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Abstract

I develop a multicountry-model in which economic growth is driven mainly by do-
mestic innovation and the adoption of foreign technologies embodied in traded in-
termediate goods. Fitting the model to data on innovation, output per capita, and
trade in varieties for the period 1996-2007, I estimate the costs of both domestic
innovation and adopting foreign innovations, and then decompose the sources of
economic growth around the world. I find that the adoption channel has been es-
pecially important in developing countries, and accounts for about 65% of their
“embodied” growth. Developed countries grow mainly through the domestic inno-
vation channel, which explains 85% of their “embodied” growth. A counterfactual
exercise shows that if all countries reached the same research productivity, then (i)
the world’s steady-state growth rate would double, and (ii) developing countries
would close the gap in terms of both growth rate and income per capita.
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1 Introduction

In the last decade, some developing countries in Asia and Europe grew faster than av-
erage. While their research intensity was lower than that of developed economies, they
were expanding their variety of imports. In fact, innovations tend to concentrate in a
few developed countries, which grow and import varieties at a lower rate than do devel-
oping economies. Endogenous growth theories show innovation to be the main engine of
growth. Yet in a cross section of developed and developing countries, the correlation be-
tween research intensity (a rough measure of innovation) and economic growth is negative
or nonsignificant. Fast-growing countries that expand their range of imported varieties
may benefit from foreign innovations embodied in those varieties. Several empirical stud-
ies have documented this benefit (Coe, Helpman, and Hoffmaister (1997)). However,
structural models that quantify these connections are limited. In this paper, I present
an endogenous growth model of innovation and adoption through trade in varieties to
measure the effect of foreign sources of innovations on “embodied” economic growth.

Theories about the effects of innovation, imported products, and growth date back
at least to Romer (1987) and Rivera-Batiz and Romer (1991), but empirical work based
on these models has been limited owing mostly to lack of data. The disaggregated trade
data that has more recently become available for many countries yield new stylized facts.
In particular, it appears that much of the last decade’s increase in the ratio of trade to
gross domestic product (GDP) stems from the extensive and not the intensive margin
of trade—that is, from the number rather than the quantity of goods traded.1 During
this period, developing countries that expanded their range of imports grew much faster
than average. For instance, China and India grew at an average annual rate of 8% over
1994–2003 against a world average of 2%; at the same time, their growth in imported
varieties was 5 times that of developed economies.2

I develop a multicountry dynamic general equilibrium model in which countries un-
dertake research to develop new products and exploit the advances of others by importing
their products. In contrast with a large literature exploring the reduced-form relationship
between trade and growth—for instance, Feyrer (2009) uses a time varying geographic
instrument to establish a robust causal relationship between trade and income—both are
equilibrium outcomes in my analysis. Imports and growth are connected by technological
innovations and their international diffusion through trade. Economic growth is driven

1Broda, Greenfield, and Weinstein (2008) show that, for an average country, the extensive margin
explains more than 75% of the increase in this ratio. Hummels and Klenow (2002) also perform this
decomposition for exports and find that the extensive margin explains two thirds of the increase in trade.

2Broda, Greenfield, and Weinstein (2008) find that, for developing countries, the extensive margin
explains almost all of productivity growth. Santacreu (2006) finds that more than 60% of Ireland’s growth
during 1994–2003 was driven by an increase in the variety of imported goods from highly innovative
OECD countries.
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by technology accumulation.3 In addition to an exogenous process of “disembodied” pro-
ductivity growth, there are two sources of “embodied” productivity growth. First, in the
spirit of the new growth theory, countries accumulate domestic technologies when their
firms invest in R&D and innovate. Second, because technology is assumed to be embodied
in intermediate goods, countries adopt foreign technologies embedded in the intermedi-
ate goods they import. In the model, both innovation and adoption are endogenous
processes. Firms in each country invest in research and development (R&D) to produce
new technologies, and each new technology is then used to produce an intermediate good.
Domestic final producers buy and use the new intermediate good immediately whereas
foreign final producers must first adopt it, which requires investing resources over time
(e.g., in learning). Hence the speed of technology diffusion through trade is endogenous.4

I analyze both the model’s steady state and its transition dynamics. In steady state,
international technology diffusion through trade ensures that all countries grow at the
same rate, but barriers to foreign technology adoption and different research productivity
induce persistent income differences.5 More interestingly, countries grow at different rates
during the transition from a low-technology, developing economy to a high-technology,
developed one. I find that innovation and adoption through imports affect a country’s
productivity growth differently depending on its position on this transition path. Coun-
tries at early stages of development (and thus farther from the technological frontier)
grow by adopting the new foreign technologies embedded in the intermediate goods that
they import. In contrast, countries at later stages of development (and thus relatively
close to the technological frontier) grow by developing new technologies through R&D.

The model is fitted to 30 countries grouped, for tractability, into three types: emerg-
ing, less innovative OECD, and more innovative OECD countries. I use data on innova-
tion, GDP per capita, and bilateral trade at the product level over the period 1996–2007
and employ Bayesian techniques to estimate the structural parameters. Using the esti-
mated parameters, I distinguish worldwide sources of growth in terms of “disembodied”
versus “embodied” growth, and then decompose the latter into domestic innovation and
adoption of foreign innovations through trade, which are the model’s main growth chan-
nels. I find that adoption of foreign technologies through trade is an important source of
embodied growth for developing countries whereas domestic innovation is the main source

3A large literature studies whether differences in growth rates are driven mainly by differences in
factor accumulation (capital, in particular) or in total factor productivity (TFP); see Young (1991).
Other authors who study the role of trade in explaining growth-rate differences have focused on capital
accumulation (Ventura (1997)). Easterly and Levine (2001) and Klenow and Rodriguez-Clare (2005)
show that differences in TFP drive differences in growth rates across countries.

4Consistently with recent evidence (Comin and Hobijn (2004)), diffusion is modeled as a slow process
whose speed depends on the resources invested by the adopters. Eaton and Kortum (1999) find that
international diffusion is much slower than domestic diffusion; I make the simplifying (though admittedly
extreme) assumption that domestic diffusion is free and instantaneous.

5Rodriguez-Clare and Klenow (1997) review models of international diffusion of technology that pre-
dict a common constant growth rate.
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of embodied growth for developed countries. Indeed, about 65% of embodied growth in
emerging economies can be explained by foreign innovations—especially from the most
innovative OECD countries.6

Finally, I conduct counterfactual experiments to study how the steady state would
change if all the countries reached the same research productivity and then if they all
faced the same barriers to adoption. I find that if all countries reached the same re-
search productivity, then the steady-state growth rate of the world would double and the
developing countries would close the gap not only in growth rates but also in levels of
income per capita. Convergence of barriers to adoption would have a smaller (but still
significant) positive impact on the world’s economic growth and on the research intensity
in each country.

This paper builds on several streams of literature. The first one concerns endogenous
growth fueled by technology embodied in new goods, as in Romer (1987). Goldberg,
Khandelwal, Pavcnik, and Topalova (2010a) provide empirical evidence that conven-
tionally measured TFP increases with imported varieties. My model also considers an
exogenous component of TFP that represents disembodied technology, as in Greenwood,
Hercowitz, and Krusell (1997).

Second, I follow Eaton and Kortum (1996, 1999) in positing technological innova-
tions and their international diffusion through trade as potential channels of embodied
technological progress.7 In my model, however, the pace of innovation and the speed
of diffusion are both endogenous. Comin and Gertler (2006) and Comin, Gertler, and
Santacreu (2009) also model endogenous diffusion in a business-cycle model for a closed
economy. I adapt their framework to an open-economy model.

The lack of direct measures of adoption has led a third literature stream to use indi-
rect ones, such as trade in intermediate goods (Rivera-Batiz and Romer (1991); Eaton
and Kortum (2001) and Eaton and Kortum (2002)) or international patenting (Eaton
and Kortum (1996, 1999)).8 Because this paper aims to understand the trade–growth
connection, I use trade as an indirect measure of diffusion. It has been widely estab-
lished that trade allows countries to adopt innovations developed abroad. Along these
lines, Coe, Helpman, and Hoffmaister (1997) find that the TFP of developing countries
is related to the stock of R&D carried out by their trading partners. My paper extends
this literature by taking explicit account of the mechanisms connecting trade and growth.
Bøler, Moxnes, and Ulltveit-Moe (2012) use Norwegian firm-level data on R&D and trade
in intermediates to develop a model they estimate structurally and find that both imports

6Cameron, Proudman, and Redding (2005) analyze a panel of UK manufacturing industries and find
that innovation and technology transfers are the main sources of productivity growth for countries lagging
behind the technology frontier.

7Keller (2004) surveys empirical studies of innovation and diffusion.
8Comin and Hobijn (2004) provide direct measures of adoption for many countries over a long sample

period; however, they do not distinguish between domestic and imported technologies.
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and R&D investment are key to explaining firm-level productivity growth.
Fourth, this paper also relates to the literature on trade in varieties (Feenstra (1994);

Broda and Weinstein (2006); Broda, Greenfield, and Weinstein (2008)). I follow their
methodology to construct a measure of the extensive margin of trade, but I model ex-
plicitly the firms’ incentives for R&D and adoption. Goldberg, Khandelwal, Pavcnik,
and Topalova (2010b) find that, once allowed by trade liberalization in India during the
1990s, access to foreign inputs raised productivity levels and thereby generated static
gains from trade.9 Furthermore, they show that new foreign inputs also lowered the cost
of innovation, which enabled the creation of new varieties and hence dynamic gains from
trade. My model accounts for this mechanism by stipulating that the innovation process
includes learning from imports. Kasahara and Rodrigue (2008) find that importing inter-
mediate goods improves plant performance in a sample of Chilean manufacturing panel
data, which is in line with the results of my paper when extended to a cross-section of
countries.

In a fifth stream of related literature, Atkeson and Burstein (2010) develop a model of
heterogeneous firms that use both process and product innovation to assess the effect of
changes in trade costs on welfare. They analyze entry and exit decisions of firms regarding
the export market and find that the effect of decreases in trade on welfare are offset by
the response of product innovation. In focusing only on exports, they fail to account for
the additional channel of technology diffusion that is embodied in the imported varieties.
This is the main channel of my model, and it has implications for welfare when one
considers Dixit–Stiglitz preferences and for aggregate productivity when one considers an
Ethier production function. Through technology diffusion, decreases in trade costs have
a positive effect on aggregate TFP.

The paper proceeds as follows. Section 2 examines the data, and Section 3 presents the
model. Section 4 studies the steady state and transition dynamics. Section 5 describes
the estimation procedure. Section 6 decomposes the sources of economic growth and
assesses their relative contributions. Section 7 describes (and reports results from) my
counterfactual experiments, and Section 8 concludes.

2 A First Look at the Data

This section presents some stylized facts based on correlations among the extensive margin
of trade, innovation, and GDP per capita (abbreviated a “pc” in the figures). I use data
for a sample of 30 countries for the period 1996–2007.10 These countries account for 80%

9Halpern, Koren, and Szeidl (2009) use Hungarian micro data to estimate a model of importing; they
find that importing all foreign varieties would increase firm productivity by 12%.

10For the sample of countries being analyzed, the period of time is chosen based on data availability
for the measure of innovation and for the level of disaggregation of bilateral trade in varieties.
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of world GDP and 85% of world trade.
Bilateral trade data are obtained from the UN COMTRADE database. I follow the

HS-1996 classification, which lists goods at the 6-digit level of disaggregation, and restrict
the analysis to intermediate products (see Appendix B). Output is measured as GDP per
capita adjusted via purchasing power parity (PPP) to constant 2005 prices; the data
are from the version 8 of the Penn World Table (PWT). Finally, research intensity is
measured by a country’s R&D expenditures as a fraction of its GDP (based on data from
the World Bank’s World Development Indicators).

Figure 1 indicates that there is a positive correlation between growth in GDP per
capita and growth in the extensive margin of trade computed using the Hummels–Klenow
decomposition (a similar pattern is obtained when using growth in the number of imported
varieties). Countries that have increased the number of imported intermediate goods
faster are countries that have grown faster during the period of analysis. That said, these
countries are not especially innovative. Figure 2 reveals domestic innovation, as measured
by R&D intensity (the fraction of GDP that is allocated to R&D), is concentrated in a
handful of rich countries; this distribution indicates that innovation and growth are but
weakly correlated. Fast-growing countries that import intermediate products at a rapid
pace may benefit from the foreign innovations embodied in those products.
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Figure 1: Growth and the Extensive Margin of Imports
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Figure 2: Innovation and income per capita

Figure 3 offers evidence in favor of that hypothesis. A scatter plot of the correla-
tion between a country’s growth and the R&D content of its imports (measured as the
fraction of R&D embodied in those imports) shows a positive correlation between the
two measures. This channel was especially important for developing countries during the
period of analysis.
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Figure 3: Growth and the R&D content of imports

Taken together, the empirical evidence suggests that developing countries—which are
farther from the technology frontier—may exceed average growth rates by adopting the
foreign innovations embedded in goods that they import. Developed countries, which are
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closer to the technology frontier, grow mainly by doing their own innovation and hence
by pushing that frontier. The main goal of this paper is to decompose the sources of
“embodied” economic growth into domestic factors (i.e., domestic innovation) and foreign
factors (i.e., foreign innovation adopted through trade in varieties).

3 The Model

I develop a multicountry growth model in which technological progress is driven by en-
dogenous innovation and the adoption of new technologies. In each country there is a set
of available technologies produced by both domestic and foreign intermediate producers.
Labor is the only factor of production, and it is used to produce traded intermediate
goods. Intermediate goods are combined to produce a nontraded final good, which in
turn is used for consumption, domestic innovation, and adoption of foreign innovations.
Time is discrete and indexed by t = 0, 1, . . .; there are I countries in the world, indexed
by n = 1, 2, . . . , I. Each period of time is divided into two stages. In the first stage, pro-
duction and consumption take place, and I take each country’s technologies as given. In
the second stage, innovation and adoption of technologies takes place, which determines
the technologies available in the next time period.

3.1 Production and Consumption

3.1.1 Intermediate Production

In each country n, the total labor supply Ln is employed by a continuum of monopo-
listically competitive firms to produce intermediate goods indexed by j ∈ [0, Znt]; here
Znt represents the mass (or, alternatively, the number) of available products. I assume
that intermediate goods are differentiated by source of exports—in other words, coun-
tries exogenously specialize in different sets of goods (this is the Armington assumption).
As is standard practice in the literature, variety nj is defined as the intermediate good
j produced in country n.11 Each firm produces a different good according to the CRS
(constant returns to scale) production function

ynjt = lnjt, (1)

where ynjt is the quantity of variety nj produced and lnjt is the amount of labor employed
in its production. Note that all intermediate producers in a country have the same
productivity regardless of which good they produce.

The producer of variety nj takes as given the demand by the final producer in each
11The Armington assumption allows us to define a variety nj as a good j from a particular country

n. Thus good j produced in country n differs from good j produced in country k.
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country i = 1, 2, . . . , I and sets a price that is a constant markup over the marginal
cost. Prices can differ across countries because markets are segmented owing to “iceberg”
transport costs: for products shipped from country n to country i, the transport cost is
din > dnn = 1 for i 6= n. The marginal cost is given by domestic wages, since labor is the
only factor of production. Hence the price in country i of variety nj is

pinjt =
θ

θ − 1
ωntd

i
n, (2)

where θ
θ−1

is the markup (θ will be described in Section 3.1.2) and ωnt is the wage in
country n.

The profit of the producer of variety nj is

πnjt =

I∑
i=1

(pinjt − ωnt)xinjt =
1

θ

I∑
i=1

pinjtx
i
njt, (3)

where xinjt is the demand for variety nj by the final-good producer in country i, to be
determined in the next section.

3.1.2 Final Production

In each country i, a perfectly competitive firm (henceforth the final producer) uses traded
intermediate goods—both domestic and foreign— to produce a nontraded final good
Yit. Varieties are combined according to the CES (constant elasticity of substitution)
production function

Yit = eait

(
I∑

n=1

ˆ Aint

j=0

binjt(x
i
njt)

θ−1
θ dj

) θ
θ−1

, (4)

where Aint is the mass of intermediate goods that country i imports from country n;
binjt the so-called Armington weights, which represent the share of country i’s spending
on variety nj; σ > 1 is the elasticity of substitution across varieties (they are perfect
substitutes when θ → ∞); and ait is an exogenous TFP shock that follows the AR(1)
process

ait = ḡt+ ρai,t−1 + uit (5)

where ḡ ∈ (0, 1) is the steady-state growth rate, ρ ∈ (0, 1) and uit ∼ N(0, σ2
u).

Economic growth is driven by technological progress. Technology is embodied in
intermediate goods traded across countries and potentially used by final producers in all
countries. This dynamic is captured by the CES production function, which introduces
a “love-for-variety” effect: holding expenditures constant, using a wider range of varieties
corresponds to increased output per capita—that is, to increased productivity as in(Ethier

9



1982).12 The shock process ait introduces an additional channel of technological progress,
which I refer to as disembodied technology (Greenwood, Hercowitz, and Krusell 1997);
thus ait captures the unexplained component of productivity growth, with ḡ the steady-
state growth rate.

The final producer chooses xinjt to maximize his profit Πit,

Πit = PitYit −
I∑

n=1

ˆ Aint

j=0

pinjtx
i
njt dj, (6)

here Pit is the price index for the final good, which takes the CES form

Pit =

(
I∑
n=i

ˆ Aint

j=0

(binjt)
θ
(
pinjt
)1−θ

dj

)
1

1−θ . (7)

The maximization problem implies the following demand for variety nj:

xinjt = (binjt)
θ

(
pinjt
Pit

)−θ
Yit. (8)

Total spending by country i on variety nj is then

pinjtx
i
njt = (binjt)

θ

(
pinjt
Pit

)1−θ

PitYit. (9)

3.1.3 Households

In each country n = 1, . . . , I, a representative household consumes the final good, supplies
labor inelastically, and saves. The household maximizes life-time expected utility

Et

∞∑
s=t

βs log(Cns) (10)

subject to the budget constraint

PntCnt = ωntLnt + ΠT
nt +RntBnt −Bn,t+1. (11)

Here Cnt is consumption, β ∈ (0, 1) is the discount factor, ωnt is the wage, ΠT
nt are the

total profits of all the firms (final and intermediate good producers) in country n, Bnt

denotes total loans the household extended to innovators and adopters at time t − 1

and that are payable at time t, and Rnt is the risk-free rate. The household chooses
12Because labor is the only factor of production in this model, output per capita and productivity are

the same thing. The empirical stylized facts on the correlation of growth and the extensive margin of
imports can also serve as a measure of productivity computed as the Solow residual, where labor and
capital are factors of production. Building a model to analyze the correlation in terms of TFP would
imply adding capital, which would introduce an additional state variable and complicate the analysis.
So, in this paper, output per capita and productivity are the same variable.
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consumption, labor supply, and loans to maximize (10) subject to (11).

3.2 Innovation and Adoption

So far, I have described the production process of each economy, while assuming a given
set of available technologies or intermediate goods. Yet the number of intermediate goods
evolves over time according to an endogenous process of innovation and adoption that I
describe next. In each time period’s second stage, innovation and adoption of technologies
determine the technology available in each country at time t + 1. New technologies are
introduced through an innovation process, and each new technology is then used to
produce an intermediate good under monopolistic competition. Intermediate goods can
immediately be sold to the domestic final producer; however, selling the good in a foreign
market requires that the good first be adopted by that market. Domestic adopters invest
foreign resources so that they can sell the good in each potential destination with a certain
probability.

3.2.1 Innovation

In each country n = 1, . . . , I, innovators develop new prototypes of an intermediate good
(i.e., an idea). They then sell the right to use this idea to an adopter who converts it
into a new intermediate good to be used by domestic and foreign final producers, as
described next. Specifically, each innovator p invests the final good to undertake R&D
and introduce a new technology. The innovator finances this technology with loans from
households.13

Let yrpnt be the total amount of final output invested in R&D by innovator p from
country n at time t, and let Zp

nt be total stock of innovations. Let ϕrnt be a productivity
function that the innovator takes as given. The innovation technology is as follows:

EtZ
p
n,t+1 − Z

p
nt = ϕrnty

r
pnt. (12)

It is assumed that ϕrnt depends on aggregate conditions, which are taken as given by the
innovators. In particular,

ϕrnt =
αrnTnt

Y γr
nt (yrnt)

1−γr ;

here γr ∈ (0, 1) is the elasticity of R&D with respect to new technology creation, and
Y γr
nt (yrnt)

1−γr is a “congestion” term that raises the cost of developing new products as
total R&D increases (see Comin and Gertler (2006) ). This congestion term depends on

13This process is similar to the innovation process described by Eaton and Kortum (1996, 1999). The
main difference is that innovators employ labor in their model whereas innovators invest final output in
this model. I use final output because then the law of motion of newly invented technologies depends on
the fraction of output allocated to R&D, which is the measure of research intensity used to fit the model
in the empirical analysis.
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Ynt, which guarantees the existence of a balanced growth path. In addition, there are
two components of R&D productivity. First, a country-specific parameter αrn captures
policies and institutions affecting the country’s innovative environment (patent protec-
tion, education, etc.). Second, a spillover effect is determined by the total number of
technologies available to the country, Tnt = Znt +

∑
i 6=nA

n
it, where Znt is the stock of

technologies introduced domestically through innovation in country n up until period t.
That is, the innovator “learns” from the available range of technologies, both domestic
Znt (learning by doing) and foreign {Anit} (learning by using imports). This assumption
is consistent with the “variety in, variety out” model of Goldberg, Khandelwal, Pavcnik,
and Topalova (2010b) and has two implications. First, countries in which more varieties
are available have a lower R&D cost; second, countries can lower their R&D costs by
expanding the variety of their imports (increasing {Aint}) .14

Let Vnt be the price at which an innovator can sell the right of using a new product to
an adopter. This is the value of an unadopted prototype for an intermediate good, and
as I describe later, it is given by the expected profits to the adopter from selling the good
to each potential market (domestic and foreign). Free entry in innovation determines the
level of investment in R&D, which is given by the break-even condition

Et [Vnt+1] =
Pnt
ϕrnt

. (13)

The innovator invests final output up to the point where marginal revenue is equal to
marginal cost. Successful technologies join the pool of intermediate-good producers in
period t+ 1.

3.2.2 Adoption

Next, I characterize the process by which newly developed intermediate goods are adopted
over time—that is, by which each Znt is transformed into Aint. Each intermediate good
produced with the new technology must be adopted before it can be used by the final
producer. The adoption process is undertaken by the intermediate producer seeking to
sell the good in domestic and foreign markets. I assume that adoption is instantaneous
and free within countries but slow and costly across countries. Thus, whereas a country’s
final producer can use all the domestic intermediate goods (i.e., Znt = Annt), using for-
eign intermediate goods involves an slow adoption process. During each period of time,
adopters succeed in adopting only a subset of the new intermediate goods available (i.e.,

14Under this specification, countries may shift from being adopters to innovators, thereby increasing
the number of goods that they produce and export. Acemoglu, Aghion, and Zilibotti (2002) view this
process as a shift from an “investment-growth strategy” (adoption) to an “innovation-shift strategy”
(innovation). That reasoning is also in line with the results of Hallward-Driemeier (2000), who using
data from five Asian countries observes that—prior to entry into export markets—productivity gains are
associated with higher imports.
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Znt > Aint for all i 6= n).
I follow Comin and Gertler (2006) in assuming that adopters buy the right to a new

technology from innovators. The adopters then make the technology usable for final
producers by investing resources. Adopters fund the expenses of adoption with loans
from households. Once the good has been adopted, it is sold to the final producers who
use it as an input. There is a positive correlation between the rate of adoption and
investment in adoption: an adopter in country n becomes successful in making a product
usable for final production in country i in any given period t with a probability εint , which
is increasing in the amount of final output that the adopter spends, yint. An adopter who
is not successful may try again in the subsequent period. This formulation captures the
slow process of adoption. I assume that, during this process, the adopter invests final
output from the foreign market in which she wants to sell the product.

I also assume the following functional form for the stochastic rate of adoption:

εint = αAi
Aint
Zn,t+1

(
yint
Yit

)γa
. (14)

Here αAi is a country-specific parameter reflecting barriers to adoption of new technologies,
as in Parente and Prescott (2002); a higher value of this parameter implies lower barriers
to adoption. The term γa ∈ (0, 1) is the elasticity of adoption with respect to investment
in adoption.15

Equation (14) exhibits four main features. First, it has the same microfoundations as
the innovation process, with diminishing returns to investment in adoption. Second, the
cost of adoption is measured in terms of the importer’s final output. So when the cost
of adoption decreases, the demand for final output in the destination country increases,
and thereby increases income; thus, countries with decreasing adoption costs (increasing
rate of adoption) see their income increase. Third, the cost of adoption resembles a fixed
cost of penetrating a foreign market. Fourth, as the destination country starts to import
goods, it becomes familiar with the exporter’s products (increase in Aint

Zn,t+1
); hence less

final output is needed to start exporting the good. Interactions among the countries allow
the importer to learn about the source and this leads, ceteris paribus, to an increase in
the probability of adoption.16

Note that the existence of a continuum of intermediate goods means that the proba-
15Policies that affect the parameter αA

i include increasing investment in education, improving telecom-
munications infrastructure so as to facilitate communication across countries, and liberalizing trade poli-
cies. Eaton and Kortum (1996) and Benhabib and Spiegel (1994) analyze how the probability of adoption
depends on different factors, including human capital; they find that human capital has a positive and
significant effect on the likelihood of adoption.

16A different way to model the adoption process is to assume that investment in adoption pays off
after a time period of random length. In this scenario, a higher level of investment in adoption results
in a shorter expected waiting time for the next variety (Klette and Kortum (2004); Koren and Tenreyro
(2007)).
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bility of adoption εint is also the fraction of technologies adopted.17

Let W i
nt be the value to an adopter in country n successfully adopting a technology

to be sold to country i. This value is the present discounted value of profits from selling
that good:

W i
nt = πint + βEtW

i
n,t+1, (15)

where πint denotes profits and W i
n,t+1 the continuation value. Then, the value of technolo-

gies invented in country n at time t that have yet to be adopted by country i is

J int = max
Y int

{−Pityint + βEt(ε
i
ntW

i
n,t+1 + (1− εint)J in,t+1)}. (16)

At time t, the adopter invests the quantity yint to adapt the technologies to the specifi-
cations of country i. At t + 1, adoption is successful with probability εint and the firm
obtains the value of an adopted technology, W i

n,t+1; with probability 1− εint, adoption is
not successful and the firm obtains the continuation value J in,t+1.

The adopter chooses yint to maximize (16) subject to (14). At the margin, each adopter
decides to invest in adoption until the marginal cost (one unit of final output) equals the
discounted marginal benefit:

Pit = γaα
A
i

(
yint
Yit

)γa−1
Aint
Zn,t+1

W i
n,t+1 − J in,t+1

Yit
. (17)

Overall, the number of newly adopted technologies is then given by

EtA
i
n,t+1 − Aint = εint(Zn,t+1 − Aint). (18)

Out of Znt goods available in country n, Znt+1 − Aint remain to be adopted by the final
producer in country i. An adopter in country i invests a quantity yint of final output
to adapt the Znt+1 − Aint technologies, which are then adopted at the stochastic rate
εint. This specification is similar to that in Nelson and Phelps (1966) and Benhabib and
Spiegel (1994).

To gain a better understanding of the adoption process, I substitute equation (14)
into equation (18) to find the growth rate of adopted technologies:

gAint =
Et(A

i
nt+1 − Aint)
Aint

= αAi

(
yint
Yit

)γa (
1− Aint

Znt+1

)
.

17Cummins and Violante (2002) focus on the adjustment of productivity growth to technological in-
novations. They estimate that the gap between average productivity and the productivity of the best
technology rose from 15% in 1975 to 40% in 2000. This finding is consistent with technology diffusion
models that claim learning about new technologies can generate long implementation lags because re-
sources are channeled into the process of adapting current production structures to accommodate the
new technology.
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The growth rate in the number of goods that country i imports from country n at
time t depends on four factors: (i) barriers to adoption, αAi ; (ii) investment in adoption,
yint; (iii) elasticity of adoption, γa; and (iv) relative backwardness, 1− Aint

Znt+1
. In countries

that are farther from the exporter’s technological frontier (lower Aint
Zn,t+1

), an increase in
the variety of imports has a greater effect on growth in the variety of imports.18

There are two key assumptions in the adoption mechanism. First, investment in
adoption is measured in terms of the importing country. Second, adoption measures the
“ability” to import a new technology, which implies that adoption is irreversible.

3.2.3 Value Functions

Domestic innovation and the adoption of foreign innovations are both endogenous pro-
cesses. Adopters and innovators decide how much final output to allocate to each activity
based on the relative values of innovating and adopting a new technology.

The value Vnt for an innovation in country n is the expected value of the profits from
selling the good in each potential market:

Vnt =
I∑
i=1

J int, (19)

where Jnnt = W n
nt. Note that this is the price that adopters (intermediate producers) are

willing to pay to use a new technology invented by the innovator in equation (13).

3.3 Trade Balance

The model is closed with the trade balance equation. I assume financial autarky, under
which trade is balanced every period. In other words, the total value of exports in one
country must equal the total value of its imports:

I∑
i 6=n

ˆ Aint

j=0

pinjtx
i
njt dj =

I∑
i 6=n

ˆ Anit

j=0

pnijtx
n
ijt dj. (20)

3.4 Equilibrium

This section defines a symmetric equilibrium: a set of equations according to which all
firms within a country behave symmetrically. However, the countries themselves are
asymmetric, and are characterized by the parameters {αRi , αAi , Li, din}.

For all i and n, a general symmetric equilibrium is defined as an exogenous stochastic
sequence {ait}∞t=0, an initial vector {Ain0, Zi0}, a set of parameters {β, θ, γa, γr, ρ} that are
common across countries, a set of parameters {αRi , αAi , Li, din} that differ across countries,

18Empirically, countries that are rapidly expanding their range of imports are relatively backward
countries that are also experiencing higher-than-average growth rates.
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a sequence of aggregate prices and wages {Pit, Vit, Rit, ωit}∞t=0, a sequence of intermediate-
good prices {pint}∞t=0, a sequence of aggregate quantities {Yit, yrit, yint}∞t=0, quantities of in-
termediate goods {xint, ynt}∞t=0, a sequence of value functions and profit {πint,W i

nt, J
i
nt}∞t=0,

and laws of motion {Ain,t+1, Zi,t+1}∞t=0 such that the following statements hold:

• The state variables {Zi,t+1, A
i
n,t+1}∞t=0 satisfy the laws of motion in equations (23)

and (18).

• The endogenous variables solve the producers’ and households’ problems in equa-
tions (25)–(32).

• Feasibility is satisfied in equations (21) and (22).

• Prices are such that all markets clear.

Next, I present the set of equations needed to solve the model.

Resource Constraint

Yit = Cit +
I∑
n6=i

(Zit − Anit)ynit + (Zit − Zit−1)yrit. (21)

Final Production

Yit = eait

(
I∑

n=1

Aintb
i
nt(x

i
nt)

θ−1
θ

) θ
θ−1

. (22)

Law of Motion for Innovation

EtZi,t+1 − Zit = αriTit

(
yrit
Yit

)γr
. (23)

Law of Motion for Adoption

EtA
i
n,t+1 − Aint = εint(Zn,t+1 − Aint). (24)

Households
1

β

Ci,t+1

Cit
=

Pit
Pi,t+1

Ri,t+1. (25)

Final Producers

xinjt = (binjt)
θ

(
pinjt
Pit

)−θ
Yit. (26)
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Intermediate Producers
I∑
i=1

Aintp
i
ntx

i
nt = ωntLn. (27)

pint =
θ

θ − 1
(ωntd

i
n), (28)

Investment in Innovation

Et [Vnt+1] =
Pnt
ϕrnt

, (29)

with
ϕrnt =

αrnTnt

Y γr
nt (yrnt)

1−γr

and
Vnt = W n

nt +
∑
i 6=n

J int, (30)

W i
nt = πint + βEt

1

1 + gAint
W i
n,t+1,

J int =

{
−PitY i

nt + βEt

(
εint

1

1 + gAint
W i
n,t+1 + β(1− εint)

1

1 + gAint
J in,t+1

)}
. (31)

Investment in Adoption

γaα
A
i

(
yint
Yit

)γa−1
Aint
Zn,t+1

W i
n,t+1 − J in,t+1

Yit
= 1. (32)

Trade Balance
I∑
i=1

Aintp
i
ntx

i
nt =

I∑
n=1

Anitp
n
itx

n
it. (33)

Market-Clearing Conditions

ynt =

I∑
i=1

Aintx
i
nt. (34)

4 The Steady State and Transition Dynamics

4.1 Steady State

The economy has a balanced growth path in which all countries grow at the same rate
but differ in their levels of income per capita. The common growth rate is guaranteed
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by international diffusion; in contrast, differences in income per capita are driven by
the country-specific parameters {αri , αAi , Li, {din}n6=i}, which can be identified from the
system’s initial conditions. If instead the parameters were common across countries, then
all countries would reach the same steady state—both in levels and in growth rates—and
would differ only in their speeds of convergence.

In steady state, the endogenous variables grow at a constant rate. So by equation
(21) and equations (23) and (24), the number of adopted technologies and of invented
technologies (Aint and Znt, respectively) grow at the same rate along the balanced growth
path. By equation (14), the rate of adoption εint is constant. From the resource constraint
(21), it is evident that the quantity of output allocated to adoption and innovation grows
at the rate of final output.

Solving for the steady state requires an algorithm to compute relative wages. Taking
advantage of the recursive structure of the model, I proceed as follows. First, from
the law of motion for newly adopted technologies and since the rate of adoption εint

is constant, it follows that the steady-state value of the fraction of technologies from
country n that have been adopted by country i between times t and t+1 can be obtained
as
(

Ain
Zn(1+gz)

)
=
(

εin
ga+εin

)
. We can use this equality to derive the ratio

(
Ain
Aik

)
and an

expression for
(
Zn
Zk

)
. Finally, the trade balance equation (33) is used to obtain relative

wages.19

4.2 Transition Dynamics

Differences in growth rates across countries arise in the transition and depend on dif-
ferences in their investment in innovation and adoption, which ultimately depend on
country differences in income per capita. The model predicts the following transition
dynamic results, which accord with the empirical evidence from Section 2. For countries
in early stages of development, adoption is cheaper than innovation and so more resources
are invested in adopting foreign technologies; catching-up allows these countries to grow
faster than average. As they start importing more goods, the productivity of their R&D
increases in response to the spillover effect, increasing the attractiveness of innovation;
hence, developing countries start allocating more resources to innovation. In short, coun-
tries located at different points on the transition path invest and adopt at different rates
and therefore grow at different rates. Developed countries are mainly innovators, whereas
developing countries are mainly adopters of foreign innovations.

The model is solved by log-linearizing around the steady state. The variables are
stationarized so that they will be constant in steady state. There are two trends in the
model: the first is given by the growth rate of disembodied technology, which is exoge-
nous; the second is endogenous and depends on the growth rate gz of newly developed

19The steady-state algorithm is available upon request.
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technologies. I use Dynare to solve and estimate the structural parameters.20

5 Empirical Strategy

Section 3 described a fully specified structural stochastic model with interdependencies
across countries. In this section I fit the model to annual data on innovation, GDP per
capita, and imports for the period 1996–2007. I then use the structural nature of the
model to conduct a counterfactual analysis. The small sample size (twelve years of data)
and the rich structure of the model require the use of non-classical estimation methods
in order to obtain consistent estimates. I estimate the model’s dynamics with Bayesian
techniques described in Schorfheide (1999).21

5.1 Bayesian Estimation

Bayesian estimation is a mix of classical estimation and calibration. Relative to using ony
calibration, Bayesian estimation allows us to confront the model with the data in a statis-
tical sense. Relative to classical estimation, there are three advantages. First, Bayesian
estimation has better properties when the sample size is relatively small (which is the
case in this paper). Second, it allows one to estimate a fully specified model with fairly
flexible stochastic processes. Correct estimates of these models and processes enable a
study of the system’s transition dynamics that captures the cross-country growth rate
differences observed in the data. Third, classical inference might not provide consistent
results in multi-country models with interdependencies—as argued by Canova and Cic-
carelli (2009). They show that Bayesian methods are necessary to estimate multicountry
vector autoregressive models with spillover effects across regions, especially when exam-
ining issues related to income convergence or evaluating the effects of regional policies.
In such models neither generalized method of moments estimators of quasi-maximum
likelihood nor minimum distance estimators are able to provide consistent results.22

Next, I describe briefly the main steps to follow when estimating a model with
Bayesian techniques. We must first specify prior probability distributions for the pa-
rameters of interest. The priors are then combined with the likelihood density, which is
compared with the data in order to obtain the posterior distribution of these parameters.
Second, the likelihood density is approximated by a kernel density function, derived via
Markoc Chain Monte Carlo simulation methods. This approach works if all the variables
are observable in the data; however, this is seldom the case in dynamic stochastic gen-

20The set of log-linearized equations is available from the author upon request.
21The Dynare program (see (Juillard 1996)) is used to solve and estimate the model. The code is

available upon request.
22Another good reference on the evolution of DSGE modeling and the need to use Bayesian estimation

in these models can be found in Fernández-Villaverde (2010).
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eral equilibrium (DSGE) models generally such as this one, which involve unobserved
variables—including, for example, the number of newly innovated technologies, the total
amount of output invested in adoption, and the shock processes. To establish the like-
lihood density in these cases, we must obtain a state-space representation of the model
and apply the Kalman filter. In a final step, the Metropolis–Hastings algorithm is used
to derive the posterior distribution of the parameters.

5.2 Data and Priors

5.2.1 Data

For tractability, I allocate the 30 countries to three groups with common characteristics
(similar innovation intensity, extensive margins of trade, and productivity): emerging
markets (EM), less innovative OECD countries (OECD−), and more innovative OECD
countries (OECD+).23

The model is fitted to annual data for the period 1996–2007; this is because 1996 is
the first year for which R&D expenditure data and highly disaggregated trade data are
available for a large sample of countries. The observable variables are the annual growth
in imported varieties (bilateral trade, where growth is computed as the change in the
number of varieties and corresponds to ∆Aint in the model), GDP per capita growth, and
R&D expenditures as a percentage of GDP (as measured in Section 2). There are 432
observations corresponding to twelve years, three groups, and twelve observable variables.

Mapping the model to the data requires three main adjustments. First, determine
whether innovation and adoption costs are capitalized into the economy’s investment or
instead are expensed—that is an intangible investment that is not measured in the coun-
try’s value added. McGrattan and Prescott (2010) argue that activity associated with
an expanding number of products is expensed and not capitalized in national accounts.
Also, Atkeson and Burstein (2010) treat entry into domestic and foreign markets as being
expensed. When estimating the model I therefore use a measure of GDP that corresponds
to the final output net of innovation and adoption costs:

Y obs
t = Yt − Y r

it −
∑
n6=i

Y i
nt.

Second, I use the measure of GDP that contains the Feenstra adjustment for terms of
trade, as reported in the PWT. This is a better measure of production; it measures real
GDP on the output side, corrected for the terms of trade and then using PPP prices for
each year.24

The third adjustment applies when comparing the model’s price indices and their
23See Appendix A for a list of the countries by group.
24This measure corresponds to the “cgdpo” variable (current-price real GDP) in version 8 of the PWT.
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counterparts in the data. The CES production function exhibits the love-for-variety
effect (i.e., the introduction of new varieties through domestic innovation or adoption of
foreign innovations tends to reduce the model’s price indices) but this is not captured in
the data. I apply the method of Alessandria and Choi (2007) and Ghironi and Melitz
(2005) to construct a price index in which average prices are weighted by the number of
varieties.

5.2.2 Shocks

To obtain invertibility in the likelihood function, the maximum likelihood approach re-
quires as many shocks as there are observable variables. Given three series of observable
variables, I introduce three series of shocks (one for each group of countries): a neutral
technology shock ai in final production, a shock ξit to the productivity of R&D in equation
(12), and a measurement error εin,t in the growth rates of imported varieties.

The structural shocks and measurement errors incorporated in the estimation are:

ait = ρiai,t−1 + uit

with uit ∼ N(0, σ2
u,i);

ξit ∼ N(0, σ2
i );

and

gobsint = ginte
εin,t

with εin,t ∼ N(0, σ2
εin

), where me denotes the measurement error and i, n = 1, . . . , 3.

5.2.3 Parameters

A set of parameters is treated as fixed in the estimation (these are also known as “strict
priors” or calibrated parameters). They are obtained from previous studies, from steady-
state relationships implied by the model, and from trade and R&D data through the use
of gravity equations as explained in this section later.

The parameters obtained from previous studies are the discount factor β, the elastic-
ity of substitution θ, the growth rate ḡ of output in steady state, and the elasticity of
adoption γa. These parameters cannot be identified from the data used in the empirical
analysis. I set β = 0.9, which implies an annual interest rate of 4%. I choose a value
of 4 for the elasticity of substitution θ between differentiated goods. Estimates of this
parameter in the trade and industrial organization literature typically range from 3 to 10
and differ across goods; see Broda, Greenfield, and Weinstein (2008), who report lower
elasticities for more differentiated goods. In robustness analyses I find that the results are
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robust to changes in this parameter within the rage found in the empirical literature. To
estimate the growth rate of new technologies, I follow Eaton and Kortum (1996) in using
the Frobenius theorem, as explained in Appendix D; I obtain a value of 0.012 for this
parameter. If we assume a steady-state growth rate of 0.02 for the country groups being
analyzed, as is standard in the empirical literature, then the results on the growth rate
of new technologies imply that 60% of the growth rate in steady state is accounted for by
embodied technology and hence that the remaining 40% is explained by a residual or dis-
embodied technology (so ḡ = 0.08) that is uncorrelated with the mechanisms of the model
(candidates education as well as the organization and structure of the market).25 The
elasticity of adoption, γa, is calibrated by Comin and Gertler (2006) and also by Comin,
Gertler, and Santacreu (2009); they find that a reasonable value in a closed-economy
model is 0.8. Because there are no good measures of adoption expenditures or adoption
rates, they use as a partial measure the development costs incurred by manufacturing
firms to make the goods usable (this is a subset of R&D expenditures) and then regress
the rate of decline of the relative price of capital with respect to that partial measure
of adoption costs. The idea is that the price of capital moves countercyclically with the
number of new adopted technologies and is thus a measure of embodied adoption. The
regression yields a constant of 0.8, which I use in my calibration of γa.

Next, I describe how to obtain the calibrated parameters for distance, din, and the
elasticity of innovation (γr) using trade and R&D data and a gravity equation approach.
Following Eaton and Kortum (2002), I first derive a gravity equation as implied by my
model. This equation relates bilateral trade volumes to the characteristics of the trading
partners, and of the geography between them as follows

X i
nt = Aint

(
ωntd

i
n

Pit

)1−θ

Yit.

Normalizing by the importer’s home sales, X i
it, yields

X i
nt

X i
it

=
Aint
Zit

(
ωntd

i
n

ωit

)1−θ

.

Rearranging, we have
X i
nt

X i
it

=
Aint
Znt

Zntω
1−θ
nt

Zitω
1−θ
it

(
din
)1−θ

.

Now, taking logs allows us to obtain

log
X i
nt

X i
it

= Snt − Sit − (θ − 1) ln din + uint. (35)

25These results are in line with what Greenwood, Hercowitz, and Krusell (1997) find for the United
States. We can assume the same value for all the country groups because technology diffusion guarantees
that, in steady state, embodied productivity growth is the same across countries.
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where Snt = lnZnt − (θ − 1) lnωnt. We can view Snt as a measure of the source country
n’s competitiveness. A country n is more competitive if it is more technologically more
advanced (higher Znt) and the lower the cost of production (lower wage ωnt).

Equation (35) constitutes the basis of my estimation. The left-hand-side (LHS) is
estimated using data for domestic production from UNIDO and bilateral trade from UN
COMTRADE for the 30 countries in Section 2 (data for domestic production are obtained
from CEPII). I then follow Eaton and Kortum (2002) to estimate the gravity equation
using (on the right-hand-side (RHS)) exporter and importer fixed effects in addition to
proxies for geographic barriers as suggested by the literature (data obtained from CEPII
geography variables):

logdin = dk + l + b+ ta,

where dk (k=1,...,6) is the effect of geographic distance between i and n lying in the kth
interval ([0, 375);[375, 500);[750, 1500);[1500, 3000); [3000, 6000); and [6000,maximum)).
The term b is a dummy variable for sharing a border, l is a dummy variable for using
the same language, and ta is a dummy for the existence of a trade agreement. I estimate
equation (35) for every year and report the results for the average year in Table B.1.

Using the estimates from the gravity equation, I obtain a measure for din. Note that
θ and din are not separately identified because, in equation (35), we have −(θ − 1)din. I
therefore fix θ = 4 to obtain a value for din. The results suggests that this parameter lies
between 1.2 and 1.5.

The estimates for Snt indicate that the United States is the most competitive country,
closely followed by Japan, China, and then Germany. The least competitive country is
Greece, followed by Portugal (see Table B.2).

To understand what factors explain the ranking of competitiveness, note that

Snt = lnZnt − (θ − 1) lnωnt.

According to this expression, countries that are technologically more advanced (higher
Znt) or have lower cost of production (lower ωnt) are more competitive. To disentangle
the effects of technology and production cost on a country’s competitiveness, I use income
per capita (Ynt/Lnt) as a proxy for wages, (ωnt) and obtain a measure of technology,

lnZnt = Snt + (θ − 1) lnωnt,

using estimates for the source fixed effect that were derived from the gravity equa-
tion. Table B.2 shows the ranking of countries according to how technologically advanced
they are (Znt) and how costly is their production of intermediate goods (ωnt). The re-
sults show that the most competitive countries from a technological perspective are the
advanced economies (France, United Kingdom, Switzerland, Germany, Japan, and the
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United States); the least competitive are India, Philippines, Indonesia, China, Argentina,
and Brazil—all of which are emerging economies. Norway is an advanced country tech-
nologically (high Zn) but not in terms of its cost of production, since it is the country
with the highest GDP per capita and hence with the highest wages. In contrast, China
is a competitive country owing to its low cost of production and not because of high
technology Znt.

Next, I calibrate the elasticity of innovation, γr, using the estimates for Znt from the
gravity equation combined with the features of the innovation process implied by my
model. From equation (12), the term log (Znt) can be approximated as a linear function
of the stock of R&D in country n, Rnt, and the total number of varieties imported by
country n, Mnt =

∑
i 6=nA

n
it. I run the following regression:

log(Znt) = γ0 + γ1 log(Rnt) + γ2 log(Mnt) + unt.

In this expression, one can approximate γ̂1 = γr (i.e., the elasticity of innovation in
equation (12)).

Table 1: Calibrating the elasticity of innovation
Zn

log(Rn) 0.619**
(0.013)

log(Mn) 1.730**
(0.022)

** p < 0.01

From the regression results reported in Table 1 (where standard errors are reported
in parentheses), I obtain γr = 0.62. This number is consistent with the findings of
previous empirical studies. Griliches (1990) uses the number of new patents as a proxy
for technological change and obtains estimates ranging from 0.5 to 1.

Figure 4 displays several correlations between competitiveness and its underlying fac-
tors, as suggested by the model’s gravity equation approach and the resulting calibrated
parameters. There is a clear positive correlation between Snt and research intensity (upper
left panel), as well as an even stronger correlation between the factor of competitiveness
that represents technology, Znt, and research intensity (upper right panel). Similarly, as
shown in the lower left panel, there is a positive correlation between technology and the
total number of imported varieties; this is the spillover effect present in the law of motion
for newly invented technologies in equation (12).
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Figure 4: Correlations among Technology, Geography and Trade

Finally, I use the expression for adoption in equation (14), data on the number of
imported varieties (Aint) and the estimate for technology (Znt) to obtain the following
estimate for εint, the bilateral probability of adoption:

εint =
Aint+1 − Aint
Znt − Aint

.

Other papers that have quantified the speed of adoption are Eaton and Kortum (1999)
and Comin and Hobijn (2004). The former study uses international patent data to
measure international diffusion; the latter uses direct measures of technology for many
countries and a long time period. To my knowledge, this paper is the first to estimate
international costs of adoption by using trade data. The estimates indicate that this
value ranges between 0.2 and 0.3, so that it takes between three and five years to start
importing a variety that has been developed somewhere else. The lower right panel of
Figure 4 shows a clear positive correlation between the probability of adoption and growth
in imported varieties over the sample period.

The parameters to be calibrated from steady-state relations are αri and αai . Using
the characteristics of the steady-state of the model, I employ an algorithm that takes
as input the values of the parameters calibrated so far: the common parameters (β, γr,
γa,θ); and the country–pair specific parameters (εin,din) that introduce country-specific
variation into the calibrated parameters of interest, αai and αri . From the law of motion
for innovation and adoption, we have that the parameters γr and αri (on one side) and γa
and αai (on the other side) are not separately identified. The calibrated parameters are
reported in Table C.1.
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The parameters to be estimated correspond to the shock processes: the persistence ρi
of the productivity shocks and also the standard deviations σi of both the neutral tech-
nology shock and innovation productivity shock. The prior mean and standard deviation
are reported in Table C.2. Beta distributions are assumed for those parameters restricted
to be between 0 and 1, and Inverse-Gamma distributions are assumed for the variances
of the shocks to guarantee a positive support.

I assume a Beta distribution for the persistence parameter with mean 0.5 and standard
deviation 0.15 (the Beta distribution guarantees that the parameter is between 0 and 1).
I assume an Inverse Gamma distribution for the standard deviation of the shocks, which
guarantees a positive variance of the shocks.

So in the context of my model, the Bayesian estimation approach is useful for esti-
mating the dynamics given by the shock processes. This approach allows me to identify
differences in growth rates across countries along the transition path. Other parameters
are obtained using the steady-sate relations, which mainly identify differences in cross-
country steady-sate levels of the variables and the value of world growth rates. Finally,
the parameters for the innovation process and the international costs of adoption are
identified using the gravity equation approach, which requires both cross-sectional and
time-series variation in the data.

5.3 Estimation Results

In order to to solve the model, I stationarize the variables so that they are constant in
steady state. Table C.2 reports the estimation results, which include both the prior and
posterior mean of the estimated parameters as well as 95% confidence intervals.

I use the time dimension of the series to estimate the shocks, which allows me to
decompose growth in the country groups being analyzed along the transition path. There
are twelve observable variables, one for each of the three analyzed groups; hence we need
36 shocks for invertibility. Three of the shocks are productivity shocks (exogenous source
of growth in each group), and the rest are measurement errors. I present the prior mean
and standard deviations of the shocks in addition to measurement errors. The data
allow us to identify these exogenous process, which are then then used to compute the
decomposition of growth (see Section 6).

Table C.3a reports second moments of a simulated model that uses the estimated
parameters and compares them to the data. I run 10,000 draws from the shocks in the
model and then compute the standard deviation of the simulated variables. Overall, the
results are in line with the data.

Table C.3.b reports the estimated variance decomposition for the output growth and
the R&D intensity in each group of countries using the posterior mean of the parameters.
The exogenous TFP shock of the emerging markets explains about 74% of the variability
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of growth in these countries. The remaining variability is explained by their R&D shock
(25%) and by their trading partners’ R&D shocks (0.10% by less innovative countries
and 0.3% by more innovative OECD countries). In OECD countries (both less and more
innovative), however, their exogenous TFP shock explains about 25% and 18% of their
growth rates’ variability, respectively. The remaining is explained by their R&D shocks.
Note that foreign R&D shocks do have an effect on fluctuations in domestic growth rates.
The more innovative the country, the higher the effect of its R&D shock on the growth
rates of the other countries. Domestic R&D shocks explain most of the fluctuations in the
research intensity of each country. The exogenous TFP shock has also an effect, albeit
smaller. Taken together, these results suggest that R&D shocks have been an important
source of variation of domestic growth rates, especially for OECD countries. In emerging
economies, however, fluctuations have come mainly through exogenous TFP shocks.

6 Decomposition of the Sources of Economic Growth

In this section I compute the contribution of domestic and foreign innovation to economic
growth in each group of countries, as predicted by the model. The equation used in the
decomposition is derived in Appendix E.

6.1 Embodied versus Disembodied Growth

There are two sources of economic growth: “embodied” growth, as captured by an ex-
pansion in the number of intermediate goods (through domestic innovation and through
international diffusion of foreign innovations through trade in varieties); and “disembod-
ied” growth, as captured by an exogenous TFP shock eait .26 Taking the estimated series
of the TFP shock together with data from the empirical analysis on growth in GDP per
capita, I compute the contribution of each source of growth and report the results in
Table 2.

Embodied growth has contributed about 50% of the productivity growth in emerg-
ing economies and less innovative OECD countries; it has contributed about 64% of
such growth in more innovative OECD countries. That is, the main mechanisms of the
model (innovation and international diffusion) are able to capture, on average, half of
all economic growth in the country groups analyzed. The remaining growth cannot be
explained by the mechanisms proposed in the model. These results are consistent with
the findings of Greenwood, Hercowitz, and Krusell (1997), who estimate that two thirds
of the steady-state growth rate in the United States can be explained by “embodied”
sources of growth and the rest by “disembodied” sources of growth. My model predicts

26We can interpret the TFP shock as capturing all sources of growth not explained by love–of–variety.
In that sense, this section is an empirical test of love-of-variety models.
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long-run convergence in growth across countries and so, to the extent that more innova-
tive countries are close to the steady state, the values shown in Table 2 are in line with
the Greenwood, Hercowitz, and Krusell (1997) findings. In developing economies, the
contribution of embodied growth is slightly more than 50% and is expected to increase
as they approach the steady state.

Table 2: Embodied versus disembodied growth in the transition (percentage)
Group Embodied Disembodied
Emerging 52 48
OECD− 53 47
OECD+ 64 36

6.2 Contribution of Domestic and Foreign Innovation to Growth

Table 3 reports the contribution of domestic and foreign innovation to embodied pro-
ductivity growth. Each entry in the matrix represents the percentage of the embodied
productivity growth in the importer country (row) that is explained by innovations of
the exporter country (column), averaged over 1996–2007. The diagonal entries measure
the contribution of domestic innovation.

The analysis shows that, in emerging economies and less innovative OECD countries,
about 65% and 40% of total embodied growth (respectively) can be explained by foreign
innovations embodied in imports—especially those from the more innovative countries.
In the most innovative countries, 85% of embodied productivity stems from domestic in-
novation. These results are consistent with the empirical evidence: emerging economies
do relatively little innovation but have experienced a rapid increase in imported varieties,
especially from the most innovative countries. By expanding the range of imported vari-
eties from more innovative countries, less innovative countries accumulate the technology
embodied in the foreign varieties and grow more than average.

Table 3: Sources of growth predicted by the model—domestic and foreign innovation
Source country

Destination Emerging OECD− OECD+
Emerging 35.5 19.9 44.6
OECD− 11.7 56.6 33.7
OECD+ 7.00 8.50 84.5

Taking the results from Tables 2 and 3 together, we can conclude that some 34% of
total growth in emerging economies has been explained by foreign sources of growth, 16%
by domestic innovation and 48% by exogenous “disembodied” sources of growth.

Table 4 reports the same decomposition as before but for the case in which all coun-
tries have reached the steady state. In this case, there is an increase in the domestic
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contribution to domestic growth in each country: 85% and 90% of endogenous growth
in (respectively) emerging and less innovative OECD countries is explained by domestic
innovation. Note that the increase in the contribution of domestic sources of growth is
higher for those countries that are farther from the steady state (i.e., for emerging and
less innovative OECD countries). Since embodied growth in steady state explains 60% of
total growth, it follows that—in steady-state—innovation explains 54% of total growth,
6% is explained by adoption, and the remaining 40% comes from disembodied sources of
growth.

Table 4: Sources of growth predicted by the model (steady-state)—domestic and foreign
innovation

Source country
Destination Emerging OECD− OECD+
Emerging 85 5.0 10
OECD− 3.0 91 6.0
OECD+ 1.0 2.0 97

7 Counterfactuals

Finally, I perform two counterfactual exercises to analyze how the steady state of the
model would change if: (i) all the countries reached the same research productivity, αri ;
and (ii) all the countries faced the same barriers to adoption, αai . The results are reported
in Table 5.

Table 5: Counterfactual experiments
Variable Baseline Same innovation Same adoption

Y r
1 0.102 0.173 0.103
Y r

2 0.128 0.173 0.128
Y r

3 0.171 0.173 0.171
gy 0.089 0.149 0.089
gz 0.030 0.050 0.030
ε12 0.319 0.323 0.329
ε13 0.311 0.323 0.323
ε21 0.310 0.331 0.313
ε23 0.320 0.331 0.323
ε31 0.316 0.334 0.318
ε32 0.332 0.335 0.333

Note: 1 refers to emerging markets; 2 to OED −; and 3 to OECD+

If all countries converged to the research productivity of the rich OECD countries
while maintaining the same barriers to adoption, their research intensity would increase
by 50% in emerging economies and by 30% in less innovative OECD countries. More
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innovative countries would also benefit because they would then have access to a larger
pool of innovations from other countries (although their research productivity would
increase only by 1%). The probability of adoption around the world would increase on
average by 2%; this suggests that, the more innovative a country, the greater its ability to
adopt foreign technologies. Finally, the growth rate of the world would double from 2%
to 4%, which indicates that policies to improve innovation can help increase the world’s
rate of economic growth. At the same time, developing countries would close the gap
(with respect to developed countries) not only in growth rates but also in levels of income
per capita.

If instead all countries became equally good at adopting but without improving their
research productivity, then the world economic gains would be lower (albeit non negligi-
ble). All countries would increase their research intensity by about 0.4%, and the world’s
economic growth rate would increase by 1%.

8 Conclusion

In this paper, I decompose the sources of embodied growth around the world into domes-
tic innovation and adoption of foreign innovations through trade. I develop a dynamic
general equilibrium model in which imports and growth are endogenous variables con-
nected by technological innovations and their international diffusion through trade. The
engine of growth is technology accumulation. I analyze both the model’s steady state and
its transition dynamics. In steady state, all countries grow at the same rate but barriers
to technology adoption allow income differences to persist. Countries grow at different
rates during the transition from developing to developed status. I find that innovation
and adoption through imports affect a country’s productivity growth differently as a
function of its position on the transition path. Countries at early stages of development,
farther from the technological frontier, grow by adopting the new foreign technologies
embedded in the intermediate goods they import. Countries at later stages of devel-
opment, which are closer to the technological frontier, grow instead by developing new
technologies through R&D. Counterfactual exercises show that if all countries reached the
same research productivity then the world’s economic growth rate would double, mainly
through an increase in research intensity. Countries also converge in levels of income per
capita.

The analysis has abstracted from several of interesting issues. The introduction of
physical and human capital would enrich the structure of the model and allow for the
use of TFP as a measure of productivity. We would be able to disentangle the effect
of additional channels in explaining differences in growth rates around the world. Right
now, these channels are embedded in the exogenous disembodied source of growth, which
is a black box in the model. Opening this black box is left for future research.
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Appendix A: Data and Statistics

Table A.1: Country Statistics
Country R&D Intens. GDP pc (log) EM (count) EM (Humm-Klen)
Argentina 0.43 12.81 4.33 0.41
Australia 1.74 13.34 2.30 0.44
Austria 2.04 12.42 2.67 0.76
Brazil 1.17 14.09 4.66 0.47
Canada 1.91 13.81 4.13 0.64
China 0.97 15.39 4.46 0.95
Hong Kong 0.73 12.34 3.14 0.61
Denmark 2.29 12.01 3.25 0.71
Finland 3.19 11.88 2.66 0.60
France 2.17 14.32 1.79 0.34
Germany 2.42 14.69 1.49 0.19
Greece 0.71 12.31 3.32 0.32
India 0.72 14.54 5.48 0.73
Indonesia 1.19 13.42 3.50 0.44
Ireland 1.20 11.79 3.77 0.76
Italy 1.06 14.29 1.85 0.27
Japan 3.07 15.14 2.01 0.12
Malaysia 0.64 12.30 1.89 0.38
Netherlands 1.93 13.14 1.82 0.38
New Zealand 1.11 11.43 3.64 0.78
Norway 1.57 12.19 2.80 0.56
Philippines 0.76 12.48 5.12 0.59
Portugal 0.72 12.16 3.59 0.53
South Korea 2.51 13.75 3.39 0.63
Singapore 1.90 11.70 2.01 0.42
Spain 0.96 13.77 2.73 0.75
Sweden 3.33 12.49 2.24 0.35
Switzerland 2.18 12.48 2.67 0.52
United States 2.62 16.23 1.62 0.27
United Kingdom 1.77 14.34 1.24 0.25
Average 1.63 13.23 2.99 0.51
S.D. 0.83 1.24 1.12 0.20
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Table A.2: Product classification
1. Capital goods
Sum of categories:
41* Capital goods (except transport equipment)
521* Transport equipment, industrial
2. Intermediate goods
Sum of categories:
111* Food and beverages, primary, mainly for industry
121* Food and beverages, processed, mainly for industry
21* Industrial supplies not elsewhere specified, primary
22* Industrial supplies not elsewhere specified, processed
31* Fuels and lubricants, primary
322* Fuels and lubricants, processed (other than motor spirits)
42* Parts and accessories of capital goods (except transport equipment)
53* Parts and accessories of transport equipment
3. Consumption goods
Sum of categories:
112* Food and beverages, primary, mainly for household consumption
122* Food and beverages, processed, mainly for household consumption
522* Transport equipment, non-industrial
61* Consumer goods not elsewhere specified, durable
62* Consumer goods not elsewhere specified, semidurable
63* Consumer goods not elsewhere specified, nondurable
Note: The codes are stipulated by the UN’s Broad Economic Categories (BEC) classification,
which groups external trade data in terms of the three basic classes of goods
in the System of National Accounts (SNA).
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Table A.3: Countries grouped by level of development
Country Group
Argentina Emerging
Brazil Emerging
China Emerging
Hong Kong Emerging
India Emerging
Indonesia Emerging
Malaysia Emerging
Philippines Emerging
Australia OECD+
Austria OECD+
Canada OECD+
Denmark OECD+
Finland OECD+
France OECD+
Germany OECD+
Japan OECD+
Netherlands OECD+
New Zealand OECD+
Norway OECD+
South Korea OECD+
Singapore OECD+
Sweden OECD+
Switzerland OECD+
United States OECD+
United Kingdom OECD+
Greece OECD−
Ireland OECD−
Italy OECD−
Portugal OECD−
Spain OECD−
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Appendix B: Gravity Equation Results

Table B.1: Bilateral trade equation
Variable Estimate S.E.
Distance [0, 375) -5.115*** (0.291)
Distance [375, 750) -4.797*** (0.207)
Distance [750, 1500) -5.051*** (0.162)
Distance [1500, 3000) -5.169*** (0.149)
Distance [3000, 6000) -5.754*** (0.084)
Distance [6000,maximum) -6.215*** (0.030)
Shared Border 0.435*** (0.131)
Shared Language 0.551*** (0.082)
Regional Trade Agreement 0.922*** (0.173)

Source country Destination country
Country Estimate S.E. Estimate S.E.
ARG S1 -1.196*** (0.116) M1 -0.031 (0.116)
AUS S2 -0.011 (0.117) M2 1.613*** (0.117)
AUT S3 -0.977*** (0.117) M3 -0.627*** (0.117)
BRA S4 -0.044 (0.116) M4 -0.112 (0.116)
CAN S5 0.199* (0.118) M5 -0.182 (0.118)
CHE S6 -0.046 (0.117) M6 0.202* (0.117)
CHN S7 1.711*** (0.118) M7 -0.418*** (0.118)
DEU S8 1.744*** (0.117) M8 -0.510*** (0.117)
DNK S9 -0.843*** (0.118) M9 -0.028 (0.118)
ESP S10 -0.145 (0.117) M10 -0.433*** (0.117)
FIN S11 -0.568*** (0.117) M11 -0.511*** (0.117)
FRA S12 0.979*** (0.117) M12 -0.712*** (0.117)
GBR S13 1.035*** (0.118) M13 -0.141 (0.118)
GRC S14 -2.855*** (0.118) M14 0.370*** (0.118)
HKG S15 -0.000 (0.122) M15 2.461*** (0.122)
IDN S16 0.014 (0.118) M16 0.142 (0.116)
IND S17 -0.377*** (0.123) M17 -0.603*** (0.123)
IRL S18 -0.730*** (0.117) M18 -0.507*** (0.117)
ITA S19 0.859*** (0.117) M19 -0.791*** (0.117)
JPN S20 2.431*** (0.118) M20 -0.797*** (0.118)
KOR S21 1.175*** (0.118) M21 -0.133 (0.118)
MYS S22 0.364*** (0.116) M22 0.525*** (0.116)
NLD S23 0.407*** (0.118) M23 0.424*** (0.118)
NOR S24 -1.315*** (0.117) M24 -0.116 (0.117)
NZL S25 -1.630*** (0.117) M25 0.675*** (0.117)
PHL S26 -1.135*** (0.118) M26 0.283** (0.118)
PRT S27 -2.008*** (0.118) M27 -0.440*** (0.118)
SGP S28 0.083 (0.118) M28 1.071*** (0.120)
SWE S29 0.068 (0.117) M29 -0.478*** (0.117)
USA S30 2.813*** (0.118) M30 -0.198* (0.118)
Notes: The number of observation is 869
Standard errors in parentheses
***p < 0.01, ** p < 0.05, * p < 0.1
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Table B.2: Countries ordered by source of competitive advantage
Sn Zn logωn

United States United States Norway
Japan Japan Switzerland
China Germany Ireland
Germany Switzerland Denmark
South Korea United Kingdom United States
United Kingdom France Netherlands
France Netherlands Sweden
Italy Norway Austria
Malaysia Italy Japan
Netherlands Ireland United Kingdom
Australia Sweden Finland
Brazil Canada Germany
Canada Denmark Canada
Indonesia Australia France
Singapore Finland Australia
Sweden Austria Italy
Switzerland Singapore New Zealand
Spain Spain Singapore
Hong Kong South Korea Spain
India Hong Kong Hong Kong
Finland New Zealand Greece
Ireland Portugal Portugal
Denmark Greece South Korea
Austria Malaysia Malaysia
Argentina Brazil Brazil
Philippines Argentina Argentina
Norway China China
New Zealand Indonesia Indonesia
Portugal Philippines Philippines
Greece India India
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Appendix C: Estimation Results

Table C.1: Calibrated parameters
Parameter Description Value
θ Elast. Subst. 4
g S.S. growth 2%
γa Elast. adopt. 0.8
γr Elast. innov. 0.6
din Distance [1.2,1.5]
β Discount factor 0.99
αr1 R&D productivity 0.189
αr2 R&D productivity 0.238
αr3 R&D productivity 0.331
αa1 Barriers adoption 5.17
αa2 Barriers adoption 5.17
αa3 Barriers adoption 5.24
Note: 1 refers to emerging markets; 2 to OECD −; and 3 to OECD+

Table C.2: Estimated Parameters
Parameter Prior Mean 5% 95%

ρ1 Beta(0.75,015) 0.36 0.21 0.54
ρ2 Beta(0.75,015) 0.86 0.82 0.89
ρ3 Beta(0.75,015) 0.65 0.59 0.72
σy1 IGamma(0.1,∞) 0.053 0.029 0.077
σy2 IGamma(0.1,∞) 0.047 0.033 0.059
σy3 IGamma(0.1,∞) 0.065 0.044 0.082
σr1 IGamma(1.0,∞) 0.312 0.230 0.408
σr2 IGamma(1.0,∞) 0.250 0.171 0.327
σr3 IGamma(1.0,∞) 0.274 0.189 0.351
σ12 IGamma(0.1,∞) 1.072 0.771 1.445
σ13 IGamma(0.1,∞) 0.563 0.361 0.779
σ21 IGamma(0.1,∞) 0.345 0.251 0.436
σ23 IGamma(0.1,∞) 0.113 0.060 0.171
σ31 IGamma(0.1,∞) 0.282 0.195 0.361
σ32 IGamma(0.1,∞) 0.406 0.296 0.514

Note: 1 refers to emerging markets; 2 to OECD −; and 3 to OECD+
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Table C.3a: Second moments
Variable Data Model

Y r
1 0.15 0.12
Y r

2 0.06 0.05
Y r

3 0.02 0.02
gy1 3.12 4.60
gy2 1.50 2.20
gy3 2.20 3.10
ga12 1.24 1.23
ga13 0.55 1.80
ga21 0.37 0.45
ga23 0.15 1.90
ga31 0.24 0.34
ga32 0.25 0.90

Note: 1 refers to emerging markets; 2 to OECD −; and 3 to OECD+

Table C.3b: Variance decomposition (posterior mean)
Shock/Variable gy1 gy2 gy3 Y r

1 Y r
2 Y r

3

ey1 74.2 0.36 0.32 22.0 0.20 0.20
ey2 0.00 25.5 0.00 0.00 7.80 0.00
ey3 0.00 0.00 18.5 0.20 0.10 10.0
er1 25.4 0.14 0.13 75.4 0.40 0.30
er2 0.10 73.2 0.25 1.10 90.2 0.70
er3 0.30 0.80 80.8 1.30 1.30 88.8

Note: 1 refers to emerging markets; 2 to OECD −; and 3 to OECD+

Appendix D: Steady-State Growth Rate

From the expression Tit = Zit+
∑M

n=1A
i
nt, the growth rate of intermediate goods in steady

state can be obtained as follows:

gi =
∆Ti
Ti

=
∆Zi
Ti

+
M∑
n=1

∆Ain
Ti

(36)

Substituting equations (12) and (18) into equation (36), allows us to express steady-state
productivity growth as a function of how much research has been done around the world:

g = gi = αir
γr
i +

M∑
n=1

εin

t∑
s=1

(1− εin)−(t−s)αnsr
γr
ns

Tns
Tit

, (37)

where rn = yrn
yn
.

Since Tns = Tnt(1 + g)(t−s) and rns = rn for all s in steady state and taking into
account that instantaneous diffusion within a country implies that εii = 1— equation
(36) can be rewritten as
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g =
M∑
n=1

εinαnr
γr
n

M∑
s=1

(
1− εin
1 + g

)−(t−s)

=
M∑
n=1

εinαnr
γr
n

1 + g

g + εin

Tnt
Tit

. (38)

Given positive values for γr, αn, εin, and rn, the Frobenius theorem guarantees that
we can obtain a value for the growth rate g and for relative productivity Ti

Tn
.

It is important to note that if there were no sources of heterogeneity in the country
(i.e., if αRi = αR, αAi = αA, Li = L and din = d for all i, n), then we would reach a
steady state with all the countries investing the same quantity of final output into R&D
and adoption, demanding the same amount of intermediate goods, and reaching the same
level of income per capita.

Appendix E: Decomposing the Sources of Growth

To obtain the equation, I use the measure for output from the model:

Yit = ZitX
i
it +

∑
n6=i

AintX
i
nt.

Then, after plugging in the expressions for X i
it and X i

nt and rearranging, we obtain

1 = eaitZit(m̄ωit)
1−θ +

∑
n6=i

eant
Aint
Znt

Znt(m̄ωntd
i
n/Qni)

1−θ.

Since productivity in my model is equivalent to output per capita, and since real out-
put per capita corresponds to real wages ωit, it follows that labor productivity can be
expressed as

(ωit)
θ−1 m̄θ−1 = eaitZit +

∑
n 6=i

eantAint

(
ωnt
ωit

)1−θ (
din
)1−θ

Qθ−1
ni .

In terms of growth rates, we have:
(σ − 1) (ωit)

θ−1 m̄θ−1 ∆ωit
ωit

=

eaitZit
∆Zit
Zit

+eant
∑

n6=iA
i
nt

(
ωnt
ωit

)1−θ
(din)

1−θ
Qθ−1
ni

(
∆Aint
Aint

+ (1− θ)
(

∆ωnt
ωnt
− ∆ωit

ωit
− ∆Qni

Qni

))
If the variables are expressed in stationarized terms (to make them consistent with

the variables from the code), then
∆ωit
ωit

= m̄1−θ

θ−1

[
eaitω̂1−θ

it
∆Zit
Zit

+
∑

n6=i e
ant A

i
nt

Znt
ω̂1−θ
nt (din)

1−θ
Qθ−1
ni

(
∆Aint
Aint

+ (1− θ)
(

∆ωnt
ωnt
− ∆ωit

ωit
− ∆Qni

Qni

))]
Taking ∆ωit

ωit
to the LHS of the above expression:

(θ−1)
∆ωit
ωit

= eait

∆Zit
Zit︸ ︷︷ ︸+

∑
n6=i

eant−ait
Aint
Znt

ω̂1−θ
nt

(
din
)1−θ

Qθ−1
ni

(
∆Aint
Aint

+ (1− θ)
(

∆ωnt
ωnt

− ∆Qni

Qni

))
︸ ︷︷ ︸

 .
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There are two sources of growth:

• Disembodied growth: eait

• Embodied growth:∆Zit
Zit︸ ︷︷ ︸+

∑
n 6=i

eant−ait
Aint
Znt

ω̂1−θ
nt

(
din
)1−θ

Qθ−1
ni

(
∆Aint
Aint

+ (1− θ)
(

∆ωnt
ωnt

− ∆Qni

Qni

))
︸ ︷︷ ︸

 .
The two sources of embodied growth are:

• Domestic sources (innovation):
∆Zit
Zit︸ ︷︷ ︸

• Foreign sources (international diffusion):

∑
n 6=i

eant−ait
Aint
Znt

ω̂1−θ
nt

(
din
)1−θ

Qθ−1
ni

(
∆Aint
Aint

+ (1−
)
.
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