
9

9
)

(0
.1

2
2

)
(0

.1
4

4
)

(0
.1

2
0

)
(0

.1
7

7
)

(0
.2

5
9

)
(0

.1
7

5
)

(0
.1

3
0

)
(0

.1
7

1
)

(0
.1

3
8

)
(0

.1
8

1
)

(0
.3

2
8

)
(0

.2
3

4
)

H
S

-0
.1

4
7

0
.3

5
3

-0
.0

1
5

0
.6

4
6

1
.1

0
2

0
.6

6
4

0
.4

6
8

0
.8

7
9

0
.1

0
7

0
.4

8
2

0
.7

6
6

0
.4

1
8

0
.9

0
1

1
.3

2
5

1
.1

9
6

(0
.2

2
6

)
(0

.1
8

3
)

(0
.3

4
1

)
(0

.1
6

3
)

(0
.2

5
5

)
(0

.1
9

7
)

(0
.2

4
8

)
(0

.5
4

3
)

(0
.3

5
8

)
(0

.1
7

6
)

(0
.2

8
1

)
(0

.2
4

9
)

(0
.2

7
6

)
(0

.6
2

4
)

(0
.6

0
7

)
S

C
0

.1
8

4
0

.5
0

6
-0

.1
1

3
0

.6
9

6
1

.4
7

8
0

.9
9

9
0

.5
5

9
1

.1
5

4
0

.6
1

6
0

.8
4

0
1

.5
4

2
0

.8
4

5
1

.2
8

9
2

.0
2

3
1

.7
0

9
(0

.2
6

6
)

(0
.2

1
5

)
(0

.3
7

6
)

(0
.1

9
9

)
(0

.2
8

0
)

(0
.2

2
5

)
(0

.2
9

1
)

(0
.5

6
8

)
(0

.3
7

6
)

(0
.2

0
8

)
(0

.3
0

3
)

(0
.2

7
5

)
(0

.2
9

8
)

(0
.6

6
5

)
(0

.6
2

6
)

C
O

L
-0

.1
2

1
0

.4
0

0
0

.1
8

0
0

.5
0

6
1

.6
2

9
1

.1
8

4
0

.7
4

9
1

.6
2

9
0

.9
7

5
0

.7
2

0
1

.6
3

8
0

.9
5

2
1

.6
3

5
1

.9
2

4
1

.4
4

9
(0

.3
1

5
)

(0
.2

5
3

)
(0

.4
1

1
)

(0
.2

4
2

)
(0

.3
1

4
)

(0
.2

6
0

)
(0

.3
4

1
)

(0
.6

0
4

)
(0

.4
2

0
)

(0
.2

4
6

)
(0

.3
4

0
)

(0
.3

1
1

)
(0

.3
3

8
)

(0
.7

0
2

)
(0

.6
6

5
)

A
g

e
0

.0
1

4
-0

.1
7

2
0

.0
5

2
0

.0
3

3
0

.0
5

0
-0

.1
7

3
0

.2
4

7
-0

.1
6

7
0

.1
0

2
0

.1
3

5
-0

.0
6

5
-0

.1
9

1
0

.3
6

6
-0

.1
3

1
-0

.2
0

7
(0

.1
5

3
)

(0
.1

2
0

)
(0

.2
3

3
)

(0
.1

1
2

)
(0

.1
3

8
)

(0
.1

2
1

)
(0

.1
7

9
)

(0
.2

4
4

)
(0

.1
9

8
)

(0
.1

2
0

)
(0

.1
4

7
)

(0
.1

4
3

)
(0

.1
8

6
)

(0
.2

8
1

)
(0

.2
6

5
)

A
g

e
S

q
u

ar
ed

0
.0

0
0

0
.0

0
3

-0
.0

0
1

-0
.0

0
1

-0
.0

0
1

0
.0

0
3

-0
.0

0
5

0
.0

0
2

-0
.0

0
3

-0
.0

0
2

0
.0

0
1

0
.0

0
4

-0
.0

0
7

0
.0

0
1

0
.0

0
3

(0
.0

0
2

)
(0

.0
0

2
)

(0
.0

0
4

)
(0

.0
0

2
)

(0
.0

0
2

)
(0

.0
0

2
)

(0
.0

0
3

)
(0

.0
0

4
)

(0
.0

0
3

)
(0

.0
0

2
)

(0
.0

0
2

)
(0

.0
0

2
)

(0
.0

0
3

)
(0

.0
0

5
)

(0
.0

0
4

)
P

ar
t-

ti
m

e
(t
−

1
)

1
.8

7
3

2
.2

6
7

1
.0

7
9

-0
.2

3
8

1
.7

4
1

1
.9

0
4

-0
.2

0
2

1
.5

4
3

1
.7

2
0

-0
.4

7
1

1
.3

1
6

1
.4

5
8

-0
.2

3
4

1
.1

4
3

1
.0

2
4

(0
.2

0
4

)
(0

.1
9

0
)

(0
.3

9
1

)
(0

.1
6

8
)

(0
.1

7
6

)
(0

.1
8

1
)

(0
.2

2
7

)
(0

.2
6

7
)

(0
.2

9
7

)
(0

.1
7

1
)

(0
.1

8
1

)
(0

.2
0

6
)

(0
.2

0
2

)
(0

.2
7

4
)

(0
.3

0
4

)
P

ar
t-

ti
m

e
(t
−

2
)

0
.7

8
5

0
.5

1
8

0
.2

3
6

0
.1

7
3

0
.5

6
6

0
.3

9
8

0
.1

8
9

1
.2

7
3

0
.4

6
9

0
.1

5
2

0
.5

7
0

0
.5

0
7

0
.3

3
6

0
.9

1
1

1
.1

3
5

(0
.2

1
4

)
(0

.1
8

9
)

(0
.3

9
2

)
(0

.1
7

4
)

(0
.1

9
0

)
(0

.1
8

5
)

(0
.2

3
4

)
(0

.3
2

7
)

(0
.3

3
7

)
(0

.1
7

5
)

(0
.1

9
6

)
(0

.2
1

1
)

(0
.2

1
2

)
(0

.2
9

6
)

(0
.3

5
1

)
P

ar
t-

ti
m

e
(t
−

3
)

0
.7

6
7

0
.4

3
8

0
.9

7
6

0
.3

4
5

0
.6

8
9

0
.7

1
8

0
.5

5
4

0
.6

4
4

0
.6

3
4

0
.3

8
4

0
.6

6
6

0
.7

3
3

0
.4

9
2

0
.7

7
3

0
.5

4
5

(0
.2

2
6

)
(0

.1
9

8
)

(0
.3

8
2

)
(0

.1
8

2
)

(0
.2

0
0

)
(0

.1
9

4
)

(0
.2

4
6

)
(0

.3
2

3
)

(0
.3

1
1

)
(0

.1
8

3
)

(0
.2

0
7

)
(0

.2
2

0
)

(0
.2

2
8

)
(0

.3
1

4
)

(0
.3

4
1

)
P

ar
t-

ti
m

e
(t
−

4
)

0
.4

5
3

0
.2

9
7

-0
.0

1
7

0
.1

5
8

0
.4

9
5

0
.3

0
2

0
.3

3
4

0
.4

6
2

0
.5

8
6

0
.1

7
4

0
.2

6
8

0
.2

7
7

0
.4

2
0

0
.9

3
2

0
.7

7
6

(0
.2

3
4

)
(0

.1
9

9
)

(0
.3

5
3

)
(0

.1
8

3
)

(0
.2

0
0

)
(0

.1
9

5
)

(0
.2

5
4

)
(0

.3
3

2
)

(0
.3

0
7

)
(0

.1
8

4
)

(0
.2

1
1

)
(0

.2
1

7
)

(0
.2

2
3

)
(0

.3
2

7
)

(0
.3

4
0

)
F

u
ll

-t
im

e
(t
−

1
)

1
.5

7
4

3
.3

6
8

2
.5

0
2

-0
.8

4
4

1
.0

0
0

3
.1

0
3

-1
.0

7
9

0
.7

7
7

2
.0

5
1

-1
.5

9
3

0
.4

1
3

2
.2

4
0

-1
.3

1
5

0
.4

8
0

1
.1

6
4

(0
.2

0
8

)
(0

.1
7

6
)

(0
.3

0
6

)
(0

.1
7

2
)

(0
.1

8
2

)
(0

.1
6

8
)

(0
.2

7
0

)
(0

.3
0

7
)

(0
.2

7
6

)
(0

.1
9

9
)

(0
.2

0
1

)
(0

.1
9

3
)

(0
.2

5
9

)
(0

.3
1

2
)

(0
.2

9
3

)
F

u
ll

-t
im

e
(t
−

2
)

0
.0

8
1

0
.8

0
6

0
.7

4
5

0
.0

4
7

0
.1

4
2

0
.6

7
6

0
.0

6
4

1
.1

2
1

1
.5

7
9

-0
.1

4
5

0
.0

5
1

0
.6

3
5

0
.2

6
0

0
.6

1
4

1
.6

4
1

(0
.2

4
0

)
(0

.1
9

2
)

(0
.3

4
0

)
(0

.1
9

0
)

(0
.2

0
9

)
(0

.1
9

0
)

(0
.2

6
6

)
(0

.3
5

3
)

(0
.3

0
0

)
(0

.1
9

8
)

(0
.2

3
1

)
(0

.2
1

9
)

(0
.2

3
9

)
(0

.3
6

5
)

(0
.3

5
0

)
F

u
ll

-t
im

e
(t
−

3
)

0
.4

6
5

0
.5

6
1

1
.0

1
5

0
.2

6
8

0
.3

9
6

0
.7

8
8

-0
.0

8
2

0
.1

3
1

0
.6

3
8

0
.2

9
5

0
.4

3
8

1
.0

1
1

0
.1

6
0

-0
.1

8
8

0
.1

0
6

(0
.2

4
5

)
(0

.2
0

4
)

(0
.3

6
3

)
(0

.2
0

0
)

(0
.2

1
8

)
(0

.2
0

4
)

(0
.2

8
7

)
(0

.3
4

1
)

(0
.2

9
6

)
(0

.2
0

0
)

(0
.2

3
4

)
(0

.2
2

9
)

(0
.2

5
0

)
(0

.3
7

4
)

(0
.3

3
9

)
F

u
ll

-t
im

e
(t
−

4
)

-0
.0

3
8

0
.1

5
5

0
.1

2
0

-0
.1

3
2

0
.2

3
2

0
.4

4
0

0
.0

7
1

0
.2

9
2

0
.5

0
7

0
.1

6
1

0
.1

7
0

0
.3

8
6

0
.0

8
9

1
.1

2
8

1
.0

0
5

(0
.2

2
1

)
(0

.1
7

4
)

(0
.2

7
1

)
(0

.1
7

0
)

(0
.1

8
8

)
(0

.1
7

3
)

(0
.2

3
5

)
(0

.3
1

7
)

(0
.2

6
2

)
(0

.1
7

0
)

(0
.2

0
1

)
(0

.1
9

4
)

(0
.2

2
3

)
(0

.3
3

7
)

(0
.3

1
1

)
N

o
o

f
ch

il
d

re
n

-0
.1

2
5

0
.0

7
4

-1
.4

3
2

0
.0

7
4

-0
.1

4
8

0
.0

5
5

-1
.0

7
4

-1
.0

7
1

-1
.2

0
5

0
.1

5
9

0
.3

0
8

0
.2

1
6

-0
.9

8
7

-0
.9

2
3

-1
.1

0
1

(0
.1

9
5

)
(0

.1
4

8
)

(0
.3

9
5

)
(0

.1
3

8
)

(0
.1

6
2

)
(0

.1
4

4
)

(0
.2

5
3

)
(0

.3
6

2
)

(0
.2

8
9

)
(0

.1
4

0
)

(0
.1

7
2

)
(0

.1
6

5
)

(0
.2

2
7

)
(0

.3
2

0
)

(0
.3

8
2

)
F

em
al

e
ch

il
d

re
n

0
.1

0
9

0
.0

2
0

0
.2

1
2

0
.0

4
3

0
.1

1
6

0
.0

7
6

0
.1

0
4

-0
.0

0
6

0
.0

2
5

0
.0

2
4

-0
.0

2
8

-0
.0

0
4

0
.0

1
3

0
.0

6
1

0
.0

7
4

(0
.1

0
8

)
(0

.0
8

4
)

(0
.1

5
7

)
(0

.0
8

1
)

(0
.0

9
2

)
(0

.0
8

3
)

(0
.1

3
0

)
(0

.1
8

9
)

(0
.1

3
9

)
(0

.0
8

2
)

(0
.0

9
5

)
(0

.0
9

2
)

(0
.1

1
4

)
(0

.1
7

9
)

(0
.1

6
4

)
A

g
e

o
f

1
st

ch
il

d
-0

.0
8

2
-0

.0
0

0
0

.1
5

3
-0

.0
6

3
-0

.1
1

2
-0

.0
2

7
0

.0
0

2
-0

.0
6

6
0

.0
5

9
-0

.0
9

9
-0

.0
5

5
-0

.0
2

1
-0

.0
4

0
0

.0
8

4
-0

.0
7

5
(0

.0
4

6
)

(0
.0

3
6

)
(0

.0
6

0
)

(0
.0

3
5

)
(0

.0
4

1
)

(0
.0

3
6

)
(0

.0
5

5
)

(0
.0

8
1

)
(0

.0
5

3
)

(0
.0

3
7

)
(0

.0
4

4
)

(0
.0

4
0

)
(0

.0
5

3
)

(0
.0

8
9

)
(0

.0
7

3
)

A
g

e
o

f
2

n
d

ch
il

d
0

.2
0

5
0

.1
0

6
0

.0
1

2
-0

.0
0

2
0

.1
1

6
0

.0
7

4
-0

.0
2

6
0

.0
6

9
0

.1
1

2
-0

.0
7

6
-0

.1
3

0
-0

.1
3

9
-0

.0
3

5
-0

.2
5

1
-0

.2
8

6
(0

.0
8

4
)

(0
.0

6
2

)
(0

.1
8

9
)

(0
.0

6
2

)
(0

.0
6

9
)

(0
.0

6
2

)
(0

.1
4

0
)

(0
.1

7
1

)
(0

.1
2

8
)

(0
.0

6
9

)
(0

.0
8

2
)

(0
.0

7
5

)
(0

.1
1

6
)

(0
.1

8
7

)
(0

.2
2

3
)

A
g

e
o

f
3

rd
ch

il
d

-0
.3

4
2

-0
.2

4
0

-0
.0

1
9

-0
.0

6
3

-0
.2

1
6

-0
.3

6
1

0
.6

0
2

-0
.1

0
6

-0
.0

5
8

-0
.3

9
5

-0
.4

6
5

-0
.3

9
0

-0
.0

4
5

-0
.8

7
5

-0
.1

9
3

(0
.1

9
8

)
(0

.1
1

4
)

(0
.9

2
1

)
(0

.1
2

4
)

(0
.1

4
3

)
(0

.1
2

2
)

(0
.2

1
3

)
(0

.4
4

4
)

(0
.3

1
5

)
(0

.1
4

7
)

(0
.1

9
4

)
(0

.1
5

5
)

(0
.3

1
1

)
(0

.7
5

1
)

(0
.5

6
3

)
A

g
e

o
f

4
th

ch
il

d
-0

.1
3

4
0

.0
2

1
-4

.0
8

6
-0

.5
1

2
-0

.1
2

1
0

.0
6

4
-9

.5
0

2
-3

.2
7

9
-4

.6
1

4
-0

.1
7

0
-0

.1
4

5
0

.2
0

4
-5

.8
9

5
-0

.9
3

1
-2

.6
2

0
(0

.5
3

3
)

(0
.3

4
1

)
(3

.3
6

2
)

(0
.2

7
2

)
(0

.6
0

2
)

(0
.3

0
5

)
(0

.9
8

5
)

(1
.5

1
9

)
(1

.2
4

3
)

(0
.3

3
4

)
(0

.4
9

5
)

(0
.3

9
6

)
(1

.1
2

3
)

(1
.8

7
9

)
(1

.4
9

8
)

T
im

e
1

st
ch

il
d

0
.0

0
1

-0
.0

7
3

-0
.1

4
9

0
.1

4
3

0
.1

7
6

0
.1

8
6

0
.2

0
1

0
.1

7
1

0
.2

1
7

0
.3

2
0

0
.3

0
2

0
.3

4
2

0
.3

6
7

0
.3

9
9

0
.4

3
8

(0
.0

4
3

)
(0

.0
3

4
)

(0
.0

6
1

)
(0

.0
3

2
)

(0
.0

3
5

)
(0

.0
3

2
)

(0
.0

4
5

)
(0

.0
6

1
)

(0
.0

4
8

)
(0

.0
3

2
)

(0
.0

3
8

)
(0

.0
3

6
)

(0
.0

4
2

)
(0

.0
6

7
)

(0
.0

6
0

)
T

im
e

2
n

d
ch

il
d

0
.0

0
0

0
.0

4
9

-0
.0

3
5

0
.1

3
6

0
.1

3
9

0
.1

6
0

0
.0

1
8

0
.1

4
6

0
.0

0
6

0
.1

6
8

0
.2

6
0

0
.2

7
2

0
.1

2
3

0
.2

0
6

0
.3

2
4

(0
.0

6
4

)
(0

.0
5

3
)

(0
.1

4
8

)
(0

.0
5

0
)

(0
.0

5
6

)
(0

.0
5

1
)

(0
.0

9
6

)
(0

.1
1

4
)

(0
.0

9
0

)
(0

.0
5

2
)

(0
.0

6
0

)
(0

.0
5

8
)

(0
.0

8
0

)
(0

.1
1

9
)

(0
.1

4
1

)
T

im
e

3
rd

ch
il

d
0

.1
2

4
0

.0
0

2
-0

.4
5

7
0

.0
5

2
0

.1
3

5
0

.2
2

9
-0

.1
1

6
0

.1
6

5
-0

.0
4

0
0

.3
3

0
0

.3
4

3
0

.3
1

0
0

.2
6

6
0

.5
9

4
0

.2
8

8
(0

.1
3

1
)

(0
.0

8
2

)
(0

.8
8

4
)

(0
.0

7
8

)
(0

.0
9

0
)

(0
.0

7
8

)
(0

.1
3

6
)

(0
.2

0
8

)
(0

.1
9

4
)

(0
.0

9
0

)
(0

.1
1

0
)

(0
.0

9
7

)
(0

.1
8

7
)

(0
.4

4
2

)
(0

.2
7

2
)

T
im

e
4

th
ch

il
d

0
.2

1
3

0
.2

7
2

0
.7

3
4

0
.6

5
8

0
.2

9
8

0
.1

0
1

-0
.2

3
8

-1
.2

7
6

0
.2

6
6

0
.4

3
8

0
.3

9
7

0
.1

7
3

-1
.1

6
9

-2
.9

3
9

-1
.9

2
3

(0
.3

8
6

)
(0

.2
5

4
)

(2
.5

2
1

)
(0

.1
8

8
)

(0
.3

8
7

)
(0

.2
2

5
)

(0
.5

0
9

)
(0

.6
4

3
)

(0
.6

7
5

)
(0

.2
2

0
)

(0
.2

8
7

)
(0

.2
6

6
)

(0
.6

2
7

)
(1

.1
6

0
)

(0
.7

2
1

)
C

o
n

st
an

t
t
−

3
.9

2
1

-2
.7

6
3

-8
.2

2
4

-0
.6

1
2

-4
.3

9
2

-1
.4

5
7

-2
.8

9
4

-6
.1

8
8

-5
.0

2
6

-3
.7

4
3

-4
.9

7
3

-1
.8

3
1

-8
.1

8
9

-2
.4

2
2

-7
.3

3
7

(2
.0

8
6

)
(1

.6
1

7
)

(3
.2

3
2

)
(1

.5
0

2
)

(1
.8

5
1

)
(1

.5
9

7
)

(2
.1

8
2

)
(3

.3
7

6
)

(2
.7

1
5

)
(1

.5
4

9
)

(1
.8

9
3

)
(1

.9
1

9
)

(2
.4

1
3

)
(3

.7
1

9
)

(3
.6

7
5

)
N

1
3

,2
0

5
1

3
,2

0
5

1
3

,2
0

5
1

3
,2

0
5

1
3

,2
0

5
1

3
,2

0
5

1
3

,2
0

5
1

3
,2

0
5

1
3

,2
0

5
1

3
,2

0
5

1
3

,2
0

5
1

3
,2

0
5

1
3

,2
0

5
1

3
,2

0
5

1
3

,2
0

5

19



T
A

B
L

E
1

3
-A

(C
O

N
T

IN
U

E
D

):
P

R
O

B
A

B
IL

IT
IE

S
O

F
F

E
R

T
IL

E
W

IF
E

’S
W

IT
H

Y
O

U
N

G
C

H
IL

D
R

E
N

C
H

O
IC

E
S

C
O

N
D

IT
IO

N
A

L
O

N
H

U
S

B
A

N
D

C
H

O
IC

E
S

(S
ta

n
d

ar
d

E
rr

o
rs

in
P

ar
en

th
es

is
)

v
ar

ia
b

le
s

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

S
p

.
A

g
e

0
.0

7
5

0
.1

1
5

0
.2

8
9

-0
.0

4
6

0
.0

2
4

-0
.0

2
2

-0
.0

3
2

0
.3

1
5

-0
.0

2
5

-0
.0

0
1

0
.1

0
7

-0
.0

7
6

0
.1

3
9

-0
.0

0
3

0
.3

2
8

(0
.1

1
5

)
(0

.0
8

7
)

(0
.2

0
7

)
(0

.0
7

8
)

(0
.1

0
4

)
(0

.0
8

7
)

(0
.1

3
4

)
(0

.2
3

0
)

(0
.1

4
7

)
(0

.0
8

6
)

(0
.1

1
2

)
(0

.1
0

9
)

(0
.1

3
1

)
(0

.1
8

0
)

(0
.1

8
9

)
S

p
.

A
g

e
S

q
u

ar
ed

-0
.0

0
1

-0
.0

0
2

-0
.0

0
5

0
.0

0
1

-0
.0

0
1

0
.0

0
0

-0
.0

0
0

-0
.0

0
5

0
.0

0
0

-0
.0

0
0

-0
.0

0
2

0
.0

0
1

-0
.0

0
3

-0
.0

0
0

-0
.0

0
6

(0
.0

0
2

)
(0

.0
0

1
)

(0
.0

0
3

)
(0

.0
0

1
)

(0
.0

0
1

)
(0

.0
0

1
)

(0
.0

0
2

)
(0

.0
0

4
)

(0
.0

0
2

)
(0

.0
0

1
)

(0
.0

0
2

)
(0

.0
0

2
)

(0
.0

0
2

)
(0

.0
0

3
)

(0
.0

0
3

)
S

p
.

H
S

0
.2

1
1

0
.2

6
6

0
.2

4
0

0
.0

1
7

-0
.0

0
1

0
.3

7
8

-0
.4

1
1

-0
.1

3
7

0
.2

1
3

0
.1

2
7

-0
.0

1
0

0
.0

7
0

0
.0

1
4

-0
.7

2
0

-0
.2

8
7

(0
.2

3
0

)
(0

.1
7

4
)

(0
.3

3
1

)
(0

.1
6

3
)

(0
.2

0
3

)
(0

.1
7

9
)

(0
.2

3
8

)
(0

.4
1

8
)

(0
.3

3
2

)
(0

.1
7

4
)

(0
.2

2
5

)
(0

.2
1

2
)

(0
.2

4
4

)
(0

.3
7

6
)

(0
.3

6
1

)
S

p
.

S
C

0
.2

4
5

0
.3

6
3

0
.4

3
9

0
.1

7
6

0
.0

6
7

0
.3

2
6

0
.1

0
1

-0
.0

4
9

0
.5

6
2

0
.2

4
6

0
.0

1
2

0
.0

6
3

-0
.0

3
4

-0
.6

3
7

-0
.1

4
2

(0
.2

5
7

)
(0

.1
9

5
)

(0
.3

4
6

)
(0

.1
8

7
)

(0
.2

2
5

)
(0

.1
9

9
)

(0
.2

6
2

)
(0

.4
4

1
)

(0
.3

4
2

)
(0

.1
9

4
)

(0
.2

4
8

)
(0

.2
3

5
)

(0
.2

6
9

)
(0

.4
2

4
)

(0
.3

8
8

)
S

p
.

C
O

L
0

.0
7

1
0

.1
1

2
0

.4
0

8
0

.2
9

1
0

.0
0

1
0

.0
4

4
0

.0
7

9
-0

.3
7

2
0

.0
4

8
0

.1
8

0
-0

.1
5

8
-0

.2
3

4
0

.1
7

5
-0

.2
0

2
-0

.3
0

8
(0

.2
9

5
)

(0
.2

2
6

)
(0

.3
7

8
)

(0
.2

1
8

)
(0

.2
5

3
)

(0
.2

2
7

)
(0

.3
0

7
)

(0
.4

7
9

)
(0

.3
8

0
)

(0
.2

2
4

)
(0

.2
7

4
)

(0
.2

6
4

)
(0

.3
0

1
)

(0
.4

4
3

)
(0

.4
1

7
)

S
p

.
P

ar
t-

ti
m

e
(t
−

1
)

-0
.4

6
9

-0
.7

5
8

-0
.1

2
1

-0
.1

1
0

-0
.8

6
7

-0
.2

3
2

-0
.5

2
7

-0
.7

2
6

-1
.4

1
3

-0
.2

1
0

-0
.6

7
2

0
.0

2
8

-0
.5

2
8

-0
.1

0
3

-1
0

.4
9

5
(0

.4
0

4
)

(0
.3

2
1

)
(0

.5
5

6
)

(0
.2

9
7

)
(0

.4
1

1
)

(0
.3

1
8

)
(0

.4
8

0
)

(0
.7

2
0

)
(0

.6
9

8
)

(0
.3

3
0

)
(0

.4
4

8
)

(0
.3

8
3

)
(0

.4
7

1
)

(0
.7

1
5

)
(0

.5
1

3
)

S
p

.
P

ar
t-

ti
m

e
(t
−

2
)

0
.4

4
8

0
.2

4
4

0
.0

0
9

0
.1

5
0

-0
.0

7
4

0
.0

2
5

-0
.3

4
0

0
.9

0
5

-0
.0

0
3

-0
.0

0
1

-0
.1

7
2

-0
.0

0
4

-0
.4

5
9

-0
.1

2
6

-1
.5

1
5

(0
.4

1
0

)
(0

.3
2

7
)

(0
.5

2
7

)
(0

.3
1

1
)

(0
.3

7
5

)
(0

.3
3

0
)

(0
.5

4
1

)
(0

.6
2

2
)

(0
.5

7
8

)
(0

.3
3

5
)

(0
.4

5
3

)
(0

.3
8

9
)

(0
.4

7
8

)
(0

.8
1

1
)

(1
.1

0
3

)
S

p
.

P
ar

t-
ti

m
e

(t
−

3
)

-0
.7

3
5

-0
.2

7
2

-0
.3

1
0

0
.0

2
6

-0
.3

5
5

-0
.5

4
6

-1
.3

7
5

-0
.2

9
0

0
.1

6
4

-0
.5

7
6

-0
.6

7
3

-0
.8

1
8

-0
.2

1
3

-0
.7

5
6

0
.2

1
1

(0
.4

5
2

)
(0

.3
4

7
)

(0
.5

8
7

)
(0

.3
1

2
)

(0
.3

7
2

)
(0

.3
4

4
)

(0
.6

6
2

)
(0

.7
6

5
)

(0
.5

1
2

)
(0

.3
3

4
)

(0
.4

1
4

)
(0

.4
2

0
)

(0
.4

2
4

)
(0

.8
6

4
)

(0
.6

6
5

)
S

p
.

P
ar

t-
ti

m
e

(t
−

4
)

-0
.3

0
6

-0
.0

7
2

-0
.2

2
8

-0
.2

8
5

0
.1

7
8

-0
.3

2
5

0
.3

9
8

-1
.4

6
6

-1
.0

0
0

-0
.5

9
5

-0
.2

7
4

-0
.4

6
2

0
.0

6
3

-0
.0

5
3

-0
.1

6
6

(0
.4

1
7

)
(0

.3
0

4
)

(0
.6

0
0

)
(0

.3
1

8
)

(0
.3

5
7

)
(0

.3
1

1
)

(0
.4

3
0

)
(1

.1
0

3
)

(0
.5

6
2

)
(0

.3
4

2
)

(0
.3

8
4

)
(0

.3
8

7
)

(0
.4

2
1

)
(0

.6
4

1
)

(0
.6

0
9

)
S

p
.

F
u

ll
-t

im
e

(t
−

1
)

-0
.2

0
5

-0
.0

5
0

0
.4

4
5

0
.1

9
2

0
.1

8
9

0
.2

1
0

0
.1

8
5

-0
.0

8
7

0
.2

5
8

0
.4

1
2

0
.0

1
7

0
.4

3
2

0
.2

6
0

0
.2

8
7

0
.4

8
1

(0
.3

0
0

)
(0

.2
3

7
)

(0
.4

0
3

)
(0

.2
3

6
)

(0
.2

8
5

)
(0

.2
4

1
)

(0
.3

5
6

)
(0

.5
0

2
)

(0
.3

5
7

)
(0

.2
5

9
)

(0
.3

2
6

)
(0

.2
9

6
)

(0
.3

5
2

)
(0

.5
1

9
)

(0
.5

3
2

)
S

p
.

F
u

ll
-t

im
e

(t
−

2
)

0
.5

0
8

0
.3

1
6

-0
.1

7
7

0
.2

1
5

0
.0

5
2

0
.3

2
0

0
.3

8
8

0
.4

8
5

0
.4

9
0

0
.1

8
6

0
.4

6
3

0
.0

1
3

0
.0

2
0

0
.2

3
4

-0
.1

6
5

(0
.2

8
8

)
(0

.2
2

0
)

(0
.3

5
5

)
(0

.2
1

2
)

(0
.2

5
7

)
(0

.2
2

3
)

(0
.2

9
2

)
(0

.4
6

8
)

(0
.3

3
6

)
(0

.2
3

4
)

(0
.3

0
1

)
(0

.2
7

4
)

(0
.2

9
6

)
(0

.5
1

2
)

(0
.4

4
3

)
S

p
.

F
u

ll
-t

im
e

(t
−

3
)

-0
.4

6
0

-0
.3

5
5

-0
.2

2
9

0
.0

3
4

-0
.5

8
5

-0
.4

1
3

0
.0

2
3

-0
.0

3
3

-0
.2

0
7

-0
.3

1
1

-0
.6

1
3

-0
.4

2
9

-0
.2

4
6

-0
.0

1
1

-0
.0

8
2

(0
.2

8
0

)
(0

.2
3

1
)

(0
.3

7
6

)
(0

.2
2

1
)

(0
.2

6
9

)
(0

.2
3

3
)

(0
.2

9
1

)
(0

.4
3

6
)

(0
.3

3
2

)
(0

.2
3

0
)

(0
.2

8
9

)
(0

.2
7

6
)

(0
.2

9
3

)
(0

.5
0

4
)

(0
.4

3
9

)
S

p
.

F
u

ll
-t

im
e

(t
−

4
)

-0
.1

1
0

-0
.0

3
6

0
.2

8
6

-0
.0

9
1

0
.3

0
8

-0
.0

5
7

-0
.2

5
5

0
.0

1
7

-0
.2

8
1

-0
.0

5
9

-0
.3

6
8

-0
.0

3
8

0
.0

8
0

-0
.1

8
4

-0
.4

2
6

(0
.2

4
3

)
(0

.1
9

8
)

(0
.3

4
2

)
(0

.1
8

9
)

(0
.2

3
3

)
(0

.1
9

8
)

(0
.2

5
0

)
(0

.3
5

9
)

(0
.2

7
4

)
(0

.1
9

7
)

(0
.2

3
8

)
(0

.2
2

9
)

(0
.2

6
1

)
(0

.3
7

0
)

(0
.3

7
4

)
S

p
.

T
im

e
1

st
ch

il
d

-0
.0

1
9

-0
.0

2
5

0
.0

3
6

-0
.0

5
2

-0
.0

7
8

-0
.0

9
9

-0
.1

1
4

-0
.0

0
6

-0
.0

6
8

-0
.0

8
2

-0
.1

2
5

-0
.1

2
3

-0
.0

9
2

-0
.2

1
8

-0
.0

9
7

(0
.0

4
6

)
(0

.0
3

6
)

(0
.0

5
3

)
(0

.0
3

6
)

(0
.0

3
9

)
(0

.0
3

6
)

(0
.0

5
5

)
(0

.0
6

4
)

(0
.0

4
8

)
(0

.0
3

5
)

(0
.0

4
2

)
(0

.0
3

9
)

(0
.0

4
6

)
(0

.0
6

5
)

(0
.0

5
8

)
S

p
.

T
im

e
2

n
d

ch
il

d
0

.0
0

6
-0

.0
0

6
-0

.0
9

9
-0

.0
1

7
0

.0
4

7
-0

.0
0

6
0

.0
8

8
-0

.0
8

8
-0

.0
2

6
-0

.0
1

0
0

.0
7

0
0

.0
2

8
-0

.0
1

7
-0

.0
5

3
-0

.1
0

7
(0

.0
7

4
)

(0
.0

6
2

)
(0

.1
3

4
)

(0
.0

6
2

)
(0

.0
6

6
)

(0
.0

6
1

)
(0

.1
0

6
)

(0
.1

1
4

)
(0

.0
9

6
)

(0
.0

6
3

)
(0

.0
6

9
)

(0
.0

6
4

)
(0

.0
8

4
)

(0
.1

3
2

)
(0

.1
1

2
)

S
p

.
T

im
e

3
rd

ch
il

d
-0

.2
3

4
0

.0
1

9
0

.0
7

5
-0

.1
2

1
-0

.1
0

8
-0

.1
0

1
-0

.3
3

0
0

.0
6

5
-0

.1
0

5
-0

.0
7

6
-0

.2
1

7
-0

.1
2

4
-0

.1
7

2
0

.0
9

0
0

.0
4

8
(0

.1
3

5
)

(0
.0

9
0

)
(0

.5
1

2
)

(0
.0

9
0

)
(0

.0
9

9
)

(0
.0

8
9

)
(0

.1
5

0
)

(0
.3

1
9

)
(0

.1
8

3
)

(0
.0

9
1

)
(0

.1
0

1
)

(0
.0

9
9

)
(0

.1
4

1
)

(0
.2

3
2

)
(0

.2
3

5
)

S
p

.
T

im
e

4
th

ch
il

d
0

.3
3

6
-0

.0
5

7
-1

.2
1

7
-0

.2
4

0
-0

.0
8

8
0

.1
4

6
0

.4
4

1
-1

.0
4

8
-1

.0
7

9
0

.0
9

9
0

.2
9

3
-0

.1
7

1
-0

.6
4

5
-0

.3
3

0
-0

.6
5

9
(0

.2
7

2
)

(0
.2

1
9

)
(0

.7
2

0
)

(0
.2

1
7

)
(0

.2
4

8
)

(0
.2

0
2

)
(0

.5
4

3
)

(0
.7

6
8

)
(0

.4
4

9
)

(0
.2

1
9

)
(0

.2
2

8
)

(0
.2

3
7

)
(0

.4
1

2
)

(0
.5

1
5

)
(0

.6
6

8
)

S
p

.
C

h
o

ic
e

2
1

.8
3

0
1

.5
1

8
2

.0
0

2
1

.1
3

5
2

.2
1

3
1

.4
9

2
0

.9
4

5
2

.3
5

4
0

.9
6

2
1

.0
6

7
1

.1
8

5
2

.1
9

6
1

.3
4

5
2

.3
8

7
-8

.0
5

3
(0

.5
0

7
)

(0
.4

6
6

)
(0

.8
5

4
)

(0
.4

2
1

)
(0

.5
1

8
)

(0
.4

6
4

)
(0

.6
0

6
)

(0
.9

8
9

)
(0

.9
4

7
)

(0
.4

5
7

)
(0

.6
6

2
)

(0
.5

6
2

)
(0

.6
3

2
)

(0
.9

7
0

)
(0

.8
5

2
)

S
p

.
C

h
o

ic
e

3
0

.7
3

6
1

.2
9

6
1

.1
5

7
0

.6
7

2
1

.2
1

3
1

.0
4

9
0

.4
5

6
1

.1
5

5
1

.0
4

9
0

.8
1

0
1

.3
7

7
1

.4
4

9
0

.7
8

7
0

.6
8

8
1

.1
8

1
(0

.3
2

2
)

(0
.2

7
1

)
(0

.6
2

7
)

(0
.2

3
1

)
(0

.3
5

1
)

(0
.2

7
3

)
(0

.3
8

0
)

(0
.8

3
2

)
(0

.5
4

2
)

(0
.2

5
7

)
(0

.3
8

7
)

(0
.3

7
2

)
(0

.4
2

8
)

(0
.8

3
7

)
(0

.7
9

6
)

S
p

.
C

h
o

ic
e

4
-8

.8
9

8
1

.3
0

3
1

.6
6

7
0

.6
0

0
-0

.4
3

3
1

.2
4

5
1

.5
1

7
-7

.8
6

8
0

.7
0

1
1

.0
7

5
0

.8
1

4
1

.5
9

7
2

.0
1

0
1

.4
7

6
1

.4
6

3
(0

.5
0

5
)

(0
.5

5
5

)
(0

.9
3

1
)

(0
.5

1
2

)
(1

.1
3

6
)

(0
.5

6
8

)
(0

.7
0

6
)

(0
.9

1
2

)
(1

.2
1

5
)

(0
.5

5
0

)
(0

.9
2

7
)

(0
.7

3
8

)
(0

.6
9

4
)

(1
.3

7
0

)
(1

.3
9

8
)

S
p

.
C

h
o

ic
e

5
2

.1
8

8
1

.8
0

4
1

.1
6

4
0

.9
8

9
2

.3
2

9
1

.3
8

8
1

.7
3

2
-7

.0
3

9
1

.9
8

8
1

.0
9

7
2

.4
9

1
2

.1
7

3
1

.1
6

8
-7

.4
5

1
-6

.7
4

5
(0

.7
1

4
)

(0
.6

7
4

)
(1

.3
3

2
)

(0
.6

7
3

)
(0

.7
1

8
)

(0
.7

0
3

)
(0

.8
0

6
)

(0
.9

6
5

)
(1

.0
8

6
)

(0
.6

9
9

)
(0

.8
0

4
)

(0
.8

2
5

)
(1

.0
5

7
)

(0
.9

7
6

)
(0

.9
7

5
)

S
p

.
C

h
o

ic
e

6
1

.0
3

2
1

.8
2

4
1

.4
7

4
1

.0
8

6
1

.9
9

7
2

.0
6

2
1

.2
3

6
1

.6
8

7
2

.2
2

5
1

.4
6

4
2

.1
5

7
2

.5
3

5
1

.6
8

9
2

.1
2

9
2

.0
4

8
(0

.3
6

5
)

(0
.3

0
4

)
(0

.6
6

1
)

(0
.2

6
9

)
(0

.3
8

0
)

(0
.3

0
5

)
(0

.4
1

8
)

(0
.8

6
1

)
(0

.5
6

3
)

(0
.2

9
0

)
(0

.4
1

6
)

(0
.3

9
9

)
(0

.4
5

2
)

(0
.8

5
2

)
(0

.8
2

5
)

S
p

.
C

h
o

ic
e

7
0

.3
0

8
1

.3
4

8
2

.6
2

8
0

.4
5

1
0

.3
0

0
1

.6
1

1
1

.2
3

1
1

.1
9

2
2

.1
7

5
1

.0
9

2
0

.2
5

1
0

.9
9

7
1

.0
8

1
2

.2
1

6
2

.5
3

6
(0

.7
2

9
)

(0
.4

8
3

)
(0

.7
8

0
)

(0
.4

8
3

)
(0

.7
4

9
)

(0
.4

7
9

)
(0

.6
7

2
)

(1
.3

1
7

)
(0

.7
6

7
)

(0
.4

9
3

)
(0

.8
4

4
)

(0
.7

4
4

)
(0

.7
3

5
)

(1
.0

8
5

)
(1

.0
3

1
)

S
p

.
C

h
o

ic
e

8
2

.4
6

6
2

.1
6

8
3

.2
7

5
1

.0
1

6
2

.9
7

6
2

.4
8

5
0

.7
3

5
3

.0
2

3
3

.0
3

3
1

.9
3

2
3

.0
7

6
3

.0
7

6
1

.9
2

6
-6

.7
9

9
-5

.7
6

3
(0

.7
7

4
)

(0
.7

3
7

)
(1

.0
3

6
)

(0
.7

2
0

)
(0

.7
5

6
)

(0
.7

1
9

)
(1

.2
5

2
)

(1
.2

7
5

)
(1

.0
1

2
)

(0
.7

2
6

)
(0

.8
0

1
)

(0
.8

2
8

)
(0

.9
0

8
)

(1
.0

4
6

)
(0

.9
9

7
)

S
p

.
C

h
o

ic
e

9
1

.0
1

8
1

.5
7

9
1

.6
4

0
0

.9
3

9
1

.8
8

0
2

.4
2

1
1

.0
5

7
2

.2
1

2
2

.6
5

2
1

.7
7

0
2

.5
9

9
3

.3
0

8
2

.0
4

3
2

.4
9

7
3

.1
7

6
(0

.3
9

7
)

(0
.3

2
6

)
(0

.6
7

8
)

(0
.2

9
3

)
(0

.3
9

7
)

(0
.3

2
4

)
(0

.4
5

4
)

(0
.8

5
9

)
(0

.5
7

2
)

(0
.3

1
0

)
(0

.4
3

2
)

(0
.4

1
1

)
(0

.4
6

5
)

(0
.8

7
4

)
(0

.8
1

8
)

20



TABLE 14-A: PROBABILITIES FOR FERTILE WIFE WITHOUT YOUNG CHILDREN CHOICES

(Standard Errors in Parenthesis)

Variables 2 3 4 8 9 10 14 15 16

Black -0.159 -0.091 0.597 -0.148 0.032 0.490 -0.409 -0.448 0.878
(0.087) (0.069) (0.131) (0.164) (0.225) (0.142) (0.182) (0.358) (0.232)

HS 0.401 0.806 0.373 0.259 2.143 0.714 0.244 0.683 0.257
(0.130) (0.113) (0.282) (0.241) (1.033) (0.377) (0.249) (0.659) (0.496)

SC 0.592 1.097 0.500 0.067 2.490 1.250 0.337 0.904 0.578
(0.139) (0.122) (0.289) (0.276) (1.055) (0.380) (0.276) (0.668) (0.494)

COL 0.800 1.315 0.324 0.011 2.594 1.660 0.481 1.210 0.968
(0.155) (0.136) (0.316) (0.307) (1.063) (0.396) (0.297) (0.718) (0.523)

Age -0.122 -0.101 0.283 0.541 0.310 0.093 0.421 -0.218 0.014
(0.057) (0.047) (0.137) (0.143) (0.223) (0.139) (0.131) (0.254) (0.209)

Age Squared 0.002 0.001 -0.007 -0.011 -0.006 -0.003 -0.009 0.002 -0.001
(0.001) (0.001) (0.002) (0.002) (0.004) (0.002) (0.002) (0.004) (0.003)

Part-time (t − 1) 1.733 1.389 1.442 0.632 1.793 1.443 0.159 1.361 1.615
(0.102) (0.096) (0.245) (0.188) (0.280) (0.250) (0.198) (0.346) (0.326)

Part-time (t − 2) 0.549 0.275 0.524 0.400 -0.248 0.623 0.676 0.739 0.628
(0.123) (0.111) (0.277) (0.270) (0.372) (0.335) (0.231) (0.435) (0.464)

Part-time (t − 3) 0.415 0.048 0.001 0.114 0.053 0.061 0.201 0.409 0.134
(0.134) (0.125) (0.302) (0.309) (0.413) (0.338) (0.283) (0.520) (0.607)

Part-time (t − 4) 0.178 0.060 -0.026 0.662 0.504 0.119 0.115 0.472 -1.889
(0.128) (0.118) (0.329) (0.284) (0.342) (0.267) (0.291) (0.438) (1.070)

Full-time (t − 1) 1.879 3.388 2.862 -0.046 1.707 2.281 -0.408 0.347 1.907
(0.116) (0.099) (0.200) (0.206) (0.293) (0.229) (0.232) (0.373) (0.320)

Full-time (t − 2) 0.209 0.732 1.062 0.867 0.389 1.509 0.901 1.070 1.027
(0.141) (0.120) (0.226) (0.239) (0.303) (0.252) (0.228) (0.441) (0.372)

Full-time (t − 3) 0.129 0.208 0.125 0.288 0.636 0.803 0.187 0.986 0.636
(0.151) (0.130) (0.254) (0.276) (0.334) (0.241) (0.279) (0.485) (0.502)

Full-time (t − 4) -0.032 0.338 0.537 0.282 0.128 -0.121 0.174 0.086 0.351
(0.131) (0.111) (0.222) (0.253) (0.308) (0.207) (0.258) (0.384) (0.402)

No of children 0.653 0.294 1.517 0.118 0.453 1.335 1.575 -1.704 0.739
(0.319) (0.255) (1.197) (1.322) (2.782) (0.839) (2.291) (3.323) (1.901)

No. of children Sq. -0.175 -0.120 0.165 0.649 1.699 -0.355 -0.301 2.844 -0.886
(0.122) (0.099) (0.615) (0.650) (1.842) (0.447) (1.220) (2.004) (0.843)

Nor of female children -0.124 -0.160 -0.555 0.075 0.025 -0.219 0.183 -0.109 0.765
(0.068) (0.059) (0.254) (0.329) (0.439) (0.264) (0.322) (0.515) (0.504)

Age of 1st child -0.024 0.033 -0.191 -0.069 -0.225 -0.073 -0.327 -0.156 -0.252
(0.019) (0.014) (0.070) (0.083) (0.121) (0.052) (0.147) (0.129) (0.129)

Age of 2nd child 0.039 0.031 -0.141 -0.489 -0.721 0.019 0.095 -0.767 0.065
(0.021) (0.016) (0.122) (0.149) (0.443) (0.104) (0.193) (0.501) (0.176)

Age of 3rd child 0.045 0.032 0.155 -0.260 -2.976 0.167 -0.459 -4.250 0.218
(0.038) (0.033) (0.219) (0.482) (1.074) (0.100) (0.546) (1.072) (0.191)

Age of 4th child -0.029 -0.054 -2.880 -4.140 -1.494 -1.918 -1.551 -2.432 -0.985
(0.069) (0.075) (0.499) (0.557) (1.365) (0.400) (0.977) (1.722) (0.881)

Time spent 1st child -0.028 -0.073 -0.247 -0.127 -0.121 -0.043 0.047 -0.024 0.284
(0.023) (0.019) (0.094) (0.078) (0.135) (0.056) (0.082) (0.146) (0.124)

Time spent 2nd child -0.009 -0.008 -0.118 0.023 -0.160 -0.098 -0.124 -0.222 -0.087
(0.027) (0.022) (0.110) (0.161) (0.172) (0.101) (0.126) (0.162) (0.268)

Time spent 3rd child -0.001 0.010 -0.882 -0.084 -0.388 -0.140 0.262 -0.292 0.486
(0.040) (0.034) (0.355) (0.220) (0.196) (0.150) (0.126) (0.221) (0.281)

Time spent 4th child 0.070 0.083 -0.492 -1.176 -0.097 -1.079 -1.195 0.390 -1.135
(0.084) (0.086) (0.384) (0.521) (0.297) (0.207) (0.387) (0.368) (0.605)
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TABLE 14-A(CONTINUED): PROBABILITIES FOR FERTILE WIFE WITHOUT YOUNG CHILDREN CHOICES

(Standard Errors in Parenthesis)

Variables 2 3 4 8 9 10 14 15 16

Sp. Age 0.019 -0.024 0.049 -0.103 0.057 0.025 -0.084 0.457 0.214
(0.050) (0.040) (0.091) (0.117) (0.163) (0.123) (0.106) (0.245) (0.198)

Sp. Age Squared -0.001 0.000 -0.001 0.001 -0.002 -0.001 0.001 -0.008 -0.004
(0.001) (0.001) (0.001) (0.002) (0.003) (0.002) (0.002) (0.004) (0.003)

Sp. HS 0.142 0.233 0.580 0.202 -0.306 0.584 0.141 0.391 0.482
(0.126) (0.102) (0.241) (0.231) (0.397) (0.276) (0.238) (0.573) (0.427)

Sp. SC 0.326 0.215 0.432 0.219 0.436 0.394 0.016 0.544 0.381
(0.133) (0.110) (0.254) (0.252) (0.397) (0.287) (0.271) (0.582) (0.451)

Sp. COL 0.458 0.167 0.302 0.573 0.530 0.193 0.193 0.736 0.127
(0.142) (0.119) (0.284) (0.282) (0.413) (0.305) (0.285) (0.593) (0.499)

Sp. Part-time (t − 1) -0.490 -0.900 -0.183 0.364 -0.982 -0.446 -0.617 0.169 0.149
(0.206) (0.181) (0.325) (0.384) (0.606) (0.413) (0.538) (0.668) (0.654)

Sp. Part-time (t − 2) -0.649 -0.646 -0.756 -0.486 -0.307 -1.521 -0.571 0.659 -11.387
(0.246) (0.198) (0.423) (0.459) (0.533) (0.560) (0.524) (0.540) (0.352)

Sp. Part-time (t − 3) -0.039 -0.181 -0.350 0.014 0.015 -0.125 -0.496 -0.999 0.375
(0.258) (0.211) (0.485) (0.472) (0.530) (0.458) (0.583) (0.798) (0.724)

Sp. Part-time (t − 4) -0.251 -0.333 -1.105 -0.599 -0.495 -0.605 0.178 -0.138 -0.328
(0.259) (0.210) (0.562) (0.490) (0.585) (0.503) (0.431) (0.757) (0.820)

Sp. Full-time (t − 1) -0.605 -0.962 -0.500 0.535 -0.319 -0.243 0.368 0.506 0.360
(0.118) (0.102) (0.186) (0.201) (0.305) (0.211) (0.230) (0.428) (0.326)

Sp. Full-time (t − 2) -0.334 -0.318 -0.438 -0.170 0.081 -0.314 -0.057 -0.051 -0.887
(0.146) (0.122) (0.210) (0.222) (0.300) (0.225) (0.252) (0.388) (0.339)

Sp. Full-time (t − 3) 0.097 -0.000 0.052 0.113 -0.076 -0.088 0.359 -0.776 -0.029
(0.174) (0.144) (0.256) (0.263) (0.346) (0.261) (0.289) (0.431) (0.417)

Sp. Full-time (t − 4) -0.038 -0.115 -0.474 -0.559 -0.481 -0.379 -0.425 -0.080 -0.162
(0.159) (0.130) (0.234) (0.246) (0.337) (0.244) (0.270) (0.407) (0.361)

Sp. Time 1st child -0.005 0.037 0.116 -0.138 0.061 0.123 0.140 -0.187 0.074
(0.027) (0.022) (0.075) (0.106) (0.109) (0.055) (0.073) (0.181) (0.106)

Sp. Time 2nd child 0.030 0.042 -0.006 0.095 -0.170 -0.189 -0.092 0.220 0.305
(0.031) (0.025) (0.133) (0.225) (0.147) (0.127) (0.098) (0.227) (0.148)

Sp. Time 3rd child 0.005 0.003 -9.700 -0.054 -0.020 -9.346 0.091 -0.144 -0.770
(0.047) (0.041) (1.243) (0.303) (0.153) (0.792) (0.094) (0.157) (0.143)

Sp. Time 4th child 0.153 0.095 -0.226 0.088 0.325 -0.141 -0.237 -0.158 0.248
(0.102) (0.096) (0.488) (0.277) (0.278) (0.343) (0.233) (0.463) (0.233)

Constant 0.267 1.001 -7.172 -7.396 -9.702 -4.955 -6.047 -8.022 -7.359
(0.719) (0.601) (1.712) (1.914) (3.182) (1.919) (1.855) (3.386) (2.550)

N 16,983 16,983 16,983 16,983 16,983 16,983 16,983 16,983 16,983

Note: LHS is a dummy variable indicating that the individual has a completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school; SC is a dummy variable

indicating that the individual’s completed education is greater than high school but he or she is not a college graduate;

COL is a dummy variable indicating that the individual’s completed education is at least a college.
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