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Abstract 

We estimate location values for single family houses by local polynomial regressions (LPR), a 

semi-parametric procedure, using a standard housing price and characteristics dataset. As a 

logical extension of the LPR method, we interpolate land values for every property in every year 

and validate the accuracy of the interpolated estimates with an out-of-sample forecasting 

approach using Denver sales during 2003 through 2010.  We also compare the LPR and OLS 

models out-of-sample and determine that the LPR model is more efficient at predicting location 

values.  In a balanced panel application, we use GMM estimation to examine how the location 

value estimates are affected by airport infrastructure investments.  
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Introduction 

Identically-sized lots and houses in distinct locations in a metropolitan area likely have 

different market values, a difference largely attributed to the value of location since the structure 

can be renovated or even rebuilt at a similar cost, regardless of its location.  The relatively high 

variability in land value has been well-known by real estate professional and researchers for 

many years.1  However, finding and implementing a theoretically sound and practical method for 

separating the value of the land (i.e., location) from the value of the housing structure has 

remained a challenge.2 

We investigate the separate valuation of residential land and structure using housing price 

sales data. The methods we develop are important where land values rather than housing prices 

are required.3  For example, tax assessors recognize that accurate property valuation must 

address the very different determinants of location value versus reproducible structural 

characteristics.4 Separate estimates of land and building value are used to adjust property tax 

assessments for structure depreciation and for changes over time in land value. Moreover, the 

                                            
1 For example, Diamond (1980) stressed that the price of urban residential land depended primarily on 

location features and amenities.  

2 Throughout the paper, we use the terms land prices and location values interchangeably.  Location value 

highlights that, as suggested by theory, the right to build at a specific location commands a price. 

3 The relative volatility over time of the land value component contributes to macroeconomic risks as 

suggested by Davis and Palumbo (2008) and by Bourassa et al. (2011). 

4 Longhofer and Redfearn (2009) note that property taxes are typically based on total property value. 

Nevertheless, tax assessors separately estimate and report the two components (Gloudemans, Handel and 

Warwa, 2002). 
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ratio of structure to land is used by investors to choose the time and intensity of redevelopment 

(Hendriks, 2005; Dye and McMillen, 2007; Clapp and Salavei, 2010; Ozdilek, 2012). 

The complex interaction between land values and the values of improvements includes an 

option premium for the right but not the obligation to renovate a small old house in a 

neighborhood with McMansions on identically sized lots.  Moreover, Longhofer and Redfearn 

(2009) argue that the implicit prices of structural attributes vary over space because many 

neighborhoods were developed with relatively homogeneous structural characteristics that adjust 

slowly as the land values in the neighborhood change. They propose locally weighted regressions 

with variation in implicit prices modeled by a smoothing function. 

We introduce an alternative approach that considers the interaction between structure and 

land.  Our approach combines local polynomial regressions (LPR) with a linear ordinary least 

squares model.  The former provides estimates of the location values of each property over time, 

while the latter, using the characteristics of the structure, provides estimates of the value of each 

structure.  A backfitting method ensures orthogonality between location and structure.  

To generate location values, our empirical analysis requires only a standard hedonic 

dataset that include sales price, location (latitude and longitude), and housing characteristics. For 

years in which a property was not sold, we interpolate its value as a logical extension of LPR, 

where estimation is typically on a grid that spans the data; estimated values are typically 

interpolated to all sales falling within the grid.   The interpolations produce a balanced panel of 

estimated land values at each location and any point in time where a property has sold. The 

balanced panel spans the years and locations covered by the hedonic dataset. 

Our interpolation to a balanced panel is motivated by the fact that accurate property 

valuation requires separate valuation of land and structure and by many uses of panel data in 
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studies of house value. For example, where valuation of school attributes is based on multiyear 

data, house level fixed effects have required repeat sales, and these sales suffer from sample 

selectivity.5 Our method for interpolating values allows use of all sales, including houses selling 

only once. 

Any study where the identification strategy depends on mean differencing of panel data 

might apply our interpolation methods to construct a balanced panel. Our empirical analysis uses 

housing sales data for Denver over the period of 2003-2010; data include sales price, location, 

and various housing characteristics.6   In our application, we focus on the effect of changes in 

airport infrastructure at the Denver International Airport on land prices. However, our analysis is 

easily adapted to any amenity that might affect land values.  For example, Yinger (2009) uses 

structural hedonic models to identify the effect of distance to an environmental hazard. Our 

method suggests using changes in the hazard over time to test robustness in a reduced form 

model. 

Our spatial smoothing LPR methods are most closely related to Gibbons, Machin and 

Silva (2013), who improve on boundary fixed effects models by using spatial smoothing for 

more slowly varying cross-boundary trends related to demographic sorting and other factors. 

Similarly, Brasington and Haurin (2006) use spatial statistics as part of their identification 

strategy. They use a nearest neighbor spatial weight matrix that “acts like a highly localized 

                                            
5 Nguyen-Hoang and Yinger (2011) provide a detailed review of several multi-year fixed effect models 

intended to measure school quality capitalization. Section 2.2.2 evaluates house level fixed effects, such 

as Figlio and Lucas (2004), as compared to attendance zone fixed effects models, such as Black (1999) 

and Bayer, Ferreira and McMillan (2007).  

6 We have chosen this time frame due to the availability of airport infrastructure investment data. 
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dummy variable,” controlling influences such as a nearby abandoned property (p. 260). Our 

spatial controls cover much larger distances, but a second stage estimation using our balanced 

panel might control more localized characteristics. 

The major contributions of our research include our application of a semi-parametric 

estimation technique using local polynomial regressions (LPR) to separate the value of location 

from the value of structures. Second, we calculate the NRMSE for the LPR and ordinary least 

squares (OLS) approaches, and perform a statistical test to determine that the LPR approach is 

more efficient than OLS. Third, we develop an interpolation method to construct balanced panel 

data: that is, we estimate location value at every location for every year in our sample.  Fourth, 

the panel data allows us to use a GMM estimation approach to determine the spillover effects of 

changes in airport infrastructure capital on location values, while addressing potential 

endogeneity of the regressors. More generally, our method for estimating a balanced panel of 

land values may be applied in different contexts. 

Following this introduction, the paper consists of several sections.  First is a selective 

literature review, followed by a brief summary of the data used in our analyses.  Next, we 

summarize a semi-parametric approach developed by Clapp (2004) for separating land prices 

from improvements. Our extension of Clapp (2004) is the interpolation of location values for 

additional years in which there are no sales of a particular property.  We present the interpolation 

procedure and the resulting land values.  We also compare the predictive accuracy of the LPR 

approach against OLS. We then examine the extent to which various types of airport 

infrastructure expenditures spill over into land values. We complete the paper with a summary of 

our main findings. 
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Literature Estimating Location Values and Spillover Effects 

U.S. housing prices (i.e., the total price that includes land and structures) experienced a dramatic 

increase in the years leading up to 2006.  This boom in housing prices was followed by a major 

bust that began in 2006. When one takes a closer look at the U.S. boom and bust, one sees much 

heterogeneity across regions.  Such heterogeneity is described in detail in Cohen, Coughlin and 

Lopez (2012).  A related finding during the boom and bust is that land prices have been more 

volatile than structure prices.7 

In this paper, our focus is on residential location values in Denver, a metropolitan area 

that did not experience the boom and bust extremes of many areas.8  Quarterly housing prices in 

Denver in the years 2000 through 2012, which includes the boom, bust, and nascent recovery in 

the U.S. housing market, are shown in Figure 1.  Additionally, and explained in detail later, 

Figure 1 depicts the levels of the time dummy variables in an OLS (hedonic) regression of  

Denver housing prices for the years of our dataset. It is noteworthy that the general trend in 

housing prices tracks the trend in the time dummy variables.   

[Insert Figure 1 here] 

In an illustration of one way to use our residential location value estimates, we explore 

the effect of infrastructure spending at the Denver International Airport on our estimates.   A 

                                            
7 Recently, Nichols, Oliner and Mulhall (2013) have found such a result, a finding that is consistent with 

prior research by Davis and Heathcote (2007), Davis and Polumbo (2008), and Sirmans and Slade (2012). 

8 While our approach can be applied generally, our focus on Denver reflected a desire to avoid areas with 

extreme booms and busts in housing prices for our initial analysis. Plus we felt that an airport removed 

from the city would make our infrastructure-related analysis cleaner.  
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large literature examines how and to what extent transportation infrastructure spills over or is 

capitalized into housing prices, including McMillen and McDonald (2004), Weinberger (2000), 

and Forest, Glen, and Ward (1996). These papers use a hedonic pricing approach to assess the 

effects of the transportation infrastructure on housing prices (or commercial rents, in the case of 

Weinberger). Gatzlaff and Smith (1993) use both a repeat sales approach and a hedonic housing 

prices approach to examine the effects of a new rail line in Miami, and find that it had only a 

minimal impact. However, none of these papers directly address the issue of transportation 

infrastructure spillovers by distinguishing the effects on land values.9  

The separation of urban land value from structure value is made challenging by the 

scarcity of vacant land sales in an urban setting. Hendriks (2005) evaluates three methods used 

by appraisal professionals for this purpose: fractional apportionment (FAT), rent apportionment 

(RAT) and price apportionment (PAT) theories. He raises substantial questions about each, 

recommending that appraisers caution their clients about the unreliability of apportionment 

methods. Our local regression method (LRM) is most closely related to PAT since it uses sales 

prices together with location and property characteristics to allocate value (i.e., predicted price 

from a hedonic model) between land and structure. 

Longhofer and Redfearn (2009), who examine how in practice one might disentangle the 

value of land from the value of structures on the land, argue that land and structures are 

inseparable, as does Hendriks (2005). Both appeal to an argument that houses within a 

neighborhood are reasonably homogeneous, in terms of the general size of structure relative to 

lot size. The Longhofer and Redfearn approach requires data on vacant land sales, and they 

                                            
9 Additional references related to infrastructure spillovers can be found when we present our illustration. 
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estimate land values city-wide using locally weighted regressions. In some applications, a lack of 

vacant land sales data may pose challenges to implementing this approach.10  

Clapp and Salavei (2010) focus on a different approach than the one in Longhofer and 

Redfearn (2009). Specifically, they implement an “option value” approach where existing 

structure relative to optimal structure at any time will influence the value of the land. There are 

high adjustment costs, including foregone rents from the existing structure and construction 

costs, so reaching the redevelopment “trigger point” takes time.  Therefore, a property with a 

given set of characteristics will also have covariant location value and implied prices for these 

characteristics.  

Longhofer and Redfearn (2009) use a nonparametric approach, locally weighted 

regressions.  They allow the valuation of location and structural characteristics to vary smoothly 

over space. The spatial smoothing method is similar to Clapp (2004) except that he holds the 

implicit prices of structural characteristics constant and requires orthogonality between structure 

prices and location values. However, Longhofer and Redfearn (2009) attribute all spatial 

variation in implicit structure prices to a second stage land valuation equation, so the difference 

between the two valuation methods may not be great. 

The Clapp (2004) LPR approach separates the value of land and improvements with a 

semi-parametric method. We use LPR in the present paper, and we incorporate several 

extensions.  We implement a procedure to interpolate location values for each property in all 

years in which the property was not sold.  This is a logical extension of the LPR method, where 

                                            
10 In the context of commercial real estate, Haughwout, Orr, and Bedoll (2008) estimate land prices using 

a dataset that includes purchases of vacant land as well as plots with unoccupied structures slated for 

demolition and subsequent replacement by new constructions. 
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estimation on a grid and interpolation to all datapoints is standard. We also conduct statistical 

tests for assessing the accuracy of the interpolation procedure and for comparing the predictive 

accuracy of the LPR versus the OLS approaches. 

 

Data Summary 

Descriptive statistics for the housing data are presented in Table 1 for Denver. There 

were over 326,000 observations for single family residential homes that sold between 2003 and 

2010 in Denver. The distribution of sales across years was fairly uniform through 2006, then 

transactions declined by as much as 50 percent. Still, due to the large sample size, the smallest 

number of yearly sales, in 2010, was over 20,000.  The distribution of sales across counties was 

reasonably uniform.  There were approximately 3.1 bedrooms, with approximately 2.3 full baths 

and 0.33 half-baths in the typical house sold in Denver over this period. Well over half the 

houses sold had a garage, a basement and a fireplace. The average sale price was approximately 

$250,000.  Using the latitudes and longitudes of the houses and the airport, the average house in 

our dataset was located about 20.5 miles from the center of the airport. The closest house was 5 

miles from the airport while the furthest house was 56 miles away. 

[Insert Table 1 here] 

Method for Separating Land and Structure Values11 

The preceding housing data are used in our method to disentangle location values from structure 

prices. We follow the LRM and “option value” approach of Clapp (2004) and Clapp and Salavei 

(2010), respectively. Location value (i.e., the value of the right to build a single family residence 

at a given location) exhibits more variation across both time and space than structural values, 

                                            
11 The LRM description and Technical Appendix below parallel the discussion in Cohen et al. (2013). 
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which can be reproduced at the current cost of construction once the redevelopment trigger point 

has been reached.12 

First, a parametric method – the standard hedonic model – is used for generating implicit 

prices for all housing characteristics (structure and location), and a price index independent of 

these characteristics.  We regress the log of sales price (lnSP) on a vector of house structure 

characteristics (Z), locational characteristics (S), and time (t= 1…T)) which is represented here in 

the form of annual time dummies, Qt:    

0 1 1it i T T itZ S Q Qγ α β γ γ ε= + + + + +ln itSP    (1) 

where ε is assumed to be an iid, normally distributed (for the purposes of hypothesis testing) 

noise term.13  For the estimation of equation (1), we drop one of the time dummies, which 

becomes the base year.  

The cumulative log price index for a standard house in the area is measured by the 

parameters on the annual time dummies,γ . Using our analysis, we plot the price index in Figure 

1 as the exponential of each of the time dummies, with 2010 as the base year (which has a value 

of 100 in Figure 1). In constructing the price index, we assume the structure and location 

parameters do not vary over time. But since they are not constant over time, over any time 

interval T we are measuring the average implicit prices, α and β . This forces any changes over 

                                            
12 Davis and Palumbo (2008) decompose property value into structure and land components, and find 

significant changes in land value over time and across metropolitan areas. They subtract the cost of 

construction from sales prices, while we use the implicit value of the structure. 

13 The natural log of sales price is the dependent variable because logarithms control for 

heteroscedasticity and some nonlinearity, and enhance degrees of freedom. Hastie and Tibshirani (1990), 

pp. 52-55, discuss degrees of freedom for smoothing models. 
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time into the estimates of the γ  parameters; they can be considered an approximation to a pure 

time component that shifts the constant of the regression, 0γ . 

The LPR model differs from equation (1) primarily by estimating the equation at each 

point on a grid composed of equally-spaced time, latitude, and longitude points that span the 

data. In our model, there are 20 time, 15 latitude, and 15 longitude points, for a total of 4500 

“knots” (or target points) on the grid. The size of the bandwidth determines whether or not an 

observation will be used to estimate the function value at the knot. For this paper, the bandwidth 

is chosen to be {.3σ(time), .3σ(latitude), .3 σ(longitude)} and the bandwidth is adjusted upward 

at any target point where there are fewer than 20 observations within one bandwidth. The 

technical appendix contains a discussion of cross-validation bandwidth selection, methods for 

dealing with insufficient density of transactions at any target point, estimation of standard errors, 

and other details of the LPR model.  

We focus on the nonlinear space-time relationships. The semi-parametric LRM model 

enters because of the “curse of dimensionality.”  As a practical matter, there would typically be 

five or six variables for structural characteristics (e.g., interior area, bathrooms) on the left hand 

side of equation (1). If all were represented by even a coarse grid, the data would be sparse near 

any point.  The semi-parametric solution assumes linearity for the equation (1) parameters, α, on 

all the housing characteristics.14  An LPR model is used in the LRM method to estimate these 

coefficients conditional on the location of the house. This approach addresses the concern of 

Longhofer and Redfearn (2009) by requiring statistical independence between the estimated 

coefficients on Z and the nonlinear part of the model.  

                                            
14 Of course, a nonlinear relationship (e.g., with building age) is typically modeled with a quadratic term. 
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To implement this logic, the LRM method begins by using ordinary least squares to 

estimate equation (1) followed by LPR estimation to revise the α
∧

’s to assure independence from 

the location value estimates: the coefficients are the “Robinson” coefficients, Rα
∧

. The Robinson 

coefficients are estimated after conditioning the SP and Z variables on latitude, longitude and 

time. Then, we subtract the estimated value of structural characteristics to obtain the partial 

residuals:  

   - it i Ritpartres aΖ
∧

= lnSP   (2) 

where partres is the partial residual after subtracting structure value estimated with LPR.  

A nonparametric part of the LRM model is: 

( )S ,it i i itpartres q t e= +  (3) 

where iS is a vector consisting of the latitude and longitude and it is the date of sale for house i. 

The “backfitting” method iterates between equations (2) and (3) until there is negligible change 

in Rα
∧

.15 

To summarize, the LRM estimate may be taken as a reasonable approximation to location 

value over time, ( )S ,i iq t , because we subtract an average value of structural characteristics, 

i RαΖ
∧

 where  the estimation method requires statistical independence between location value and 

                                            
15 When we apply the kernel weighting scheme to equation (3), this solves a problem in the standard 

hedonic model of the bunching of transactions within the quarters. The ti variable is based on day, month, 

and year of the transactions and the t0 target is the middle of the year. 
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improvement value.16 We use LPR to estimate ( )S ,i iq t at each of 4500 target points (or “knots”) 

on a grid that spans the data. We interpolate from the target points to our observations, a standard 

approach in the literature on nonparametric estimation. We innovate by using tri-linear 

interpolation, which we discuss below. 

 

Results and Performance of the LPR Approach 

Table 3 presents coefficients from a standard hedonic regression, equation (1), and compares 

them to the Robinson coefficients estimated by taking partial residuals from equation (1) and 

backfitting with equations (2) and (3). All the OLS coefficients have plausible signs and 

                                            
16 Some, such as Davis and Palumbo (2008), have suggested that location value should be estimated as 

property value less construction costs.  To get to this quantity, one would add back i RαΖ
∧

 and then 

subtract construction costs.  An approximation to construction costs can be obtained by assuming that 

they are invariant within the metropolitan area and that they change slowly over time as the costs of 

material and labor change, and therefore the level of construction costs at time zero is the same for all 

properties in the city. The Marshall Valuation Service (MVS) is one approach to approximation of this 

level. Then percentage changes over time can be approximated by using a construction cost indexes such 

as those published by Engineering News-Record (ENR, http://enr.construction.com/economics/ ). With 

these adjustments, location value is estimated by: 

 ( )ˆ S , Ri i i itq t Z Cα
∧

+ −  

where itC is an estimate of construction costs for house i at time t. This procedure may be considered as a 

robustness check. 

 

http://enr.construction.com/economics/
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magnitudes. The time dummy coefficients display a pattern consistent with the Denver house 

price index (Figure 1). Structural characteristics have magnitudes consistent with the literature. 

In particular, value decreases with structure age at a decreasing rate, a typical result for the 

housing market. Conversion of the age coefficients to an index equal to 100 for a new house 

show depreciation of about 1.5% per year declining to near zero at age 30, when the house is 

worth 80% of its initial value. After that values rise back to 100% at about age 60; this is likely 

due to renovations of older houses and to restrictions imposed by the quadratic functional form. 

[Insert Table 2 here] 

The Robinson coefficients handle location value (a function of latitude and longitude) in 

the nonparametric part of the model and they require orthogonality between the two parts of the 

model. The structural coefficients typically change by between 10 and 20 percent, except for the 

relatively unimportant coefficient on number of stories. But the backfitting method dramatically 

changes the way location is modeled. The county dummy coefficients change by amounts 

ranging from -46% to 165% as measured by the OLS coefficient divided by the Robinson 

coefficient. The highly constrained hedonic specification for location – the quadratic in latitude 

and longitude – is replaced by the nonparametric part of the LRM model, equation (3). 

We conduct an exercise to compare the accuracy of the two models - OLS and LPR - in 

estimating location values in Denver between 2003 and 2010. For both models, we run multiple 

simulations of an out-of-sample forecast to produce estimates of location values, which are then 

added to the respective structural values to produce an estimated sales price. We compare the 

estimated sales price to the actual sales price and use normalized root mean squared error to 

determine which model, OLS or LPR, most accurately estimates location value. The exact steps 

taken are outlined below. 
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OLS 

To forecast the location values using ordinary least squares, we omit a random 20% of the full 

set of observations (326,744). The remaining 80% is used to run the hedonic regression. We 

forecast the log of sales price of the omitted 20% using the coefficients of the 80% hedonic 

regression. Finally we compare the estimated log of sales price against the actual log of sales 

price of the 20% using normalized root mean squared error. We repeat this procedure 30 times to 

account for sample bias.  

 

LPR 

To forecast the location values using the LPR technique, we omit a random 20% of the full 

sample of observations (326,744). We then obtain the Robinson coefficients with a regression 

using the remaining 80% of the sample. We forecast the structural values of the remaining 20% 

using the coefficients from the 80% Robinson coefficients regression. To obtain the partial 

residuals of the 80% (used later in the interpolation procedure) we subtract the fitted structural 

values of the 80% from the actual log of the sales price of the 80%. 

For the interpolation procedure to work, the 20% subset must be completely contained 

within the 80% subset: the maximum time, longitude, and latitude of the 20% must be less than 

the maximum time, longitude, and latitude of the 80%. Similarly, the minimum time, longitude, 

and latitude of the 20% must be greater than the minimum time, longitude, and latitude of the 

80%. We remove the observations that fail to meet this requirement from the 20% subset. 

Using the LPR technique, we estimate the location values of the 80% from the partial 

residuals calculated earlier. Then, using tri-linear interpolation, we forecast the location values of 
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the 20% (an appendix for the tri-linear interpolation procedure is available upon request from the 

authors). We add the forecasted location values to the previously forecasted structural values to 

get an estimate of the log of sales price of the 20%. Finally, we compare the estimated  log of 

sales price against the actual log of sales price of the 20% using normalized root mean squared 

error.  We repeat this procedure 30 times to account for sample bias.  

t-Test 

The average NRMSE over all of the 30 trails for the OLS and LPR are 0.0413 and 0.0411, 

respectively. The next question we address is whether or not this difference is statistically 

significant. We use Welch’s t-test for the difference in the means of the NRMSE rather than the 

ordinary Student’s t-test because we cannot assume that the variances of the NRMSE of the two 

populations (methods) are equal – the denominator of the t-statistic is not based on a pooled 

variance estimate. We calculate the t-statistic to be 1.989. With 54 degrees of freedom at the 5% 

significance level (one-tail test critical value = 1.674), we reject the null hypothesis and conclude 

that on average, the NRMSE of OLS is significantly greater than that of the LPR.  

 

Location Value Interpolation and Airport Infrastructure Spillovers 

We perform two extensions using the location value data. First, we implement an interpolation 

procedure to obtain estimates of land values for each house in our sample in every year over the 

period 2003-2010, and examine the accuracy of these land value estimates. In other words, the 

interpolation procedure estimates the value of land at each location, at every point of time. There 

are 2,613,744 (equal to 326,744 x 8) points in the grid. The 326,744 sales observations are 

initially used to generate 326,744 location values, as is standard in the literature.  Then we must 

interpolate to fill in the remaining values for years in which a specific location did not have a 
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sale.  Thus, the number of interpolated points is 2,613,744 – 326,744 = 2,287,208. Second, once 

we have interpolated these location values, we utilize them to assess the spillover effects of 

changes in various categories of airport infrastructure stock values on changes in location values. 

 

Land Value Interpolation 

The interpolation procedure uses the grid of equally spaced knots from the local polynomial 

regression. Because this grid spans the data, each point to be interpolated is surrounded by 8 

knots. To understand this grid, one might imagine a cube (or more generally, a prism with 6 sides 

and 8 vertices), with the point to be interpolated within the cube. The method of tri-linear 

interpolation (Bourke, 1999) approximates the land value at any point inside the cube (or prism) 

using the values on the lattice points. 

A pictorial representation of our interpolation results is provided in Figures 2-4.  These 

figures show the location values in quintiles and facilitate comparisons between 2003 and 2006, 

2006 and 2010, and 2003 and 2010, respectively.  The quintiles are not calculated by separate 

years, but rather for the entire period.  For a given figure, the more the figure is shaded by blue 

and green, the higher the estimated location values.  Thus, Figure 2 suggests that location prices 

tended to rise somewhat between 2003 and 2006. 

[Insert Figure 2 here] 

 Subsequently, land prices tended to decline for a few years and then flattened out.   Note 

that in Figure 3, the extent of blue and green shading declines between 2006 and 2010. 

[Insert Figure 3 here]   
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  Finally, note that in Figure 4 the direction of a general change in location values is 

difficult to discern.  While the blue area is larger in 2010 than in 2003, the red area is also larger 

in 2010 than in 2003. 

[Insert Figure 4 here] 

To confirm these results and indicate the general movement of land prices, here are the 

medians in natural logs by year: 2003 – 9.90, 2004 – 9.92, 2005 – 9.95, 2006 – 9.94, 2007 – 

9.90, 2008 – 9.84, 2009 – 9.83, and 2010 – 9.84.  These estimates indicate the following year-

over-year changes in location values: 2003/2004: 2 percent, 2004/2005: 3 percent, 2005/2006: -1 

percent, 2006/2007: -4 percent, 2007/2008: -6 percent, 2008/2009: -1 percent, and 2009/2010: 1 

percent. We conclude that there was little change overall between 2003 and 2010, so the changes 

evident in the Figures relative to the airport can be interpreted accordingly. 

 

Balanced Panel Illustration: Estimating the Spillover Effects of Airport Capital Stocks on 

Land Values 

Possible applications of a balanced panel of location values data abound. One way for us to 

illustrate the usefulness of generating such a balanced panel data set is to demonstrate how 

location values are impacted by airport infrastructure capital stocks over time. We estimate the 

following model after obtaining interpolated land values for each house in each year: 

 

Li,t = c0 + c1 *A1, i,t + c2 *A2, i,t + c3 *A3, i,t + c4 *A4, i,t + c5 *A5, i,t + αi + τt + εi,t            (4) 

 

In this model, Li,t is level of the real interpolated land value  for property i in year t; A1, i,t  

through A5, i,t represent airport infrastructure stocks for property i in year t for airfields, 
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terminals, parking, roads/rails/transit, and “other”, respectively; A1, i,t  through A5, i,t are weighted 

by the distance from house i to the airport in year t; α and τ are individual and time fixed effects, 

respectively; and εi,t is an iid error term with mean zero, constant variance and zero covariance 

across observations; and for Denver,  i=1, 2,…, 178,731; t=2003, 2004,…, 2010. 17 All time 

invariant unobservables are controlled for by αi, and general time effects by τt. Infrastructure 

effects are identified by changes over time at the individual location level. 

We employ a year-over-year change approach, which leads to the following model: 

 

∆Li,t =  c1 *∆A1, i,t + c2 *∆A2, i,t + c3 *∆A3, i,t + c4 *∆A4, i,t + c5 *∆A5, i,t + θ + ∆εi,t  (5) 

 

where ∆ is the one-year-over-year change for property i. This year-over-year change approach 

enables us to identify the impacts of airport infrastructure on location values, as described in 

greater detail below. Note that examining year-over-year changes causes the cross-sectional 

fixed effects to drop out. The year-over-year analysis also leads to a new set of time-specific 

fixed effects, θ, which includes an intercept term. 

The units of observation are the interpolated land values for individual houses with a 

transaction during the years 2003-2010. We identify the effect of improvements in year t off of 

change from before to after the “event,” FAA’s five major categories of investments.  

                                            
17 The level of the real interpolated land value is calculated in the following order: 1) add the value for the 

coefficient on the time dummy to the interpolated value from the LPR approach; 2) divide this land value, 

which is in logs, by a deflator: and 3) take the exponential of the real value.  There is evidence that land 

values increase with the square root of lot size, so the fact that we are using logs is important since it 

prevents excess acreage from having the same effect on value as the building pad. 
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Specifically, we expect a dampened effect due to distance from the airport.  While we 

initially control for unobservables with cross-sectional fixed effects, these effects drop out due to 

the transformation of the variables to year-over-year changes as in equation (5). The time fixed 

effects variables remain (i.e., the θ in equation (5)). Also, we don’t have the identifying 

demographic groups that Clapp and Ross (2004) had to address the possibility that individuals 

with jobs involving travel may prefer to reside near the airport. A strategy here for allowing 

sorting is to allow the individuals who value a bigger and better airport to bid up the price of 

housing (which is reflected in land values). We accomplish this by allowing a lag after airport 

investments.  

In applications such as ours, there may be other variables that spill over into land values, 

such as airport noise (a disamenity). Any heterogeneity due to airport noise can be captured 

through our individual-level fixed effects (FE). Since our model in equation (5) is based on the 

FE, we do not need to collect demographics at the CBG level. We focus on individual 

transactions because houses within any particular CBG will differ in their access to the expanded 

airport. By lining all the transactions up around each given year of airport 

expansion/depreciation, and including calendar year FE along with the individual level FE, we 

control for omitted variables other than the expansions and depreciation.18  

                                            
18 However, we do not have enough “events” in enough MSAs to do the statistical tests used in event 

studies in the finance literature. The most important explanatory variables are distance from the airport 

interacted with the amount and type of expansion. It may also be the case that some expansions don’t 

increase congestion but only make the terminal facilities more attractive. 

 



20 
 

 Finally, we estimate equation (5) for the one-period change model, using the Arellano-

Bond estimator. This approach uses Generalized Method of Moments (GMM), to instrument 

each one-period change infrastructure variable with the corresponding lagged value of the one-

period change infrastructure variable. This approach follows Arellano and Bond (1991).  

We use both airport infrastructure and housing sales data from Denver for this application 

of our balanced panel estimates. The Denver International Airport opened in 1995.  During our 

sample period, substantial additional airport infrastructure investment as well as depreciation 

occurred.  We use the perpetual inventory method, together with real investment and 

depreciation assumptions (see the data appendix), to calculate the stocks of infrastructure capital 

for 2003-2010. These capital stock estimates for various categories of airport infrastructure are 

shown in Table 3. 

[Insert Table 3 here] 

Table 4 presents the GMM estimates of equation (5). Given the complex nature of the 

urban area southwest of the airport, we choose to focus this part of our application on the 

properties in the northwest quadrant of the airport. Figures 5-7 show the locations of the 

properties examined and their associated land values for 2003 and 2006, 2006 and 2010, and 

2003 and 2010, respectively.  Relative to the entire sample, land values used for this part of our 

analysis tend to be less than in the other part of the Denver area. The southwest region is close to 

downtown Denver, and there are likely a broad variety of economic factors that can be expected 

to influence land values. Although there were 54,439 home sales between the years 2003-2010 in 

the northwest region, it is less developed than the southwest region and there are fewer other 

factors (such as other types of infrastructure, business activity, etc.) that might be expected to 

influence land values. 
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[Insert Figures 5, 6, and 7 here] 

After interpolating the land values in all years for the houses sold in the northwest region, 

we have over 381,000 land value observations. However, we base this estimation approach on a 

set of properties that exclude a “buffer” of approximately 20%, which leaves approximately 

322,000 properties in our analysis for the northwest quadrant. This buffer approach mitigates any 

potential “border” issues that may bias the coefficient estimates by using the full sample. 

To address potential concerns about lack of orthogonality between the airport 

infrastructure growth rates and the error terms, we perform a GMM procedure for the one-year 

change model. We use lagged one-year changes (for each infrastructure type) as instruments in 

the one-year change version of equation (5). There is an issue worth noting. Generally, if the 

number of instruments exceeds the number of parameters to be estimated, the J statistic is a test 

that can be used for over-identification of the model. The J statistic in our GMM estimation is 

1.74*10^(-18) (essentially 0), implying exact identification (Hansen, 1982). But in fact, in our 

estimation the number of orthogonality conditions is the same as the number of parameters, so 

the test for over-identification is not necessary.  

Table 4 presents the GMM results with the one-year change in land values as the 

dependent variable. The one-year changes in each infrastructure category, inversely weighted by 

each property’s (i.e., observation’s) distance to the airport, are the independent variables (as 

shown in equation (5)).  In the very short run, the coefficients for airfields, parking, intermodal 

transportation, and roads, rail, and transit are positive, while the coefficient for other 

infrastructure is negative. All variables reveal a highly statistically significant (P-value = 0.0000) 

relationship with land prices, which is not surprising given the large number of observations. 

[Insert Table 4 here] 
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Precisely how the airport infrastructure expenditures in each of the five categories spill 

over to location values is unclear.  The lumpiness of expenditures both within and across 

categories precludes straightforward interpretations.  Moreover, both of these parking- related 

improvements are much different in nature and transparency for travelers and businesses than 

some of the “other” activities, such as de-icing equipment improvements, can lead to other 

externalities such as pollution runoff.  

The differences in the coefficient estimates in Table 4 suggest, given the respective 

stocks of infrastructure capital, that the impact of additional spending varies substantially across 

the categories.  The coefficient estimates in Table 4 imply a somewhat small (but statistically 

significant) effect of infrastructure improvements on land values at a given location. For 

example, with a $1,000 increase in the airfields capital stock, the average property’s land value 

rises by approximately $0.29.19  A similar $1,000 increase in the terminals capital stock leads to 

an average land value that is $0.34 higher. A $1,000 increase in parking infrastructure leads to a 

$0.24 increase in average land values. With a $1,000 increase in intermodal roads, rail, and 

transit capital stocks, land values rise by $2.58. Perhaps the magnitude for intermodal 

infrastructure is dramatically higher than that for the airport-specific investments because roads, 

rail, and transit may be utilized by individuals who are not necessarily travelling by air, as well 

as by air travelers. Finally, the coefficient on “other” infrastructure implies a $1,000 increase in 

this type of capital leads to a $0.30 decrease in land values. Since this category includes the 

categories of airport infrastructure not captured by the four other categories, it is somewhat of a 

                                            
19 Of course, numerous properties are affected by the expenditure, so the aggregate impact in this 

illustrative case substantially exceeds $1000. 
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“black box”.  One might conjecture that deicing equipment, for instance, has detrimental effects 

on the environment through runoff, which could adversely affect land values. 

One important caveat concerning the interpretation of the results in Table 4 is that the 

parameter estimates from regressions in general reflect the effects of “small” improvements in 

infrastructure, however, the lumpy nature of many infrastructure projects implies there may not 

be much effect of a small change in the capital stock. For instance, a new or renovated terminal 

does not provide any benefits until it is completed, while there may be investments on it over 

large periods of time that are counted in the capital stocks at the time the investments are made. 

For this reason, it is important to consider the changes in infrastructure over time, which is the 

approach we follow for the results in Table 4. 

Another important issue is the timing of the spillover effect. There may be some initial 

price adjustments at the time of the expansion announcement. However, the time path of any 

adjustment process is not clear.  There may not be a full price adjustment until several years later 

once the investments are in place and functioning.20  Obviously, our illustration does not fully 

address this issue. 

 

Conclusion 

We present a theoretically sound, semi-parametric estimation procedure - local polynomial 

regressions - to estimate location values. In addition to being grounded in statistical theory, the 

estimation procedure can be implemented in a straightforward manner using datasets that are 

commonly used in studies of housing markets.  All that is required is data on sale prices, sales 

                                            
20 Jud and Winkler (2006), Agostini and Palmucci (2008), and McMillen and McDonald (2004) found 

evidence of adjustment effects of various types of transportation infrastructure. 



24 
 

dates, and on the associated structural and location characteristics of the properties.  We compare 

the LPR and OLS models using an out-of-sample forecasting procedure, and determine through a 

difference in means test on the respective NRMSE that the LPR model is more efficient at 

predicting location values. 

A major contribution of our analysis is our development of an interpolation procedure 

that is useful in estimating a balanced panel of location value observations in each year for all 

properties that sold during the sample period. We accomplish this with trilinear interpolation 

with the same grid as for the LPR estimates so that values for year in which a property did not 

sell are interpolated in the same way as those in which it did.  We validate the accuracy of the 

interpolated estimates with an out-of-sample forecasting approach. 

 Finally, we illustrate a potential application of our interpolation procedure, together with 

the LPR estimates, for properties near Denver’s airport.  Our balanced panel GMM regressions 

on yearly changes in location values suggest that different airport infrastructure investments have 

positive, albeit different in magnitude, impacts on location values.  These impacts attenuate with 

distance from the airport.   

Our interpolation procedure to generate balanced panels of location values from LPR 

estimation has the potential for many other applications. These include the effects of school 

spending on location values and assessment of the impacts other types of public goods, such as 

parks, on location values.  In addition, it is easy to envision the usefulness for other applications, 

such as house price dynamics driven mostly by changes in land value or taxation of land 

separately from structures.  Finally, the density of location values for a given area allows for the 

generation of numerous land price gradients.   
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Data Appendix 

-Capital stocks:  

We use the perpetual inventory method with annual data on new airport investments in several 

different categories (airfields; terminals; parking; rail, road and transit; and “other”) to obtain 

separate estimates of capital stocks for each of these categories.  The source for the 

disaggregated airport investment data for Denver is the FAA CATS database, Form 127, which 

is located at http://cats.airports.faa.gov/Reports/reports.cfm (most recently accessed 9/28/14). 

Specifically, we deflated the investment series using a national deflator for government 

investment obtained from the 2013 Economic Report of the President, and the initial (or seed) 

value for the capital stock for each category.  This seed value is obtained as the average of the 

investment data for the years 2001 through 2004, multiplied by the estimated service life for each 

category of investment. The depreciation rate was assumed to be the inverse of the service life, 

and the capital stocks followed a straight line depreciation path.  Consequently, the depreciation 

rate = 1/service life. 

The service lives for the different categories were as follows: service lives of airport 

terminals and airfields = 25 years; service life of parking = 40 years; service life of 

roads/rail/transit = 44 years; service life of "other" = 25 years. The justification for these service 

lives can be found in the following sources.  The 25- year number for airfields and terminals 

came from Airports Council International and was used in Cohen and Morrison Paul (2003).  

The service life for parking can be found at the following site: 

http://www.chamberlinltd.com/extending-the-service-life-of-parking-structures-a-systematic-

repair-approach/.  For the roads, rail, and transit variable, we take the average of these two 

service lives and use 44 years for the service life. See 

http://cats.airports.faa.gov/Reports/reports.cfm
http://www.chamberlinltd.com/extending-the-service-life-of-parking-structures-a-systematic-repair-approach/
http://www.chamberlinltd.com/extending-the-service-life-of-parking-structures-a-systematic-repair-approach/
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http://www.bea.gov/scb/account_articles/national/0797fr/table3.htm:  The highways and streets 

service life is 60 years (0.0152) and the state and local railroad equipment service life is 28 years 

(0.0590). 

 

-Land price indexes 

We interpolated land values for all years for each house, using a method devised by Clapp 

(2004) and subsequently modified by Brett Fawley, Diana Cooke, and us. Details are available 

from the authors upon request. 

Subsequently, we add back the values of the time dummy variables from the hedonic 

regressions, then deflated the land values by the CPI for Denver. 

 

 

 

  

http://www.bea.gov/scb/account_articles/national/0797fr/table3.htm: 
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Technical Appendix 

The purpose of this appendix is to explain the details of the local polynomial regression (LPR) 

and local regression model (LRM) methods, including calculation of bandwidths and standard 

errors. These methods are summarized by an algorithm. Parts of this discussion parallel Cohen et 

al. (2013). 

A standard hedonic model provides a point of departure. Regress the log of sales price 

(lnSP) on a vector of house structure characteristics (Z), locational characteristics (S), and time 

(t), which is represented here in the form of annual time dummies, Qt:      

0 1 1i i T T itZ S Q Qγ α β γ γ ε= + + + + +ln itSP    (A1) 

where ε is an iid noise term that is assumed to be normally distributed for the purposes of 

hypothesis testing.  

By way of contrast, a local polynomial regression fits a surface to the observations 

conditional on the function values estimated at each knot on a grid. The LRM is a partial linear 

model designed to allow substantial nonlinearity in the spatial and time dimensions: it fits a 

value surface at each point in time as an alternative to estimating the set of parameters for  

S and t in equation (A1).  It retains the linear portion of equation (A1) for structural 

characteristics. The LRM views price index and value surface estimates as descriptive exercises 

that are not designed to test hypothesis about parameters.  Writing the model as follows 

emphasizes the nonlinear and nonparametric aspect of the LRM: 

( ) itiiiit tSZf ε+= ,,SPln   (A2) 

We allow the function f( ) to be nonlinear because local house prices rarely move in a 

straight line over time and a nonlinear spatial pattern is well known. 
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LRM estimation methods can be introduced by imagining that a number, q, of identical 

houses transact at a given point in space and time, denoted by the fixed vector (z0, s0, t0).  Then, 

an obvious way of estimating equation (A2) at the fixed point would be to average those prices: 

( )
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The error term results from negotiation between heterogeneous buyers and sellers.  Since the 

average error term will tend to zero as the sample size gets large, we will have a consistent 

estimator of a point on the value surface at the given point in time. 

Actual sales prices are spread out in space and time as well as over the range of housing 

characteristics, Z.  If the data were densely distributed over these characteristics, then we could 

average prices that are “close to” any particular point in characteristic space (z0), physical space 

(s0) and time (t0).  This averaging process is very much in the spirit of nonparametric smoothing. 

Nonparametric smoothing implements this local averaging idea by down-weighting observations 

that are more distant from the fixed point:   
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where the weighting function, Kh(.), is defined such that greater distances (e.g., larger values for 

Si – s0) imply lower values for K; h is bandwidth, a set of parameters that govern the selection of 

points “close to” the target vector.1 

                                            
1 Equation (A4) is the well-known Nadaraya-Watson (NW) smoother. See Clapp (2004) for details on the 

choice of the kernel weighting (i.e., density) function. Experts in this field have found that the choice of 

bandwidth is much more important than the choice of a kernel density function. 



35 
 

 

Bandwidth selection is a trade-off between high variance (bandwidth is too small) and high bias 

(bandwidth is too large).  This paper uses a cross validation method for bandwidth selection: See 

Wand and Jones (1995, Chapter 4).  Locally adaptive bandwidths are allowed by increasing 

bandwidth until 20 observations are within one bandwidth of the fixed point. 

The number of variables in the local polynomial regression (LPR) should be small 

because of the curse of dimensionality. Therefore, we estimate equation (A1) and obtain partial  

residuals, partresit, by subtracting i αΖ
∧

 from 
itlnSP . Then the LPR part of the local regression 

model (LRM) is applied to partresit. 

Equation (A4) is a special case of local polynomial regression (LPR), given a specific 

point in space and time, x0 = (s0, t0), the data, Xit = (Si, ti) and Yit = partresit.  Local polynomial 

regression now takes the form of equation (A5):2  

             2( ) ( ) ( )  ( )1 2
pYit o it it it p itβ β β β ε= + − + − + + − +20 0 0 0x X x X x X x    (A5) 

Here, the βj (j=1,…,p) are column vectors with number of elements equal to the columns of X
it i: 

β0 is a scalar.3  Note that, when X
it  equal x0 then equation (A5) reduces to β0, the parameter of 

interest.  Thus, LPR fits a surface to the Y-values conditional on the values of x given by x0: 

                                            
2 The exponents in equations (A5), (A6) and (A8) are taken element-by-element. 

3 The parameters other than β0 allow for curvature around x0; a weighted average of neighboring points, 

equation (A4), would ignore curvature.  Also, comparing equations (A6) and (A3) show how LPR takes 

local averages. 
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E.g., x is a grid of equally spaced points that span the data; the level of Y is estimated 

conditional on each knot of the grid. 

The treatment of time is much more flexible in equation (A5) than it would be in the OLS 

model, equation (A1).  LPR treats time as an addition to the spatial dimension:  that is, we grid 

time as finely as the data permit at each point in space.  For example, to estimate the value 

function at 10 points in time, and at each point of a 30x30 spatial grid, we need 9,000 

regressions.  Each estimator gives high weight to observations that are nearby in space and time 

and lower weight to those that are farther away. 

Kernel weights are applied when estimating equation (A5): 

2
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it it p h it
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Y Kβ β β
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∑ − − − − −2 0 0X x X x   (A6) 

where the weights are applied to each of the variables including the constant term (the vector of 

ones).4  Applying OLS, the parameters estimated using equation (A6) can be estimated as 

follows: 
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1 0 0{ ( ), , ( )}x h t h ntW diag K K= − −X x X x  . (A9) 

                                            
4 The metric for time is different from that for space (and also different for structural characteristics). 

Cross-validation (CV) is used to select optimal bandwidths: If CV indicates that more distance is needed 

for estimation at any knot, than a larger bandwidth will be chosen in the spatial dimension.  This 

addresses a concern raised by Pavlov (2000). 
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This regression is repeated for each point on the 0x grid. It is important that 0β̂ is the main 

parameter of interest at each knot because the terms in the polynomial collapse to zero at the 

knot.  I.e., 0β̂ is the smoothed value for the dependent variable. 

LPR is a weighted OLS regression at the point x0, so we can test hypotheses on the 0β̂ ’s by 

assuming that they are multivariate normal with the following covariances:   

( ) ( ) ( ) 11
 )ˆ(

−−
=− xx

T
xxx

T
xxx

T
x WWWCovVar XXXXXX xVWβ ,where V is a diagonal matrix of variances for εi. 

 

The algorithm for estimating Robinson coefficients with backfitting 

A backfitting method is used to estimate the coefficients in the linear part of the model. This is 

done to obtain orthogonality between the coefficients on structural characteristics and the 

locational characteristics. The backfitting method can be summarized as follows:5 

• Use LPR to calculate lnSP given time and space (S,t). The structural characteristics (Z) 

are not used in this regression.  The predicted values are E(lnSP| S,t). 

• For each element in the vector of structural characteristics (Z) use LPR to calculate 

predicted values: E(Z | S,t). 

• Subtract these estimates from the original values to determine sales price (lnSP*) and 

value of structure (Z *) independent of time and space: lnSP*=lnSP-E(lnSP| S,t) and Z*= 

Z - E(Z | S,t). 

• Use OLS to estimate the parameters of the structural characteristics (the “Robinson 

coefficients”) by regression lnSP* on Z*: lnSP*= Z * Rα  +e. 

                                            
5 The i,t subscripts are suppressed for ease of notation. 
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• Iterate the previous steps until there is no economically significant change in the 

estimated Robinson coefficients, Rα
∧

. 

 

The algorithm for estimating location values 

• Calculate partial residuals by subtracting the estimated values of the structural 

characteristics from lnSP: partres=lnSP- RZ α
∧

. 

• Use LPR to estimate location values by regressing partial residuals on time and space 

values: ( )ˆ S,q t =E(partres| S,t) 
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Table 1: Descriptive Statistics, Denver Single Family Home Sales, 2003-2010 

 

Variable Mean Std. Dev. Variance Minimum Maximum  
Sale Price (Log) 12.4315 0.5486 0.3010 6.9078 15.4249  

Yr2003 0.1393 0.3463 0.1199 0 1  
Yr2004 0.1530 0.3600 0.1296 0 1  
Yr2005 0.1528 0.3598 0.1295 0 1  
Yr2006 0.1384 0.3453 0.1192 0 1  
Yr2007 0.1232 0.3286 0.1080 0 1  
Yr2008 0.1112 0.3144 0.0989 0 1  
Yr2009 0.0955 0.2940 0.0864 0 1  
Yr2010 0.0865 0.2811 0.0790 0 1  

No of Bedrooms 3.1587 0.8403 0.7061 1 13  
No of Full Baths 2.2924 0.8853 0.7838 1 12  
No of Half Baths 0.3259 0.4938 0.2439 0 5  
No of Fireplaces 0.7669 0.7313 0.5348 0 10  
Garage Dummy 0.9103 0.2858 0.0817 0 1  

Basement Dummy 0.8031 0.3977 0.1581 0 1  
Stories Dummy 0.4839 0.4997 0.2497 0 1  

Adams County Dummy 0.1900 0.3923 0.1539 0 1  
Denver County Dummy 0.2268 0.4188 0.1754 0 1  
Douglas County Dummy 0.1782 0.3827 0.1465 0 1  

Arapahoe County Dummy 0.2114 0.4083 0.1667 0 1  
Jefferson County Dummy 0.1935 0.3951 0.1561 0 1  

Longitude -104.9384 0.1441 0.0208 -105.4648 -103.765  
Latitude 39.6936 0.1440 0.0207 39.1305 40.242  

Longitude Squared 11012.0871 30.2435 914.6665 10767.1109 11122.82  
Latitude Squared 1575.6048 11.4253 130.5373 1531.1990 1619.42  

Lat*Lon -4165.3879 16.7768 281.4625 -4206.4213 -4098.49  
Age 34.0694 27.3488 747.9552 0 145  

Age Squared 1908.6075 2870.4277 8238049 0 21025  
Land Square Feet (Log) 9.0213 0.6916 0.4765 6.2146 18.1084  

 

Observations = 326,744 

 

 



Table 2: Hedonic Regressions, Denver SFR Home Sales, 2003-2010 

 

Variable Coeff. T-Value P-Value 

Robinson’s Method 
Coeff. T-Value P-Value 

Constant -4233.666469 -13.527658 0.00    

Yr2003 0.056438 21.222047 0.00    

Yr2004 0.085489 32.724294 0.00    

Yr2005 0.121738 46.576639 0.00    

Yr2006 0.111406 41.845352 0.00    

Yr2007 0.065053 23.879809 0.00    

Yr2008 -0.051856 -18.623067 0.00    

Yr2009 -0.041102 -14.261565 0.00    

No of Bedrooms 0.014671 15.866329 0.00 0.017519 19.144798 0.00 

No of Full Baths 0.164688 152.781209 0.00 0.146963 136.717485 0.00 

No of Half Baths 0.151836 91.099069 0.00 0.132745 79.822351 0.00 

No of Fireplaces 0.170455 161.099640 0.00 0.145072 137.001850 0.00 

Garage Dummy 0.170616 71.760975 0.00 0.170824 72.495021 0.00 

Basement Dummy 0.138199 80.941398 0.00 0.128803 75.681740 0.00 

Stories Dummy 0.014131 8.167266 0.00 0.026279 15.247442 0.00 

Adams County Dummy 0.003398 1.021937 .307 -0.04711 -10.518532 0.00 

Denver County Dummy 0.183828 61.887987 0.00 0.069461 18.394318 0.00 

Douglas County Dummy 0.016086     3.821778 0.00 -0.27454 -38.868442 0.00 

Arapahoe County Dummy -0.021698 -6.430422 0.00 -0.20686 -43.457920 0.00 

Longitude -107.719767   -21.667117 0.00    

Latitude -72.155186   -15.752523 0.00    

Longitude Squared -0.799777   -37.149268 0.00    

Latitude Squared -1.115896 -32.965914 0.00    

Lat*Lon -1.529108 -41.419968 0.00    

Age -0.014724 -160.94147 0.00 -0.01629 -164.96856 0.00 

Age Squared 0.000122 156.981420   0.00 0.000126 151.223767 0.00 

Land Sq Feet (Log) 0.183304 159.507617 0.00 .235341 196.404030 0.00 

 

Valid cases: 326744  Dependent variable: Sales Price (Log) 
Missing cases: 0  Deletion method: None 
Total SS: 98336.134  Degrees of freedom: 326717 
R-squared: 0.591  Rbar-squared: 0.591 
Residual SS: 40228.422  Std error of est: 0.351 
F(24,178706): 18150.942  Probability of F: 0 
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Table 3: Airport Infrastructure Capital Stocks, Denver International Airport, 2003-2010  

(constant (2003) millions of dollars, net of depreciation) 

 

 

 

 

 

 

 2003 2004 2005 2006 2007 2008 2009 2010 
Airfield 759.3 735.2 710.6 695.0 678.8 664.0 675.6 670.2 

Terminal 592.1 581.4 570.7 591.8 596.6 601.3 590.9 589.1 
Parking 88.9 88.4 87.3 96.5 131.2 136.0 139.6 138.9 

Road, Rail & Transit 104.4 107.1 111.9 112.3 110.4 113.0 111.7 114.3 
Other 385.2 379.1 367.8 358.9 348.3 350.6 345.1 349.6 
Total 1929.8 1891.3 1848.4 1854.4 1865.3 1865.0 1863.0 1862.1 
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Table 4: GMM Estimation of One-year Change of Land Value on Airport Infrastructure 
Capital Stocks (normalized by distance to the airport), Denver International Airport 

Note: land values are in real terms 
 
 

 
 
 
Dependent Variable: One-year change Land_Level  
Method: Panel Generalized Method of Moments  
   
Sample: 2005 2010 IF LAT>39.8439 AND LONG<-104.6733 
Periods included: 6   
Cross-sections included: 53742  
Total panel (balanced) observations: 322452  
2SLS instrument weighting matrix  
Instrument specification: Constant, One-year change_AIRFIELD(-1)  
     One-year change_TERMINAL(-1) One-year change PARKING(-1) 
One-year change RD_RL_TRN(-1) One-year change OTHER(-1) 
Constant added to instrument list           
  

          
Variable Coefficient Std. Error t-Statistic Prob.   

          
Constant -2603.124 1.906908 -1365.102 0.0000 

One-year change_AIRFIELD 0.000285 7.02E-06 40.59259 0.0000 
One-year change_TERMINAL 0.000339 2.94E-06 115.1157 0.0000 
One-year change_PARKING 0.000235 5.08E-06 46.18320 0.0000 

One-year change_RD_RL_TRN 0.002581 3.71E-05 69.61141 0.0000 
One-year change_OTHER -0.000302 3.86E-06 -78.24314 0.0000 

          
 Effects Specification   
          

Period fixed (dummy variables)  
          

R-squared 0.979117     Mean dependent var -2321.416 
Adjusted R-squared 0.979116     S.D. dependent var 1722.607 
S.E. of regression 248.9371     Sum squared resid 2.00E+10 
Durbin-Watson stat 0.716351     J-statistic 1.74E-18 
Instrument rank 11    
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Figure 1 – Single Family Home Sale Prices, Denver 

 

 

Source: Denver Home Price Index is from Federal Reserve Economic Data (FRED); Time 
dummy coefficient estimates are obtained from regressions in Table 3, normalizing 2010 (the 
omitted year) to equal 100. 
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Figure 2 – Denver MSA Location Values (2003/2006) 
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Figure 3 – Denver MSA Location Values (2006/2010) 
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Figure 4 – Denver MSA Location Values (2003/2010) 
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Figure 5 – Northwest Portion of Denver MSA Location Values (2003/2006) 
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Figure 6 – Northwest Portion of Denver MSA Location Values (2006/2010) 
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Figure 7 – Northwest Portion of Denver MSA Location Values (2003/2010) 
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