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January 23, 2015

Abstract

We construct a model in which all consolidated government debt is
used in transactions, with money being more widely acceptable. When
asset market constraints bind, the model can deliver low real interest rates
and positive rates of inflation at the zero lower bound. Optimal monetary
policy in the face of a financial crisis shock implies a positive nominal
interest rate. The model reveals some novel perils of Taylor rules.

1 Introduction

In this paper, we start with a basic idea —that modeling the role of all govern-
ment and central bank liabilities as liquidity can give us important insights into
the behavior of inflation, interest rates, and the effects of monetary policy. We
then show how this can matter for our understanding of the Great Recession and
its aftermath, and for the performance of conventional monetary policy rules.
In the United States, short-term nominal interest rates have been close to

zero since late 2008. Thus, the zero lower bound has been a reality for the Fed
for more than six years. In standard monetary models, a central bank policy rule
that keeps the nominal interest rate at zero forever is a Friedman rule (Fried-
man 1969). Typically, however, the Friedman rule is associated with deflation.
For example, in versions of the neoclassical growth model with no aggregate
uncertainty and a role for money, the Friedman rule will imply deflation at the

∗Prepared for the November 2014 Carnegie/Rochester/NYU Conference on Public Pol-
icy. This paper represents the views of the authors, and not those of the Federal Reserve
Bank of St. Louis, the Federal Reserve System, or the Board of Governors. We wish to
thank seminar participants at the Federal Reserve Bank of St. Louis, participants at the
Carnegie/Rochester/NYU conference at Carnegie-Mellon University, November 2014, Huberto
Ennis, and Marvin Goodfriend, for their helpful comments and suggestions.
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rate of time preference. But, at least since early 2010, the inflation rate in the
U.S. has varied roughly between 1% and 3% on a year-over-year basis. The flip
side of those two observations —near-zero short-term nominal interest rates and
positive inflation — is that real interest rates have been persistently low since
the Great Recession.
What are we to make of these observations, and what are the implications for

monetary policy? A typical approach to explaining the persistence of low real
interest rates in New Keynesian (NK) models (e.g. Werning 2011) is to introduce
a preference shock —an increase in the representative agent’s discount factor —
which lowers the “natural real rate of interest.”Then, it can be optimal for a
central banker correcting sticky price frictions to set the nominal interest rate
at the zero lower bound. The zero lower bound then represents a constraint
on policy, and NK models are thus used to argue that the real interest rate is
too high relative to what is optimal. The NK approach is then to find policy
remedies in central bank forward guidance (Werning 2011, Woodford 2012) or
increases in government spending (Eggertsson and Krugman 2012). But baseline
NK models may have diffi culty in explaining recent inflation experience in the
United States. A cornerstone of NK models is the Phillips curve, which posits
a negative relationship between the inflation rate and the output gap — the
difference between output if prices were flexible, and actual output. Given the
size of perceived output gaps during the Great Recession, inflation appears to
have been too high to be explained by New Keynesian models.1 As well, since
2012 in the United States, inflation has been falling while the unemployment
rate is falling, and inflation expectations have been “anchored”in the Fed’s view.
These facts seem hard to reconcile with the New Keynesian Phillips curve.
Does standard Monetarism help us understand post-Great Recession expe-

rience in the United States? On the positive side, the behavior of base money
in the U.S. during the Great Recession, and after, can be reconciled with a
quantity theory view of the world, if we view interest bearing reserves as similar
to short term government debt (see Williamson 2012, 2014a, 2014b, and Ennis
2014), and thus not “money.”However, on the negative side, the velocity of M1
has declined by about one third since the beginning of 2009, during a period
when nominal interest rates were essentially zero. While a stable money demand
function is central to old-school monetarism, it seems hard to argue that money
demand was in fact stable over this period.
To address these issues, we build on ideas from Williamson (2012, 2014a,

2014b), in a somewhat different modeling framework from what was used in
those papers, allowing us to extend the ideas in new directions. The model we
construct is highly tractable, and has the property that exchange is intermedi-
ated by an array of assets. In the model, economic agents are arranged in large
households —a device in the spirit of Lucas (1990) or Shi (1997), for example,
which permits us to capture how sophisticated financial market arrangements
work, without the modeling diffi culties of dealing with intermediated structures

1Though Christiano et al. (2014) argue that including the effects of higher costs can explain
the Great Recession inflation data for the U.S.

2



and complicated contracts. Households trade in asset markets and goods mar-
kets, and can make transactions using money, government bonds, and credit,
though money can be used in a wider array of transactions than can other as-
sets. The model is constructed to capture how assets are intermediated and used
by the banking system for transactions purposes, though the large household
construct allows us to abstract from the details of banking arrangements, which
are considered explicitly in Williamson (2012, 2014a, 2014b).
If the asset market constraints of households in the model do not bind,

the model behaves in a conventional way, i.e. much like Lucas and Stokey
(1987), in terms of how assets are priced, and the relationship between real and
nominal interest rates.2 As well, if asset constraints do not bind, even at the zero
lower bound on the nominal interest rate, then a Friedman rule for monetary
policy is optimal. However, if asset market constraints bind, the behavior of
the model is quite different. The binding asset market constraint imparts a
liquidity premium to government bonds, and bonds bear a low real return to
reflect that. In general equilibrium, the asset market constraint binds because
government bonds are in short supply. This occurs given the fiscal policy rule
in place. We assume that the fiscal authority acts to set the real value of the
consolidated government debt exogenously, and then the job of the central bank
is to determine the composition of that consolidated government debt, through
open market operations.
When the asset market constraint binds, lower nominal interest rates will

reduce output and consumption, and will reduce welfare when the nominal in-
terest rate is close to zero. Thus, a binding asset market constraint implies that
the zero lower bound is not optimal. A financial shock (which we can interpret
as a financial crisis shock) can make the asset market constraint bind, or will
tighten the asset market constraint if it binds in the absence of the shock. A
financial crisis shock will then lower the real interest rate, but the optimal mon-
etary policy response (given fiscal policy) is not to go to the zero lower bound,
in contrast to what occurs in NK models.
If the asset market constraint binds, at the zero lower bound the inflation

rate is higher the tighter is the asset market constraint. Thus, for a suffi ciently
tight asset market constraint, the inflation rate need not be negative at the
zero lower bound, and the inflation rate will fluctuate if there are fluctuations
in factors that make the asset market constraint more or less tight. Thus, the
ideas represented in this model can potentially explain inflation behavior during
and after the financial crisis —behavior that might otherwise appear anomalous.
Central bankers — particularly in the United States — tend to formulate

policy in terms of Taylor rules. That is, central banks set a short term nominal
interest rate target in response to the inflation rate and some measure of the
ineffi ciency of real outcomes (an output gap, for example). The Taylor rule has
also become a cornerstone of NK theory (see Woodford 2003). But the Taylor
rule has also been shown to have poor properties in standard monetary models.
For example, Benhabib et al. (2001) demonstrate that an aggressive Taylor

2See also Bansal and Coleman (1996), which has a transactions role for government bonds.
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rule, under which the central bank adjusts the nominal interest rate more than
one-for-one with changes in the inflation rate (the Taylor principle), can lead to
multiple dynamic equilibria converging to a liquidity trap steady state. In the
liquidity trap steady state, the nominal interest rate is zero, the central bank
undershoots its target inflation rate, and the central bank would like to lower
the nominal interest rate but is constrained by the zero lower bound.
In this paper, we explore further the “perils”of Taylor rules, in cases where

the Taylor rule (as in Benhabib et al. 2001) is a function only of the inflation
rate. An important issue here is that the economy behaves much differently if
asset market constraints do not bind than if they do. In the former case, typi-
cal Taylor rules will yield performance in the spirit of Benhabib et al. (2001).
The Taylor principle implies that there are two equilibria, one in which the cen-
tral bank achieves its inflation target, and another in which the central bank
persistently undershoots its target —a liquidity-trap zero-lower-bound equilib-
rium. Under some versions of the Taylor rule, there also exists a continuum
of equilibria, each of which converges in finite time to the liquidity trap steady
state.
When asset market constraints bind, however, there are additional perils

associated with Taylor rules. First, given binding asset market constraints, the
real interest rate is not a constant in the steady state, as is the case in an
equilibrium in which asset market constraints do not bind. The long run real
interest rate in this case is endogenous, and depends in particular on the real
stock of government debt outstanding and households’ credit limits. This is
problematic for the standard Taylor rule, as the rule needs to account for the
long run real interest rate to support the central banker’s inflation target as
an equilibrium. This implies that, to be well-behaved, the Taylor rule must be
more complicated, to account for endogeneity in the real interest rate.
As well, with binding asset market constraints, a given Taylor rule can yield

a more formidable multiple equilibrium problem than when asset market con-
straints are non-binding. Even if there is a steady state equilibrium in which
the central bank achieves its inflation target, there can be other equilibria with
positive nominal interest rates in which the inflation target is not achieved, and
a liquidity trap equilibrium may also exist. Further, Taylor rules can lead to
multiple dynamic equilibria converging to the liquidity trap equilibrium, just as
in the case with nonbinding asset market constraints. But in contrast to the
unconstrained case, in the constrained case this need not arise only when the
Taylor principle holds. Indeed, there are Taylor rules under which there are
multiple dynamic equilibria converging to the liquidity trap equilibrium even
when the central bank does not aggressively respond to inflation, if asset mar-
ket constraints do not bind.
All of this illustrates a general tendency for Taylor rules to lead to policy

traps. The central bank can have an inflation target in mind, and attempt
to hit the target by way of a Taylor rule. But under various rules, there is a
tendency (though not in all cases) for there to exist a stable liquidity trap steady
state, with inflation below the central bank’s target. Thus, the economy can
be drawn to the liquidity trap steady state and become stuck there, unless the
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central bank changes its rule. It seems fair to argue that this describes what is
currently occurring in the Euro area, the United States, Sweden, Switzerland,
the U.K., and Japan, among other countries. In these cases, central banks
appear stuck at the zero lower bound, inflation is lower than the central bank’s
target, and the central bank appears powerless to raise the inflation rate.
The key novel results in the paper follow from the binding asset market

constraint, which gives rise to a liquidity premium on government debt. That is,
the price of government debt is greater than its fundamental value as dictated by
the present value of the payoffs on government debt, appropriately discounted.
There is an ineffi ciency, and the low real interest rate reflects it. A similar
ineffi ciency occurs, for example, in Williamson (2014a, 2014b), but there the
liquidity premium is associated with a binding collateral constraint. Though
the role for government debt that arises in our model is a transactions role,
the model permits an interpretation of this as a role for collateral, and of the
binding asset market constraint as a collateral scarcity.3

The collateral scarcity is critical for our key results, and we want to re-
late these results to U.S. experience in the Great Recession and its aftermath.
Therefore, we would like some assurance that collateral scarcity is an empir-
ically relevant phenomenon. What is the empirical evidence, beyond the fact
that real interest rates on government debt have been historically low since the
Great Recession? Figure 1 presents some evidence on the quantities of safe
assets, potentially useful as collateral in financial markets, in the world, from
2001-2013.4 Here, before the financial crisis, we include U.S. government debt,
Euro-area government debt, U.S. agency debt, and asset-backed securities, as
safe collateral. After the financial crisis, we drop asset-backed securities from
the stock of safe collateral, as the financial crisis effectively decimated these
asset categories. Then, in 2011, we drop Euro-area debt other than French and
German debt, as European sovereign debt crises implied that the debt of some
European countries was no longer perceived as safe. While these calculations
are crude, they give us an idea of the magnitude of the these world financial
events on the stock of safe collateral.

[Figure 1 here.]

Furthermore, Gorton (2010) documents how high-grade collateral assets fa-
cilitate transactions among institutional investors. The practice of tranching
asset pools allows the private sector to create safe assets, and the rehypothe-
cation of collateral permits it to be used in multiple credit contracts.5 Much
of this latter type of activity occurred in the “shadow banking” sector. Thus,
the destructive effect of the financial crisis on the stock of collateral could be
much larger than what we see in Figure 1, due to a multiplier effect —houses

3The model also admits an interpreation financial arrangements as banking with deposit
liabilities backed 100% by government bonds (at least in the case where credit limits are zero).

4This figure is an updated version of Exhibit 137 in Credit Suisse (2011). Their figures
exclude U.S. treasury debt held by the Fed, but we include it in our calculations since we
count Fed reserve liabilities as safe assets.

5See Andolfatto, Martin and Zhang (2014).
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are used as collateral to back mortgages, the mortgages are sold and repackaged
as asset-backed securities which are then used as collateral in financial markets,
and the asset-backed securities are rehypothecated, etc. Therefore, we think
there is good direct evidence that collateral scarcity during and following the
Great Recession was an important phenomenon.
The remainder of the paper proceeds as follows. In the second section the

baseline model is set up, and equilibria are constructed and their properties
studied in Section 3. Section 4 involves a study of the model’s behavior under
Taylor rules for monetary policy. Section 5 is a conclusion.

2 Model

There is a continuum of households with unit mass, each of which consists of a
continuum of consumers with unit mass, and a worker/seller. Each household
maximizes

E0

∞∑
t=0

βt
[∫ 1

0

u(ct(i))di− γnt
]
, (1)

where ct(i) denotes the consumption of the ith consumer in the household, and
i ∈ [0, 1], with consumer names uniformly distributed over the unit interval.
In (1), 0 < β < 1, γ > 0, and nt is the labor supply of the worker in the
household. The household possesses a technology that permits one unit of the
perishable consumption good to be produced with each unit of labor supplied by
the worker in the household. The consumers in the household cannot consume
the household’s own output.
The household enters each period with a portfolio of assets, and then trades

on a competitive asset market. The worker/seller then supplies labor and pro-
duces output. Then, the worker/seller takes the produced output of the house-
hold, nt, and chooses one of two distinct competitive markets on which to sell
it. In market 1, only money is accepted in exchange for goods, as there is no
technology available for verifying the existence of other assets that the buyer
of goods may hold in his or her portfolio, and no technology for collecting on
debts. In market 2, government bonds are accepted in exchange, and buyers of
goods can also use a limited amount of within-period credit.
An individual consumer cannot decide which market he or she will visit (1

or 2), nor does the household decide this. At the beginning of each period, a
consumer in the household knows that he or she has a probability θ of going
to market 1 and probability 1 − θ of going to market 2. Then, after the asset
market has closed, and before goods markets open, the household learns which
consumers will visit which markets, and the law of large numbers dictates that a
fraction θ of consumers in the household will visit market 1, and a fraction 1−θ
will visit market 2. After the household learns the markets in which consumers
will trade, it can allocate assets to consumers in a manner that maximizes
household utility. Consumers then take the assets they receive from households,
they trade on goods markets, and consume on the spot. It is not possible for
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consumers in the household to share consumption among themselves. We can
then write the preferences of the household as

E0

∞∑
t=0

βt
[
θu(c1t ) + (1− θ)u(c2t )− γnt

]
, (2)

where cjt denotes the consumption of consumers in the household who trade in
market j.
The household begins each period with mt units of money carried over from

the previous period, along with bat maturing government bonds acquired in the
asset market of the previous period, and bgt maturing government bonds acquired
in the goods market of the previous period, by the worker/seller. Here, mt,
bat , and bgt are measured in units of period t − 1 consumption good 1. The
household also receives a money transfer τ t from the government in the asset
market, defined in units of current consumption good 1. The household then
takes beginning-of-period wealth, and trades on the asset market to obtain the
money and bonds that it will distribute to consumers in the household to make
purchases. The asset market constraint for the household is

θc1t + qtb
2
t + qtb

a
t+1 +m2

t ≤
pt−1
pt

(mt + bat + bgt ) + τ t, (3)

where qt denotes the price of government bonds in terms of money, b2t and m
2
t

are government bonds and money, respectively, that are given to consumers in
the household who purchase goods in competitive market 2, and bat+1 denotes
bonds that will be held over by the household until period t + 1. The price pt
denotes the price of good 1 in terms of money. In the analysis that follows, some
nonnegativity constraints will be implicit, but it will prove critical to explicitly
account for the nonnegativity constraint on bonds held over from the current
asset market until period t+ 1, i.e.

bat+1 ≥ 0. (4)

Constraint (4) is implied by limited commitment, in that the household cannot
commit to pay off debt in future periods that is acquired in the current period.
The household can borrow on behalf of consumers who purchase goods in

market 2, and these consumers can also make purchases with money and bonds.
The household’s within-period debt is constrained, in that it can pay back at
most κt at the end of the period, where κt is exogenous. As well, credit transac-
tions are not feasible in market 1. Total purchases by consumers who purchase
in market 2 are then constrained by

(1− θ)c2t = b2t +m2
t + κt. (5)

Note that bonds are not discounted when accepted in exchange, since either one
bond or one unit of money is a claim to one unit of money at the beginning of
period t+ 1, from the point of view of the seller in the goods market. However,

7



bonds can trade at a discount on the asset market, i.e. we can have qt < 1. We
also assume in (5) that the household always borrows up to its credit limit, and
we will later derive a condition that assures this in equilibrium. Note that a
claim to one unit of consumption goods at the end of the period trades for one
unit of consumption goods in market 2.
The household’s budget constraint is

θc1t +qt(1−θ)c2t +mt+1+bgt+1+qtb
a
t+1 =

pt−1
pt

(mt + bat + bgt )+τ t+nt+qtκt−κt
(6)

In equation (6), mt+1 denotes money held over until period t+1, and the quan-
tity bgt+1 denotes bonds received in payment for goods sold by the household,
or in settlement of within-period credit. Note that the price of good 2 in terms
of good 1 is qt, which is implicit from (3) and (5). As for equation (5), note in
(6) that we have assumed that the household borrows up to its within-period
credit limit.
The government’s budget constraints are

m̄0 + q0b̄0 = τ0 (7)

m̄t −
pt−1
pt

m̄t−1 + qtb̄t −
pt−1
pt

b̄t−1 = τ t, t = 1, 2, 3, ..., (8)

where m̄t and b̄t are, respectively, the quantities of money and and bonds out-
standing (net of government bonds held by the central bank) after asset market
transactions in period t. Note that we have assumed that there are no gov-
ernment liabilities (money or bonds) outstanding at the beginning of period
0.
In the model, the heterogeneous-agent representative household is a conve-

nient device that allows us to avoid some complications that might ensue if we
were to model financial intermediation arrangements at a more fundamental
level. For example, in Williamson (2012, 2014a, 2014b), which works from a
Lagos-Wright (2005) base, there are transactions in which different types of as-
sets can be used, and the role of financial intermediaries is essentially to provide
insurance against the need for cash —instances in which sellers of goods will not
accept intermediary liabilities or other assets. Williamson (2014a, 2014b) also
includes a role for assets as collateral. In our model, government bonds are used
directly in transactions, rather than as collateral, but economically that is not
fundamentally different from an arrangement in which financial intermediary
deposits are used in transactions, and those deposits are backed by government
bonds, perhaps with the government bonds functioning as collateral for the fi-
nancial intermediary, as in Williamson (2014a, 2014b). Indeed, the model we
work with here has operating characteristics that are similar to the models in
Williamson (2012, 2014a, 2014b).
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3 Equilibrium

Let λ1t , λ
2
t , and µt denote, respectively, the multipliers associated with con-

straints (3), (5), and (6). The consumer chooses c1t , c
2
t , nt, b

2
t , m

2
t , b

a
t+1, mt+1,

and bgt+1, in the current period. Then, from the household’s optimization prob-
lem, we get

u′(c1t )− λ1t − µt = 0, (9)

u′(c2t )− λ2t − qtµt = 0, (10)

−γ + µt = 0, (11)

−qtλ1t + λ2t = 0, (12)

−λ1t + λ2t ≤ 0, (13)

−qt(λ1t + µt) + βEt

[
pt
pt+1

(
λ1t+1 + µt+1

)]
≤ 0, (14)

−µt + βEt

[
pt
pt+1

(
λ1t+1 + µt+1

)]
= 0. (15)

First, from (12) and (13), note that if qt < 1, then consumers will not
purchase good 2 with money, as it is cheaper to pay with bonds if bonds trade
at a discount on the asset market. Reducing (9)-(15) to something we can work
with, we get

−γ + βEt

[
pt
pt+1

u′(c1t+1)

]
= 0, (16)

u′(c2t )− qtu′(c1t ) = 0, (17)

u′(c2t )− γ ≥ 0, (18)

and from (16) and (17) we can derive

qt =
u′(c2t )

γ︸ ︷︷ ︸×
liquidity premium

βEt

[
pt
pt+1

u′(c1t+1)

u′(c1t )

]
︸ ︷︷ ︸

fundamental

(19)

1 =
u′(c1t )

γ︸ ︷︷ ︸×
liquidity premium

βEt

[
pt
pt+1

u′(c1t+1)

u′(c1t )

]
︸ ︷︷ ︸

fundamental

(20)

Equations (19) and (20) price bonds and money, respectively. In each equation,
the left-hand side is the price of the asset, in units of money, and the right-hand
side is a liquidity premium multiplied by the “fundamental,”which would be
the value of the asset if it were not useful in exchange. Note that the liquidity
premium for bonds is the ineffi ciency wedge for good 2, u′(c2t )

γ (the ratio of
marginal utility of the good to the disutility of producing it), while the liquidity

premium for money is the ineffi ciency wedge for good 1, u′(c1t )
γ . Under any

circumstances, at the zero lower bound on the nominal interest rate (qt = 1),
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the liquidity premia on bonds and money must be equal, as from (19) and (20),
c1t = c2t . As we will show later, though, liquidity premia on bonds and money
need not be unity at the zero lower bound.
We can also determine the real interest rate, as follows. Suppose a real bond

that sells at price sat , in units of consumption good 1, in the asset market of
period t, and pays off one unit of consumption good 1 in the asset market of
period t+1. Also suppose that this asset is accepted in exchange, just as nominal
bonds are. Its price at the end of the period —the price a firm is willing to take
for the real bond in exchange for consumption good 2 —is given by sgt . Then,
optimization by the household implies

−sat λ1t + λ2t s
g
t = 0 (21)

−sgtµt + βEt
(
λ1t+1 + µt+1

)
= 0. (22)

Therefore, from (9), (11), (12), (17), (21), and (22), we can determine the price
of the real bond as

sat =
u′(c2t )

γ︸ ︷︷ ︸×
liquidity premium

βEt

[
u′(c1t+1)

u′(c1t )

]
︸ ︷︷ ︸

fundamental

. (23)

Note, in equation (23), as in (19), that we can write the price of the real bond

as a liquidity premium, u
′(c2t )
γ , multiplied by the fundamental.

We will specify fiscal policy as setting the real value of the consolidated
government debt each period, Vt, i.e.

Vt = m̄t + qtb̄t, (24)

where Vt is exogenous. Then, from (8),

τ0 = V0,

τ t = Vt −
pt−1
pt

Vt−1 − b̄t−1
pt−1
pt

(1− qt−1) , (25)

so the period 0 real transfer to the private sector is exogenous, but the transfer
in each succeeding period is endogenous, and in general will depend on monetary
policy, which affects prices. Thus, fiscal policy responds passively to monetary
policy so as to achieve a particular time path for the total real value of the
consolidated government debt. Monetary policy consists of setting a target qt
for the price of government bonds, and this target is then supported by open
market operations. The relationship between fiscal and monetary policy here
is the same as in Williamson (2014a, 2014b). As it turns out, the real value of
the consolidated government debt will play a critical role in our model, and for
the key results, so it proves convenient (and realistic, we think) to specify the
fiscal policy rule as setting the real value of the consolidated government debt
exogenously. Then, monetary policy is about determining the composition of the
consolidated government debt so as to achieve a particular price for government
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debt in financial markets. But, a key element in how monetary policy affects
inflation, for example, will be determined by the nature of the fiscal policy rule.
Let πt = pt

pt−1
denote the gross inflation rate. Then, from (3), (5), (6), (16)-

(18), (24) and market clearing, an equilibrium is a stochastic process
{
c1t , c

2
t , πt+1

}∞
t=0

solving

−γ + βEt

[
u′(c1t+1)

πt+1

]
= 0, (26)

u′(c2t )− qtu′(c1t ) = 0, (27)

u′(c2t )− γ = 0 and Vt + qtκt ≥ θc1t + (1− θ)qtc2t , (28)

or
u′(c2t )− γ ≥ 0 and Vt + qtκt = θc1t + (1− θ)qtc2t , (29)

given a stochastic process {Vt, qt, κt}∞t=0, with qt ≤ 1. In (28) and (29) note that,
if u′(c2t ) − γ = 0, then the real value of government debt plus the credit limit
is more than suffi cient to finance purchases in market 2, so this is the case in
which constraint (4) does not bind. But, if u′(c2t ) − γ > 0, i.e. if exchange in
market 2 is ineffi cient, then the value of consumption of both goods consumed
is constrained by the real quantity of consolidated government debt plus the
credit limit, and the nonnegativity constraint (4) binds.
Filling in the remaining equilibrium details, the price level at the initial date

is determined by

p0 =
M0 + q0B0

V0
, (30)

where M0 and B0 denote, respectively, the nominal quantity of money and the
number of bonds outstanding in period 0, where each bond is a claim to one
of money in period 1. Thus, in period 0, the central bank announces q0, and
the fiscal authority issues bonds with a total current nominal market value of
M0 + q0B0. The central bank then issues M0 units of money, in nominal terms,
and exchanges this money for government bonds in the initial open market
operation, at the market price q0. Then, given p0 from (30), the sequence of
inflation rates {πt+1}∞t=0 determines the price level path. Further, the central
bank must choose a sequence of open market purchases and sales consistent
with its nominal interest rate targets. First, if qt < 1, so that households wish
to use all money balances during the period in transactions in market 1, then

m̄t = θc1t . (31)

In this case, the size of the central bank’s open market purchase in period t
must be suffi ciently large that consumers in market 1 can purchase their desired
quantity of consumption goods at market prices. As well, the open market
operation cannot be too large, as households would not want to hold money
balances over until the next period, given market prices. Next, if qt = 1, then
there is a liquidity trap and

m̄t ≥ θc1t . (32)

11



In this case, the household is indifferent between allocating money or bonds to
consumers who make purchases in market 2. Thus, the open market purchase
in period t needs to be suffi ciently large, so that consumers in market 1 have
enough money, but as money and bonds are perfect substitutes in market 2
transactions, the central bank could purchase the entire stock of government
debt and this would not matter.
The way we have specified policy here shares ideas with the literature on

the fiscal theory of the price level (FTPL), if only because we recognize the
importance of the interaction between monetary and fiscal policy (see for exam-
ple Leeper 1991 and Woodford 1995). The FTPL emphasizes the consolidated
government budget constraint, and the role of the fiscal authority in determin-
ing the price level. In this model, the fiscal policy rule we specify bears some
resemblance to the one that Leeper (1991) studies, but in our context it would
not be correct to say that fiscal policy determines the price level. Given the
fiscal policy rule, monetary policy will matter for the prices of goods in terms of
money. For example, if the fiscal authority fixes the total quantity of nominal
bonds issued in period 0, then from (30), the choice of q0 by the central bank
matters for p0. Then, in each period 1, 2, 3, ..., monetary policy will matter
for the inflation rate, in general, so fiscal and monetary policy jointly determine
prices —and quantities.
We can allow {qt, Vt, κt} to be an exogenous stochastic process, for now, and

later we will permit endogeneity in the central bank’s choice of qt. Given the
quasilinear utility function, arriving at an equilibrium solution is easy, in that
we can solve period-by-period. First, (27)-(29) solve for c1t and c

2
t given qt, Vt,

and κt. Then, we can solve for the inflation rate from (26), i.e.,

πt =
βu′(c1t )

γ
. (33)

Thus, quasilinear preferences simplifies the analysis considerably, as the prop-
erties of the stochastic process {qt, Vt, κt} are irrelevant for the solution.
Let unconstrained equilibrium and constrained equilibrium, denote the cases

where (28) and (29) apply, respectively, i.e. in which the nonnegativity con-
straint (4) binds, and does not bind, respectively. For a given stochastic process
{qt, Vt, κt} it is possible that (28) will apply in some periods and (29) in other
periods, but it will prove useful to consider two special cases: (i) (28) applies in
all periods —the unconstrained equilibrium —and (ii) (29) applies in all periods
—the constrained equilibrium.

3.1 Unconstrained Equilibrium

An unconstrained equilibrium has standard properties that we would find in
typical cash-in-advance cash good/credit good models, e.g. Lucas and Stokey
(1987). In an unconstrained equilibrium, from (28), exchange in market 2 is effi -
cient as u′(c2t )− γ = 0. For convenience, let c∗ denote the effi cient consumption
quantity, which solves

u′(c∗) = γ. (34)
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Thus, from (19) and (20), there is no liquidity premium associated with bonds,
but there is a standard liquidity premium associated with money. From (33)
and (26), c1t solves

u′(c1t ) =
γ

qt
, (35)

i.e. the ineffi ciency in market 1, and the liquidity premium on money (from
equation (20)) are associated with a positive nominal interest rate (qt < 1).
From (33) and (35), we can solve for the gross inflation rate:

πt =
β

qt
. (36)

Equation (36) is the Fisher relation — the nominal interest rate increases ap-
proximately one-for-one with an increase in the inflation rate. Further, from
(23), we get

sat = qtβEt

[
1

qt+1

]
, (37)

where the real interest rate is 1
sat
− 1.

Note that, from (28),

Vt + qtκt ≥ θc1t + (1− θ)qtc∗ (38)

must be satisfied for the unconstrained equilibrium to exist. This equilibrium is
unconstrained, as the consolidated government debt Vt and the credit limit κt
are irrelevant for the solution, at the margin. So, Ricardian equivalence holds,
and the solution has the property that growth in the money supply determines
the inflation rate. For example, if κt = κ, qt = q < 1 for all t, and (38) holds,
then c1t is constant for all t, and so from (31) and (36), the price level and the
money stock both grow at the constant rate β

q − 1. But Vt could fluctuate in
arbitrary ways, as long as (38) holds for all t, and so the growth rate in the nom-
inal quantity of government debt could fluctuate in ways that are disconnected
from the inflation rate. Further, from (37), the real interest rate is determined
solely by monetary policy.
We can illustrate the unconstrained equilibrium in Figure 2. With a positive

nominal interest rate, i.e. qt < 1, the equilibrium is at point A, where the
locus defined by (27), dropping time subscripts, intersects c2t = c∗. An effi cient
allocation is B, which will be the equilibrium allocation when qt = 1. At point
B, c1t = c2t = c∗, which is the conventional Friedman rule allocation.

[Figure 2 here.]

3.2 Constrained Equilibrium

In the constrained equilibrium, (4) binds for all t, so the quantity of government
bonds, plus the credit limit, constrains the quantity of consumption in market
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2. The constrained equilibrium is the unconventional case, in which, from (3),
(4) with equality, (5), (24), and market clearing, c1t and c

2
t solve

Vt + qtκt = θc1t + (1− θ)qtc2t (39)

and (27). Again, note that the solution for c1t and c
2
t depends only on the current

exogenous variables Vt, qt, and κt, and then we can solve for πt from (33). The
model solves period-by-period, so comparative statics is straightforward. In a
constrained equilibrium, dropping t subscripts for convenience, from (39) and
(27) we get

dc1
dq

=
κyu′′(c2)− u′(c2)(1− θ)

[
c2u
′′(c2)

u′(c2)
+ 1
]

θu′′(c2) + q2(1− θ)u′′(c1)
(40)

dc2
dq

=
θu′(c1) + qu′′(c1) [κ− (1− θ)c2]

θu′′(c2) + q2(1− θ)u′′(c1)
(41)

Note that (5) implies that, if (4) binds, then

κ < (1− θ)c2, (42)

so that the credit limit does not permit all the goods supplied in market 2
to be purchased with credit in equilibrium. Then, (23) and (41) imply that
dc2
dq < 0. The sign of dc1

dq is in general ambiguous, but, if − cu
′′(c)

u′(c) < 1, then
dc1
dq > 0. Thus, provided there is not too much curvature in the utility function,
a lower nominal interest rate (higher q) reduces consumption in market 2 and
increases consumption in market 1. Essentially, an increase in q is an increase
in the relative price of consumption in market 2, from the household’s point of
view. Then, − cu

′′(c)
u′(c) < 1 implies that the substitution effect of the relative price

change dominates the income effect in terms of the the net effect on consumption
in market 1. Further, if − cu

′′(c)
u′(c) < 1, then (31) implies that, if the central bank

wants the nominal interest rate to fall, i.e. wants q to rise, then consumption
in market 1 must rise, which requires that the central bank conduct an open
market purchase of government bonds. This will increase the quantity of cash in
market 1, in real terms, and reduce the quantity of assets exchanged in market 2,
as the quantity of bonds outstanding falls. As a result, consumption in market
2 falls.
We can illustrate the constrained equilibrium in Figure 2. Here, V0 is the

locus defined by (39) for the case in which q = 1, while V1 is the same locus
when q = q1 < 1. Then, a reduction in q from 1 to q1 shifts the equilibrium from
D to E. Consumption in market 2, c2, must increase, while c1 may rise or fall.

As well, it is useful to look at the effect of an increase in the nominal interest
rate on real GDP, which we can express as

yt = θc1t + (1− θ)c2t . (43)

Then, from (40) and (41),

dy

dq
=

[κ− (1− θ)c2] [θu′′(c2) + (1− θ)qu′′(c1)] + u′(c1)θ(1− θ)(1− q)
θu′′(c2) + q2(1− θ)u′′(c1)

.
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Therefore, under assumption (42), dy
dq < 0, so output goes down when the

nominal interest rate goes down. We could also do a welfare calculation to find
the optimal monetary policy in this economy under a constrained equilibrium,
taking fiscal policy as given. We can do a period-by-period maximization of
period utility for the representative household, so drop t subscripts and write
the welfare measure as

W = θu(c1) + (1− θ)u(c2)− γ [θc1 + (1− θ)c2 − y]

Then, differentiating, we get

∂W

∂q
= θ [u′(c1)− γ]

dc1
dq

+ (1− θ) [u′(c2)− γ]
dc2
dq

(44)

So, at the zero lower bound (q = 1), where c1 = c2 = V + κ,

∂W

∂q
= [u′(V + κ)− γ]

dy

dq
< 0.

Therefore, given (42), q < 1 is optimal, so optimal monetary policy is not a
zero-lower-bound policy if the equilibrium is constrained. In general, from (44),
(40), and (41), we can write

∂W

∂q
=

[θu′′(c2) + q(1− θ)u′′(c1)] [u′(c1)− γ] [κ− (1− θ)c2]− γθ(1− θ)u′(c1)(1− q)
θu′′(c2) + q2(1− θ)u′′(c1)

.

Therefore, we can say, in general, that welfare increases as the nominal interest
rate increases, so long as the nominal interest rate is close to zero, i.e. q is close
to 1.
Thus, since c2 is strictly decreasing in q, from (41), therefore a constrained

equilibrium exists if and only if the equilibrium is constrained at the zero lower
bound. In a constrained equilibrium at the zero lower bound, c1 = c2 = V + κ.
Therefore, from (29), a constrained equilibrium exists for some q if and only if

u′(V + κ)

γ
> 1, (45)

i.e. if and only if V +κ is suffi ciently small. Furthermore, if (45) holds, then if q
is suffi ciently small, the equilibrium will be unconstrained. To be more precise, if
(45) holds, then the equilibrium is constrained for q ∈ (q̂, 1], and unconstrained
for q ≤ q̂, where (q̂, ĉ1) solve

u′(ĉ1) =
γ

q̂
, (46)

V + q̂κ = θĉ1 + (1− θ)q̂c∗. (47)

How does monetary policy affect the real interest rate in a constrained equi-
librium? One way to think about this is to consider an equilibrium that is
constrained, with Vt = V and κt = κ for all t, so that c1t = c1 and c2t = c2 for
all t. Then, from (23),

sat =
u′(c2)β

γ
. (48)
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Therefore, from (48), the real interest rate depends on the ineffi ciency wedge
(the ratio u′(c2)/γ) in market 2, i.e. on the liquidity premium on real bonds.
Thus, from (41), a decrease in the nominal interest rate by the central bank also
reduces the real interest rate, as this reduces the supply of bonds, tightens the
finance constraint, and increases the liquidity premium on government debt.
We can interpret a constrained equilibrium as one in which there is a scarcity

of government debt, since the quantity of government debt plus private credit
is insuffi cient to finance an effi cient level of consumption in market 2. This
scarcity is reflected in a low real interest rate, and it manifests itself only when
the nominal interest rate is low. Further, reducing the nominal interest rate
when the asset scarcity exists only exacerbates the ineffi ciency, reducing aggre-
gate output and welfare. This contrasts with results from the New Keynesian
literature, for example Eggertsson and Krugman (2012) and Werning (2011). In
New Keynesian models a low real interest rate, whether caused by a preference
shock or a tighter borrowing constraint, can imply that there is a welfare im-
provement from lowering the nominal interest rate to zero, with the zero lower
bound constraining optimal policy.
Fiscal policy matters for the equilibrium allocation and prices in the con-

strained equilibrium, in contrast to the non-constrained equilibrium. In partic-
ular, from (27) and (39), the real quantity of consolidated government debt Vt
matters for the equilibrium consumption allocation, so the equilibrium is non-
Ricardian. As well, the constrained equilibrium has the property that nominal
growth in the quantity of government debt will matter for inflation. For exam-
ple, suppose a constant quantity of real consolidated government V, a constant
credit limit κ, and a constant price for government debt, q, as determined by
monetary policy. Then, c1t is constant for all t, and from (33) the inflation rate
is a constant, π − 1. If q < 1, then, from (31), the stock of money grows at rate
π − 1. But, given (39), it will be true in general that, with qt < 1, and given
(31), that

(1− θ)c2t = b̄t + κt, (49)

i.e. consumption in market 2 is equal to the end-of-period value of government
debt plus the credit limit. So, since we are considering an experiment in which
all exogenous variables are constant for all t, so that c2t is constant in equilibrium,
therefore, from (49) b̄t = b̄, a constant for all t, and the real value of government
debt is constant over time. Therefore, the nominal stock of government debt
also grows at the rate of inflation, as does the nominal consolidated government
debt.
But, it would not be correct to say that fiscal policy determines prices or

inflation in the constrained equilibrium with qt < 1. Indeed, fiscal policy and
monetary policy jointly determine prices and quantities.
But, suppose, as above, that all exogenous variables are constant for all t,

and qt = 1 for all t, in a constrained equilibrium. Then, (32) must hold, but
this could be consistent with money growth that does not match the inflation
rate over long periods of time. But, since (39) holds in this equilibrium, the
rate of growth in nominal consolidated government debt is equal to the inflation

16



rate for all t in equilibrium. Thus, in a liquidity trap, monetary policy becomes
irrelevant and fiscal policy determines the inflation rate.

3.3 Credit Constraints and Government Debt

What happens if there is a change in the credit constraint κt? For example, we
might think of a decrease in κt as capturing some of what occurred during the
financial crisis. In an unconstrained equilibrium, a change in κt has no effects at
the margin, as the credit limit and government debt are large enough to support
effi cient exchange in market 2. Therefore, given monetary policy, there is no
change in consumption or output.
However, from (46) and (47), a decrease in κ acts to reduce q̂, so there is an

increase in the critical value for the nominal interest rate, below which the equi-
librium will be constrained. Therefore, a discrete decrease in κ could result in
a constrained equilibrium in a case in which the equilibrium was unconstrained
before the change in κ. Further, given q, the constrained equilibrium will have
lower consumption in both markets and lower real output if κ decreases, from
(27) and (39). In Figure 3, the equilibrium is initially at A, at the intersection
between the upward-sloping locus defined by (27), and the downward-sloping
locus defined by (39). Then, holding monetary policy constant, so q is constant,
the locus defined by (39) shifts from V0 to V1 with a decrease in κ. As a result,
consumption in both markets, c1 and c2, must fall, and from (43), total real
GDP falls as well.

[Figure 3 here.]

A decrease in κ acts directly in a constrained equilibrium to reduce the
demand for consumption in market 2, given the quantity of government bonds
(in real terms) outstanding. This would tend to increase q, which is the price
of consumption in market 2 relative to consumption in market 1. But the
central bank, which targets q, offsets the incipient increase in q with an open
market sale of government bonds, which tends to reduce consumption in market
1 and increase consumption in market 2. On net, the effect of the increase in
government bonds outstanding does not completely offset the reduction in the
credit limit, so consumption in market 2 falls. Consumption in market 1 falls
because there is less money outstanding, in real terms.
More formally, from (27) and (39),

dc1
dκ

=
qu′′(c2)

θu′′(c2) + q2(1− θ)u′′(c1)
> 0, (50)

dc2
dκ

=
q2u′′(c2)

θu′′(c2) + q2(1− θ)u′′(c1)
> 0. (51)

Therefore, a reduction in κ reduces consumption in both markets, and lowers
real output. As well, from (27) and (39), we get

dc1
dV

=
1

q

dc1
dκ

, (52)
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dc2
dV

=
1

q

dc2
dκ

. (53)

Therefore, a decrease in the real quantity of consolidated government debt has
the same qualitative effect as a reduction in the credit limit. Put another way, a
reduction in the credit limit can be mitigated or eliminated if the fiscal authority
acts to increase the quantity of government debt. However, one of our goals in
this paper is to examine the effects of monetary policy in the face of suboptimal
behavior of the fiscal authority which, in this case, will not act to relax asset
market constraints even if that is appropriate.
We can also examine how changes in κ and V affect the real interest rate.

If, as above, we look at cases where κt = κ and Vt = V for all t, then from (48),
(51), and (53), a decrease in κ or V will lower the real interest rate, because
this increases the ineffi ciency wedge in market 2, and therefore increases the
liquidity premium on government bonds.
As well, note from (33) that a decrease in κ or V will increase the inflation

rate, given q. Because the asset market constraint tightens, increasing the liq-
uidity premium on government bonds and lowering the real interest rate, the
inflation rate must rise since the nominal interest rate is being held constant in
these experiments.
These results — that a reduction in credit limits will reduce consumption

and output, reduce the real interest rate, and lead to an increase in the inflation
rate (given the nominal interest rate) —are consistent with observations on the
U.S. economy following the financial crisis. Post-2008, the real interest rate on
government debt was low, and it may seem surprising, given the zero-lower-
bound policy of the Fed, that the inflation rate was still positive. However, this
is consistent with what our model predicts.
To see more clearly where these results are coming from, we consider in the

next subsection what happens at the zero lower bound.

3.4 Liquidity Trap

It is useful to examine specifically the properties of the model when the nominal
interest rate is set to zero by the central bank, or qt = 1,so that we have a
liquidity trap equilibrium. From (27), this implies that c1t = c2t , so consumption
is equalized across markets. If (45) does not hold, so that the real value of
the consolidated government debt plus the credit limit is suffi ciently large, then
the liquidity trap equilibrium is unconstrained, so from (28), we have u′(c1t ) =
u′(c2t ) = γ and, from (33), πt = β. Therefore, if assets used in exchange and
credit are suffi ciently plentiful, then a liquidity trap equilibrium has conventional
properties. Exchange in markets 1 and 2 is effi cient, and there is deflation at
the rate of time preference. This is a standard Friedman-rule equilibrium.
However, a constrained liquidity trap equilibrium has very different proper-

ties. If (45) holds, then from (39),

c1t = c2t = yt = Vt + κt (54)
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so consumption and output are determined by the value of the consolidated
government debt plus the credit limit. This shows, in the most obvious way,
the non-Ricardian nature of the constrained equilibrium. In a liquidity trap,
increases in the quantity of government debt (in real terms) are not neutral,
and will increase output and consumption one-for-one. As well, from (33), the
inflation rate in a liquidity trap, if the equilibrium is constrained, is given by

πt =
βu′(Vt + κt)

γ
, (55)

so the inflation rate increases with the ineffi ciency wedge in goods markets,
which determines the liquidity premium on all assets —money and bonds. Ba-
sically, a lower quantity of government debt plus credit limit implies a larger
ineffi ciency wedge in goods markets, a larger liquidity premium on assets used in
exchange, and a larger inflation rate. There need not be deflation in a liquidity
trap, in contrast to the standard Friedman-rule unconstrained equilibrium.
To better understand the role of fiscal policy in determining the inflation

rate in a constrained liquidity trap equilibrium, consider the special case where
κt = 0 for all t, Vt = V, and qt = 1, where V is a nonnegative constant. Then,
from the government budget constraint, (25),

τ = V

(
1− 1

π

)
, (56)

and (55) gives

π =
βu′(V )

γ
. (57)

Given our specification of policy, the real value of the consolidated government
debt V is exogenous, and (56) and (57) determine the gross inflation rate π and
the real transfer (i.e. the real government deficit) in periods t = 1, 2, ..., denoted
τ . Thus, given V, π is uniquely determined by (57). Suppose that u(c) = c1−δ

1−δ ,
where δ > 0 is the coeffi cient of relative risk aversion. Then from (56) and (57),
we can obtain a closed form solution for the government deficit

τ = V − γ

β
V δ+1, (58)

for V ∈ [0, V ∗), where
V ∗ = γ−

1
δ

is the value for the consolidated government debt above which the constrained
equilibrium does not exist. In Figure 4, we illustrate the determination of τ ,
as in equation (58). Note that the function on the right-hand side of (58), as
plotted in Figure 4, is nonmonotonic in V. To understand this, note that the
right-hand side of (58) is the seignorage revenue from the inflation tax on the
consolidated government debt at the zero lower bound. The tax base is V,
and the inflation tax rate is 1 − 1

π . An increase in V increases the tax base,
but from (57) this reduces the inflation rate and reduces the inflation tax rate.
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Thus, essentially Figure 4 is a Laffer curve. An increase in V could result in a
decrease or an increase in the government deficit, depending on what side of the
Laffer curve we start on but, in the neighborhood of zero inflation, an increase
in V is associated with a reduction in the government deficit.

[Figure 4 here.]

We could explore alternative policy rules. For example, in (56) and (57),
suppose that the real government deficit τ is exogenous, with (56) and (57)
determining π and V. Again assuming a utility function with constant relative
risk aversion, and letting ρ = 1

π for convenience, use (56) and (57) to obtain

τ =

(
β

γ

) 1
δ (
ρ
1
δ − ρ 1

δ−1
)
. (59)

In equation (59), the right-hand side is again the revenue from the inflation tax,
but with this policy rule we can have two solutions. Figure 5 illustrates equation
(59). Clearly, for any exogenous τ ≥ 0 that is feasible, there are two solutions
for ρ, one with a high value for ρ and a low inflation rate, and one with a low

value for ρ and a high inflation rate. If
(
1
γ

) 1
δ

(1 − 1
β ) < τ < 0, then there is

deflation, and only one value for ρ that solves (59).

[Figure 5 here.]

A question we might ask is what policy can do to raise the inflation rate at
the zero lower bound. To be more concrete, in the circumstances we outlined
above, in which exogenous variables are constant for all time and qt = 1 for all
t, what options are open to policymakers if an increase in the inflation rate is
desired? First, it is clear that monetary policy is irrelevant. Given qt = 1, open
market operations are irrelevant at the margin. For example, the central bank
cannot induce more inflation by conducting a larger open market purchase,
as this will not matter for quantities or prices. However, fiscal policy is not
powerless. From (57), the fiscal authority can set V to achieve any inflation
rate π − 1 ≥ β − 1 that it wants. Of course, we also know that a reduction
in V reduces welfare at the zero lower bound, so higher inflation implies lower
welfare.

4 Taylor Rule

Thus far, we have established the operating characteristics of this model econ-
omy, and have characterized optimal monetary policy, given a fiscal policy rule
which is in general suboptimal. In this section, we want to understand what will
happen in this economy if a central banker adopts a standard type of policy rule
—a Taylor rule. We know at the outset that the Taylor rule will be suboptimal
here, in general, but we wish to understand what types of pitfalls would meet a
Taylor rule central banker in this context.
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For simplicity we assume that the central banker cares only about inflation,
and the Taylor rule takes the form

1

qt
= max[παt (π∗)

1−α
xt, 1] (60)

Here, 1
qt
is the gross nominal interest rate, π∗ is the central bank’s target gross

inflation rate, and xt is the adjustment the central bank makes for the real rate
of return on government debt. In general, α > 0, and if α > 1 the rule follows
the “Taylor principle,”whereby deviations of the inflation rate from its target
are met with an aggressive response by the central bank.
Some of the details in the Taylor rule —whether α < 1 or α > 1, the form that

xt takes, or whether it is πt, or gross inflation at some other date that appears
on the right-hand side of (60) —will matter for our results. In addition, we want
to explore how the nature of the equilibrium —unconstrained or constrained
—will make a difference. We already know from the work of Benhabib et al.
(2001) that there can be “perils”that result from adherence to Taylor rules by
central bankers, including multiple equilibria, in some of which the central bank
does not achieve its inflation target in the limit. Here, we want to explore some
of the pitfalls of Taylor rules in more depth.

4.1 Unconstrained Equilibrium

First, for the unconstrained equilibrium, we will examine the behavior of the
model under four different versions of the Taylor rule. These four cases are:
(i) constant adjustment for the long-run real interest rate; (ii) endogenous real
interest rate: (iii) forward-looking rule; (iv) backward-looking rule.

4.1.1 Constant Long-Run Real Interest Rate

Assume that (45), so the equilibrium is constrained for all qt ≤ 1. From (23), if
all exogenous variables are constant forever, then the gross real interest rate will
be 1

β . Therefore, in a standard fashion, if the real interest rate adjustment in
the Taylor rule is set to match the long-run behavior of the model, then xt = 1

β .

Then from (33)-(??) and (60), we can solve for equilibrium qt from

1 = max

[(
qtπ
∗

β

)1−α
, qt

]
. (61)

Note in particular that there are no dynamics associated with this Taylor rule,
which is in part due to our assumption of quasilinear preferences. Assume
π∗ ≥ β, so that the target inflation rate is larger than minus the rate of time
preference. Then, if the Taylor rule follows the Taylor principle, so α > 1,
there are two equilibrium solutions to (61), as depicted in Figure 6. The two
solutions are qt = β

π∗ , which implies that π = π∗ and the central bank achieves
its target rate of inflation, and qt = 1, which is the liquidity trap solution for
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which π = β ≤ π∗. In the liquidity trap equilibrium the central banker sees a
low inflation rate, and responds aggressively by setting the nominal interest rate
to zero, which ultimately has the effect of producing a low inflation rate. This is
a well-known property of monetary models (see Benhabib et al. 2001) —under
the Taylor principle there are multiple steady states, including the liquidity-
trap steady state. In this particular model, in an unconstrained equilibrium,
the Taylor rule does not impart any dynamics to the economy (in contrast to
Benhabib et al. 2001), but we will show in what follows how dynamic equilibria
arise with other forms of the Taylor rule.

[Figure 6 here.]

If, however, α < 1, then, as in Figure 7, there is a unique equilibrium with
q = β

π∗ , and the central banker always achieves his or her inflation target. Thus,
given this form for the Taylor rule, in an unconstrained equilibrium the Taylor
principle is not a good idea, as this implies an equilibrium in which the central
banker will not achieve his or her inflation target. Note that, if π∗ = β, then
this maximizes welfare in the unconstrained equilibrium, and the equilibrium is
unique for any α > 0. In this case the Taylor rule gives us the Friedman rule
solution as a unique equilibrium.

[Figure 7 here.]

4.1.2 Endogenous Real Interest Rate

In the Taylor rule the term xt makes an adjustment for the real interest rate,
typically in line with some view about the long-run Fisher relation. With an
appropriately chosen xt term, there is at least the possibility that the Taylor
rule will lead to convergence to the central bank’s inflation target in the long
run. But, what if the central bank accounted explicitly for endogeneity in the
real interest rate? In particular, suppose that the central bank chooses

xt =
1

sat
, (62)

where sat is the price of a real bond, as determined in (23). In this case, the
central bank recognizes that the real interest rate is endogenous, and sets the
nominal interest rate in line with fluctuations in the real interest rate. Sup-
pose, for convenience, that we consider only deterministic dynamic equilibria.
Substituting in (60) using (23), (28), (33), (36) and (62), we get

πt+1 = max
{
παt (π∗)

1−α
, β
}
, (63)

which is a nonlinear first-order difference equation in the gross inflation rate πt,
which we can use to solve for an equilibrium. An unconstrained dynamic equi-
librium satisfying this version of the Taylor rule is a sequence {c1t , qt, c2t , πt}∞t=0
satisfying (33), (36), (63), and c2t = c∗ for all t.
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First, suppose that α > 1. Then there are two steady states, just as for
the Taylor rule with xt = β−1, and these are the same steady states as for
the simpler Taylor rule —a high-inflation steady state, and the liquidity trap
equilibrium. In the high-inflation steady state, the gross inflation rate is π = π∗,
so the central bank achieves its inflation target, c1t solves

u′(c1t ) =
π∗γ

β
, (64)

and qt = β
π∗ . In the liquidity trap steady state, π = β, so the central bank falls

short of its inflation target, c1t = c∗, and qt = 1.
In contrast to the case with xt = β−1 though, there are nonstationary equi-

libria. With α > 1, there exists a continuum of nonstationary equilibria that
converge to the liquidity trap steady state in finite time. In each of these equi-
libria, β < π0 < π∗, and

πt+1 = max
{
παt (π∗)

1−α
, β
}
, (65)

for t = 1, 2, ..., with

qt =
β

πt
. (66)

In Figure 8, B is the high-inflation steady state, A is the liquidity trap steady
state, and we have depicted one of the nonstationary equilibria, for which the
initial gross inflation rate is π0, and there is convergence to the liquidity trap
steady state in period 4.

[Figure 8 here.]

Second, if α < 1, then there is a unique steady state with πt = π∗, c1t solving
(64), and qt = β

π∗ . As well, there exists a continuum of nonstationary equilibria
that converge in the limit to the steady state equilibrium. For each of these
equilibria, β ≤ π0 <∞,

πt+1 = παt (π∗)
1−α

for t = 1, 2, ..., c1t solves (64), and qt is given by (66). In Figure 9, we show the
case α < 1, where A is the steady state, and we show one of the nonstationary
equilibria, for which the initial gross inflation rate is π0, and there is convergence
in the limit to the steady state.

[Figure 9 here.]

4.1.3 Forward Looking Taylor Rule

Alternatively, suppose that we specify the Taylor rule in a forward-looking man-
ner, as

1

qt
= max[παt+1 (π∗)

1−α
xt, 1], (67)
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so now the central bank targets the current nominal interest rate as a function
of inflation rate in the next period, again restricting attention to deterministic
cases. Suppose also that xt = 1

β . Then, from (67) and (36), we can construct a
difference equation that solves for the equilibrium sequence, {πt}∞t=0, i.e.

πt+1 = max[π
1
α
t (π∗)

1− 1
α , β], (68)

with π0 ≥ β. Then, from (68), the liquidity trap steady state, with πt = β for
all t, exists if and only if

(π∗)
1− 1

α ≤ β1−
1
α . (69)

Therefore, since π∗ ≥ β, (69) holds if α < 1, and does not hold if α > 1. Thus,
in contrast to the Taylor rule given by (60), the forward-looking Taylor rule
(67) implies that, under the Taylor principle, there is a unique steady state
with π = π∗, but if α < 1 there are two steady states: the liquidity trap with
qt = 1 and πt = β for all t, and the high-inflation steady state with π = π∗ and
qt = β

π∗ .
Finally, exploring the dynamics of the forward-looking Taylor rule (67), if

α < 1 then there exists a continuum of dynamic equilibria with π0 ∈ [β, π∗), all
of which converge in finite time to the liquidity trap steady state. However, if
α > 1, then there exists a continuum of dynamic equilibria with π0 ≥ β, each
of which converges to the high-inflation equilibrium for which the central bank
achieves its inflation target. Therefore, the forward-looking Taylor rule (67) has
good properties under the Taylor principle.

4.1.4 Backward-Looking Taylor Rule

The last Taylor rule we consider is a backward-looking rule of the form

1

qt
= max

[
παt−1 (π∗)

1−α 1

β
, 1

]
, (70)

which implies, from (36), the difference equation

πt+1 = max
[
παt (π∗)

1−α
, β
]
.

This is then identical to (65), so this rule implies equilibria identical to the
Taylor rule with an endogenous real interest rate.
Given the four alternative Taylor rules we considered here, the “Taylor prin-

ciple”(the case α > 1) sometimes has bad properties, and sometimes not, in this
standard unconstrained case. The Taylor principle, which implies an aggressive
reaction of the central bank to deviations of the inflation rate from its target,
can yield a liquidity trap steady state in which the central banker falls short of
his or her inflation target and, if this steady state exists, it is stable, in the sense
that there exists a continuum of nonstationary equilibria that converge to the
liquidity trap steady state in finite time. When the Taylor rule is badly behaved
under the Taylor principle, the results have the flavor of those in Benhabib et
al. (2001).
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4.2 Constrained Equilibrium

In this case, suppose that (45) holds, so that the equilibrium will be constrained
for suffi ciently large qt. Just as for the unconstrained case, we will examine the
four alternative Taylor rules and their implications for the equilibrium alloca-
tion.

4.2.1 Constant Long Run Real Interest Rate

First, let xt = x, a constant, so that there will be a period-by-period equilibrium
solution (c1, c2, q, π) solving, from (27), (29), (33), and (60),

1

q
= max

[
πα (π∗)

1−α
x, 1
]
, (71)

u′(c2)− qu′(c1) = 0, (72)

V + qκ = θc1 + (1− θ)qc2, (73)

π =
βu′(c1)

γ
(74)

Then, from (54), a liquidity trap equilibrium, with q = 1 has c1 = c2 = V + κ.
Therefore, from (71) and (74), this is an equilibrium if and only if[

βu′(V + κ)

γ

]α
(π∗)

1−α
x ≤ 1 (75)

Note that (75) does not hold if V +κ is suffi ciently small, i.e. if government debt
is suffi ciently scarce and the credit limit is suffi ciently low. From (74), smaller
V + κ lowers consumption at the zero lower bound, and increases the inflation
rate. Thus, if V +κ is small, so that π is large at the zero lower bound, then at
the zero lower bound the Taylor-rule central banker wants to raise the nominal
interest rate, so the zero lower bound is not an equilibrium.
To illustrate some of what can occur under the Taylor rule given by (71)

in a constrained equilibrium, suppose that u(c) = log c. Then from equations
(71)-(74) we can derive an equation that solves for the gross inflation rate π,

πγκ

β − V πγ = max
[
πα (π∗)

1−α
x, 1
]

(76)

First, for this example, a liquidity trap equilibrium exists if and only if, from
(75), [

β

γ(V + κ)

]α
(π∗)

1−α
x ≤ 1 (77)

Next, if there is an equilibrium in which the central banker achieves his or her
inflation target away from the zero lower bound, then from (76), for such an
equilibrium to exist requires

x =
γκ

β − π∗γV , (78)
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if we restrict attention to Taylor rules for which x is a function only of exogenous
variables. As well, it must be the case, from (71) that π∗x ≥ 1, or from (78),

π∗ ≥ β

γ(V + κ)
. (79)

Condition (79) states that, if there is an equilibrium in which the central bank
achieves its inflation target π∗, then the inflation target must be greater than
the inflation rate when the nominal interest rate is zero. Then, (78) and (79)
are necessary and suffi cient for such an equilibrium to exist.
Therefore, for the central bank to achieve its inflation target requires that

x be set correctly in the Taylor rule (71). Further, x is not a constant, but
a function of the exogenous variables κ, and V, i.e. the credit limit and the
real quantity of consolidated government debt. Also, x depends on the inflation
target itself. Thus, in the constrained equilibrium, in which the real interest rate
is endogenous, one cannot assure that the Taylor rule will achieve the inflation
target (in the short run or the long run) by assuming that the real interest rate
is a constant, as is the case in some models.
However, even if the central banker sets x appropriately, so that there exists

an equilibrium in which the inflation target is achieved, there may exist other
equilibria. For example, if (78) holds, then from (76), an equilibrium away from
the zero lower bound satisfies

β − π∗γV
β − πγV =

( π
π∗

)α−1
(80)

Suppose that α = 2 and β − π∗γV > 0. Then, there can exist two equilibria
away from the zero lower bound, where the equilibrium with the higher rate of
inflation has the property that π = π∗.
For arbitrary x, we can construct examples for which there are three equi-

libria. For example, if α = 2, then we can write (76) as

γκ

β − V πγ = max

[
π (π∗)

−1
x,

1

π

]
, (81)

and then it is clear from Figure 10 that there can be three equilibria, denoted by
A, B, and C in the figure: one at the zero lower bound, and two other equilibria
for which the nominal interest rate is strictly positive.

[Figure 10 here.]

However, note in this example that, if α < 1, then the equilibrium must
be unique, and we could either have a liquidity trap equilibrium at the zero
lower bound, or one with a positive nominal interest rate. Further, if (78) and
(79) hold, then the unique equilibrium has the property that the central banker
achieves his or her inflation target.
The log utility example illustrates two problems with standard Taylor rules.

The first is particular to the constrained equilibrium. A scarcity of government
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debt creates the problem that the real interest rate is endogenous, so simple
Taylor rules will not achieve the central banker’s inflation target unless he or
she accounts appropriately for this real interest rate endogeneity. As well, mul-
tiplicity of equilibria can potentially be a worse problem in the constrained
equilibrium case. In circumstances in which there could be two equilibria in the
unconstrained case, we constructed an example in which there could be three.
Finally, as in the unconstrained case, the Taylor principle may not help matters.
In the example, there is a unique equilibrium when the Taylor principle does
not hold (α < 1), but if α > 1, there could be multiple equilibria.

4.2.2 Endogenous Real Interest Rate

Next, suppose that (45) holds, and the central bank follows a Taylor rule that
allows for the endogeneity in the real interest rate. Then, from (23), (27), and
(33),

xt =
1

qtπt+1
. (82)

Therefore, from (61), (82), (27), and (39), assuming that Vt = V and κt = κ for
all t, we can express the Taylor rule as

πt+1 = max

{
παt (π∗)

1−α
,
βu′(V + κ)

γ

}
. (83)

Then, an equilibrium consists of a sequence {c1t , c2t , qt, πt}∞t=0 solving (83), (27),
(33) and (39). Solving for an equilibrium involves first finding a solution to the
difference equation (83), then solving for {c1t , c2t , qt}∞t=0 from (27), (33) and (39).
First, if

π∗ <
βu′(V + κ)

γ
,

then the only equilibrium is the liquidity trap equilibrium, and the central bank
will perpetually exceed its inflation target, as

πt =
βu′(V + κ)

γ
> π∗,

in the liquidity trap equilibrium. However, if

π∗ ≥ βu′(V + κ)

γ
, (84)

then there exist two steady state constrained equilibria. In the high-inflation
equilibrium, πt =

βu′(c1t )
γ = π∗, so the central bank achieves its inflation target.

In the liquidity trap steady state, πt = βu′(V+κ)
γ ≤ π∗, from (84), so the central

bank in general falls short of its inflation target.
In terms of nonstationary equilibria, we get similar results to the uncon-

strained case with an endogenous real interest rate incorporated into the Taylor
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rule. In particular, if α > 1 (the Taylor principle holds), then there exists a con-

tinuum of equilibria with π0 ∈
(
βu′(V+κ)

γ , π∗
)
that all converge in finite time to

the liquidity trap equilibrium. However, if α < 1, then there exists a continuum

of equilibria with π0 ∈
[
βu′(V+κ)

γ ,∞
)
that all converge to the high-inflation

equilibrium.
This Taylor rule solves the problem which occurs due to endogeneity of the

real interest rate in a constrained equilibrium. If the central banker makes an
adjustment in the Taylor rule for the current real interest rate, this implies a
steady state in which the inflation target is met. But the same problems that
occurred in the unconstrained equilibrium are present here. In particular, the
Taylor principle leads to multiple steady states, and the liquidity trap steady
state is stable. As well, there are multiple dynamic equilibria, even in the
absence of the Taylor principle.

4.2.3 Forward Looking Taylor Rule

Finally, consider the forward-looking Taylor rule, as specified by (67). Then,
similar to (76), in the case where u(c) = log c, Vt = V for all t, and κt = κ for
all t, we obtain

πtγκ

β − V πtγ
= max

[
παt+1 (π∗)

1−α
x, 1
]
. (85)

Then, {πt}∞t=0 is a solution to the difference equation

πt+1 = max

[(
πtγκ

β − V πtγ

) 1
α

(π∗)
1− 1

α x−
1
α ,

β

γ (κ+ V )

]
(86)

with π0 ≥ β
γ(κ+V ) .

Suppose that we consider the case α = 1. If

β − γ (κ+ V )x−1 ≥ 0, (87)

then there exist two steady state equilibria: the liquidity trap equilibrium, and
a high-inflation equilibrium. In the high-inflation equilibrium, the central bank
achieves its inflation target if and only if

x =
γκ

β − π∗V γ ,

and

π∗ ≥ β

γ (κ+ V )
.

Thus, due to real interest rate endogeneity in the constrained case, the ad-
justment x for the real rate must depend on the exogenous variables, includ-
ing the inflation target, in the example. If (87) does not hold, then there is
only one steady state equilibrium, which is the liquidity trap equilibrium. As
well, if (87) holds, then there exists a continuum of dynamic equilibria with

28



π0 ∈
[

β
γ(V+κ) ,

β−γκx−1
V γ

)
, and each these equilibria converges in finite time to

the liquidity trap equilibrium.
An interesting feature of the example is that, in contrast to some of the other

cases we have examined involving constrained and unconstrained equilibria, the
Taylor principle is not what produces multiple dynamic equilibria converging to
the liquidity trap equilibrium. In fact, in seems straightforward to show that,
by continuity, Taylor rules of this form with α in the neighborhood of unity are
poorly behaved in this sense.

4.2.4 Backward looking Taylor Rule

Now, consider the backward looking rule

1

qt
= max

[
παt−1 (π∗)

1−α
x, 1
]
, (88)

As in the previous case, consider the example u(c) = log c, Vt = V for all t, and
κt = κ for all t. Then, similar to (85), we obtain

πtγκ

β − V πtγ
= max

[
παt−1 (π∗)

1−α
x, 1
]
. (89)

Then, as in the previous case, restrict attention to α = 1, so (89) gives a
difference equation

πt+1 = max

[
πtxβ

γκ+ πtxV γ
,

β

γ(V + κ)

]
. (90)

There exists a steady state in which the central bank achieves its inflation target
if and only if

x =
γκ

β − π∗V γ (91)

and
β

γV
> π∗ ≥ β

γ(V + κ)
. (92)

Then, (90)-(92) imply that the liquidity trap steady state does not exist. From
(90), if (91) and (92) hold, then there exists a continuum of dynamic equilibria

with π0 ∈
[

β
γ(V+κ) , π

∗
)
, each of which converges to the steady state with πt =

π∗ for all t.
Therefore, this example turns the previous one on its head. Here, the prop-

erties of the model will be qualitatively identical for α in the neighborhood
of unity. In contrast to the case with the previous Taylor rule, the backward
looking Taylor rule in this example has good properties.
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5 Conclusion

In the model we have constructed, all consolidated government debt plays a
role in exchange, though money is acceptable in exchange under a wider range
of circumstances than are government bonds. If asset market constraints do
not bind, the economy has standard operating characteristics. The economy is
Ricardian, a Friedman rule is optimal, and a reduction in the nominal interest
rate increases aggregate output. If asset market constraints bind, then the econ-
omy is non-Ricardian. Under the assumption that fiscal policy is suboptimal,
it is optimal for the central bank to set the nominal interest rate above zero,
and lowering the nominal interest rate can reduce consumption and aggregate
output.
We examine the properties of the model under a variety of Taylor rules.

The Taylor rule is associated with the most problems in the case in which asset
market constraints bind. If the central banker fails to account for the fact
that these binding constraints make the real interest rate low, then the Taylor
rule will not yield steady states in which the central banker achieves his or her
inflation target. In the case in which the central banker corrects for endogeneity
in the long-run real interest rate, the Taylor rule encounters familiar perils —
there can be many equilibria which converge to the zero lower bound on the
nominal interest rate if the Taylor principle holds. As well, there can be new
perils, in the form of multiple steady states in which the inflation target is not
achieved.
These results help in explaining the behavior of interest rates and inflation

during and after the Great Recession. In particular, the Taylor rule results
help us understand why many central banks in the world are having diffi culty
departing from the zero lower bound while inflation rates are persistently below
central bank targets.
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Figure 2: Equilibrium Allocations
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Figure 3: A Decrease in V or κ, Constrained Equilibrium
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Figure 4: Example: Government Deficit as a Function of
Outstanding Consolidated Government Debt at the Zero
Lower Bound
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Figure 5: Example: Government Deficit as a Function of
the Inverse of the Gross Inflation Rate at the Zero Lower Bound
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Figure 6: Taylor Rule Equilibrium, Unconstrained, α >1
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Figure 7: Taylor Rule Equilibrium, Unconstrained, α < 1
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Figure 8: Taylor Rule Equilibrium, Unconstrained, α > 1,
Endogenous Real Interest Rate
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Figure 9: Taylor Rule Equilibrium, Unconstrained, α < 1,
Endogenous Real Interest Rate
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Figure 10: Example: Taylor Rule Equilibrium, Constrained Case,
Constant Real Interest Rate
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