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1 Introduction

What drives exchange rate volatility? Several studies have addressed whether exchange rate volatil-

ity transmission is better described by meteor showers or heat waves. Heat waves refer to the idea

that geography determines volatility. A heat wave might raise volatility in New York trading on

Monday and Tuesday but not in London on Tuesday morning. In contrast, meteor showers refer

to the tendency of volatility to be temporally correlated, with volatility spilling over from Asian

to European to North American markets in the same day, for example. Intuitively, heat waves are

more likely to occur if most or all important news that affects volatility occurs during a partic-

ular country’s business day. Similarly, it seems that meteor showers will tend to predominate if

autocorrelated international news is more important.

Engle, Ito and Lin (1990 and 1992) introduced the concepts of meteor showers and heat

waves, studying the issue with generalized autoregressive heteroskedastic (GARCH) models. Bail-

lie and Bollerslev (1991) and Hogan and Melvin (1994) extended this early research. Melvin and

Peiers Melvin (2003) reinvestigated the question with a vector autoregression (VAR) model for

realized volatilities. Whereas Engle, Ito, and Lin (1990) found that meteor showers predominated,

Melvin and Peiers Melvin (2003) argued that heat waves were more important. Thus, different

approaches to volatility measurement and modeling led to different conclusions. The GARCH

approach (using one observation per trading segment) pointed to the importance of meteor show-

ers, whereas the realized volatility / VAR approach pointed to heat waves. More recently, Cai,

Howorka, and Wongswan (2008) reinvestigated the issue with a new dataset: firm quotes from

the Electronic Broking Services (EBS) trading platform, rather than indicative Reuters quotes

used by Melvin and Peiers Melvin (2003).1 Cai, Howorka, and Wongswan (2008) confirm Melvin

and Peiers Melvin’s (2003) result that heat waves dominate the volatility transmission mechanism.

Furthermore, they find that trading activity and volatility exhibit similar dynamics.

Our investigation introduces both substantive and methodological advances to the literature

that together provide a more complete and accurate picture of volatility transmission.

Substantively, we characterize the role of jumps in volatility transmission and we permit cross-

market meteor shower and heat wave effects. That is, we estimate the effects of lagged volatility

1Indicative Reuter quotes have the advantages of widespread availability and good informational content

(Phylaktis and Chen 2009).
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and jumps from the Japanese yen (JPY) market on the euro (EUR) market and vice versa. We

connect the time series model with economic ideas by using sensitivity analysis to illustrate how

different types of news influence the strength of meteor shower / heat wave mechanisms.

Our methods provide a new and more accurate understanding of volatility transmission. Specif-

ically, we combine the Lee and Mykland (2008) and Andersen, Bollerslev, and Dobrev (2007) pro-

cedures with the threshold bipower variation of Corsi, Pirino, and Reno (2010) to detect jumps

at intraday frequencies. We use heterogeneous autoregressive (HAR) models to capture the quasi-

long-memory dynamics of foreign exchange volatility and we establish the structural stability of

these regressions with Andrews’s (1993) tests for breaks at an unknown point. Finally, we use the

Shapley-Owen measure of explanatory power to quantify the contributions of groups of variables –

heat waves, meteor showers, volatility and jumps – to the total explanatory power of the system.

These methods provide new insights into the issue of meteor shower and heat waves in volatility

transmission, including cross-rate transmission. Specifically, the Shapley-Owen R2 implies that

meteor showers contribute 60 percent of explanatory power for realized volatility versus 40 percent

for heat waves. This challenges the conclusions in Cai, Howorka, and Wongswan (2008) and Melvin

and Peiers Melvin (2003) that heat wave effects dominate. We also find that jumps have modest

but positive explanatory power, accounting for about 10 percent of total predictive power versus

the 90 percent due to lagged integrated volatility.

The cross-rate HAR system implies that volatility propagates across exchange rates to a signif-

icant degree, with approximately 25% of total explanatory power for both exchange rates coming

from the other exchange rate. The relative importance of meteor showers versus heat waves is

approximately the same for cross-market effects as for own-market effects. Our cross-rate results

contrast with those of Soucek and Todorova (2014) who found no role for jumps in spillovers

between foreign exchange, the S&P500 and commodity markets. Sensitivity analysis shows that

particularly large shocks tend to weaken the fit of both the heat wave and meteor shower relations

while smaller and more frequent shocks tend to strengthen the fit of the model.

The remainder of the paper proceeds as follows: Section 2 describes the volatility and jump

estimators used in this study, Section 3 presents data and the proposed HAR model. Section 4

presents empirical findings: results on volatility transmission within exchange rates and spillovers

across markets, as well as a study of the causes of meteor shower and heat waves. Section 5
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concludes.

2 Volatility and jump estimation

Erdemlioglu, Laurent, and Neely (2015) provide evidence supporting a Brownian semimartingale

process with jumps for foreign exchange data. We use this framework and the associated realized

estimators for jumps and volatility. We use a 5-minute sampling frequency because Liu, Patton, and

Sheppard (2015) show that it provides a good tradeoff between accurately measuring volatility and

minimizing microstructure noise. Following Lahaye, Laurent, and Neely (2011), we identify jumps

with the Lee and Mykland (2008)/Andersen, Bollerslev, and Dobrev (2007) method. Dumitru and

Urga (2012) show that this test is the best among a broad set of alternatives.2

2.1 Jumps

Define high-frequency 5-minute log-returns, for n = 288 intervals over a 24-hour trading day t, as

∆j,tX = Xj,t −Xj−1,t, j = 1...n, (2.1)

where Xj is the last log-price of the interval j.

We must remove deterministic intraday volatility patterns in returns in order to identify intraday

jumps. If the local volatility estimator does not account for the circadian pattern, the jump

test will identify too many (few) jumps during periods of high (low) intraday periodic volatility

(Boudt, Croux, and Laurent 2011). Therefore, we adjust returns for intraday periodicity before

estimating integrated volatility or jumps and we denote these periodicity-corrected returns as

˜∆j,tX. Appendix A-1 details our approach to correcting for periodicity, which follows Boudt,

Croux, and Laurent (2011) and Lahaye, Laurent, and Neely (2011).

The jump test statistic (Lee and Mykland 2008, Andersen, Bollerslev, and Dobrev 2007) is

defined as:

J̃j,t =
| ˜∆j,tX|√

ˆIV j,t/n
, (2.2)

where
√

ˆIV j,t/n is the estimated integrated volatility during period j of day t. The test statistic

is half-normally distributed under the hypothesis of a Brownian semimartingale and no jumps.

2We choose to measure jumps with the LM method because it appears to be the best method for measuring

jumps and despite the fact that it is not completely consistent with our measure of integrated variance.
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To reduce false jump detection, Lee and Mykland (2008) propose comparing the test statistic

to critical values from the distribution of the maximum value of the statistic. We consider the

maximum over the course of a day and choose a size α = 0.001. The test detects a jump when

J̃j,t > G−1(1 − α)Sn + Cn, where G−1(1 − α) is the 1 − α quantile function of the standard

Gumbel distribution, Sn = 1
(2 logn)0.5 and Cn = (2 log n)0.5 − log(π)+log(logn)

2(2 logn)0.5 , n being the number

of observations per day. With these parameters, we would expect to spuriously identify one jump

in a 1000-day sample.

We use Corsi, Pirino, and Reno’s (2010) corrected threshold bipower variation (CTBPV) to

compute
√

ˆIV j,t/n, rather than Lee and Mykland’s (2008) bipower variation approach because

threshold bipower variation is robust to successive jumps (Appendix A-1.2 provides details about

these power variation estimators). Unreported results actually show that the core of our results

are insensitive to that choice.3 We denote the jump time series as Jj,t = ˜∆j,tX when J̃j,t rejects

the null and Jj,t = 0 otherwise.

2.2 Segment decomposition

To study the dynamic patterns in intraday volatility and jumps, we follow the literature in con-

sidering 5 trading segments in the following order: Asia (AS), Asia-Europe overlap (AE), Europe

(EU), Europe-US overlap (ES) and the US (US) segment. We define segments as in Cai, Howorka,

and Wongswan (2008), who rely on volume data, in addition to price. Their hours differ slightly

from those of Melvin and Peiers Melvin (2003). For each intraday segment in our sample, we define

RV and jumps over the segment.

Realized volatility is defined for a segment Si ∈ S = {AS,AE,EU,ES,US} as the root mean

squared 5-minute return in the segment:

RVSi,t =

√∑
j∈Si

∆j,tX2/nSi , (2.3)

where nSi is the number of 5-minute returns in segment Si.

Within each segment, we define Corsi, Pirino, and Reno’s (2010) corrected threshold bipower

3We use the Lee and Mykland (2008) / Andersen, Bollerslev, and Dobrev (2007) test, that identifies when

intraday jumps occur. On the other hand, Corsi, Pirino, and Reno (2010) propose an aggregated jump tests (i.e.

the difference between realized volatility CTBPV) that do not provide jump time information as such. Therefore,

our results are not directly comparable to those of Corsi, Pirino, and Reno (2010).
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variation measure, CTBPVSi,t, equivalently. That is, we compute the jump-robust measure de-

fined in Appendix A-1.2 using returns belonging to segment Si and rescaling per intra-day period

(dividing by nSi).

We identify 5-minute jumps as described in Section 2.1. We aggregate jumps for each intraday

segment as follows:

JSi,t =

√∑
j∈Si

J2
j,t/nSi . (2.4)

That is, a segment’s jump contribution is the root mean squared jump during that segment.

The next section presents data and the HAR model.

3 HAR with meteor shower/heat waves

3.1 Data and descriptive statistics

We construct volatility and jump measures on the EUR/USD and USD/JPY using 5-minute re-

turns, provided by Disktrading. We clean the exchange rate data in standard ways to remove

holidays, weekends and other days with too many missing values. Lahaye, Laurent, and Neely

(2011) describe the procedures. The cleaned EUR/USD and USD/JPY series cover 3573 and 3509

trading days respectively, from January 5, 1999 to April 26, 2013. As described in Section 2, we

compute all scale measures in standard deviation form per intraday interval, to compare them

across segments.4

Table 1 presents descriptive statistics for volatility (Eq. 2.3) and jumps (Eq. 2.4) in each

segment. The varying means across segments are in line with the literature. Average volatility and

the volatility of volatility are highest during the Europe/US overlap. Average jump frequency, on

the other hand, is highest during the Asian segment, but the largest jump magnitudes are found

during the Asian-European overlap and the European segment.

3.2 The HAR model

This section introduces the HAR model that evaluates how integrated variance and jumps predict

realized volatility through heat waves and meteor showers. The slowly decaying autocorrelation

exhibited by foreign exchange realized volatility has prompted researchers to consider models, such

4Our results are robust to using variances or their log transformation.
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as autoregressive, fractionally integrated, moving average (ARFIMA) and HAR models (see Corsi

(2009)), that can fit this prominent feature of the data. We choose to use the HAR model to capture

meteor shower and heat wave dynamics because it is tractable, flexible and can parsimoniously

reproduce the slowly decaying autocorrelation in foreign exchange realized volatility.

Recent research has also established the importance of jumps (discontinuities) in asset prices,

including their impact on volatility (see e.g. Soucek and Todorova (2014)). Because jumps are

important features of volatility with different characteristics than the continuous components of

volatility, it is important to integrate them into a volatility spillover model in order to accurately

and fully characterize the process. Therefore, we follow Andersen, Bollerslev, and Diebold (2007)

in including jump components in the HAR model.

Before describing the HAR system, we first note that – as theoretical constructs – quadratic

variation equals the sum of integrated volatility and the sum of squared jumps over a given period.

Therefore, regressions of realized volatility (RVt) on either lagged integrated volatility estima-

tors ( ˆIV t−1) and lagged jump estimators (Jt−1), or rather on RVt−1 and Jt−1, are equivalent in

information content. The only difference in the systems would be the magnitude and interpreta-

tion of the estimates. In other words, a functional form with ˆIV on the right-hand side, that is,

RVt = a ˆIV t−1 + bJt−1 + εt, can be rewritten as RVt = c( ˆIV t−1 + Jt−1) + dJt−1 + εt, where the

coefficients are related as follows: a = c, and b = c + d. Using that relation, one can convert the

HAR equation in RVt, ˆIV t−1 and Jt−1 to an equivalent relation in RVt, RVt−1 and Jt−1 with which

one can calculate impulse responses. An advantage of using ˆIV as a regressor, rather than RV , is

that the interpretation of the coefficient on ˆIV is more straightforward. On the other hand HAR

regressions of RV on lagged RV and lagged jumps are convenient for constructing impulse response

functions and testing structural stability. Therefore, we will use the most adequate specification

for each purpose. We present the model using only RV regressors in the interest of brevity.

Previous studies of heat wave and meteor showers used purely short-term specifications: Melvin

and Peiers Melvin (2003) used 2 daily lags for the DEM and 2 daily lags for the JPY. Cai, Howorka,

and Wongswan (2008) do not report their lag lengths but it is likely to be similar to the Melvin and

Peiers Melvin (2003) choice as they used the AIC to choose it for an unrestricted VAR. Such short

specifications probably omitted important and correlated regressors at longer lags and probably did

not match the slowly decaying autocorrelation in RV. In estimating the HAR model, we permit 4
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days of free coefficients, as well as HAR heat wave and meteor shower variables for weekly, monthly

and quarterly data. Likelihood ratio tests rejected restricting the model further.

Equation 3.1 describes the model that predicts RV for segment Si ∈ S = {AS,AE,EU,ES,US}.

The set of trading segments excluding Si, i.e. NS = S \ Si, has elements NSi. Moreover, recall

that RVSi,t denotes realized volatility for segment Si (first subscript) and day t (second subscript).

The model using RV and jumps as regressors can be written as follows:

RVSi,t = αSi +

4∑
d=1

αSid 1(t = d)+

heat wave effects∑
j∈HWSi

βSij RVSi,j +

meteor shower effects∑
j∈MSSi
NSi∈NS

βSi,NSij RVNSi,j (3.1)

+
∑

j∈HWSi

δSij JSi,j +
∑

j∈MSSi
NSi∈NS

δSi,NSij JNSi,j

+
∑

h∈{w,m,q}

θSih RVSi
h

+
∑

h∈{w,m,q}

κSih RVNS
h

+
∑

h∈{w,m,q}

λSih JSi
h

+
∑

h∈{w,m,q}

µSih JNS
h
+ εSi,t.

The first term (αSi) is the constant in segment Si equation. The second term (
∑4
d=1 α

Si
d 1(t = d))

allows different constants for each day of the week, with the indicator function 1(t = d) returning

1 when day t is day of the week d, and d = 1, ..., 4, for Monday to Thursday. The column of terms

adjacent to the constants consists of heat wave regressors, while the right column displays meteor

shower regressors.

The first two lines include meteor shower and heat wave effects (of RV and jumps) for the first

4 lagged days. For daily heat wave effects, the sum subscript j takes values in the set HWSi that

selects appropriate days for heat wave effects with respect to segment Si. For example, in the

equation for the US segment, i.e. Si = US, the set HWSi will contain lags of the US segment.

On the other hand, the sum subscript j takes values in the set MSSi that selects appropriate days

for segment Si’s meteor shower effects, while the sum subscript NSi selects segments other than

Si. For example, the subscripts NSi and j select non-US segments on day t for the US segment

equation, and non-US segments on previous days.

The last two lines contain longer term effects of jumps and realized volatility aggregated over the

week, month or quarter (i.e. the lower frequency effects from our HAR approach). For example,

RVSi
w

is the past week’s heat wave RV effects, that is, the average RV over the past week of

segment Si data. RVSi
m

and RVSi
q

similarly represent heat wave RV effects over a month and
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a quarter of data, respectively. RVNS
h

is constructed equivalently for h ∈ {w,m, q}, but using

segments other than Si in the set NS. Note that, for parsimony, HAR meteor shower (weekly,

monthly and quarterly) effects aggregate segments in NS. That is, for the US equation (Si = US),

we group the segments ES, EU, AE and AS in NS as one “meteor shower” segment.

For each equation, we have 4 days of free lags of heat wave and meteor shower RV, which

produces 20 coefficients, plus 3 (weekly, monthly and quarterly) heat wave and 3 meteor shower

HAR coefficients. That is, there are 26 coefficients on lagged volatility, plus another 26 coefficients

on lagged jumps with an identical structure, plus 5 deterministic variables to model the weekly

volatility cycle, for a total of (2 ∗ 26 + 5 =) 57 coefficients per equation.

4 Predictability

4.1 How to measure of predictability?

We seek to evaluate the importance of heat wave and meteor shower effects in models that include

jumps and (possibly) cross-rate propagation. There are potentially several ways to evaluate the

importance of these effects. First, we could show coefficient estimates–perhaps standardized–and

the statistical significance of those coefficients. This strategy, however, does not lend itself easily

to evaluating the effect of groups of coefficients and the individual coefficient estimates will be

conditional marginal effects that depend on the effects of correlated regressors, not unconditional

effects. Second, we could compute partial and/or semi-partial R2s for groups of regressors but

neither of these measures effectively apportions the total explanatory power among groups of

correlated regressors. Third, forecast error decompositions are also inappropriate as they would

show that contemporaneous shocks to any series explains most of its own error variance rather than

attributing total forecast power to heat wave and meteor shower effects. Thus, that procedure fails

to attribute forecast value to current and past data.

We choose two complementary strategies to evaluate the relative importance of heat waves

versus meteor showers. First, we follow the existing literature in displaying the dynamic impacts

of shocks with impulse response functions. Such functions do not quantify relative contributions

to predictability, however. Second, to quantify the relative importance of meteor showers and heat

waves, we use the Shapley-Owen R2 measure, sometimes called the LMG measure (Lindeman,
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Merenda, and Gold 1980) after its first appearance in econometrics. See also Chevan and Suther-

land (1991) and Grömping (2007). Appendix A-2 describes the construction of the Shapley-Owen

R2 in a simple example.

The Shapley-Owen (or LMG) R2 measure has origins in game theory and was developed to

evaluate the relative importance of correlated regressors. Shapley (1953) proposed a way to ap-

portion the gains from a cooperative game among cooperating players; Owen (1977) extended this

concept to coalitions of players. Lindeman, Merenda, and Gold (1980) subsequently used essen-

tially the same concept to decompose goodness-of-fit among regressors and coalitions of regressors.

The Shapley-Owen measure of the R2s of a group of regressors is the average improvement in

R2s for each regressor (or coalition) over all possible permutations of regressors or coalitions of

regressors. Young (1985) shows that the Shapley Value is unique in having a set of several de-

sirable properties.5 Shapley-Owen values are efficient in that the total R2s is distributed among

the regressors or coalitions of regressors. The method treats regressors/coalitions symmetrically

and apportions contributions linearly in that a coalition gets exactly the sum of the gains due its

members. Variables with no predictive value receive a Shapley-Owen R2 value of zero.

4.2 Predictability in a single exchange rate

4.2.1 Impulse-responses

For continuity with the literature, we will begin by evaluating the propagation of volatility and

jumps in a single exchange rate before assessing the propagation across exchange rates. The

baseline model is the system of five HAR equations 3.1, one for each intraday segment.

We assume that jumps are essentially unpredictable and so enter the HAR system as exogenous

variables but that the RV variables are endogenous. To construct impulse responses, one can

convert the HAR coefficients on lagged RV variables into the implied VAR coefficients on lagged RV

variables and then invert the VAR coeffcients in order to obtain the moving average representation

(MAR) and implied impulse responses, shown in Figures 1 and 2. We note that starting the 24-hour

global “day” with the Asia market is arbitrary; changing the starting period for a “day” would

have no substantive effect on the impulse responses, though it would shift some of them on the

x-axis. For example, if we started the day with the US market, the initial impact of the US shock

5Neither the partial nor semi-partial R2s exhibit the desirable properties shown by the Shapley-Owen measure.
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on the Asia market would be contemporaneous, instead of at lag 1 and the dynamic impact would

be identically shaped but shifted to the left by one unit.

Figures 1 and 2 show the HAR-implied impulse responses for the EUR and JPY, respectively,

with 95 percent pointwise confidence intervals.6 The (i, j) plot shows the impact of a one unit

shock to the ith market on volatility in the jth market from 0 to 10 calendar days. Heat wave

shocks–i.e., “own-effects”– are displayed along the diagonal in highlighted boxes. Meteor shower

effects are on the off-diagonals. Note that impulse responses above the diagonal have zeros as

the first element because a shock to the jth market affects the ith market volatility only on the

next calendar day if j > i. For example, the top row of each figure depicts each intraday period’s

volatility reactions to a one unit shock to US volatility. Because the US trading session is the last

session of the calendar day, all non-US markets respond to the US shock with a one-day lag.

The figures illustrate that heat wave effects appear to be large compared to the individual

meteor shower effects and that the largest of the meteor shower effects tend to be first-lag effects

e.g., AS effects on AE in box (5,4) or US effects on AS in box (1,5). The similar prominence of

heat wave effects in their impulse responses led Melvin and Peiers Melvin (2003) and Cai, Howorka,

and Wongswan (2008) to conclude that heat wave effects were dominant. “More important in the

present paper is the finding that own-region volatility spillovers are more significant economically

(larger in magnitude) than interregional spillovers. In terms coined by Engle et al. (1990), heat

waves are more important than meteor showers.” – Melvin and Peiers Melvin (2003, p. 678-679).

The dynamic impacts of heat wave shocks remain significant for at least 4 to 10+ business days

while the impact of meteor shower shocks tend to be significant for 2 to 10+ days. The panels

in the last row of each figure illustrate that in both the EUR and JPY markets, shocks to Asian

volatility appear to have particularly large effects while the first column of each figure suggests

that US volatility may respond less to shocks in other markets.

4.2.2 Relative importance

The visual prominence of heat wave effects in the impulse responses could be an artifact of the

construction of impulse responses. By construction, initial own-market impulse responses are very

6Bootstrapped confidence intervals were reasonably similar to those implied by the delta method constructed

with Newey-West covariance matrices with automatic lag selection, which are shown.
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large compared to contemporaneous responses of other variables. In order to better quantify the

information content in heat waves and meteor showers, we compute Shapley-Owen R2s for groups

of coefficients in the HAR model. We also compute Wald tests for the null hypotheses that the

coefficients in each of these groups of are jointly zero.7 Such a test is also a test of whether the

Shapley-Owen R2 is statistically significantly different from zero because the population Shapley-

Owen R2 would be zero if and only if the set of population coefficients is zero. In other words,

under the null of no predictability in a group, the S-O R2 should converge in probability to zero.

Though we focus on Shapley-Owen decompositions to discuss relative importance, we report

coefficient estimates in Appendix A-3 for completeness. As explained in Section 3.2, using ˆIV

as a regressor, rather than RV , implies more straightforward coefficient interpretation. Therefore,

Appendix A-3 and related relative importance results in this section (and Section 4.4) use estimates

obtained with CTBPVSi,t, rather than RVSi,t, on the right-hand side of Equation 3.1.

Table 2 shows the Shapley-Owen proportions of the total R2s, as well as p-values in parentheses,

for groups of coefficients in the HAR model. There are 6 groups of coefficients: The initial heat

wave contribution, which includes the first 4 heat wave (own) lags of RV, the heat wave HAR

contribution, consisting of the average heat wave effects over the past week, month and quarter, the

heat wave jump contribution (all heat wave jump variables) and the 3 meteor shower counterparts to

those three heat wave variables. The groups have no intersection and include all non-deterministic

regressors, so the proportions of explanatory power for each intraday period sum to 100. The final

column of the table shows the average Shapley-Owen contribution for each set of coefficients across

the 5 equations. The bottom row in each panel – labeled “R Squared (p-value)” – shows the R2s

for each trading segment, as well as the average R2 across segments. The upper panel of the table

shows results for the euro while the lower panel shows results for the yen.

The broadest conclusion from Table 2 is that both heat waves and meteor shower volatility

contribute substantially to the R squared. Volatility contributes about 90% of explanatory power

for future realized volatility, much more than do the squared jumps. For example, if we add the

average contributions of the four volatility variables in the final column (i.e., “Average”) of the

top panel of Table 2, we obtain a volatility contribution of 0.21 + 0.21 + 0.29 + 0.21 = 0.92 for the

7For brevity and clarity, we do not discuss coefficient estimates, which we consign to an appendix. As discussed

earlier, coefficients are difficult to directly interpret for purposes of assessing heat waves and meteor showers.
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EUR. The contribution of jumps is much smaller but not trivial. Squared jumps account for 8 and

11% of the total average explanatory power for the euro and the yen systems, respectively.

The upper panel of Table 2 (the EUR results) shows that when one averages across the five

intraday periods, the heat wave volatility contributions of the four initial days and the HAR

coefficients are each 21%, with heat wave jumps contributing 2% more, for a heat wave total of

44%. Meteor showers have a somewhat larger contribution, with the four initial days and the HAR

volatility and jump coefficients explaining 29, 21 and 6% of the total R2, respectively, for a sum of

56%. The lower panel shows that heat waves are slightly less important for the yen system, jointly

contributing 35% of the total explanatory power.

In summary, heat waves in volatility and jumps contribute 44 and 35% of the total explanatory

power for the EUR and JPY, respectively, while meteor showers in volatility and jumps contribute

the rest. Volatility has significantly more explanatory power than jumps but jumps still contribute

approximately 10% of the total explanatory power. Reassuringly, these statistics are generally

fairly stable across the five equations for intraday periods and also across the two exchange rates.

4.3 Structural stability tests

Structural instability is common in time-series regressions. Therefore, we test for structural insta-

bility at an unknown point with the Andrews (1993) procedures. This provides a flexible way to

search for breaks without specifying the exact nature of the break. See Appendix A-4 for details

about the test.

The Andrews test initially calculates the Wald test statistics for a structural break in the

HAR coefficients at each observation in the middle 70% of each sample. An automatic lag length

selection (Newey and West 1994) provides lag orders for the Newey-West covariance matrices. The

supremum of this time series of Wald test statistics identifies a possible structural break in the series

but will have a nonstandard distribution (Andrews 1993). To find the distribution of this supremum

under the null of no break, we follow the advice implicit in Chen and Diebold (1996), who show

that the bootstrap approximation to the critical values is much more consistently accurate than

the asymptotic approximation. Therefore, we simulate the data generating process, i.e., the HAR,

1000 times with a moving block bootstrap with a window of length 10, calculating the supremum

of the break statistics for each of the simulated series. If the supremum of the break statistics for
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the real data exceeds the critical value implied by the distribution of the simulated suprema at a

given significance level, then the test rejects the null of stability.

Figures 3 and 4 plot the Andrews (1993) unknown-point structural break statistics for the null

hypotheses that the HAR parameters are stable over time, along with bootstrapped 1, 5, and 10

percent critical values. The top left panel in each figure illustrates the break statistics for the

system as a whole while the five other panels illustrate the statistics for each of the individual

equations. The structural break statistics never exceed the bootstrapped 10 percent critical value

in any panel; one fails to reject the null that the HAR systems are stable.

4.4 Predictability across exchange rates

Previous studies of meteor showers and heat waves have focused exclusively on single market studies

but foreign exchange volatility is strongly correlated across exchange rates. Therefore, this paper

also characterizes meteor showers and heat waves across the EUR and JPY markets. To study

cross-rate effects we include the other markets’ regressors in the HAR predictive equation. That

is, we take the EUR regressors and include them in the JPY predictive equations and vice versa.

This doubles the number of regressors and coefficients for each equation.8

To characterize cross market effects, we again compute Shapley-Owen R2s for groups of cross-

market regressors. That is, we can now not only compute own-market heat wave and meteor

shower effects but also such effects from volatility and jumps in the other market. Table 3 shows

the Shapley-Owen R2s for these cross-market effects. The own-market effects are grossly similar to

those computed for the own-market regressions in Table 2. That is, summing the first four rows of

the ”average” column of Table 3 shows that the average own-market predictive capacity is about

73% of the total predictive effect and that is split between heat waves and meteor showers, with

meteor showers having a modest majority of that effect. For example, in the euro regression, the

top panel of Table 3 shows that, on average, heat-wave-own-market volatility shocks contribute

30% of the explanatory power and meteor-shower-own-market volatility shocks contribute 36% of

8cross-market coefficients reported for in Appendix A-3. Own-market coefficients are grossly similar to those for

the univariate case. The co-linearity between the many correlated regressors in each equation results in relatively

few statistically significant coefficients for other-market effects. That is EUR and JPY QV are fairly highly con-

temporaneously correlated and each are autocorrelated over time, as well. Nevertheless, there are some statistically

significant and positive cross-market meteor shower coefficients, particularly in the first four days.
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the explanatory power while own-market heat-wave and meteor-shower jumps contribute 2 and

5%, respectively. JPY regressors, however, do contribute a substantial amount of predictability in

the EUR equation, with JPY heat wave variables – volatility plus jumps – contributing 11% and

JPY meteor shower variables – volatility plus jumps – contributing 17% of the total explanatory

power in the regression.9 Figure 5 illustrates the proportions of of cross-market predictability for

own-market and cross-market lagged volatility and jump components.

The lower panels of Table 3 and Figure 5 show that the results in the JPY market are similar

to those in the EUR market. Own-market effects contributing 74% of predictive power for JPY

RV and other-market effects contribute the remaining 26%. Of these effects, IV contributes 86%

and jumps 14%. About 2/3 of both domestic and cross-market effects are from meteor showers.

In summary, while own-market effects contribute about 75 percent of the explanatory power,

other-market effects are substantial, at about 25 percent. In contrast, to conclusions in Melvin and

Peiers Melvin (2003) and Cai, Howorka, and Wongswan (2008), meteor showers are collectively

more important than heat waves, contributing about 60 percent and 40 percent of explanatory

power, respectively. Given that there are four times as many meteor shower periods than heat

wave periods, each heat wave period is much more important than a typical meteor shower period.

Collectively, volatility regressors have 8 to 10 times the predictive power of jumps for RV but jumps

still contribute substantially.

4.5 Causes of heat waves and meteor showers

We wish to investigate the source of shocks that might increase or decrease the heat wave and/or

meteor shower effects. One might hypothesize that temporally clustered national news–released

within a country’s particular working hours– creates heat wave effects. In contrast, temporally

clustered international news or news that releases private information in the form of delayed trading

creates meteor shower effects.

To investigate this question, we perform a variation of regression sensitivity analysis. Sensitivity

analysis (a.k.a., influence analysis) is usually performed on a regression to determine if the results

9Particularly observant readers might note that the R2s in the cross-rate regression results displayed in Table 3

are not much larger than the single-rate regressions in Table 2. Because the regressions are run on slightly different

samples, the R2s from the cross-rate regression need not exceed the R2s from the single-rate regressions.
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are heavily influenced by particular observations. One estimates the regression, removing one

observation at a time, to see if removing any particular observations cause the coefficients – or

other statistics – to change substantially.

In our case, we remove one observation at a time and then compute the Shapley-Owen R2s

(not just proportions) for each of 4 groups: 1) the heat-wave variables for the RV regressors; 2) the

meteor shower variables for the RV regressors; 3) the heat-wave variables for the jump regressors;

4) the meteor shower variables for the jump regressors. We will refer to these time series as

Shapley-Owen R2 sensitivity series and denote them as R2
i,t(SO). We then examine whether news

and time trends explain the time series of these Shapley-Owen R2 sensitivity series. Specifically,

we regressed the standardized change in the Shapley-Owen R2s when day t is removed on a time

series of the absolute value of standardized news releases and a quartic time trend.10 If a particular

type of news event–say FOMC announcements –increases heat-wave effects in volatility, one would

expect that removing those events would reduce the Shapley-Owen R2s for the heat-wave volatility

coefficients, resulting in a negative coefficient on FOMC shocks in the following regression:

R̃2
i,t(SO) =

R2
i,t(SO)−R2

i (SO)

σR2
i,t

=

N∑
j=1

βj |
Aj,t − E(Aj,t)

σAi
| +

4∑
j=1

βN+jt
j + εi,t, (4.1)

where | Aj,t−E(Aj,t)
σAi

| is the absolute value of the standardized jth announcement on day t and∑4
j=1 βN+jt

j is the quartic time trend.

Because we have much better data on US news and announcements than on non-US news, the

estimated regressions produce much more significant results for the US and ES segments than the

other three (AS, AE, and EU). Therefore, in the interests of clarity and brevity, we report results

for only those equations. We expect that the results for the US and ES segments would provide

inference representative of that from the three other periods, if we had access to long samples of

high-quality announcement and expectations data from Europe and Japan.

We examine 8 major US announcements that have been previously shown to have substantial

effects on asset price volatility (Neely 2011). Most of these announcements are standard, including

advance real Gross Domestic Product (GDP), the implicit GDP deflator, the consumer price index

(CPI), the producer price index (PPI), unemployment and nonfarm payrolls (NFP). In addition, we

include measures of conventional monetary policy, MP1 and ED12, developed by Kuttner (2001),

10We considered other specifications, including an announcement indicator instead of the absolute value of the

shock and day-of-the-week indicators but these alternatives did not improve the fit of the relations.
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Gürkaynak, Sack, and Swanson (2005) and Hausman and Wongswan (2011) and an unconventional

policy measure due to Wright (2012). Fawley and Neely (2014) detail these monetary policy

measures.

Tables 4 and 5 show the results of the exercise for the US and ES equations, respectively. First,

we observe that removing days of US monetary shocks (Table 4 ) and NFP (Table 5) has the

largest effects on the Shapley-Owen sensitivity series. This is consistent with their importance

in other foreign-exchange-announcement-effect studies (Lahaye, Laurent, and Neely 2011, Neely

2015). Second, the signs and significance of coefficients within each table show some consistency.

Let us first consider shocks with positive coefficients. Positive coefficients indicate that these

shocks actually reduce estimated heat wave and meteor shower effects, presumably by producing

atypical volatility patterns that weaken the estimated fit. It is well known that particularly large

shocks present problems for volatility models that rely on autocorrelation in volatility because the

very large shocks die out much too quickly for typical models (Neely 1999, Andersen, Bollerslev,

and Diebold 2007).

Both the very large unconventional policy (Wright) shocks and the very important NFP shocks

have positive coefficients in the heat wave and meteor shower volatility equations for both the EUR

and JPY markets. The Wright shocks have their larger effects in the US trading period (Table 4),

which is the period when almost all of the US unconventional policy announcements were made,

while the NFP shocks have all their significant effects in the ES period (i.e., the Europe-US overlap,

Table 5), which is the period when the Labor Department releases NFP news. The Wright shocks

weakened all the volatility predictive power for the US market but strengthened the heat wave-

jump predictive power. The top row of Table 4 shows that the coefficient on heat-wave volatility is

0.56, in the Euro market / US period, meaning that a one-standard deviation Wright shock reduces

the Shapley-Owen R2 sensitivity series for heat-wave volatility by 0.56 of a standard deviation in

the US market. Wright shocks also tend to decrease the meteor shower effect of jumps in both

the EUR and JPY markets during the US period (”Wright” column, Table 4). That is, large and

unusual unconventional monetary shocks decrease the fit of the autocorrelation model of jumps.

The coefficients on NFP shocks are positive in both the EUR and JPY markets for both

heat wave and meteor shower volatility effects. That is, NFP shocks are probably large but

expected. They are more easily interpretable and do not set off serially correlated releases of
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private information that would produce meteor shower or heat wave volatility effects. Therefore

they tend to weaken the usual predictive patterns.

The coefficients on conventional monetary policy shocks – MP1 and ED12 – are negative for the

heat wave and meteor shower volatility equations during the US period (Table 4), which is when

conventional monetary announcements were made. The largest such negative coefficient, at -0.23,

is that on the ED12 shock for the EUR exchange rate for the US volatility heat wave equation.

Conventional monetary policy shocks increase the estimated heat wave and meteor shower effects,

presumably because they stimulate the release of private US-specific and international information

that increases volatility in the following periods in a manner consistent with the rest of the data.

Interestingly, the coefficients on the Wright shocks are significantly negative (-0.16 and -0.19)

for the heat wave jump equation for both exchange rates during the US segment, increasing the

heat-wave effect of jumps (Table 5). That is, unconventional policy shocks create jumps that

predict future volatility in the US market.

In summary, unconventional policy and NFP shocks are probably so influential that they ac-

tually reduce the predictive effect of heat wave and meteor shower in volatility equations. In

contrast, the more frequent and smaller conventional policy shocks increase both heat wave and

meteor shower effects because they presumably reinforce patterns in the volatility data from other

types of news. Not surprisingly, news has its most significant effects on heat wave and meteor

shower patterns in the intraday trading periods in which it is announced.11

5 Conclusion

This paper has extended the study of meteor showers and heat waves in foreign exchange markets

by integrating data on jumps into the study, by evaluating effects with the Shapley-Owen R2, and

by characterizing cross-rate predictability in such studies.

To maintain continuity with the literature, we initially study systems with data from a single

exchange rate. We find that jumps contribute modestly to explanatory power; integrated variance

contributes 90% of explanatory power; jumps add about 10%. In contrast to the previous literature,

11The PPI appears to be an exception to this for the JPY market. Its releases appear consistently effect the heat

wave and meteor shower volatility patterns in the US segment, which occurs several hours after the PPI’s 8:30 AM

release.
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we find that meteor showers contribute more (60%) predictive power than heat waves (40%),

although individual heat wave periods are more informative than typical meteor shower periods.

Andrews (1993) tests fail to reject the hypothesis that the one-exchange rate HAR systems are

structurally stable over time.

Our cross-rate HAR systems show that volatility propagates across FX markets. Own-market

patterns explain about 75% of variation while other-market effects explain 25%. The heat-wave-

meteor-shower breakdown is similar to that in the single-rate systems. Meteor showers contribute

60-65% of the predictability while heat waves are responsible for the rest.

The impulse response functions suggest that shocks to Asian volatility have particularly impor-

tant effects on volatility in other periods. At the same time, US volatility appears to be relatively

insensitive to shocks in other regions.

Finally, sensitivity analysis suggests that certain very large shocks – unconventional monetary

policy and NFP – decrease heat wave and meteor shower effects in volatility while more frequent,

smaller but still important shocks – i.e., conventional monetary policy shocks – strengthen both

of these relations. This is consistent with studies by Neely (1999) and Andersen, Bollerslev, and

Diebold (2007), in which very large shocks reduced the fit of volatility models while smaller shocks

improved it by reinforcing patterns created by other news. Shocks tend to have their greatest

effects on predictive patterns during the intraday period in which they are announced.
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Table 1: Descriptive statistics on segments’ RV and jumps

AS AE EU ES US

R
V

Mean 2.98 4.67 4.07 5.38 3.50

Median 2.77 4.34 3.76 5.03 3.15

Std. dev. 1.18 1.95 1.71 2.04 1.62

J
u

m
p

Freq. 0.08 0.01 0.02 0.04 0.05

Mean 3.43 6.95 5.45 4.15 4.78

Std. dev. 2.34 5.16 4.74 1.81 2.43

Note: The table provides descriptive statistics for each

trading segment’s volatility (Eq. 2.3) and jumps (Eq.

2.4): mean, median and standard deviation, as well as

frequency of jump days.
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Table 2: Shapley-Owen R2s for the EUR and JPY

EUR AS AE EU ES US Average

HW initial vol contribution (p-value) 0.25 (0.00) 0.20 (0.00) 0.18 (0.16) 0.21 (0.00) 0.22 (0.00) 0.21

HW HAR vol contribution (p-value) 0.24 (0.00) 0.19 (0.00) 0.19 (0.00) 0.22 (0.00) 0.23 (0.00) 0.21

MS initial vol contribution (p-value) 0.27 (0.00) 0.30 (0.00) 0.34 (0.00) 0.27 (0.00) 0.29 (0.00) 0.29

MS HAR vol contribution (p-value) 0.20 (0.06) 0.19 (0.02) 0.23 (0.02) 0.21 (0.12) 0.23 (0.47) 0.21

HW jump contribution (p-value) 0.03 (0.07) 0.01 (0.15) 0.01 (0.03) 0.01 (0.61) 0.02 (0.74) 0.02

MS jump contribution (p-value) 0.02 (0.16) 0.10 (0.03) 0.05 (0.01) 0.08 (0.00) 0.03 (0.31) 0.06

R Squared (p-value) 0.56 (0.00) 0.47 (0.00) 0.47 (0.00) 0.45 (0.00) 0.49 (0.00) 0.49

JPY AS AE EU ES US Average

HW initial vol contribution (p-value) 0.21 (0.00) 0.14 (0.15) 0.13 (0.97) 0.17 (0.06) 0.19 (0.00) 0.17

HW HAR vol contribution (p-value) 0.17 (0.00) 0.15 (0.18) 0.14 (0.03) 0.18 (0.00) 0.19 (0.00) 0.16

MS initial vol contribution (p-value) 0.30 (0.00) 0.42 (0.00) 0.46 (0.00) 0.35 (0.00) 0.32 (0.00) 0.37

MS HAR vol contribution (p-value) 0.17 (0.00) 0.17 (0.42) 0.19 (0.06) 0.19 (0.22) 0.20 (0.12) 0.19

HW jump contribution (p-value) 0.04 (0.40) 0.02 (0.58) 0.02 (0.25) 0.02 (0.64) 0.03 (0.16) 0.02

MS jump contribution (p-value) 0.12 (0.00) 0.10 (0.00) 0.06 (0.01) 0.09 (0.00) 0.07 (0.00) 0.09

R Squared (p-value) 0.47 (0.00) 0.43 (0.00) 0.45 (0.00) 0.42 (0.00) 0.41 (0.00) 0.44

Note: The table shows the Shapley-Owen proportion of the total R2s, as well as p-values in parentheses, for groups of coefficients in the

HAR model in which RV is predicted by lagged IV and lagged jumps (Equation 3.1). There are 6 groups of coefficients: The initial heat

wave (HW) contribution, which includes the first 4 heat wave (own) lags of RV, the heat wave HAR contribution, consisting of the average

heat wave effects over the past week, month and quarter, the heat wave jump contribution (all heat wave jumps variables) and the 3 meteor

shower (MS) counterparts to those three heat wave variables. The groups have no intersection and include all non-deterministic regressors,

so the proportions for each intraday period sum to 100. The final column of the table shows the average Shapley-Owen contribution for

each set of coefficients across the 5 equations. Statistics in parentheses are p-values from Wald tests that the coefficients within each group

are jointly zero.
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Table 3: Shapley-Owen R2s for cross-market prediction of the EUR and JPY RV

Dependent variable: EUR RV AS AE EU ES US Average

HW own vol contribution (p-value) 0.33 (0.00) 0.30 (0.00) 0.27 (0.00) 0.31 (0.00) 0.31 (0.00) 0.30

MS own vol contribution (p-value) 0.30 (0.00) 0.39 (0.00) 0.42 (0.00) 0.34 (0.00) 0.36 (0.00) 0.36

HW own jump contribution (p-value) 0.03 (0.00) 0.02 (0.11) 0.02 (0.04) 0.01 (0.29) 0.01 (0.48) 0.02

MS own jump contribution (p-value) 0.02 (0.03) 0.05 (0.05) 0.05 (0.06) 0.08 (0.00) 0.03 (0.20) 0.05

HW other vol contribution (p-value) 0.12 (0.91) 0.08 (0.89) 0.08 (0.15) 0.09 (0.04) 0.12 (0.13) 0.10

MS other vol contribution (p-value) 0.15 (0.06) 0.12 (0.22) 0.12 (0.24) 0.12 (0.08) 0.13 (0.09) 0.13

HW other jump contribution (p-value) 0.01 (0.01) 0.01 (0.12) 0.02 (0.30) 0.01 (0.03) 0.02 (0.87) 0.01

MS other jump contribution (p-value) 0.03 (0.27) 0.04 (0.68) 0.03 (0.21) 0.05 (0.00) 0.03 (0.04) 0.04

R Squared (p-value) 0.61 (0.00) 0.45 (0.00) 0.48 (0.00) 0.47 (0.00) 0.51 (0.00) 0.50

Dependent variable: JPY RV AS AE EU ES US Average

HW own vol contribution (p-value) 0.27 (0.00) 0.20 (0.16) 0.19 (0.00) 0.25 (0.00) 0.27 (0.00) 0.24

MS own vol contribution (p-value) 0.34 (0.00) 0.44 (0.00) 0.46 (0.00) 0.40 (0.00) 0.37 (0.00) 0.40

HW own jump contribution (p-value) 0.03 (0.43) 0.02 (0.90) 0.02 (0.16) 0.02 (0.67) 0.02 (0.26) 0.02

MS own jump contribution (p-value) 0.12 (0.00) 0.09 (0.01) 0.06 (0.01) 0.08 (0.00) 0.07 (0.00) 0.08

HW other vol contribution (p-value) 0.11 (0.11) 0.07 (0.01) 0.06 (0.43) 0.08 (0.12) 0.09 (0.24) 0.08

MS other vol contribution (p-value) 0.10 (0.33) 0.14 (0.07) 0.17 (0.00) 0.14 (0.68) 0.16 (0.03) 0.14

HW other jump contribution (p-value) 0.02 (0.02) 0.01 (0.07) 0.00 (0.61) 0.01 (0.84) 0.01 (0.39) 0.01

MS other jump contribution (p-value) 0.01 (0.12) 0.02 (0.09) 0.04 (0.03) 0.02 (0.04) 0.02 (0.57) 0.02

R Squared (p-value) 0.48 (0.00) 0.44 (0.00) 0.46 (0.00) 0.42 (0.00) 0.42 (0.00) 0.44

Note: The table shows the Shapley-Owen proportion of the total R2s, as well as p-values in parentheses, for groups of coefficients

in the cross-market HAR model in which each period’s RV is predicted by both its own lagged IV and jumps, as well as lagged

IV and jump from the other foreign exchange rate. The top (bottom) panel shows results for EUR (JPY) RV as the dependent

variables. The final column of the table shows the average Shapley-Owen contribution for each set of coefficients across the 5

equations. Statistics in parentheses are p-values from Wald tests that the coefficients within each group are jointly zero.
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Table 4: The effect of standardized absolute announcement shocks on Shapley-Owen R2s – US

equation

Market GDP GDP Defl. CPI PPI Unemp. NFP Wright MP1 ED12

EUR RV heat-wave -0.01 -0.01 0.01 0.02 0.02 -0.03 0.56 -0.02 -0.23

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

EUR RV meteor shower -0.01 0.00 0.06 0.01 0.00 -0.01 0.42 0.01 -0.12

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

EUR Jump heat-wave 0.01 -0.02 -0.11 0.04 -0.02 0.01 -0.19 -0.05 0.06

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

EUR Jump meteor shower 0.00 0.00 0.00 0.00 0.02 0.03 0.05 0.01 -0.04

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY RV heat-wave 0.00 0.00 -0.01 0.12 0.00 -0.01 0.25 -0.04 -0.12

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY RV meteor shower 0.00 0.00 0.02 0.13 -0.01 0.00 0.31 -0.04 -0.13

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY Jump heat-wave 0.00 0.00 -0.07 0.13 0.03 -0.03 -0.16 0.02 0.03

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY Jump meteor shower 0.00 0.01 0.01 0.01 -0.01 0.03 0.13 -0.01 -0.09

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

Note: The table shows the results of regressions of standardized Shapley-Owen R2s for four groups of regressors

on the absolute value of standardized news announcement shocks. The table presents results for the US equation

in the EUR market (upper panel) and the JPY market (lower panel). The time series of Shapley-Owen R2s were

created by removing one observation at a time from the sample and therefore represents the change in R2 for the

four respective groups on each of the days in the sample. Each row represents the results for the Shapley-Owen

R2 for one group of regressors. For example, the first row shows the results for the regression of the series of the

sensitivity Shapley-Owen R2s for the heat-wave, volatility variables, in the Euro market (US equation), on absolute

standardized shocks. Highlighted cells denote coefficients that are statistically significant at the 5 percent level and

standard errors are in parentheses below the coefficient estimates.
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Table 5: The effect of standardized absolute announcement shocks on Shapley-Owen R2s – ES

equation

Market GDP GDP Defl. CPI PPI Unemp. NFP Wright MP1 ED12

EUR RV heat-wave -0.01 -0.01 0.02 -0.01 -0.01 0.13 0.08 0.05 -0.05

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

EUR RV meteor shower -0.01 0.00 -0.01 0.00 -0.03 0.19 0.13 0.00 -0.09

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

EUR Jump heat-wave 0.02 -0.01 0.01 0.01 -0.10 0.13 0.00 0.00 0.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

EUR Jump meteor shower 0.01 0.01 -0.02 0.01 -0.02 0.08 -0.16 0.04 0.04

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY RV heat-wave -0.02 0.01 0.00 -0.02 -0.05 0.09 0.07 -0.04 -0.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY RV meteor shower -0.01 0.01 -0.01 0.00 0.02 0.14 0.04 -0.11 -0.02

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY Jump heat-wave 0.03 -0.01 0.01 0.01 0.02 0.03 0.02 -0.04 -0.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

JPY Jump meteor shower 0.00 0.01 -0.03 0.02 0.03 0.00 -0.15 0.03 0.05

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

Note: The table shows the results of regressions of standardized Shapley-Owen R2s for four groups of regressors

on the absolute value of standardized news announcement shocks. The table presents results for the ES equation

in the EUR market (upper panel) and the JPY market (lower panel). The time series of Shapley-Owen R2s were

created by removing one observation at a time from the sample and therefore represents the change in R2 for the

four respective groups on each of the days in the sample. Each row represents the results for the Shapley-Owen R2

for one group of regressors in one market. For example, the first row shows the results for the regression of the series

of the sensitivity Shapley-Owen R2s for the heat-wave, volatility variables, in the Euro market (ES equation), on

absolute standardized shocks. Highlighted cells denote coefficients that are statistically significant at the 5 percent

level and standard errors are in parentheses below the coefficient estimates
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Figure 1: Impulse responses implied by the HAR model for the EUR

Notes: The figure displays the point estimate for the impulse response functions in red and a 95 percent confidence

interval – with median – in black.
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Figure 2: Impulse responses implied by the HAR model for the JPY

’

Notes: The figure displays the point estimate for the impulse response functions in red and a 95 percent confidence

interval – with median – in black.

29



Figure 3: Andrews break statistics for the EUR HAR System and individual equations

Notes: The six panels of the figure plot the Andrews test statistics and the bootstrapped 1, 5, and 10 percent

critical values from the 15th to the 85th percentile of the samples, for a structural break in the EUR HAR system

and each of the 5 individual HAR equations. Critical values were obtained by simulating the HAR system under

the null of stability with a moving block bootstrap with a 10-day block.
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Figure 4: Andrews break statistics for the JPY HAR System and individual equations

Notes: The six panels of the figure plot the Andrews test statistics and the bootstrapped 1, 5, and 10 percent

critical values from the 15th to the 85th percentile of the samples, for a structural break in the JPY HAR system

and each of the 5 individual HAR equations. Critical values were obtained by simulating the HAR system under

the null of stability with a moving block bootstrap with a 10-day block.

31



Figure 5: Shapley-Owen R2s for cross-market prediction

(a) EUR/USD

(b) USD/JPY

Note: The figure displays the proportion of cross-market predictability for own-market and cross-market lagged

volatility and jump components.
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A-1 APPENDIX (not-for-publication): robust periodicity

and integrated volatility estimators

A-1.1 Periodicity estimation

Following Boudt, Croux, and Laurent (2011), we assume a multiplicative periodic component.

First, we normalize each intraday return ∆j,tX with its corresponding daily volatility estimate

scaled to the intraday interval length,

√
ˆIV t/n. For intraday period j of day t, assuming D sample

days:

∆j,tX =
∆j,tX√

ˆIV t/n
, j = 1...n, t = 1, ...D, (A-1)

The periodic volatility component for period j is a scale estimate obtained using the standard-

ized returns for period j (from Equation A-1) from all days in the sample:12

σ̂j = scalej(∆j,1X,∆j,2X, ...,∆j,DX), j = 1...n. (A-2)

Following Boudt, Croux, and Laurent (2011) and Lahaye, Laurent, and Neely (2011), we choose

the weighted standard deviation (WSD) as the scale measure.

The WSD first involves the shortest half scale (SHS) (Rousseeuw and Leroy 1988). To compute

SHSj , the SHS for intraday period j, take all sample interval j returns (across D sample days) and

rank them such that ∆j,t1X < . . . < ∆j,tDX. ∆j,t1X is the smallest sample return for intraday

period j, and ∆j,tDX is the largest. The SHS is the minimum value of halves length. Halves are

subsets of bD2 c+ 1 = h contiguous returns in the ranked set ∆j,t1X < . . . < ∆j,tDX. A half length

is the difference between its maximum and minimum values. We define

SHSj = 0.741 min{∆j,thX −∆j,t1X, . . . ,∆j,tdX −∆j,tD−h+1X}. (A-3)

The SHS estimator for the periodicity factor of period j is

f̂SHSj =
SHSj√

1
n

∑n
j=1 SHS

2
j

. (A-4)

Boudt, Croux, and Laurent (2011) show that the standard deviation, applied to the returns

weighted in function of their outlyingness under the SHS estimate, offers a better trade-off between

12The scale estimate is normalized such that it sums to one over the periodic cycle.
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the efficiency of the standard deviation under normality and the high robustness to jumps of the

shortest half dispersion. The WSD is obtained as follows:

f̂WSD
j =

WSDj√
1
n

∑n
j=1WSD2

j

, (A-5)

where

WSDj =

√√√√1.081

∑D
j=1 w[∆j,tX/f̂SHSj ]∆j,tX

2∑D
j=1 w[∆j,tX/f̂SHSj ]

. (A-6)

The function w(z) is an indicator function equal to one when z ≤ 6.635, the χ2(1) 99% quantile,

and 0 otherwise. The function w selects jump free returns, based on a first approximation of

periodicity with the shortest half scale, to evaluate a Taylor and Xu (1997) type of periodicity.

Intraday standardized returns are defined as

˜∆j,tX =
∆j,tX

σ̂j
, (A-7)

with σ̂j = f̂WSD
j . These standardized returns, which have no intraday periodicity patterns in

volatility, permit us to estimate IV and identify jumps.

A-1.2 APPENDIX (not-for-publication): integrated volatility

This appendix describes volatility estimators used in this paper. We assume a Brownian semi-

martingale with jumps for the log-price (Xt)t∈[0,T ]:

dXt = µtdt+ σtdWt + dJt, (A-8)

where dJt = ctdNt, ct being the jump size, dNt the increment of a Poisson process. Wt is a Wiener

process, σt is the spot stochastic volatility, and µt is the drift process. Quadratic variation (QV)

decomposes into diffusion variation (integrated variance) and the sum of squared jumps:

[X]T0 = [Xc]T0︸ ︷︷ ︸
=
∫ T
0
σ2
sds

+ [Xd]T0︸ ︷︷ ︸
=
∑NT
j=1 c

2
j

, (A-9)

where NT is the number of jumps over the interval. Redefine13 returns sampled over small intervals

δ, assuming n intervals over T :

∆jX = Xjδ −X(j−1)δ, j = 1...n. (A-10)

13A daily subscript t is not needed and ignored, unlike in the remainder of the text.
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Barndorff-Nielsen and Shephard (2006) have introduced the following multipower variation

statistic:

MPVδ(X)
[γ1,...,γM ]
t = δ1− 1

2 (γ1+...+γM )
n∑

j=M

M∏
k=1

|∆j−k+1X|γk , (A-11)

that consistently estimates IV or integrated quarticity (
∫ t+T
t

σ2
sds or

∫ t+T
t

σ4
sds), in the presence

of jumps, for appropriate choices of M and γk.

Realized variance is a particular case of multipower variation for M = 1 and γ1 = 2:

RVδ(X)t = MPVδ(X)
[2]
t =

n∑
j=1

∆jX
2. (A-12)

This estimator of integrated variance is not robust to jumps, however. In the presence of jumps,

RV estimates QV, i.e. integrated variance plus the sum of squared jumps (see Eq. A-9).

Setting M = 2 and γ1 = γ2 = 1 yields the bipower variation estimator:

BPVδ(X)t = µ−2
1 MPVδ(X)

[1,1]
t = µ−2

1

n∑
j=2

|∆j−1X||∆jX| (A-13)

that consistently estimates IV (
∫ t+T
t

σ2
sds) in the presence of jumps.14 Bipower variation eliminates

the influence of jumps on estimates of diffusion variance by estimating that variance with the

product of adjacent absolute returns. Jumps are downweighted because the probability of successive

Poisson jumps tends to zero as the sampling frequency tends to zero. Nevertheless, successive

jumps are still possible with discrete sampling frequency and these can bias BPV estimates of IV.

To solve that problem, the generalized threshold multipower variation (TMPV) combines Mancini’s

(2009) threshold approach with Barndorff-Nielsen and Shephard’s (2006) multipower variation. It

is defined as:

TMPVδ(X)
[γ1,...,γM ]
t = δ1− 1

2 (γ1+...+γM )
n∑

j=M

M∏
k=1

|∆j−k+1X|γkI{|∆jX|2≤ϑj−k+1}, (A-14)

of which threshold bipower variation is a special case for M = 2 and γk = 1:

TBPVδ(X)t = µ−2
1 TMPVδ(X)

[1,1]
t = µ−2

1

n∑
j=2

|∆j−1X||∆jX|I{|∆j−1X|2≤ϑj−1}I{|∆jX|2≤ϑj}.

(A-15)

In practice, the threshold is set to a multiple of the local spot variance:

ϑt = c2ϑV̂t (A-16)

14The constant µ1 ' 0.7979 ensures the proper convergence of bipower variation towards integrated variance.
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where V̂t estimates σ2
t , and c2ϑ is set at 3.

We follow Corsi, Pirino, and Reno (2010) in estimating V̂t with a non-parametric filter (Fan and

Yao 2003) (see Corsi, Pirino, and Reno (2010), Appendix B). Moreover, following Corsi, Pirino,

and Reno (2010), we correct the downward bias in the TBPV estimator that exists because the

threshold approach can incorrectly remove returns that are not jumps. This corrected estimator is

named CTBPV.
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A-2 APPENDIX (not-for-publication): The Shapley-Owen

R2

This appendix briefly describes the construction of the Shapley-Owen R2 with a simple example

following an exercise in Nathans, Frederick, and Nimon (2012). Consider a regression using the

Holzinger and Swineford (1939) dataset of test results from a test administered to 301 pupils. The

test contained 26 subtests and one can use the scores from subtests to predict a student’s deductive

mathematical reasoning score. That is, one can regress deductive mathematical reasoning scores

on scores from the numeric, arithmetic, and addition subsections. The estimated regression can be

written as follows:

reasoning = −2.92 + 1.43 ∗ numeric+ 0.89 ∗ arithmetic− 0.12 ∗ addition+ error (A-1)

This appendix describes the computation of the Shapley-Owen contribution of the “numeric” re-

gressor. Note that there are 6 possible permutations of the 3 regressors. Each row in the table below

shows one of the six permutations. Let us show the contribution of numeric for each permutation.

• Permutation 1: The first permutation is {Numeric, Arithmetic, Addition} and the R2 for

these three regressors is 0.207. “Numeric” is the first variable so it is removed first and the

remaining regressors {Arithmetic, Addition} provide an R2 of 0.115. The contribution of

numeric in this permutation is 0.207− 0.115 = 0.092.

• Permutation 2: The second permutation is {Numeric, Addition, Arithmetic}. Again, “nu-

meric” is the first variable removed and the contribution of numeric in this permutation is

0.207− 0.115 = 0.092.

• Permutation 3: The third permutation is {Arithmetic, Numeric, Addition}. “Numeric” is

the second variable removed and the marginal contribution of numeric (over Addition) in this

permutation is 0.169− 0.002 = 0.167.

• Permutation 4: The fourth permutation is {Arithmetic, Addition, Numeric}. “Numeric” is

the last variable to be removed its marginal contribution is 0.158− 0.000 = 0.158.

• Permutation 5: The fifth permutation is {Addition, Numeric, Arithmetic}. “Numeric” is the

second variable removed and the marginal contribution of numeric (over Arithmetic) in this
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permutation is 0.185− 0.108 = 0.077.

• Permutation 6: The sixth permutation is {Addition, Arithmetic, Numeric}. “Numeric” is

the last variable to be removed its marginal contribution is 0.158− 0.000 = 0.158.

The Shapley-Owen R2 for numeric is the average marginal contribution of numeric over the 6

permutations, which is (0.092 + 0.092 + 0.167 + 0.158 + 0.077 + 0.158)/6 = 0.124. The analogous

statistics for the other regressors or groups of regressors can be computed similarly.

Table A1: Shapely-Owen R2 illustration

Regressor Permutations R2 Regressors R2 Regressor R2 Improvement Value of “numeric”

1 Numeric, Arithmetic, Addition 0.207 Arithmetic, Addition 0.115 Addition 0.002 0.207 - 0.115 = 0.092

2 Numeric, Addition, Arithmetic 0.207 Addition, Arithmetic 0.115 Arithmetic 0.108 0.207 - 0.115 = 0.092

3 Arithmetic, Numeric, Addition 0.207 Numeric, Addition 0.169 Addition 0.002 0.169 - 0.002 = 0.167

4 Arithmetic, Addition, Numeric 0.207 Addition, Numeric 0.169 Numeric 0.158 0.158 - 0.000 = 0.158

5 Addition, Numeric, Arithmetic 0.207 Numeric, Arithmetic 0.185 Arithmetic 0.108 0.185 - 0.108 = 0.077

6 Addition, Arithmetic, Numeric 0.207 Arithmetic, Numeric 0.185 Numeric 0.158 0.158 - 0.000 = 0.158

Shapley Value = 0.124
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A-3 APPENDIX (not-for-publication): HAR estimates

Table A2: HAR estimates - EUR/USD

AS AE EU ES US

coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val.

Integrated volatility

β
Si
j

HW lag 1 0.190 0.044 0.254 0.056 0.060 0.058 0.228 0.064 0.190 0.054

HW lag 2 0.019 0.038 0.063 0.063 0.069 0.045 0.069 0.059 0.000 0.047

HW lag 3 0.034 0.051 0.195 0.063 0.017 0.057 0.061 0.057 0.027 0.057

HW lag 4 0.086 0.047 0.075 0.056 0.121 0.072 0.032 0.067 0.001 0.060

θ
Si
h

lagged weekly HW 0.187 0.126 -0.086 0.186 -0.029 0.142 0.131 0.183 -0.013 0.144

lagged monthly HW 0.101 0.108 0.167 0.127 0.102 0.127 0.178 0.128 0.347 0.115

lagged trimester HW 0.119 0.071 0.255 0.147 0.293 0.147 0.248 0.150 0.103 0.112

β
NSi
j

MS lag 1 - 1st preceding segment 0.310 0.045 0.513 0.054 0.383 0.036 0.227 0.042 0.301 0.037

MS lag 1 - 2nd preceding segment 0.071 0.027 0.089 0.052 0.256 0.040 0.124 0.042 0.036 0.035

MS lag 1 - 3rd preceding segment 0.089 0.028 0.202 0.054 0.108 0.039 0.275 0.054 0.013 0.035

MS lag 1 - 4th preceding segment 0.075 0.026 0.173 0.058 0.089 0.058 0.180 0.043 0.187 0.039

MS lag 2 - 1st preceding segment 0.014 0.024 -0.080 0.063 0.052 0.044 0.057 0.047 0.000 0.038

MS lag 2 - 2nd preceding segment 0.004 0.025 -0.018 0.044 -0.044 0.059 0.044 0.048 -0.015 0.038

MS lag 2 - 3rd preceding segment 0.045 0.028 0.053 0.049 -0.045 0.049 0.088 0.050 -0.064 0.044

MS lag 2 - 4th preceding segment 0.040 0.029 0.072 0.046 0.019 0.042 0.089 0.050 0.087 0.049

κ
Si
h

lagged weekly MS -0.418 0.199 0.309 0.315 0.425 0.346 -0.501 0.259 0.191 0.199

lagged monthly MS 0.114 0.103 -0.227 0.158 -0.154 0.154 0.184 0.153 0.136 0.120

lagged trimester MS -0.140 0.077 -0.146 0.171 -0.186 0.169 -0.235 0.160 -0.117 0.119

Jumps

δ
Si
j

HW lag 1 0.009 0.025 -0.023 0.026 -0.001 0.042 0.035 0.037 0.026 0.032

HW lag 2 0.028 0.027 -0.058 0.025 0.022 0.031 0.019 0.045 0.038 0.039

HW lag 3 0.022 0.022 -0.051 0.020 -0.001 0.032 0.042 0.042 0.015 0.030

HW lag 4 -0.008 0.022 -0.014 0.022 -0.050 0.038 0.008 0.037 -0.016 0.028

λ
Si
h

lagged weekly HW 0.037 0.041 0.073 0.035 -0.016 0.063 -0.042 0.070 -0.033 0.049

lagged monthly HW 0.010 0.018 -0.022 0.035 -0.033 0.040 0.064 0.041 -0.018 0.029

lagged trimester HW -0.048 0.017 0.041 0.043 0.008 0.050 -0.035 0.037 0.003 0.025

δ
NSi
j

MS lag 1 - 1st preceding segment 0.054 0.017 0.124 0.042 0.072 0.033 0.175 0.052 -0.012 0.021

MS lag 1 - 2nd preceding segment 0.000 0.013 0.107 0.044 0.014 0.027 -0.025 0.026 -0.006 0.026

MS lag 1 - 3rd preceding segment 0.013 0.012 0.039 0.024 0.040 0.038 -0.040 0.036 -0.042 0.019

MS lag 1 - 4th preceding segment 0.015 0.016 0.122 0.059 0.002 0.018 -0.034 0.040 -0.027 0.026

MS lag 2 - 1st preceding segment 0.001 0.017 0.302 0.198 -0.036 0.021 -0.037 0.028 0.005 0.022

MS lag 2 - 2nd preceding segment -0.013 0.013 0.040 0.032 -0.033 0.028 -0.035 0.022 -0.005 0.016

MS lag 2 - 3rd preceding segment 0.004 0.014 0.004 0.024 0.115 0.034 -0.029 0.030 0.002 0.022

MS lag 2 - 4th preceding segment 0.032 0.024 0.006 0.024 0.012 0.024 -0.011 0.040 0.012 0.030

µ
Si
h

lagged weekly MS -0.030 0.031 -0.079 0.054 -0.025 0.071 0.173 0.089 0.069 0.060

lagged monthly MS -0.015 0.019 -0.114 0.046 0.049 0.052 -0.036 0.039 0.001 0.031

lagged trimester MS 0.003 0.016 0.094 0.036 0.023 0.035 0.076 0.043 0.034 0.031

LB stat 5 lags (p-value) 0.630 0.987 1.055 0.958 0.572 0.989 0.274 0.998 1.016 0.961

LB stat 35 lags (p-value) 28.203 0.785 18.067 0.992 104.414 0.000 58.557 0.008 49.200 0.056

Note: OLS estimates from the model described in Section 3.2 for the EUR/USD market. Day-of-the-week constants, and the 3rd and

4th lags of meteor shower effects, are omitted to save space. The last 2 lines report Ljung-Box statistics with 5 and 35 lags (with their

respective p-values in the “p-val.” column). Columns report parameter estimates and associated p-values (based on robust standard

errors) for each segment equation in the system. The Greek letters in the first column refer to Equation 3.1.
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Table A3: HAR estimates - USD/JPY

AS AE EU ES US

coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val.

Integrated volatility

β
Si
j

HW lag 1 0.334 0.081 0.019 0.072 -0.006 0.056 0.157 0.067 0.123 0.073

HW lag 2 0.172 0.068 -0.095 0.065 -0.011 0.050 0.147 0.056 -0.053 0.075

HW lag 3 0.131 0.067 -0.048 0.062 -0.029 0.057 0.119 0.062 -0.100 0.067

HW lag 4 0.126 0.066 0.013 0.052 0.014 0.048 0.124 0.063 -0.027 0.070

θ
Si
h

lagged weekly HW -0.208 0.202 0.308 0.157 0.133 0.142 -0.075 0.160 0.205 0.186

lagged monthly HW 0.149 0.108 0.084 0.137 -0.124 0.127 0.124 0.145 0.241 0.121

lagged trimester HW 0.249 0.124 -0.057 0.133 0.425 0.175 0.367 0.161 0.383 0.159

β
NSi
j

MS lag 1 - 1st preceding segment 0.367 0.048 0.802 0.065 0.638 0.145 0.344 0.048 0.505 0.074

MS lag 1 - 2nd preceding segment 0.150 0.044 0.182 0.070 0.363 0.054 0.224 0.050 0.099 0.059

MS lag 1 - 3rd preceding segment 0.126 0.047 0.044 0.058 0.161 0.067 0.370 0.075 0.040 0.057

MS lag 1 - 4th preceding segment 0.047 0.036 0.115 0.045 0.084 0.057 0.309 0.065 0.169 0.058

MS lag 2 - 1st preceding segment -0.010 0.043 -0.125 0.058 0.110 0.064 0.063 0.046 -0.032 0.063

MS lag 2 - 2nd preceding segment -0.113 0.039 -0.035 0.079 0.006 0.055 0.015 0.045 0.093 0.060

MS lag 2 - 3rd preceding segment -0.013 0.049 0.047 0.045 0.058 0.075 -0.042 0.057 -0.042 0.036

MS lag 2 - 4th preceding segment 0.107 0.046 0.027 0.055 0.003 0.046 -0.031 0.050 0.111 0.070

κ
Si
h

lagged weekly MS 0.281 0.224 0.162 0.259 -0.112 0.287 -0.282 0.236 -0.058 0.279

lagged monthly MS -0.136 0.125 -0.106 0.185 0.212 0.147 0.179 0.155 0.038 0.121

lagged trimester MS -0.312 0.139 0.243 0.161 -0.444 0.169 -0.293 0.162 -0.339 0.147

Jumps

δ
Si
j

HW lag 1 -0.030 0.049 0.031 0.035 -0.024 0.038 0.033 0.039 0.008 0.035

HW lag 2 0.026 0.050 -0.021 0.036 -0.014 0.037 0.066 0.040 -0.035 0.032

HW lag 3 -0.003 0.042 0.111 0.084 -0.072 0.039 0.011 0.038 0.008 0.032

HW lag 4 -0.066 0.038 0.076 0.055 -0.086 0.037 0.038 0.043 0.001 0.027

λ
Si
h

lagged weekly HW 0.046 0.081 -0.025 0.060 0.051 0.058 -0.089 0.067 -0.004 0.052

lagged monthly HW 0.029 0.039 0.038 0.040 -0.025 0.039 0.064 0.046 -0.041 0.035

lagged trimester HW 0.020 0.037 0.005 0.046 0.024 0.040 -0.038 0.046 -0.008 0.033

δ
NSi
j

MS lag 1 - 1st preceding segment 0.082 0.028 0.172 0.049 0.093 0.040 0.179 0.057 0.128 0.041

MS lag 1 - 2nd preceding segment 0.023 0.026 0.053 0.046 -0.059 0.041 -0.032 0.033 0.086 0.062

MS lag 1 - 3rd preceding segment 0.125 0.041 0.064 0.039 -0.012 0.047 -0.125 0.047 -0.009 0.019

MS lag 1 - 4th preceding segment -0.004 0.023 0.073 0.053 -0.051 0.029 -0.015 0.047 -0.011 0.029

MS lag 2 - 1st preceding segment 0.073 0.088 0.012 0.042 -0.037 0.032 -0.099 0.040 0.060 0.043

MS lag 2 - 2nd preceding segment 0.028 0.027 0.073 0.036 -0.018 0.040 -0.107 0.030 0.023 0.023

MS lag 2 - 3rd preceding segment 0.035 0.033 0.039 0.036 -0.006 0.035 -0.090 0.039 -0.010 0.015

MS lag 2 - 4th preceding segment 0.062 0.072 -0.095 0.064 0.069 0.083 -0.088 0.043 0.043 0.031

µ
Si
h

lagged weekly MS 0.018 0.061 -0.142 0.079 0.108 0.080 0.295 0.162 -0.124 0.066

lagged monthly MS 0.003 0.034 0.036 0.052 -0.025 0.051 -0.046 0.053 -0.027 0.042

lagged trimester MS 0.058 0.036 -0.044 0.051 0.051 0.038 0.004 0.051 0.027 0.045

LB stat 5 lags (p-value) 1.305 0.934 0.779 0.978 1.040 0.959 0.360 0.996 0.666 0.985

LB stat 35 lags (p-value) 29.121 0.747 52.726 0.028 48.831 0.060 60.751 0.004 36.795 0.386

Note: OLS estimates from the model described in Section 3.2 for the USD/YEN market. Day-of-the-week constants, and the 3rd and

4th lags of meteor shower effects, are omitted to save space. The last 2 lines report Ljung-Box statistics with 5 and 35 lags (with their

respective p-values in the “p-val.” column). Columns report parameter estimates and associated p-values (based on robust standard

errors) for each segment equation in the system. The Greek letters in the first column refer to Equation 3.1.
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Table A4: HAR cross rates estimates - EUR/USD (own market effects)

AS AE EU ES US

coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val.

Integrated volatility

HW lag 1 0.185 0.045 0.230 0.058 0.073 0.063 0.260 0.069 0.198 0.059

HW lag 2 0.027 0.041 0.168 0.060 0.079 0.047 0.110 0.066 -0.061 0.065

HW lag 3 0.043 0.046 0.171 0.061 0.006 0.069 0.045 0.067 0.059 0.064

HW lag 4 0.112 0.045 0.150 0.083 0.134 0.083 -0.057 0.089 0.015 0.067

lagged weekly HW 0.135 0.130 -0.225 0.157 -0.093 0.174 0.173 0.212 0.017 0.178

lagged monthly HW 0.148 0.105 0.221 0.157 0.139 0.154 0.101 0.159 0.302 0.132

lagged trimester HW 0.115 0.087 0.267 0.149 0.238 0.153 0.425 0.192 0.027 0.132

MS lag 1 - 1st preceding segment 0.235 0.030 0.532 0.083 0.336 0.044 0.187 0.047 0.298 0.048

MS lag 1 - 2nd preceding segment 0.051 0.030 0.137 0.072 0.240 0.047 0.065 0.048 0.033 0.037

MS lag 1 - 3rd preceding segment 0.060 0.024 0.257 0.075 0.115 0.051 0.221 0.060 0.005 0.041

MS lag 1 - 4th preceding segment 0.060 0.028 0.183 0.074 0.076 0.066 0.154 0.051 0.195 0.044

MS lag 2 - 1st preceding segment 0.010 0.027 -0.076 0.058 0.078 0.055 0.048 0.048 0.011 0.047

MS lag 2 - 2nd preceding segment 0.013 0.030 -0.039 0.051 -0.065 0.065 0.060 0.053 -0.005 0.042

MS lag 2 - 3rd preceding segment 0.040 0.024 0.090 0.058 -0.034 0.065 0.098 0.060 -0.059 0.044

MS lag 2 - 4th preceding segment 0.019 0.024 0.124 0.065 0.014 0.052 0.073 0.056 0.090 0.054

lagged weekly MS -0.286 0.153 -0.158 0.533 0.426 0.475 -0.253 0.304 0.108 0.259

lagged monthly MS 0.071 0.105 -0.055 0.230 0.069 0.176 0.317 0.188 0.276 0.140

lagged trimester MS -0.106 0.089 -0.301 0.162 -0.282 0.191 -0.490 0.208 -0.081 0.138

Jumps

HW lag 1 -0.001 0.024 -0.025 0.024 0.014 0.044 0.028 0.040 0.019 0.035

HW lag 2 0.010 0.025 -0.033 0.024 0.028 0.031 0.014 0.051 0.049 0.037

HW lag 3 0.008 0.020 -0.068 0.024 0.000 0.033 0.040 0.047 0.008 0.030

HW lag 4 -0.001 0.020 -0.023 0.020 -0.043 0.043 -0.047 0.041 0.019 0.027

lagged weekly HW 0.068 0.038 0.082 0.038 -0.027 0.066 -0.006 0.075 -0.063 0.054

lagged monthly HW 0.033 0.021 -0.015 0.035 -0.058 0.044 0.052 0.044 -0.007 0.034

lagged trimester HW -0.049 0.018 0.047 0.039 0.012 0.054 -0.016 0.040 -0.030 0.029

MS lag 1 - 1st preceding segment 0.036 0.019 0.070 0.031 0.066 0.032 0.176 0.052 -0.023 0.024

MS lag 1 - 2nd preceding segment 0.000 0.016 0.089 0.052 -0.011 0.020 -0.014 0.028 -0.017 0.026

MS lag 1 - 3rd preceding segment 0.014 0.012 0.018 0.027 0.034 0.033 -0.065 0.028 -0.035 0.015

MS lag 1 - 4th preceding segment 0.042 0.016 0.118 0.060 0.000 0.022 -0.037 0.039 -0.024 0.027

MS lag 2 - 1st preceding segment -0.002 0.019 0.038 0.031 -0.006 0.017 -0.041 0.027 0.006 0.027

MS lag 2 - 2nd preceding segment -0.016 0.014 0.051 0.034 -0.007 0.024 -0.027 0.019 -0.004 0.019

MS lag 2 - 3rd preceding segment -0.001 0.013 0.017 0.027 0.101 0.035 -0.038 0.028 0.015 0.020

MS lag 2 - 4th preceding segment 0.045 0.020 0.004 0.023 -0.004 0.027 -0.014 0.042 0.012 0.032

lagged weekly MS -0.039 0.034 -0.057 0.056 -0.043 0.067 0.162 0.072 0.066 0.058

lagged monthly MS -0.007 0.021 -0.150 0.046 0.088 0.056 -0.047 0.046 0.006 0.034

lagged trimester MS -0.005 0.018 0.107 0.039 0.019 0.041 0.048 0.047 0.016 0.032

Note: First part (own-market effects) of OLS estimates from the model described in Section 4.4 for the EUR/USD

market. The 3rd and 4th lags of meteor shower effects are omitted to save space. Columns report parameter

estimates and associated p-values for each segment equation in the system.
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Table A5: HAR cross rates estimates - EUR/USD (other market effects)

AS AE EU ES US

coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val.

Integrated volatility

HW lag 1 -0.038 0.036 0.016 0.063 -0.046 0.047 -0.077 0.063 -0.020 0.060

HW lag 2 -0.047 0.037 -0.016 0.059 -0.065 0.048 -0.042 0.066 0.079 0.065

HW lag 3 -0.019 0.041 0.043 0.054 0.076 0.053 0.051 0.065 -0.043 0.056

HW lag 4 -0.019 0.039 0.049 0.053 -0.035 0.053 0.146 0.076 -0.054 0.069

lagged weekly HW 0.134 0.106 -0.093 0.168 0.074 0.130 -0.039 0.177 0.031 0.184

lagged monthly HW -0.064 0.080 0.062 0.138 -0.161 0.139 -0.013 0.132 0.017 0.129

lagged trimester HW 0.019 0.081 -0.085 0.166 0.050 0.154 -0.143 0.157 -0.193 0.120

MS lag 1 - 1st preceding segment 0.095 0.032 0.104 0.051 0.093 0.047 0.049 0.041 0.042 0.049

MS lag 1 - 2nd preceding segment 0.006 0.035 0.049 0.057 -0.028 0.041 0.061 0.045 0.019 0.046

MS lag 1 - 3rd preceding segment -0.001 0.026 -0.081 0.060 0.018 0.049 0.142 0.054 0.020 0.043

MS lag 1 - 4th preceding segment 0.045 0.024 -0.004 0.050 0.013 0.041 0.051 0.045 -0.064 0.048

MS lag 2 - 1st preceding segment 0.002 0.032 -0.053 0.051 -0.043 0.052 0.044 0.044 -0.041 0.062

MS lag 2 - 2nd preceding segment -0.040 0.031 0.045 0.050 0.080 0.048 0.023 0.040 0.000 0.044

MS lag 2 - 3rd preceding segment -0.013 0.025 -0.009 0.050 -0.026 0.043 -0.038 0.056 -0.069 0.036

MS lag 2 - 4th preceding segment 0.038 0.023 -0.045 0.042 0.001 0.045 0.031 0.046 0.039 0.050

lagged weekly MS 0.010 0.146 0.212 0.278 -0.107 0.316 -0.355 0.246 0.158 0.257

lagged monthly MS -0.013 0.095 -0.302 0.170 -0.018 0.128 0.064 0.150 -0.114 0.125

lagged trimester MS -0.011 0.098 0.240 0.200 0.019 0.155 0.172 0.171 0.248 0.107

Jumps

HW lag 1 -0.033 0.024 0.036 0.032 -0.031 0.033 0.034 0.032 0.006 0.040

HW lag 2 -0.005 0.026 -0.040 0.030 -0.014 0.028 0.028 0.034 -0.028 0.030

HW lag 3 -0.006 0.020 0.041 0.028 -0.008 0.034 -0.028 0.034 -0.010 0.026

HW lag 4 -0.068 0.023 -0.018 0.027 -0.053 0.031 0.083 0.039 -0.002 0.032

lagged weekly HW 0.000 0.038 0.011 0.044 0.045 0.049 -0.056 0.055 0.010 0.050

lagged monthly HW 0.007 0.022 -0.040 0.046 -0.054 0.037 -0.040 0.040 -0.024 0.035

lagged trimester HW -0.005 0.020 0.017 0.047 0.036 0.037 -0.033 0.040 0.031 0.034

MS lag 1 - 1st preceding segment 0.012 0.023 -0.025 0.034 0.036 0.022 -0.017 0.031 0.027 0.021

MS lag 1 - 2nd preceding segment -0.002 0.015 -0.011 0.047 -0.026 0.026 0.001 0.028 0.023 0.024

MS lag 1 - 3rd preceding segment 0.023 0.016 0.025 0.028 -0.008 0.046 -0.076 0.033 -0.006 0.019

MS lag 1 - 4th preceding segment -0.005 0.013 0.023 0.032 -0.027 0.023 -0.081 0.030 0.028 0.030

MS lag 2 - 1st preceding segment 0.022 0.027 -0.014 0.031 -0.026 0.018 -0.046 0.030 0.017 0.028

MS lag 2 - 2nd preceding segment 0.023 0.016 -0.023 0.027 -0.037 0.023 -0.070 0.026 0.009 0.024

MS lag 2 - 3rd preceding segment -0.004 0.016 -0.025 0.035 -0.020 0.029 0.036 0.035 0.026 0.021

MS lag 2 - 4th preceding segment -0.007 0.013 -0.049 0.034 0.022 0.039 -0.070 0.038 0.012 0.030

lagged weekly MS 0.007 0.036 -0.015 0.070 0.095 0.068 0.210 0.097 -0.054 0.064

lagged monthly MS 0.000 0.025 0.065 0.057 -0.038 0.037 -0.042 0.051 0.054 0.039

lagged trimester MS 0.005 0.024 0.001 0.074 0.005 0.042 0.013 0.050 -0.041 0.035

LB stat 5 lags (p-value) 0.755 0.980 0.634 0.986 0.765 0.979 0.105 1.000 0.438 0.994

LB stat 35 lags (p-value) 27.341 0.819 21.359 0.966 94.512 0.000 62.415 0.003 56.999 0.011

Note: Second part (other-market effects) of OLS estimates from the model described in Section 4.4 for the

EUR/USD market. Day-of-the-week constants, and the 3rd and 4th lags of meteor shower effects, are omitted

to save space. The last 2 lines report Ljung-Box statistics with 5 and 35 lags (with their respective p-values in the

“p-val.” column). Columns report parameter estimates and associated p-values for each segment equation in the

system.
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Table A6: HAR cross rates estimates - USD/JPY (own market effects)

AS AE EU ES US

coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val.

Integrated volatility

HW lag 1 0.259 0.081 -0.015 0.077 0.028 0.058 0.099 0.070 0.067 0.086

HW lag 2 0.155 0.075 -0.123 0.070 -0.018 0.060 0.080 0.066 -0.055 0.081

HW lag 3 0.115 0.081 -0.064 0.065 -0.008 0.058 0.059 0.072 -0.149 0.078

HW lag 4 0.082 0.074 -0.019 0.056 0.026 0.055 0.103 0.079 -0.063 0.082

lagged weekly HW -0.208 0.231 0.309 0.172 0.099 0.154 -0.045 0.187 0.281 0.211

lagged monthly HW 0.105 0.131 0.036 0.157 -0.059 0.150 0.204 0.167 0.279 0.130

lagged trimester HW 0.438 0.165 -0.153 0.157 0.483 0.185 0.410 0.182 0.300 0.170

MS lag 1 - 1st preceding segment 0.349 0.052 0.789 0.069 0.556 0.127 0.346 0.054 0.504 0.088

MS lag 1 - 2nd preceding segment 0.188 0.052 0.167 0.074 0.295 0.056 0.225 0.051 0.088 0.063

MS lag 1 - 3rd preceding segment 0.101 0.049 0.020 0.065 0.113 0.078 0.380 0.086 0.041 0.061

MS lag 1 - 4th preceding segment 0.041 0.037 0.117 0.047 0.086 0.063 0.300 0.073 0.112 0.069

MS lag 2 - 1st preceding segment -0.024 0.055 -0.093 0.061 0.110 0.067 0.078 0.053 -0.070 0.073

MS lag 2 - 2nd preceding segment -0.115 0.047 -0.029 0.083 0.029 0.059 0.016 0.047 0.103 0.069

MS lag 2 - 3rd preceding segment -0.038 0.053 0.066 0.054 0.074 0.083 -0.056 0.064 -0.035 0.038

MS lag 2 - 4th preceding segment 0.106 0.049 0.008 0.059 -0.024 0.052 -0.042 0.055 0.082 0.073

lagged weekly MS 0.513 0.267 0.112 0.300 0.014 0.296 -0.181 0.278 0.057 0.338

lagged monthly MS -0.129 0.149 0.017 0.199 0.207 0.173 -0.041 0.171 -0.176 0.149

lagged trimester MS -0.508 0.165 0.371 0.181 -0.542 0.202 -0.190 0.196 -0.142 0.153

Jumps

HW lag 1 -0.040 0.048 0.025 0.034 -0.038 0.041 0.038 0.044 0.022 0.043

HW lag 2 0.032 0.050 -0.020 0.038 -0.021 0.035 0.071 0.043 -0.049 0.042

HW lag 3 0.017 0.039 0.101 0.085 -0.075 0.037 0.015 0.043 0.011 0.036

HW lag 4 -0.056 0.033 0.064 0.056 -0.087 0.039 0.057 0.048 -0.003 0.029

lagged weekly HW 0.017 0.066 -0.005 0.063 0.052 0.057 -0.105 0.073 -0.001 0.063

lagged monthly HW 0.013 0.040 0.006 0.038 -0.049 0.039 0.047 0.049 -0.010 0.040

lagged trimester HW 0.021 0.038 0.012 0.044 0.028 0.048 -0.045 0.048 -0.031 0.036

MS lag 1 - 1st preceding segment 0.090 0.030 0.156 0.052 0.099 0.040 0.171 0.058 0.131 0.046

MS lag 1 - 2nd preceding segment 0.038 0.027 0.049 0.048 -0.049 0.038 -0.025 0.035 0.074 0.067

MS lag 1 - 3rd preceding segment 0.117 0.041 0.065 0.043 -0.021 0.048 -0.121 0.049 -0.008 0.021

MS lag 1 - 4th preceding segment 0.001 0.023 0.081 0.049 -0.016 0.031 0.002 0.055 -0.030 0.032

MS lag 2 - 1st preceding segment 0.074 0.095 -0.010 0.043 -0.030 0.032 -0.100 0.041 0.050 0.047

MS lag 2 - 2nd preceding segment 0.043 0.028 0.058 0.043 -0.023 0.041 -0.097 0.030 0.011 0.023

MS lag 2 - 3rd preceding segment 0.031 0.031 0.026 0.040 -0.029 0.035 -0.089 0.041 -0.008 0.018

MS lag 2 - 4th preceding segment 0.064 0.070 -0.097 0.063 0.086 0.092 -0.073 0.043 0.018 0.030

lagged weekly MS 0.029 0.065 -0.097 0.084 0.067 0.080 0.273 0.163 -0.068 0.073

lagged monthly MS 0.011 0.037 0.062 0.053 -0.021 0.052 -0.016 0.052 -0.031 0.044

lagged trimester MS 0.053 0.037 -0.080 0.048 0.069 0.042 -0.002 0.055 0.023 0.045

Note: First part (own-market effects) of OLS estimates from the model described in Section 4.4 for the USD/JPY

market. The 3rd and 4th lags of meteor shower effects are omitted to save space. Columns report parameter

estimates and associated p-values for each segment equation in the system.
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Table A7: HAR cross rates estimates - USD/JPY (other market effects)

AS AE EU ES US

coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val. coeff. p-val.

Integrated volatility

HW lag 1 0.145 0.078 0.069 0.065 -0.081 0.062 0.139 0.079 0.055 0.063

HW lag 2 -0.007 0.068 0.128 0.065 -0.020 0.073 0.123 0.075 -0.046 0.071

HW lag 3 -0.041 0.067 0.093 0.060 -0.064 0.056 0.115 0.075 0.038 0.072

HW lag 4 0.089 0.071 0.023 0.065 -0.010 0.063 0.100 0.099 0.040 0.057

lagged weekly HW 0.029 0.187 -0.207 0.169 0.084 0.188 -0.148 0.216 -0.043 0.180

lagged monthly HW -0.060 0.141 0.290 0.124 -0.184 0.164 -0.098 0.159 -0.110 0.149

lagged trimester HW -0.140 0.165 -0.011 0.143 -0.044 0.161 -0.190 0.195 -0.230 0.148

MS lag 1 - 1st preceding segment 0.037 0.050 0.111 0.069 0.182 0.039 0.000 0.053 -0.008 0.052

MS lag 1 - 2nd preceding segment -0.067 0.049 -0.018 0.055 0.098 0.077 0.014 0.052 0.041 0.039

MS lag 1 - 3rd preceding segment 0.025 0.042 0.049 0.055 0.031 0.050 0.011 0.065 -0.048 0.041

MS lag 1 - 4th preceding segment -0.011 0.038 -0.008 0.046 -0.006 0.060 0.014 0.060 0.144 0.053

MS lag 2 - 1st preceding segment -0.015 0.063 -0.046 0.056 -0.030 0.050 -0.034 0.052 0.094 0.051

MS lag 2 - 2nd preceding segment 0.036 0.041 0.012 0.069 -0.041 0.050 -0.018 0.049 0.042 0.046

MS lag 2 - 3rd preceding segment 0.082 0.040 -0.058 0.062 -0.058 0.055 0.055 0.068 -0.073 0.044

MS lag 2 - 4th preceding segment 0.003 0.039 0.024 0.053 0.030 0.058 0.036 0.066 0.082 0.065

lagged weekly MS -0.492 0.251 0.022 0.325 -0.122 0.297 -0.346 0.328 -0.322 0.264

lagged monthly MS 0.147 0.160 -0.409 0.169 0.028 0.202 0.366 0.219 0.417 0.146

lagged trimester MS 0.228 0.137 0.024 0.156 0.098 0.196 -0.093 0.241 0.039 0.156

Jumps

HW lag 1 -0.007 0.033 -0.024 0.023 0.041 0.025 -0.012 0.044 -0.028 0.043

HW lag 2 -0.019 0.036 -0.035 0.029 0.018 0.025 -0.028 0.055 0.026 0.048

HW lag 3 -0.022 0.031 0.034 0.026 0.046 0.030 -0.026 0.043 0.010 0.039

HW lag 4 -0.029 0.030 0.100 0.041 0.038 0.034 -0.053 0.045 -0.020 0.032

lagged weekly HW 0.078 0.058 -0.001 0.036 -0.060 0.044 0.041 0.075 -0.007 0.071

lagged monthly HW 0.093 0.041 -0.051 0.036 0.040 0.033 -0.029 0.040 -0.067 0.040

lagged trimester HW -0.106 0.031 0.063 0.043 -0.038 0.035 0.009 0.035 0.033 0.031

MS lag 1 - 1st preceding segment -0.039 0.023 0.000 0.033 0.010 0.027 0.013 0.037 -0.041 0.028

MS lag 1 - 2nd preceding segment -0.058 0.023 0.027 0.037 0.001 0.036 -0.037 0.026 -0.026 0.020

MS lag 1 - 3rd preceding segment -0.006 0.017 -0.028 0.030 0.043 0.037 -0.043 0.038 0.008 0.026

MS lag 1 - 4th preceding segment 0.012 0.021 0.006 0.026 -0.047 0.023 -0.020 0.049 0.006 0.027

MS lag 2 - 1st preceding segment -0.009 0.028 0.073 0.058 -0.044 0.018 -0.025 0.030 -0.013 0.025

MS lag 2 - 2nd preceding segment -0.042 0.023 0.024 0.040 0.036 0.054 0.045 0.052 0.000 0.029

MS lag 2 - 3rd preceding segment -0.023 0.019 0.002 0.029 0.048 0.039 0.000 0.030 -0.025 0.016

MS lag 2 - 4th preceding segment -0.027 0.016 -0.002 0.022 -0.011 0.041 -0.034 0.034 0.041 0.047

lagged weekly MS 0.003 0.049 -0.075 0.064 0.056 0.059 0.039 0.079 0.013 0.055

lagged monthly MS 0.025 0.034 -0.069 0.037 -0.004 0.038 -0.076 0.046 -0.013 0.037

lagged trimester MS -0.010 0.032 0.032 0.036 -0.010 0.043 0.052 0.041 -0.011 0.032

LB stat 5 lags (p-value) 1.090 0.955 0.651 0.986 1.216 0.943 0.459 0.994 0.650 0.986

LB stat 35 lags (p-value) 23.502 0.931 42.405 0.182 44.281 0.135 48.204 0.068 35.123 0.462

Note: Second part (other-market effects) of OLS estimates from the model described in Section 4.4 for the

USD/JPY market. Day-of-the-week constants, and the 3rd and 4th lags of meteor shower effects, are omitted

to save space. The last 2 lines report Ljung-Box statistics with 5 and 35 lags (with their respective p-values in the

“p-val.” column). Columns report parameter estimates and associated p-values for each segment equation in the

system.
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A-4 APPENDIX (not-for-publication): Testing for a struc-

tural break at an unknown break point

We test for an unknown break point in the middle third of the sample by first constructing a series

of statistics for each observation in the subsample. The statistic at a given point, T0, in a sample

running from time zero to T , is calculated by estimating the HAR from time zero to T0, and from

T0 to T , obtaining two sets of coefficient estimates, θ̂1 and θ̂2 . If π = T0/T denotes the fraction

of the total observations which are from the first part of the sample, then

√
T (θ̂1 − θ1) ∼ N(0, V1/π) and

√
T (θ̂2 − θ2) ∼ N(0, V2/π) (A-1)

where V1 = Ω1 ⊗ Q−1
1 , V2 = Ω2 ⊗ Q−1

2 , Q1 = 1
T0

∑T0

t=1 yt−1y
′

t−1, Q2 = 1
T−T0

∑T
t=T0+1 yt−1y

′

t−1,

Ω1 = 1
T0

∑T0

t=1 utu
′

t and Ω2 = 1
T−T0

∑T
t=T0+1 utu

′

t−1 (Hamilton 1994). The test statistic for a break

at T0 is given by the quadratic function of the difference between the parameter estimates weighted

by the inverse of their covariance matrix.

λ = T (θ̂1 − θ̂2)′[(Ω1 ⊗Q−1
1 )/π + (Ω2 ⊗Q−1

2 )/(1− π)]−1(θ̂1 − θ̂2) (A-2)

The null of no structural break within a given subsample is rejected for sufficiently high values

of the supremum of λ over the subsample. For tests of structural breaks in one equation or in an

individual coefficient, statistics similar to that denoted by λ can be calculated using the appropriate

coefficient estimate(s) and the variance-covariance matrix of those estimate(s). We calculate the

1% critical values from the following Monte Carlo experiment:

1. We estimate the HAR over the whole sample, saving coefficients and the covariance matrix.

2. Using the initial conditions, estimated coefficients and covariance matrix we create 1000 new

data sets of length T, where T is the length of the whole sample.

3. We compute 1000 time series of structural break statistics from 0.15T to 0.85T of each of the

simulated data sets, one series for each generated data set.

4. The ninety-ninth percentile of the distribution of suprema over these 1000 time series is the

one per cent critical value used in Figures 3 and 4.
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