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1 Introduction

The idea that female marriage prospects depend critically on the male-to-female ratio among

singles (the sex ratio) is central to theories of marriage in both economics and demography.

The mapping from sex ratios to marriage prospects is also important as an empirical tool

for the study of household decisions. A high sex ratio is expected to generate high female

marriage probabilities, thus improving the prospects of single women. Exogenous shocks to

the sex ratio are rare however, so the hypothesis is not easy to verify. The dramatic behavior

of marriage rates in France after World War 1 (1914-1918) therefore constitutes a valuable

opportunity to learn about the impact of the sex ratio on marriage prospects.

Unfortunately for the hypothesis, the marriage probabilities of single female (or female mar-

riage hazard rates) were 50% higher in France after the war than before the war, even though

the male-to-female ratio among singles was 33% lower. This effect persisted over many years;

it took until the mid-1920s for the female marriage hazard rate to return to trend. In the

case of males, post-war marriage hazard rates were also unusually high, and remained well

above trend as late as 1930, even for men too young to have had their marriage timing

directly affected by the war.

We propose an explanation of this apparent puzzle that relies on two main ingredients:

heterogeneity in preferences for married life, and a dramatic decline in marriage rates during

the war. Our idea is that the composition of the post-war singles pool was, relative to pre-

war, heavily biased towards singles with a high propensity to marry. This composition effect,

driven by the war-time decline in marriage rates, was strong enough to offset the effect of

the lower post-war male-to-female ratio. Combined with the assumption of search frictions

in the marriage market, the composition effect hypothesis may also be able to explain why

abnormally high marriage hazard rates persisted so long after the war.

To evaluate this idea, we develop an equilibrium marriage model in which an individual’s

propensity to marry reflects optimal choices about when and whom to marry. We assume

that heterogeneity in these choices arises from traits that vary both within and across age-

sex sub-populations of singles. The composition of any sub-population defined by observed

variables, such as age, will be determined by that group’s marriage history. Given that

the war was accompanied by a birth-rate decline that was both large (a 40 percent drop, on

average) and sudden (dating from 9 months after the war began), it is essential to account for

the potential dependence of marriage incentives on fertility intentions. In the spirit of Becker

(1981), we assume that the benefits of marriage are increasing in the number of children;
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this implies that equilibrium marriage rates will be a function of fertility incentives.1

Our quantitative analysis proceeds in two steps. First, we calibrate the steady state of the

model to pre-war data on marriage hazards by age and sex, and to the pre-war marital

birth hazards by age. In our model, these statistics are informative about the parameters

that govern the unobserved heterogeneity underlying marriage hazards. We then use the

calibrated model to explore the dynamics of marriage hazards. We represent the war as a pair

of temporary, unanticipated shocks of known duration: higher mortality for younger men,

and weaker fertility incentives for married couples. In response to these shocks, equilibrium

hazard rates vary over time, driven by changes in both the current composition of the singles

pool and in expectations about the future composition. We set the size of the wartime shocks

so that the calibrated model matches the average war-time values for the aggregate birth

rates and the mortality rate of men. We then compute the transition back to the steady

state.

The model’s transition path replicates to a large extent the post-war patterns of marriage

hazards. The model’s transition path exhibits: A war-time marriage-rate decline that is

roughly equal in size to that observed in the French data,a decline in the male-to-female

ratio among singles that matches the empirical value as of 1920, and a large post-war boom

in female marriage probabilities; about 63% of the observed peak for women aged 20-39.

We then use the model to measure the relative importance of the shocks and to clarify the

roles of the various model features. Why are female marriage probabilities higher after the

war despite the low female-to-male ratio among singles? The composition shock that results

from the war-time marriage-rate decline implies an unusually high post-war abundance,

relative to the stock of single women, of men with a relatively high propensity to marry.

This effect turns out to be so strong that it outweighs the negative effects of the male

mortality shock, via the decline in the male-to-female ratio, on the female marriage hazard.

Why are male marriage probabilities higher after the war? High-propensity men are also

unusually abundant, after the war, relative to the stock of single men. This is due in part to

the war reducing their marriage rates relative to those of low-propensity men, as well as to

the fact that war-time mortality was much higher for younger men, who typically married

with lower probabilities. The war-induced composition effect therefore raises men’s marriage

probabilities, and accounts for 44% and 61% of the peaks of single men in the 20-29 and

30-39 age groups, respectively.

1On p. 135 of the enlarged, 1991 edition, Becker summarizes his view as “...the main purpose of marriage
and families is the raising of own children...”
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The model also generates a long transition back to the steady state, accounting for no less

than 73% of the half lives of the post-war peaks observed in the data.

To determine the effect of each shock in isolation, we compute additional transition paths

with only one shock each. We find that the male mortality shock alone would have yielded

a 23% decline in women’s marriage hazard after the war, as standard models predict. This

means that the overall peak in female marriage hazards strongly understates the impact of

the composition effect. In the absence of the male mortality shock, the composition effect

would have generated an 39% post-war increase in female marriage hazards, 33% higher than

in the baseline experiment.

What accounts for the unexplained remainder of the post-war marriage peaks? We note

that France adopted strongly pro-natalist policies after the war, including strong economic

incentives for fertility (see Roberts, 1994). Births per married woman increased sharply

relative to trend, a change that persisted well into the 1930s. To what extent could stronger

post-war fertility demand explain the residual marriage-hazard peaks? To find out, we add

to our war-shock exercise a post-war shock to fertility incentives, calibrated to match the

post-war aggregate birth hazard for married couples. The share of the post-war marriage-

hazard peaks explained by the model increases significantly; to 61% and 80% for men in

the 20-29 and 30-39 age groups, respectively, and to 97% and 88% for women in those age

groups. Thus, the model now accounts for essentially all of the anomalous post-war increase

in female marriage hazard rates.2

Relation to existing literature

It is clear from existing research that the post-war marriage cohort was responding to

more than just a simple delay in registration of existing matches. Both Henry (1966) and

Abramitzky et al. (2011) document that, in post-war marriages, women married men who,

on the basis of observables at least, were less attractive than the husbands acquired by ear-

lier or later marriage cohorts. Henry (1966) found that women in the post-war marriage

cohort made up for the short-fall of men by marrying immigrants, widowers, and most of

all, younger men.3 Abramitzky et al. (2011) found that, in areas with higher military mor-

tality rates, women tended to marry lower-status men after the war. Delayed registration

2Vincent (1946) ascribes post-war changes in marital fertility as arising in part from the impact of war
on marriage rates; our paper provides an alternative perspective: changes in anticipated fertility incentives
can explain large fluctuations in marriage rates.

3Henry (1966) also finds that the marriage patterns returned to normal in later female birth cohorts.
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of existing matches cannot explain such changes in the composition of marriages. Nor can

such substitution, reflecting intenser competition among women for husbands, explain an

increase, relative to the pre-war trend, in aggregate female marriage probabilities. Indeed

the arguments of Henry (1966) and Abramitzky et al. (2011), being based on the stock of

married women years after the war, are silent about the dynamics of the flow of singles into

marriage.

A similar argument has been made by Brandt et al. (2009), who study the sorting effect

of an exogenous change in cohort size due to the 1958-61 famine in China. They find that

members of famine-born cohorts had to marry “non-customary” spouses, due to the rela-

tively small size of the surviving famine-born cohorts. Another cohort-size analysis, Bronson

and Mazzocco (2014), is more similar to our work in that they model aggregate marriage

rate dynamics; their model links marriage propensities directly to age, which precludes com-

position effects. Neither paper however examines independent variation in the sex ratio or

the role of marriage-market interruptions.

Our model can be seen an extension of Kennes and Knowles (2015) to two-sided heterogene-

ity, though without the complications of unmarried births and divorce. Our basic assump-

tions are derived from the canonical Becker (1973) model, but with added features: fric-

tions, fertility, and stochastic aging. As in the empirical marriage-matching literature that

derives from Choo and Siow (2006), we assume fully transferable utility within marriage, a

defining feature of the Becker model, which is also the basis of the influential “collective-

model” approach associated, inter alia, with Chiappori et al. (2002). We implement this in a

competitive-search framework because this simplifies the computation of transition dynamics

and eliminates the multiple-steady-state issue analyzed by Burdett and Coles (1999).

By focusing on the dynamics of the equilibrium model, our paper complements a large

literature based on stationary equilibria, such as Choo and Siow (2006), Aiyagari et al.

(2000) and Chiappori et al. (2015). In fact, the Choo and Siow (2006) approach can be seen

as a one-period version of the matching mechanism in our model, with our search frictions

replaced by iid taste shocks. The extension of that literature to multi-period matching has,

however, proven very difficult; Choo (2014) appears to be the first paper to achieve this,

but is limited to analysis of the stationary state. Dynamics also play a role in more recent

papers, such as Greenwood et al. (2013).

5



2 Empirical Analysis

2.1 Aggregate Marriage Rates

Consider first the time pattern in newlyweds per capita, as compiled by Mitchell (1998) from

French Census and vital statistics data. We take the aggregate marriage rate to be equal to

half of this number. Figure 1 reveals a pattern of war-time busts in marriage rates followed

by post-war booms; this pattern occurs in varying degrees in each of the wars during this

period, including the Napoleonic wars of 1803–1815. These cycles are large in amplitude;

while the average marriage rate is remarkably stable at 7.5 per thousand, we see it rise

by 70% after the Napoleonic wars and after World War 2, by 25% after the much shorter

Franco-Prussian war of 1870, and by 100% after WW1. The troughs that correspond with

these wars are of the order of 20% below average for the Napoleonic and Franco-Prussian

wars, 30% for World War 2, and more than 66% for WW1.

The effect of war-time shocks on marriage rates is also quite persistent. It takes about 5

years after the Franco-Prussian war of 1870 for marriage rates to return to normal, 10 years

after WW1, and 5 years after World War 2. Turning to the birth rates, these remain above

trend for 10 years following the Franco-Prussian war and 5-6 years following WW1.4

In what follows, we restrict the analysis to France and WW1 for several reasons. First, the

timing of war with Germany was unexpected, and the impact on civilian life was severe and

relatively uniform over the course of the war. On June 28, 1914 Archduke Franz Ferdinand

of Austria was assassinated; as an indirect result of this essentially random shock, Germany

began its assault on France little more than a month later. Furthermore, combat in France,

including many major battles, continued until the very end of the war.5 Second, World War

2, the obvious alternative candidate for analyzing the effect of a war, is likely to be a worse

alternative. It was better anticipated, and it broke out in an abnormal economic environment

caused by the great depression, and an abnormal demographic environment caused by World

War 1.6 Third, the French system of universal conscription dropped all exemptions in 1905,

so all men aged 20 and over were subject to military service regardless of marital, parental or

economic status. In the U.K. on the other hand, married men were initially exempt from the

4The patterns for World War 2 are much less distinct, perhaps because German occupation resulted in a
resumption of peace-time civilian life for most of France.

5The last soldier to be killed, an American, was shot through the head at 10:59 a.m. on Nov. 11, 1918,
the final minute of the war, in the Argonne area of France. New York Times, December 28, 2014 - ”Where
the Great War Ended”

6See Beaudry and Portier (2002) for a discussion of the great depression in France in the 1930s.
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draft. Fourth, although individual-level records are not available, we have annual population

figures for France, by age in years, sex and marital status, starting in 1900; these are not

available for the other countries involved in the war. Finally, it is also clear that the pattern

of marriage rates for France in WW1 is not atypical; in Figure 2, for example, we see that

the WW1 marriage-rate cycle is remarkably similar for Germany and France. During the

war the per-capita marriage rate declines to 50% of its pre-war average in Germany, while

the post-war rate peaks at 80% above its pre-war average7.

2.2 Accounting for Marriage Rates

We now turn to an accounting decomposition of the post-war peak in marriage rates. The

aggregate marriage rate by age equals, by definition, the product of the hazard rate and the

singles ratio:

Flow of marriages

Population stock︸ ︷︷ ︸
marriage rate

=
Flow of marrriages

Singles stock︸ ︷︷ ︸
hazard rate

× Singles stock

Population stock︸ ︷︷ ︸
singles ratio

. (1)

We will use this identity to compute the share of each of the right-hand variables in changes

in the marriage rate on the left-hand side. To the extent that changes in the singles ratio

account for the war-time variation in the marriage rates, there is little need for a choice-based

model to understand the time pattern; a demographic model with constant matching rates

would suffice. However to explain variation in the hazard rates, a model of individual-level

decisions to marry would be essential.

To compute marriage hazards we use the Census which lists population by age, sex and

marital status as of January 1st each year, starting in 1900, with the exception of the war

years 1915-1919. The marital status categories are: never-married, married, widowed and

divorced. We combine this data with the war-time aggregate marriage rates compiled by

Mitchell (1998) to identify a time series of marriage hazards by age and sex, from 1906 to

1936; we also estimate a cross-sectional distribution of marriage hazards by age and sex

during the pre-war years, which we present in Section 2.5.8

Figure 3 shows the time series of marriage hazards by sex for two age groups: 20-29 and

7Unfortunately, age-specific marriage and birth statistics are not available for Germany or the other
principal participants in the war, apart from France.

8We provide the details of our procedure in the appendix.
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30-39. These age groups account for more than 80% of female newlyweds and 94% of male

newlyweds, on average. Three features of these hazard rates that are worth emphasizing are:

1. Marriage hazards decrease during the war.

It was already clear from Figure 1 that aggregate marriage rates fell to as low as 35% of

the peacetime rate. Our time series of hazard rates implies that the average war-time

marriage hazard fell more for the 20-29 age group; to 45% and 37% of the pre-war

average, for men and women, respectively, while for the 30-39 group the marriage

hazards fell only to 86% and 85% of their pre-war averages.

2. Marriage hazard increase above their pre-war averages after the war.

This is true for each sex and age group. For 20-29 women the increase is 47%; for

20-29 men it is 106%. These figures are 118% and 126% for 30-39 women and men,

respectively.

3. Deviations in marriage hazard contribute far more than deviations in singles ratio to

the post-war peaks in aggregate marriage rates.

To see this we compute the decomposition represented by Equation (1) for a typical

pre-war year, 1910, and for 1920. Table 1 shows the results. Both the hazard rates

and singles ratio are higher in 1920 than in 1910, for each sex and age group. This

implies that aggregate marriage rates are higher too. The last line of the table shows,

however, that the hazard rates contributed the most (from 63.7 to 92.3%) to the peaks

in the aggregate marriage rates.

4. The post-war peaks in marriage hazard persist many years after the war.

The hazard rate of 20-29 year-old men, for example, in the late 1920s is still 20% above

its pre-war average. Along with the (not unrelated) disruption of the sex ratio, this

demonstrates that birth cohorts that were too young to be mobilized, including men

who were as young as 14 at the outbreak of war, exhibited a significant disruption in

marriage patterns long after the war’s end.

As we noted earlier, the increase in women’s hazard rates after the war is intriguing since

the male-to-female ratio among singles declined noticeably during the war (see Figure 4).

Could the increase in the female marriage hazard result from a post-war abundance of

young widows/divorcees marrying at higher rates? The French data allows us to distinguish

unmarried (including widows and divorcees) from never-married individuals. Figure 5 shows
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that neither the existence nor the magnitude of the post-war peaks in births hazards are

significantly affected by this distinction for most age-sex group.9

2.3 Birth Hazards

The aggregate birth rate in panel A of Figure 6, as computed from Mitchell (1998), reveals

a war-related cycle similar to that of marriage rates. War-time tends to be associated with

abnormally low birth rates and the post war with birth-rate booms. During World War 1

the per-capita birth rate fell on average 40% below its trend. We will use this deviation in

the per-capita birth rate as a target to calibrate the size of the fertility shock in war-time.

To compute the marital birth hazards in peacetime, we use vital statistics from the French

national statistical institute (INSEE), which list the number of live births per woman by

age and year, starting in 1901. We combine this with the number of married women from

the Census for each age-year group to construct a time series of annual births per married

woman for the two age groups. Panel B of Figure 6 shows that marital birth hazards

increased substantially in the years immediately following the war: In 1920 they peaked at

66 and 63% above their pre-war trends, by age group. However the birth hazards remained

25% above their trends well into the 1930s. This is a large and persistent shift in marital

birth-hazard rates that extends to women too young to be directly affected by the wartime

postponement of births.

2.4 Military Mortality

The authoritative source of data on the impact of the war on the French population is Huber

(1931), who reports that military losses (killed and missing in action) amounted to 1.4 million

men. We infer from Vallin (1973), who shows the number of dead and disappeared by their

year of incorporation into the army, that older soldiers tended to die at lower rates than

young recruits. This pattern implies that the fraction of men of a given cohort who died or

disappeared during the war is systematically decreasing with the age this cohort attained in

1914, with the exception of men younger than 20 in 1914.10 Figure 7 shows this: less than

5% of the men aged 45 in 1914 died or disappeared during the war, 15% of the 35 year old,

9For women 30-39 the peak in the hazard rate of unmarried is less pronounced than for never-married.
Thus, including unmarried in the analysis does not help in explaining the post-war peaks.

10Under the universal conscription law of 1913, military service began at age 20.
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and 25-30% of the 20-25 year old. This systematic link between age and death rate during

the war turns out to be relevant for our argument later in the paper.

2.5 Marriage and Birth Hazards Before the War

We are also able, with the Census data, to compute age profiles for marriage and birth

hazards during the pre-war years. In Section 4 we use these profiles to calibrate our model.

Panel A of Figure 8 plots the hazard rates by sex and age, averaged over the pre-war years.

There are two important features of these profiles for our analysis. The first is that young

men marry at a noticeably lower rate than young women: Men in their early 20s marry with

less than a 2% probability in a given year, while that probability is above 6% for women

of the same age. The second, and not unrelated feature, is that men tend to marry later

than women: The peaks in marriage hazard rates occur around 25 year old for women, and

around 30 for men.

Panel B presents the birth hazard for married women, averaged over the pre-war years. This

profile is systematically decreasing in age, from about 30% for women in their early 20s, to

about 5% for women in their early 40s.

2.6 Summary

In addition to the main facts that we established in this section, namely the central role of

marriage hazards in war-related marriage rate variations, and the post-war peaks in female

marriage hazards, we also established some secondary facts that will play supporting roles

in the theoretical argument to follow. These are the stationarity of per-capita marriage

rates over time, the extreme sizes of the war-time marriage and fertility busts, and the

disproportionate toll of the war on younger men.

3 The Model

The matching process we describe below is derived from the labor-market literature on

competitive search with two-sided heterogeneity, such as Shimer (2005). This competitive-

search framework is especially suitable for our analysis because it permits us to treat marriage
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matching as a dynamic process, and hence to compute the transition path for marriage rates.

In what follows we describe the model in terms of wage-posting in separate sub-markets,

not because we think it is a particularly realistic description of marriage matching, but

because it makes the dynamics easier to work with. Because the competitive-search approach

implies that the equilibrium assignment equals the unique Pareto-optimal assignment, as

demonstrated by Shimer (2005), the algorithm we use to arrive at the equilibrium can be

chosen for computational convenience.11

3.1 Demography

There is an infinite succession of periods. The population is composed of infinitely-lived

men and women, denoted H and F , respectively. Individuals transition through 3 stages of

life, denoted by a ∈ {1, 2, 3}, as they age; the probability that an individual in stage a < 3

transitions into stage a + 1 is denoted by δi (a) for i ∈ {H,F} . Stage 3 is absorbing. Each

period there is an inflow χi of new individuals of sex i and stage 1.

Over time individuals in stages a < 3 may marry. Marriage is permanent and starts with zero

children. Married couples where aF < 3 and k < K, where K is the maximum number of

children, can choose the probability, πB, of a birth in the next period. The birth probability

generates a disutility σFC
(
πB, aF , k

)
, where σF is a scale parameter. We interpret the

disutility σFC
(
πB, aF , k

)
as summarizing various tradeoffs associated with attempting to

give birth, which we do not model. Thus, the fertility-choice aspect of our model should

be seen as a reduced form model that cannot distinguish between preference shocks and

cost shocks. In the remainder of the paper we will adopt the terminology “preference for

children” when referring to the function C and/or the parameter σF .

Single individuals produce utility ySi (si) each period, where i ∈ {H,F} . Marriages produce

utility yM (k) each period, which is perfectly transferable between spouses. Married people

like children, that is yM (k + 1) > yM (k) for k ∈ K.

The probability that a single man in stage aH dies in a given period is σD(aH). We assume,

for simplicity, that women and married men do not face a mortality risk. We use the

probabilities σD (aH) and the parameter σF to represent the war: Increasing σD (aH) will

raise male mortality, and increasing σF will raise the cost of having children.

11In our model the algorithm may affect the distribution of marriage surplus between the spouses, but not
the assignment of men to women.
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3.2 The Value of a Marriage

Let Y (aF , k) denote the value of a marriage in state (aF , k). Since aF = 3, is an absorbing

state in which women cannot bear children, the value of a marriage in state (3, k) equals the

present discounted sum of the utility flow of remaining in the marriage forever: Y (3, k) =

yM (k) / (1− β), where β is the discount factor between periods. Couples with K children

are effectively sterile, thus Y (aF , K) = yM (K) / (1− β) .

For married couples that can have children, the flow utility each period is yM (k)−σFC
(
πB, aF , k

)
.

The value of an (aF , k)-marriage is the solution of the following fixed point problem:

Y (aF , k) = max
πB

yM (k)− σFC
(
πB, aF , k

)
+βδF (aF )EπB [Y (aF + 1, k)]

+β (1− δF (aF ))EπB [Y (aF , k)] ,

where

EπB [Y (aF , k)] = πBY (aF , k + 1) +
(
1− πB

)
Y (aF , k) .

The first part of this objective function is the period flow of utils. The second part is the

expected continuation value, conditional on the wife switching to the next stage of her life.

The last part is the expected continuation value, conditional on the wife remaining in the

current stage of her life.

3.3 Matching and Marriage Hazard Rates

3.3.1 Matching

At the beginning of each period t the population of singles of sex i ∈ {H,F} and state ai is

denoted by Pi,t (ai) . Men decide whether to pay a cost ξ to enter the marriage market.12 We

assume that ξ is an iid shock realized at the beginning of each period, before the participation

decision is made. The support of ξ is the positive real line, with a cumulative distribution

function denoted by Ξ. All single women in states aF ∈ {1, 2} participate in the market.

The marriage market is divided into two sub-markets, one for each state aF of active single

women. Conditional on participating in the marriage market, single men choose which of the

12This stochastic entry cost ensures that some males choose not to participate each period, which consid-
erably simplifies the computation of equilibria.
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two sub-markets they participate in. Matching within a given sub-market occurs through

the random assignment of men to women. Women who are assigned at least one man chose

a husband from among their suitors. Let the mass of aH-men who participate in sub-market

aF be denoted Nt (aF , aH). Define the length of the queue of aH-men in this sub-market as

φt (aF , aH) =
Nt (aF , aH)

PF,t (aF )
.

To ensure the feasibility of the matching assignments, the following resource constraint must

be satisfied for each aH :∑
aF

φt (aF , aH)PF,t (aF ) = µt (aH)PH,t (aH) , (2)

where µt (aH) is the endogenously-determined fraction of stage-aH men participating in the

marriage market. This equation stipulates that all the participating men, on the right-hand

side, are assigned either to the stage-1 or stage-2 sub-market. We present the determination

of µt (aH) in Section 3.4.1.

3.3.2 Marriage Hazards Rates of Women

Standard arguments show that the number of men assigned to each woman follows a Poisson

process; the probability that there are no suitors in stage aH for a woman in stage aF is

e−φt(aF ,aH). Let ρt (aF , aH) denote the probability that a woman in stage aF marries a man

in stage aH . Following Shimer (2005), we assume that a woman marries a man in stage 2

whenever at least one suitor is in stage 2; and she marries a man in stage 1 whenever there is

at least one suitor in stage 1, and no suitor in stage 2.13 This implies the following marriage

probabilities:

ρt (aF , 1) = e−φt(aF ,2)
(
1− e−φt(aF ,1)

)
, (3)

ρt (aF,2) = 1− e−φt(aF ,2). (4)

The total number of marriages by aF -women is Pt (aF )
∑

aH
ρt (aF , aH) . Thus, the marriage

hazard rates of these women is

πF,t (aF ) =
∑
aH

ρt (aF , aH) . (5)

13This rule is optimal when men of stage 2 generate higher surpluses than men of stage 1, as must be the
case to rationalize that men of stage 2 marry with higher probabilities.
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3.3.3 Marriage Hazards Rates of Men

The number of marriages between men in stage aH and women in stage aF equals ρt (aF , aH)PF,t (aF ).

This implies that the rate at which men in stage aH marry in sub-market aF is

ρt (aF , aH)PF,t (aF )

Nt (aF , aH)
=
ρt(aF , aH)

φt(aF , aH)
.

The probability that a man in stage aH marries, conditional on participating, is then

πH,t (aH) =
1∑

aF
Nt (aF , aH)

∑
aF

Nt (aF , aH)
ρt(aF , aH)

φt(aF , aH)
. (6)

3.4 Value Functions of Single Agents

3.4.1 Men

Let VH,t (aH) denote the value of a man in stage aH who has decided to participate in the

market, and RH,t (aH) denote his value of remaining single at the end of the period. Let

vH,t (aH) denote the expected gain from marrying (conditional on participating). We present

the determination of vH,t (aH) in the next section. We have:

VH,t (aH) = RH,t (aH) + vH,t (aH) . (7)

To define the value of remaining single we proceed as follows. First, we note that men in

stage aH participate in the marriage market if and only if ξ ≤ vH,t (aH), that is if and only

if their expected gain from marrying conditional on participating is at least as large as the

cost of participating. We use the notation ξ∗t (aH) to denote the marginal man in stage aH ,

that is the man who is exactly indifferent between participation and non-participation:

ξ∗t (aH) = vH,t (aH) . (8)

Thus, the probability that a man in stage aH participates is µt (aH) = Ξ (ξ∗t (aH)) . Since ξ

is iid, µt (aH) is also the proportion of these men participating in the marriage market at

date t. Before the realization of the cost, the ex-ante value of period t for these men is

WH,t (aH) = (1− µt (aH))RH,t (aH) + µt (aH)E [VH,t (aH)− ξ |ξ ≤ ξ∗t (aH) ] . (9)
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The value of remaining single at the end of the period for a man in stage aH is then

RH,t = ySH (aH) + β [(1− δH (aH))WH,t+1 (aH) + δH (aH)WH,t+1 (aH + 1)] , (10)

where WH,t (3) = ySH (3) / (1− β) . That is, the ex-ante value of being single in stage 3 is the

value of remaining a single man forever.

3.4.2 Women

Let VF,t (aF ) denote the value of a woman in stage aF at the beginning of period t. Let

RF,t (aF ) denote the value of remaining single by the end of the period, and vF,t (aF ) denote

the expected gain from marrying during the period. We have

VF,t (aF ) = RF,t (aF ) + vF,t (aF ) . (11)

The woman’s value of remaining single is defined by

RF,t (aF ) = ySF (aF ) + β [(1− δF (aF ))VF,t+1 (aF ) + δF (aF )VF,t+1 (aF + 1)] . (12)

This equation states that the value of remaining single by the end of the current period

comprises the utility flow from being a single, and a discounted, expected continuation

value. The latter depends upon the probability of transitioning into the next stage. For

woman in stage 3, the expected gain from marrying is zero since they do not participate in

the marriage market by assumption. This implies RF,t (3) = VF,t (3) = ySF (3) / (1− β) .

3.5 Laws of Motion

Given marriage and participation rates, the laws of motion for the population of single men

in stage 1 is

PH,t+1 (1) = (1− δH (1))
(
1− σD (1)

)
(1− µt (1)πH,t (1))PH,t (1)

+ χH
(
1− σD (1)

)
, (13)

that is the number of single men in stage 1 at date t+ 1 is the number of date-t single men

in stage 1 who did not transition into stage 2, did not marry, and did not die; plus the flow
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of new stage 1 single that did not die. For single men in stage 2 the law of motion is

PH,t+1 (2) = (1− δH (2))
(
1− σD (2)

)
(1− πH,tµt)PH,t (2)

+ δH (1)
(
1− σD (1)

)
(1− µt (1)πH,t (1))PH,t (1) , (14)

that is, the number of single men in stage 2 at date t + 1 is the number of single men in

stage 2 who did not transition into stage 3, did marry and did not die; plus single men in

stage 1 at date t who transitioned into stage 2 but did not marry and did not die.

For single women in stage 1 these laws can be written as

PF,t+1 (1) = (1− δF (1)) (1− πF,t (1))PF,t (1) + χF , (15)

and for single women in stage 2

PF,t+1 (2) = (1− δF (2)) (1− πF,t (2))PF,t (2) + δF (1) (1− πF,t (1))PF,t (1) . (16)

3.6 Optimality

In each sub-market aF the women post a utility offer wt (aF , aH) for men in stage aH . The

utility offers are common knowledge and women are able to commit to their offers.

3.6.1 Men

Recall that ρt (aF , aH) /φt (aF , aH) is the probability of marriage in sub-market aF , for a

participating man in stage aH . Thus, the expected gain from marriage for a man in this

sub-market is

ṽH,t (aF , aH) =
ρt (aF , aH)

φt (aF , aH)
wt (aF , aH) .

Since participating men can freely choose where to direct their search for a spouse, optimality

dictates that in equilibrium they are indifferent between the two sub-markets:

vH,t (aH) = ṽH,t (1, aH) = ṽH,t (2, aH) . (17)
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3.6.2 Women

The optimal offer wt (aF , aH) by women in stage aF maximize the expected gain from mar-

rying, subject to the constraint that participating men must receive their expected values.

Thus vF,t (aF ) is defined by the following optimization problem

vF,t (aF ) = max
wt(aF )

∑
aH

ρt (aF , aH) [xt (aF , aH)− wt (aF , aH)] (18)

s.t. vH,t (aH) =
ρt (aF , aH)

φt (aF , aH)
wt (aF , aH) , (19)

where the surplus xt (aF , aH) is defined by the output of a marriage, net of the reservation

values of the husband and the wife:

xt (aF , aH) = Y (aF , 0)−RH,t (aH)−RF,t (aF ) . (20)

3.7 Equilibrium

A competitive-search equilibrium of our model is a sequence of value functions for men,

{RH,t (aH) ,WH,t (aH) , VH,t (aH) , vH,t (aH)} , and women, {RF,t (aF ) , VF,t (aF ) , vF,t (aF )}, wage

offers, {wt (aF , aH)}, participation thresholds, {ξ∗t (aH)}, queue lengths, {φt (aF , aH)}, and

population of single men, {PH,t (aH)} , and single women, {PF,t (aF )} , such that at each date

t:

1. Men and women are optimizing:

(a) Women solve problem (18)-(19).

(b) The marginal man is indifferent between participating or not, Equation (8), and

(c) participating men are indifferent between sub-markets, Equation (17).

2. The assignment of agents to sub-markets is feasible, Equation (2).

3. The population of singles follows the laws of motion in Equations (13)-(16).
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4 Calibration and Steady-state analysis

For the quantitative analysis, we begin by first calibrating the model to French pre-war data,

and then using the calibrated model to set the size of two war-time shocks, to fertility and

male mortality, so that the model matches the aggregate war-time birth and mortality rates.

The method we followed for computing the relevant empirical statistics is described in the

empirical section above. We then compute the response over time of the model’s marriage

patterns to these shocks.

Since the match between model and data will not be perfect, we also target the age profile

for the sex ratio of singles, as this is a central feature of the theoretical argument. The idea

is to avoid deviations in marriage probabilities that are particularly important for matching

the sex ratio. To interpret our results in terms of age profiles, we impose that new agents

are 18 years old when they first enter the singles pool, and that periods in the model last a

year.

4.1 Functional Forms

Our goal in choosing functional forms was to minimize the number of free parameters, subject

to allowing a full range of variation in the relevant quantities. For the output of marriage,

we chose a form that allowed for diminishing marginal returns to children, with a parameter

ω that can be adjusted to vary the intensity of women preferences over children:

yM (k) = ω ln (1 + k) . (21)

The birth-probability cost function has two free parameters for each state (aF , k) in which

women can give birth, γa (aF ) and γk (k):

σFC (π, aF , k) = σFγk (k) πγa(aF ). (22)

The distribution of the male participation cost is assumed log-normal with parameters

(µξ, σξ), that is ln (ξ) ∼ N (µξ, σξ).
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4.2 Optimization over Parameters

A few of the parameters are set to values outside the calibration loop. These are: the

annual discount factor that is set to β = 0.96, a standard value in the macro literature; the

maximum number of children per family that is set to K = 3; and the inflow rate of men

that is normalized to unity, i.e. χH = 1.

The remaining parameters are set by a standard non-linear algorithm to minimize the Eu-

clidean distance between the statistical targets and their model counterparts. Let the pa-

rameter set be denoted by Θ, that is

Θ =
(
θ, γk (k) , γa (aF ) , µξ, σξ, δF (aF ) , δH (aH) , ySF (aF ) , ySH (aH)

)
.

The benchmark parameters are chosen to minimize the distance between model and data:

min
Θ

{
45∑

τ=20

∑
i=H,F

(mτ
i (Θ)−mτ

i )
2 +

45∑
τ=20

(bτ (Θ)− bτ )2 +
45∑

τ=20

(SRτ (Θ)− SRτ )2

}
,

where mτ
i (Θ) represents the steady-state marriage hazard for people of calendar age τ and

sex i. The steady-state birth hazard for women of calendar age τ , is bτ (Θ), and SRτ (Θ) is

the steady-state sex ratio for singles of age τ . The empirical target values are denoted by

bold face.

We chose these moments because they are informative for the key parameters of the model

and, in particular, for those driving the heterogeneity that we postulate across stages. It is

important to remember that stages are not observable, but that they are correlated with age

via the transition probabilities, δi (ai). Thus, the age profiles that we target allow us to infer

the parameters driving heterogeneity across stages. An exact match to the marriage-hazard

targets is unlikely, however. So, we also target the age profile of the sex ratio in order to

prioritize matching moments that have a larger influence on the sex ratio.

The mapping from moments to parameters can be understood as follows. The model implies

a distribution of stages, at any calendar age τ, for both men and women. These age-specific

distributions are dictated by the rate at which men and women transition from one stage to

the next. It follows, then, that the height and slope of the age profile for marriage hazards

implies values for the marriage hazards of both stages, as well as the change over age of

the distribution of each stage. Matching the height of the age profiles of marriage hazard

informs the parameters governing the value of single life, ySi (ai) . Matching its slope informs,
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in turn, the transition rates between stages, δi (ai). Since, in addition, the female stage

accounts for all age-related birth-hazard variation, the birth hazard profiles also discipline

fertility differences by stage, γk (k) and γa (aF ) . In this way the heterogeneity in the model

is pinned down by the pre-war empirical targets.

4.3 Parameter Values

The resulting benchmark parameter set is shown in Table 2. Men in stage 1 transition with

probability 0.12 to stage 2, where they in turn transition with probability 0.05 into stage

3 (inactive men). This means that the average man remains in stage 1 between the ages

of 18 and 18 + 1/0.12 = 26, and in stage 2 between the ages of 27 and 27 + 1/0.05 = 47.

For women, the transition rates of 0.17 and 0.03 imply that the first stage of life lasts, on

average, from ages 18 to 24, and the second from ages 25 to 58.

The preference parameters imply that young men get more out of single life than older men

do, whereas older women are happier with single life than younger women are. As a result,

women will tend to marry earlier than men.

4.4 Match to Statistical Targets

In Figure 9 we compare the age profiles from the model with those from the empirical

analysis. Table 3 reports a few model statistics from the figure. While there are localized

deviations in the marriage hazards of the young agents, these are relatively small; the age

profile for the sex ratio of singles is almost exactly matched. Three important features of

the empirical marriage hazard profiles are shared by the model’s profiles. First the marriage

hazard of men in their early 20s is lower than that of men in their late twenties; Second the

marriage hazard of women in their early 20s is higher than that of women in their late 20s;

Third the marriage hazard of young women is higher than that of young men, i.e. women

tend to marry earlier than men. Allowing for more life stages would permit a better match

of the age profile of the marriage hazard. But since the main role of the exercise was to

discipline the parameters governing heterogeneity, we leave further refinements to future

papers.
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4.5 Equilibrium behavior

In the benchmark calibration, the model matches the empirical inverted-u shape patterns of

the marriage hazards for men, as seen in the top-left panel of Figure 9. The logic behind this

is as follows. First, the model’s preference parameters imply, as noted above, that stage-1

men enjoy single life more than stage-2 men do. This is important to generate low marriage

hazards at young ages. In fact, the model’s implied hazard rate for stage-1 men is zero.

All 18-year old men are of stage 1 by assumption, so their marriage hazard is zero. At age

19, a fraction of men, 12 percent to be precise, has transited into stage 2 where they have

a positive marriage hazard of 44%. Hence the marriage hazard profile increases between

age 18 and 19. At age 20 some men will be in stage 1, some in stage 2, and some will

have transited into stage 3. Given the transition probabilities implied by our calibration,

δH (aH) , the proportion of stage-2 men at age 20 is large enough to generate an increase in

the marriage hazard profile between age 19 and 20. As calendar age increases, however, an

increasing proportion of men are in stage 3. This lowers the marriage hazard by age, hence

the inverted-u shape.

For women a similar logic applies but the outcome is different since, for women, the high

marriage-hazard state comes first. Women marry with a higher probability in stage aF = 1

(18%) than in stage aF = 2 (7%), and then they do not marry at all in stage 3. Thus the

age profile for women is declining with age, as seen in the top-right panel of Figure 9. In

terms of calendar age, the marriage hazard of women aged 20-29 is 0.12 and of women aged

30-39 is 0.05.

Our calibration also implies that the married birth hazards to stage-2 women are higher than

those to stage-1 women; this is required to match the increase of the observed birth hazard

with age for young married women, as can be seen in the birth-hazard panel of 9. The birth

hazards are declining in the number of children already born. The hazard of first births is

0.291 for married women in stage 1 and 0.367 in stage 2. For mothers of one child, the birth

hazards drop to 0.247 and 0.321, respectively. For mothers of two children, the birth hazards

drop further, to 0.20 and 0.27, respectively. In terms of calendar age, the birth hazard for

women aged 20-29 is 0.25 and of women aged 30-39 is 0.10.
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5 The Impact of the War

We now describe the main experiment of this paper. We start from the steady-state equi-

librium and assume that two simultaneous, unanticipated shocks of five-year duration hit

the economy: a male-specific mortality shock and a fertility shock. We compute the tran-

sition path, back to the steady-state, under the assumption that the population responds

optimally to the shocks and that agents perfectly anticipate the end of the war, that is when

the variables representing the war return to their pre-war values.

We represent the fertility shock via an increase in σF (equal to 1 in the steady-state); this

is equivalent to a negative shock to preferences for children –see Equation (22). We assume

that σF increases to the same values for all stages of marriage. The increase is not gradual:

σF jumps up to its war-time value in period 1 of the transition, remains at this value for 4

more periods, and returns to 1 in period 6, and thus generates a decline in birth hazards

throughout the war. We set σF = 4.5. so that birth rates declines by 50% on average during

the war, as reported in the French vital statistics.

We represent male-specific mortality by setting the stage-specific male death rate to σD (1) =

0.045, and σD (2) = 0 for the duration of the war. This value ensures that the model’s

prediction of the post-war sex-ratio of singles aged 20-39 matches the empirical value as of

January 1920, the first-post-war observation in the French Census. Finally, our approach also

ensures that the model approximates the age profile of war-time mortality risk, computed

from Vallin (1973) which implies that annual military mortality was a steeply declining

function of age.

5.1 The War-Time Effects of the Shocks

How do marriage and birth hazards respond to the wartime fertility and mortality shocks?

We start with a description of the war-time effect of the shock. As can be seen from Part A

of Table 4, war-time marriage hazards by age group are much lower than in the steady-state

equilibrium. For men, the average marriage hazards during the war fall to 43% and 47% of

the steady-state values. For women aged 20-29, the decline is similar, to 44% of steady-state.

Thus, the war-time collapse in marriage hazards predicted by the model matches closely the

statistics reported in Section 2 for the most important population group, men and women

between 20-29 years old. For older women, the decline is more severe, to 6% of the steady-

state hazard, even though the birth-hazard decline is similar for both age groups, about
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50%. Since nothing in our procedure forces the model to match the war-time marriage-rate

decline, the size of the fertility effect can be seen as support for theBecker (1981) assertion

that marriage is mainly motivated by the desire for children, .

The marriage-hazard declines imply larger populations of singles after the war, as indicated

in Part B of Table 4. In the model, the population of single women is 32% and 25% higher

than steady-state in 1919, for the 20-29 and 30-39 groups, respectively. This compares with

43% and 25% in the data. Thus, the low marriage hazard of the older women does not

significantly distort the post-war singles share. For men, the stock of singles exceeds the

steady-state by 18% and 28%, for men of ages 20-29 and 30-39, respectively. This compares

with 12% and 21% in the data. This increase in the size of the singles pool will of course

increase per-capita marriage rates post-war, but has no direct implication for any change in

marriage hazards.

The consequence of the war that is critical for our argument is the impact on the composition

of the singles pools; for any given age-sex cell, the fraction that are in any given life stage is

function of recent marriage hazards, which respond endogenously to the war shocks, and of

exogenous transition hazards, which are unaffected by the war.

War-time marriage hazards fall more for women in stage 2 than for those in stage 1 (Table 4).

The reason for this is that the calibration implies that for stage-2 women, fertility accounts

for a bigger share of the gain from marriage than for stage-1 women; because stage-2 women

have a higher autarky value, they marry mainly for the chance to raise children. Given that

they also have a much higher probability of transiting to sterility before the war is over, the

prospect of waiting five years to have children further reduces their gains from marriage,

relative to those of the stage-1 women. This means that the women added to the singles

pool by the war will be more likely than women in the steady-state single population to be

women with low marriage propensities. Of course stage-1 women will also be among the

additional singles, as their marriage hazards fall too, but their share of the post-war singles

pool will be further reduced by their high (exogenous) rate of transition into stage-2 women.

Therefore, the war changes the composition of the pool of single women in a way that is

conducive to lower hazard rates than before the war since low-marriage-propensity women

become relatively more frequent.

In the case of men, similar effects are at work, but there is one basic asymmetry that is critical

for our results; stage-2 men are more likely to marry, while stage-2 women are less likely. This

is not by assumption, but rather the result of calibrating the model to match the observation

that age profiles for marriage peak later for men than for women, as described above. As a
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result, the war reduces the marriage hazard of stage-2 men relative to that of stage-1 men,

adding stage-2 men to the singles pool. These additional stage-2 men tend to transition

over time into low-marriage-rate stage-3 men, but at a fairly low rate. Furthermore, higher

war-time mortality reduces the frequency of stage-1 men. In contrast to the female case, the

composition of the pool of single men becomes more concentrated in high-propensity men,

leading to higher hazard rates.14

5.2 The Post-War Transition

Our main result so far is that, even though the sex-ratio declined as a result of the war, the

number of men with high gains from marriage increased dramatically relative to the number

of single women. We first analyze the implications of this for the post-war peaks in marriage

and birth hazards and then turn to the persistence of the marriage trends in the years after

the war.

In Part 1 of Table 5 we see that immediately after the war, the marriage hazards of men

in the 20-29 and 30-39 age groups increase in our model by 47% and 77%, relative to the

steady state, respectively. This amounts to 44% and 61% of the empirical differences between

the year 1920 and the pre-war averages. For women, the model’s transition path generates

marriage-hazard increases of 29% and 74%, respectively by age group, amounting in both

cases to 63% of the empirical change in 1920 relative to the pre-war averages.

These peaks in marriage hazards result from the changing composition of the pool of singles

due to the war. The abnormal abundance of stage-2 men, shown in Panel A of Figure 10,

makes it is easier for women to find a match. This raises the marriage hazards of stage-1

and stage-2 women above their steady state values, contributing to the post-war peaks. But,

there is also an abnormally low fraction of stage-1 women in the pool of singles just after the

war, shown in Panel C of Figure 10. Since these women typically marry at a higher rate, this

effect tends to reduce the post-war peaks. Our benchmark calibration implies that the first

effect, i.e. the abundance of men with high gains from marriage, is larger than the second

effect, and so women’s marriage hazards rise sharply when the war ends.15

14The extent to which the mortality of stage-1 men contributes or detracts from this effect is discussed in
the next section.

15The low proportion of stage-1 women after the war is due, as discussed earlier, to the decline in the
marriage hazard of stage-2 women during the war. We have seen that an implication of this was that the
marriage hazard of 30-39 year-old women declined significantly more in the model than in the data. Had the
model more closely matched the decline in the marriage hazard of 30-39 year-old women, the composition
effect would have been smaller, and this would have been a force toward larger post-war peaks for women.
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Men’s post-war marriage hazards are also subject to conflicting effects. The abnormally large

proportion of stage-2 men per woman shown in Panel A of Figure 10, makes it harder for

these men to marry. This reduces both their participation rate and their marriage hazards.

But these men also constitute an abnormally large fraction of single men after the war,

which tends to increase male marriage hazards (see Panel B of Figure 10). The benchmark

calibration implies that this effect dominates, and so men’s marriage hazards also rise sharply

when the war ends.

Table 5 also shows that birth hazards per couple are a little higher in the immediate post-war

period, relative to steady-state; 6% higher for the women aged 20-29 and 13% for those aged

30-39. Again, there are conflicting effects at work here. On the one hand married couples

exit the war with fewer kids than they would normally have had, which should increase birth

hazards. On the other hand they are more likely to have transited to stage 3, which reduces

them. The net overall effect is an increase that is small relative to what we see in the data,

an issue we revisit below, in Section 5.4.

Female marriage hazards in the model, as with the empirical hazards, return to the steady-

state level around 1924, 6 years after the end of the war. For men, the persistence is even

stronger; as late as 1930 marriage hazards for men aged 20-29 remain well above the pre-war

rate, as discussed in the empirical section above. Consider the half-life of the marriage-

hazard peaks, as reported in Part 2 of Table 5. In the data, it takes 18 months for the

marriage hazard of 20-29 year-old men to close half the gap between the post-war peak and

the pre-war averages. In the model, the half life is 13 months, about 73% of that in the

data. For 30-39 year-old men, the model generates a longer half life than measured in the

data (i.e. 114%). For women, the model generates 108% and 82% of the observed half life,

respectively.

The reason for this persistence can be seen in Panels A and B of Figure 10. Panel B shows

that before 1925, the fraction of men who are in stage 2 remains well above the steady state;

male marriage hazards are higher because men in stage 2 marry at higher rates than those in

stage 1. This also generates persistence of female marriage hazards. After 1925 however, the

proportion of single men who are in stage 2 returns to normal. But in Panel A we see that

the ratio of these men to single females starts falling in 1922, declining eventually to 80% of

the steady-state level. This raises the marriage hazard of men in stage 2; this explains the

persistence of male marriage hazards but has a negative impact of female marriage hazards.

Thus, we view the mismatch between the model-generated marriage drop for 30-39 year-old women and the
data as a ”conservative” error acting against the formation of post-war peaks.
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Our model is consistent therefore with two persistence facts: marriage hazards remain higher

for both sexes years after the war, and male hazards persist much longer than female. The

first is explained by the abnormal composition of the pool of singles, the second by the more

traditional marriage-squeeze mechanism. We conclude that the transition path of our model

succeeds in generating both significant post-war marriage-hazard peaks and in reproducing

their persistence.

5.3 Analysis

The cause of the war-time marriage bust is not the subject of our paper. Yet, it is interesting

to see that although the context of mobilization and combat suggests an extreme disruption

of civilian life, the two observable variables, birth rates and male-mortality, turn out to be

sufficient to explain all of the war-time marriage bust, without recourse to an increase in

unobservable matching frictions. But what are the contributions of these two shocks, taken

one at a time? To answer this question we present now the results of two computational

experiments. Each consists of recomputing the transition path with one shock only.

We proceed by revisiting the impact of the war on the marriage hazards. In Figure 11 the

marriage hazard patterns are broken out for each of the three experiments: baseline, war-

time mortality shock only, and fertility shock only. It is very clear from the figure that the

fertility-shock experiment results track the marriage hazards from the baseline experiment

much more closely than the war-time mortality shock results do. We infer from this that the

fertility shock is much more important for understanding the impact of the war on marriage

patterns, both during and after the war.

In percentage terms, the impact of each shock on the size of the post-war marriage-hazard

peaks is shown in Part 1 of Table 6. The fertility-shock experiment generates 77% of the

baseline post-war peaks for the younger age group of men, and 80% for the older group. For

women, the corresponding impacts are 134% and 128%.16 In the mortality-shock experiment,

on the other hand, women’s marriage hazards fall by 23% and 18%, respectively by age group.

This confirms that the mortality shock in our model is very strong; our assumptions have not

generated post-war peaks in female marriage hazards by assuming away the impact of this

shock. Of course this shock drives the marriage hazards of women in the wrong direction,

but that makes it all the more remarkable that the baseline model can still generate such

large post-war peaks in the female marriage hazard.

16The effect of the fertility shock on female post-war marriage hazards is larger than in the baseline,
because these are reduced by the mortality shock.
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To understand why the fertility-shock effect is so strong, we now revisit the impact of the war

on the composition of the singles pool. In Panel A of Figure 11 we show for each experiment

the time path for the ratio of stage-2 men per woman. This is the composition variable

explains the post-war peaks in female marriage hazards. It turns out that the war-time

mortality shock causes a 20% decline in the ratio of stage-2 men per woman, by removing

stage-1 men who would have transited during the course of the war into stage 2 men. The

fertility shock on the other hand causes the ratio to increase by 55%, so that in the baseline

experiment this ratio is 40% higher at war’s end than in the steady state, generating the rise

in the female marriage hazard.

While Panel A clearly accounts for the female-marriage hazard peak, the higher ratio of

stage-2 men per woman also implies a decline in the marriage hazard for stage-2 men. The

post-war peak in male marriage hazards is explained in Panel B of the same figure, which

shows the time path for the fraction of single men who are in stage 2. It is apparent that the

fertility shock alone generates an increase of nearly 80% in this fraction, due to the drop in

marriage rates associated with the fertility shock during the war, while the mortality shock

causes only a 20% increase. Thus, while the mortality shock also contributes to the male

post-war marriage peak by increasing the concentration of stage-2 men in the male singles

pool, it is far from being the main cause.

This last result is all the more surprising when we consider Panel E of Figure 11, which shows

that the sex ratio of singles declines sharply over the course of the war, from 1.37 to 1.1, and

that this is largely due to the mortality shock. It would be tempting to conclude that the

post-war male marriage-hazard peaks are explained by the fall in the sex ratio and natural

therefore to attribute this to male wartime mortality. But we know from Table 6 that this

would be highly misleading: only 13% of the baseline marriage-hazard peak is accounted for

by the mortality experiment, compared to 77% for the fertility shock.17 The mortality effect

is weak because mortality risk during the war was a steeply declining function of age, and

younger men are far less likely to marry. The changing composition of the singles pool is

the key to understanding the post-war peaks in the marriage hazards, and this composition

responds to the collapse of marriage during the war much more than to male mortality.18

17We infer from this that interaction among the two effects accounts for the remaining 10%.
18The mortality effect is much more important for persistence; Panel A of Figure 11 shows that the eventual

decline of the ratio of stage-2 men to single women, and hence the higher marriage rates of the younger men
as late as 1930, is entirely driven by the war-time mortality shock.
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5.4 Marriage and Pro-Natalism

Can other shocks help our model account for the unexplained portion of the post-war increase

in the female marriage hazards? Consider the evidence for a post-war shock to fertility

preferences. Figure 6 shows a post-war shift to a significantly higher time path for the rate

of post-war births per married woman. This rate remained 30% above the pre-war trend

well into the 1930s. Our baseline results instead show only a much smaller birth-rate shift

after the war, amounting to about 8% of the empirical increase for women aged 20-29.

Since the war of 1870, a strong pro-natalist movement in French politics had rallied around

the fear that France’s low population growth, relative to Germany’s, was undermining the

ability of France to defend itself militarily in the long run. This movement thrived after the

German invasion in World War 1, to the point that by 1920, the pro-natalist movement was

sufficiently powerful that the Conservative government saw fit to impose significant financial

incentives to increase birth rates, as well as legislation against abortion and contraception.

At the same time, employers were pressured to offer family allowances to workers with more

than two children.19 Although we can’t distinguish the effects of this campaign from the

potential impact of other forces outside our model, it’s plausible that post-war natalism

explains the elevated rate of post-war births per married woman.

In this section, we take as given the higher birth propensities of the post-war period and

ascribe them to a permanent ’pro-natalist’ shock, realized at the start of the war. We ask

whether this shock can account for the portion of the post-war marriage hazard peaks that

remain unexplained in our model. The idea is that higher post-war fertility should increase

the gains from marriage and therefore increase marriage hazards. The war-time and post-

war values of the fertility preference parameter are now set so as to (1) reproduce the 50%

decline in the per-capita birth rate during the war, as was done in the baseline experiment;

and (2) reproduce a 30% increase of fertility above steady-state after the war.

The results, shown in Table 7, confirm the importance of the fertility shock. The share of the

post-war marriage-hazard peaks accounted for by the model increase to 97% of the empirical

increase for women aged 20-29, and 88% for women aged 30-39, relative to 63% for both

groups in the baseline experiment. For men, this version of the model accounts for 61% and

80% of the post-war peaks, respectively, compared to 44% and 61% in the baseline.

19La loi d’encouragement aux familles nombreuses was passed in 1923; incentives included maintenance
payments to large families, baby bonuses, reductions in the price of bread and train fares for families of
three or more children, and social assistance to defray the cost of child care. In the 1920s, the Medaille de la
famille Francaise was awarded to mothers of large families. As described in Roberts (1994), several of these
measures pre-date the passage of the bill.
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How does this work? Because single agents anticipate the higher value of a post-war marriage

due to the post-war fertility hike, the reservation value of singles in war time remains higher

than in the baseline experiment. The resulting war-time decline in marriage hazards is even

more pronounced in this experiment than in the baseline. The marriage hazards in the 20-29

age group fall to 38% for men (compared to 43% in the baseline), and for women to 38%

(compared to 44%). In addition to the direct effect of higher fertility on post-war marriage,

this bigger war-time disturbance exacerbates the composition effects that we described in

Section 5.2, hence the larger response of post-war marriages to the war.

We interpret our results as supporting the natalist fear that the fertility of French couples

was not going to spontaneously rise to replace the war-time shortfall in births, much less the

additional shortfall in births occasioned by military mortality. The pro-natalist program, to

the extent that it succeeded in raising the birth rate of married couples, also strengthened

incentives to marry, resulting in a further increase in post-war births. In the context of

this higher birth rate, driven by stronger incentives, whether pecuniary or hedonic, to have

children, our model now explains virtually all of the post-war increase in female marriage

hazards in the 20-29 age group.

6 Conclusion

The relationship between the male-to-female ratio and the marriage prospects of singles

is central to theoretical and empirical studies of marriages. A low male-to-female ratio

is expected to reduce women’s marriage probabilities and increase that of men. Using a

historic episode of a large change in the male-to-female ratio that was both exogenous and

unanticipated, we document an anomalous pattern: a 33% decline in the male-to-female ratio

(in the age 20-29 group) appears to result in 50% increase in female marriage probabilities.

The effect is remarkably persistent over time and is associated with abnormally high marital

birth and male marriage hazard rates that persist into the 1930s.

Our hypothesis attributes this episode to the impact of the war-time marriage decline on

the post-war composition of the singles pool. Our quantitative results suggest that roughly

2/3 of the post-war peak in female marriage hazards in the 20-29 age group was due to an

unusual abundance of highly-marriageable men, induced by the war-time marriage bust.20

20Our hypothesis accounts also for the persistence of higher male marriage hazards, even among men who
were too young to have been directly affected by the war, as competition among the birth cohorts that were
mobilized spills over into the younger singles pool.
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Post-war pro-natalism appears to accounts for the remainder. While previous research has

focused on war-induced mortality and its implications via the sex ratio, we find that the war-

time disruption of the marriage market was far more consequential for aggregate post-war

marriage patterns.

Equilibrium analysis was crucial for these conclusions. We developed a dynamic model of

two-sided matching with stochastic aging. This permitted two important features of our

analysis: we calibrated our model to marriage and births data at annual age frequencies,

and we computed transition paths by year. Thus the equilibrium aspect not only disciplines,

via the calibration procedure, the steady-state composition of the singles pool, it also en-

dogenously generates its time path after the war. The post-war composition was generated

from the optimal response of marriage hazards to the endogenous time path of the singles

pool, something that would have been impossible to deal with in a reduced-form setting, such

as a Markovian demographic model or a regression-based approach where marriage hazards

were exogenous.

Our results should not be taken to imply that the consequences of war-time male mortality

for marriage-rate trajectories was trivial; indeed, as we pointed out earlier, the wartime

bust in fertility may have been caused by anticipations of male mortality. We show that

the effect of war-related male mortality, in isolation, would have reduced female marriage

hazards by 23% post-war. Surprisingly, we also found that this would explained very little

of the post-war increase in male marriage rates. Our main point is rather that the decline in

the sex ratio of singles should be interpreted with caution; to the extent that variations in

the size of the singles pool are likely to be accompanied by variations in the composition of

the singles pool, inferences from the sex ratio to marriage-market conditions will in general

be unreliable.
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Table 1: Pre- and Post-War Statistics

Men Women

20-29 30-39 20-29 30-39

Year 1910
Hazard 0.100 0.096 0.152 0.058
Single frac. 0.682 0.203 0.426 0.161
Agg. mar. rate 0.068 0.020 0.065 0.009

Year 1920
Hazard 0.205 0.252 0.236 0.117
Single frac. 0.724 0.232 0.548 0.175
Agg. mar. rate 0.149 0.058 0.129 0.021

Fraction of change
due to hazards 0.923 0.877 0.637 0.893

Table 2: Calibrated Parameters

1 Demography
Discount factor β = 0.96
Men transition δH(aH) = (0.12, 0.05)
Flow of stage-1 men χH = 1.00
Women transition δF (aF ) = (0.17, 0.03)
Flow of stage-1 women χF = 1.06

2 Single
Men output ySH(aH) = (19.02, 1.62, 0.00)
Women output ySF (aF ) = (−0.03, 0.44, 2.55)

3 Participation cost
Mean µξ = 3.82
Std. dev. σξ = 0.57

4 Marriage
Output param. ω = 7.76
Cost elast. γA(aF ) = (2.43, 2.83)
Cost const. γK(k) = (109.47, 81.92, 58.73)
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Table 3: Steady State Statistics

Men Women

20-29 30-39 20-29 30-39

Marriage rate 0.09 0.09 0.12 0.05
Birth rate - - 0.25 0.10
Fraction of single 0.69 0.25 0.47 0.20
Sex ratio of single 1.40 1.16 1.0 1.0

Table 4: Wartime Changes

Men Women

20-29 30-39 20-29 30-39

1 Wartime shifters
Marriage hazard 0.43 0.47 0.44 0.06
Birth hazard - - 0.49 0.49

2 Post-war (1919) singles fraction
Data / trend (%) 112 121 143 125
Model / steady state (%) 118 128 132 125

Note: Part 1 of the table reports the mean value of a variable during the war to its steady-state value. The figure 0.43 for the

marriage rate of 20-29 men, for instance, means that the marriage hazard of men during the war was, on average, 43% of its

pre-war average.

Table 5: Post-War Changes in the Baseline Experiment

Mar. Haz. Men Mar. Haz. Wom. Birth Haz.

20-29 30-39 20-29 30-39 20-29 30-39

1 Post-war deviation
from trend

Data (%) 106 126 47 118 66 63
Baseline (%) 47 77 29 74 6 13

Baseline / Data (%) 44 61 63 63 8 21

2 Months to 50%
of peak

Data 18 18 9 15
Baseline 13 21 10 12

Baseline / Data (%) 73 114 108 82
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Table 6: Experiments

Mar. Haz. Men Mar. Haz. Wom. Birth Haz.

20-29 30-39 20-29 30-39 20-29 30-39

1 Post-war deviation
from trend

a. Fert. shock (%) 36 62 39 95 6 19
Exp. / Baseline (%) 77 80 134 128 100 146

b. Death shock (%) 6 6 -23 -18 0 3
Exp. / Baseline (%) 13 8 -79 -24 0 23

2 Months to 50%
of peak

a. Fert. shock (%) 14 21 18 20
Exp. / Baseline (%) 107 100 180 167

b. Death shock (%) 10 14 - -
Exp. / Baseline (%) 77 67 - -

Note: Part 1 of the table reports the post-war deviations from steady state for the marriage and birth hazards in two

counterfactual experiments. In the “Fert. shock” experiment the war is represented by the negative shock to fertility

incentives, without increases in mortality; in the “Death shock” experiment the war is represented by the increase in mortality

alone, without the negative shock to fertility incentives. The row “Exp. / Baseline” reports the ratio between the post-war

deviation in a given experiment and the corresponding deviation implied by the baseline model (see Table 5). Part 2 of the

table reports the results of these experiments for the persistence of the post-war deviations.

Table 7: Post-War Deviations from Trend in Model with Post-War Pro-Natalist Policy

Mar. Haz. Men Mar. Haz. Wom. Birth Haz.

20-29 30-39 20-29 30-39 20-29 30-39

Data (%) 106 126 47 118 66 63
Baseline (%) 65 101 46 104 50 0.2

Baseline / Data (%) 61 80 97 88 76 0.2
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Figure 1: Aggregate Marriage Rate
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Source: Mitchell (1998)

Notes: The vertical lines mark the last year of a conflict.

Figure 2: Marriage Rates in France and Germany
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Note: Marriage rates are normalized by their pre-war (1906-1914) averages.
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Figure 3: Marriage Hazards by Age and Sex, France
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Source: INSEE and authors calculations.

Notes: The vertical lines represent the beginning and end of World War 1. The solid lines represent the hazard rate for a

given year, that is the ratio of the flow of marriages in a given year to the beginning-of-year number of single in each age-sex

population group. The dotted lines represent pre-war time trends.

Figure 4: Single Men per Single Women
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Figure 5: Postwar Hazards by Age and Sex for Never-married and Unmarried, France

1920 1922 1924 1926 1928 1930 1932 1934 1936
0.5

1

1.5

2

2.5

3

M
ar

ria
ge

 h
az

ar
d 

(p
re

−
w

ar
=

1)

Year

Men 20−29

 

 
Mariage per never married
Marriage per unmarried

1920 1922 1924 1926 1928 1930 1932 1934 1936
0.5

1

1.5

2

2.5

3

M
ar

ria
ge

 h
az

ar
d 

(p
re

−
w

ar
=

1)

Year

Men 30−39

 

 
Mariage per never married
Marriage per unmarried

1920 1922 1924 1926 1928 1930 1932 1934 1936
0.5

1

1.5

2

2.5

3

M
ar

ria
ge

 h
az

ar
d 

(p
re

−
w

ar
=

1)

Year

Women 20−29

 

 
Mariage per never married
Marriage per unmarried

1920 1922 1924 1926 1928 1930 1932 1934 1936
0.5

1

1.5

2

2.5

3

M
ar

ria
ge

 h
az

ar
d 

(p
re

−
w

ar
=

1)

Year

Women 30−39

 

 
Mariage per never married
Marriage per unmarried

Source: Bunle (1954), INSEE and authors calculations.

Notes: The hazards are computed by dividing the flow of marriages for an age-sex group in a given period, as reported by
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Figure 6: Birth Hazards of Married Women
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Figure 7: Dead and Disappeared by Birth Cohorts
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Figure 8: Pre-War Marriage and Birth Hazards
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Figure 9: The Model’s Fit

20 25 30 35 40
0

0.05

0.1

0.15

0.2
Men’s mar. hazard

20 25 30 35 40
0

0.05

0.1

0.15

0.2
Women’s mar. hazard

20 25 30 35 40
0

0.1

0.2

0.3

0.4
Marital birth hazard

20 25 30 35 40
0.8

1

1.2

1.4

1.6
Sex ratio of s ingle

20 25 30 35 40
0

0.5

1
Frac . of s ingle men

Age
20 25 30 35 40

0

0.5

1
Frac . of s ingle women

Age

Source: INSEE and authors calculations.

Note: The red diamond are data, the blue circles are the model results.

Figure 10: Simulated Single’s Population
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Figure 11: Experiments
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A Computation of Marriage Hazards

To compute age-specific hazard rates, we fit a vector of demographic processes to each year of population
data from the French national statistical institut (INSEE). These processes are: marriage, divorce, death,
and immigration (net inward). We jointly estimate these for each sex from the annual change in the number
of total men and women of each annual birth cohort. For each year from 1905 to 1935, excluding 1914-1919,
we apply the method described below, essentially accounting for the exact change in population under a
set of simple assumptions. For the war years, 1914-1919, we lack population data, so we apply a modified
procedure that exploits information about aggregate marriage rates, military deaths and the population of
Alsace-Lorraine, which was annexed to France in December 1918.

A.1 The Peace-Time Computations

Let the total population at time t of people of sex i ∈ {H,F} born in year b be denoted N b
it (T ), where T

stands for “Total.” Movement over time in the size of this birth cohort is assumed to be due to either death
or net immigration of foreigners to France. At any time t > b we can write

N b
i,t+1 (T ) =

(
1− πDit (a) + πIit (a)

)
N b
it (T ) ,

where a = t− b− 1 is the age of the birth cohort in years at the start of year t, and πDit (a) , πIit (a) represent
annual average death and immigration rates, respectively.

We assume that these two rates are independent of marital status, and that immigration of a married person
entails the simultaneous immigration of her spouse. Let N b

it (m) represent the population at time t of people
of sex i born in year b and currently in marital status m ∈ {M,D,S,W}, where M represents marriage, D
divorced, S never married and W widowed.

The population of female widows evolves according to:

N b
F,t+1 (W ) =

(
1− πDFt (a) + πIFt (a)

) [
N b
Ft (W ) +N b

Ft (M)πDHt (a)
]
.

Similarly for male widows we have :

N b
H,t+1 (W ) =

(
1− πDHt (a) + πIHt (a)

) [
N b
Ht (W ) +N b

Ht (M)πDFt (a)
]

Note that we have ruled out remarriage within the same calendar year of the spouse death, as well as death
of both spouses within the year, and the possibility that widowhood occurs in the same year as the marriage.
These events undoubtedly occur but are of low frequency, under the assumption of independence, and even
lower if the first event reduces the probability of the second. Together, the above equations form a system
that can be used to identify all four rates from the changes in these four population categories.

We now apply the same logic to marriage and divorce rates, taking as given the immigration and death rates.
The population of married people of sex i evolves according to:

N b
i,t+1 (M) =

(
1− πXit (a) + πIit (a)

) [
πMit (a)N b

it (U) +N b
it (M)

(
1− πDit (a)

)]
,

where N b
it (U) ≡ N b

it (D) + N b
it (S) + N b

it (W ) represents the population of unmarried people of sex i in the
birth cohort at time t, πMit (a) represents the marriage hazard rate of singles, and πXit (a) their divorce hazard
rate.

Note that we have ruled out remarriage within the calendar year as a divorce, as well as marriage followed by
divorce within the calendar year. To the extent that each of these events has a low probability, the chances
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of both occurring together in the same calendar year are quite small. If, in addition, one of these events
temporarily reduces the probability that the second will follow, then the omission is even smaller.

The population of never-married people of sex i evolves according to:

N b
i,t+1 (S) =

(
1− πDit (a) + πIit (a)

) (
1− πMit (a)

)
N b
it (S) .

Since the divorce rate does not enter this last equation and the death immigration rates are known, then
this equation identifies the marriage hazard rate, and the previous equation the divorce hazard rate.

Despite the simplifying assumptions we made about the life processes, our method generates a perfect match
to the peacetime data for the following year. This because we are using the next-year data to compute the
processes. This ensures that the marriage and divorce rate age profiles, which we will use to create targets
in our calibration, are consistent with the population data. The targets themselves are averages over these
rates for the 1900-1913 period.

A.2 The War-Time Computations

Because war-time population data is not available, we assume that marriage rates during the war are shifted
by a set of shocks

{
ωMiW

}
that remain the same during the war. We compute the war-time mortality rates,

as described in the Empirical section above. All other processes are assumed to remain the same as the
average for 1910-1913, as derived from the peace-time procedure described above.

The period where the population is not observed extends from January 1915 to January of 1920. This means
that we are also missing one-post-war year. So for that year, we assume another set of values

{
ωMiP
}

for the
marriage shocks.

The index i ∈ {1, 2, 3, 4} refers to the following demographic groups: men under age 30 (i = 1), men of ages
30-39 (i = 2), women under age 30 (i = 3), and women of ages 30-39 (i = 4). Given the shifters then, we
can compute the population in 1920 by starting from the population at the start of 1914, and applying the
age-specific population processes described above consecutively until we arrive at the population for 1920.

The predicted population under this method requires two modifications. First the population of France in
the post war was increased 4% by the addition of Alsace-Lorraine. We increase the 1919 population by 4%
in our calculation (implicitly assuming that the composition of the Alsace-Lorraine population was the same
as that of the rest of France). Second we know the military deaths by birth cohort (Huber (1931)), so we
subtract these from the male population by computing a cohort-specific death hazard rate for each year the
cohort was aged 20 or more years.

We choose these 8 shifters simultaneously so as to minimize a score function that consists of the weighted sum
of squared deviations from the age distributions of never-married and currently married men and women,
plus the difference between the observed per-capita marriage rate (Mitchell (1998)) and that predicted by
the shifters.

The resulting shifters are shown in Table 8. Our results imply that the war affected younger people’s marriage
rates more than those of the older group and women’s more than men’s. We use the war-time shifters as
targets for the calibration of the war shocks in our transition path and assess the ability of the model to
match the post-war shifts shown in the table. In this way we are assured that our marriage hazards are
roughly consistent with both the aggregate marriage rate and the population changes observed over the
course of the war.
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Table 8: War-time and post-war shifters for marriage hazards

Men Women

20-29 30-39 20-29 30-39

Wartime 0.45 0.86 0.37 0.80
Post-war 2.06 2.26 1.47 2.18

B The Value of Marriage and Fertility

In this section we show how we solve for fertility in the steady state and over the transition path.

Guess a the value of a marriage of type (aF , k): Y (aF , k). Call this guess λ. The first-order condition for
the birth probability, π, is

C3 (aF , k, π) = βδF (aF ) [Y (aF + 1, k + 1)− Y (aF + 1, k)]

+β (1− δF (aF )) [Y (aF , k + 1)− λ]

≡ mb (λ) ,

where mb (λ) stands for the marginal benefit of the birth probability. Assume, as in our calibration, that C
is of the form C (aF , k, π) = γk (k)πγa(aF ), then

π (λ) =

(
mb (λ)

γk (k) γa (aF )

)1/(γa(aF )−1)

.

Now, solve the non-linear equation

λ = yM (aF , k)− C (aF , k, π (λ))

+βδF (aF )Eπ [π (λ)Y (aF + 1, k + 1) + (1− π (λ))Y (aF + 1, k)]

+β (1− δF (aF ))Eπ [π (λ)Y (aF , k + 1) + (1− π (λ))λ] .

for λ.

B.1 The War

We assume that the war breaks out unexpectedly in period 1, and lasts for N periods. The end of the
war is perfectly anticipated. Let YWAR

t (aF , k) denote the value of a marriage during the war, at date t.
The value of a sterile marriage with k children during the war is YWAR

t (3, k) = yM (k) / (1− β) for all war
years. Similarly, married couples with K children are sterile, thus YWAR

t (3,K) = yM (K) / (1− β) for all
war years.
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B.1.1 Last Year of War

During the last period of the war, the value of a marriage is

YWAR
N (aF , k) = max

πB
yM (k)− σWARC

(
πB , aF , k

)
+βδF (aF )EπB [Y (aF + 1, k)]

+β (1− δF (aF ))EπB [Y (aF , k)]

where σWAR is the wartime value of σF , and where

EπB [Y (aF , k)] = πBY (aF , k + 1) +
(
1− πB

)
Y (aF , k) .

B.1.2 Previous Years of War

During year n < N of the war we have

YWAR
n (aF , k) = max

πB
yM (k)− σWARC

(
πB , aF , k

)
+βδF (aF )EπB

[
YWAR
n+1 (aF + 1, k)

]
+β (1− δF (aF ))EπB

[
YWAR
n+1 (aF , k)

]
where

EπB

[
YWAR
n+1 (aF , k)

]
= πBYWAR

n+1 (aF , k + 1) +
(
1− πB

)
YWAR
n+1 (aF , k) .
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