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Abstract 
 
Academic studies show that technical trading rules would have earned substantial 
excess returns over long periods in foreign exchange markets. However, the approach to 
risk adjustment has typically been rather cursory. We examine the ability of a wide 
range of models: CAPM, quadratic CAPM, downside risk CAPM, C-CAPM, Carhart’s 4-
factor model, an extended C-CAPM with durable consumption, Lustig-Verdelhan (LV) 
factors, volatility and skewness to explain these technical trading returns. No model 
plausibly accounts for technical profitability in the foreign exchange market. These 
findings strengthen the case for models incorporating cognitive bias, learning and 
adaptation, as exemplified in the Adaptive Markets Hypothesis. 
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  Introduction  
 

It is a stylized fact that excess returns for currency-related trading strategies, 

especially the carry trade, are weakly correlated with traditional risk factors, such as the 

CAPM's equity market factor. To better measure abnormal returns in currency markets 

and assess market efficiency, recent studies propose a variety of risk factors for carry 

trade portfolios. These risk factors include consumption growth (Lustig and Verdelhan, 

2007), a forward premium slope factor (Lustig, Roussanov, and Verdelhan, 2011), global 

exchange rate volatility (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012), and 

skewness (Rafferty, 2012). 

These recently proposed currency risk factors usefully explain the returns to a 

cross-section of carry trade portfolios. Nevertheless, the economic case for these factors 

would be more compelling if they could also explain excess returns for other investment 

strategies, beyond the carry trade (Burnside, 2012). Such explanatory ability would allay 

data-mining concerns and better establish the economic relevance of the newly proposed 

currency risk factors. If new risk factors cannot adequately account for the behavior of 

technical strategies, then these factors are less appealing economically and the search for 

more robust currency risk factors should continue.  

In particular, technical analysis constitutes another long-standing puzzle in 

foreign exchange returns, one that has received less attention than the carry trade 

despite a well-documented history of success. A series of studies in the 1970s and 1980s 

demonstrated that technical analysis produced abnormal returns in foreign exchange 

markets (Dooley and Shafer (1976, 1984); Logue and Sweeney (1977), and Cornell and 
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Dietrich (1978)).  Although academics were initially very skeptical of these findings, the 

positive results of Sweeney (1986) and Levich and Thomas (1993) helped convince the 

profession of the robustness of this puzzle. Allen and Taylor (1990) and Taylor and Allen 

(1992) confirmed this shift in outlook by surveying practitioners to establish that foreign 

exchange traders commonly used technical analysis. Later research looked at the 

usefulness of commonly used technical patterns (Osler and Chang (1995)) and 

considered reasons for time variation in profitability (Neely, Weller, and Ulrich (2009)). 

Menkhoff  and Taylor (2007) provide an excellent survey of the literature. Recently, Hsu, 

Taylor, and Wang (2016) conduct a large scale investigation of technical analysis, 

concluding that technical methods have significant economic and statistical predictive 

power for both developed and emerging currencies.  

These studies have established that technical analysis would have been profitable 

for long periods for a wide variety of currencies, but no study has definitively explained 

this profitability. One obvious potential explanation is that the excess returns are 

compensation for bearing risk but this hypothesis has not been substantiated.   

The risk factors that have explained carry-trade returns — and other anomalies 

— are natural candidates to explain the returns to the other, older, foreign exchange 

puzzle: technical analysis.  A study of the extent to which factors that explain the carry 

trade also explain the returns to technical analysis will shed light on both the source of 

technical returns and the plausibility of the factors.  If the carry-trade factors explain the 

returns to technical analysis, then it is very likely that they are truly sources of 

undiversifiable risk. On the other hand, if the carry-trade factors fail to explain the 
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technical returns, it suggests that the factors merit continued scrutiny and that risk is 

less likely to be the source of the technical returns.  

In this spirit, the present paper investigates the ability of recently proposed 

currency risk factors to explain excess returns for a group of ex ante technical portfolios 

developed in Neely and Weller (2013). These portfolios are based on a variety of popular 

technical indicators that the academic literature has studied and provide a realistic 

picture of returns for trend-following practitioners. We adjust returns for risk with the 

following models: CAPM, quadratic CAPM, downside risk CAPM, C-CAPM, Carhart’s 

4-factor model, an extended C-CAPM with durable consumption and market return, 

Lustig-Verdelhan (LV) factors, global FX volatility, global FX skewness and skewness in 

unemployment. Recently proposed currency risk factors can explain little of technical 

portfolio returns. The risk factors identified in the recent literature thus do not appear 

relevant for an important class of portfolios in the currency space. We highlight the 

dimensions along which the new risk factors fail to account for the behavior of technical 

portfolios. The inadequacies of extant currency risk factors highlight the challenges in 

explaining technical portfolio returns. 

 The rest of the paper is organized as follows. We first describe the construction of 

currency portfolios. We then describe the different currency risk factors that we consider 

and the econometric methodology. Our empirical results follow. 
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Trading Rules and Data 
 

The goal of our paper is to examine whether recent advances in risk-adjustment 

can explain the seemingly very strong performance of traditional technical trading rules 

in foreign exchange markets.  To do so, we must construct such returns in a manner 

consistent with the literature that has established their profitability.  We would like our 

trading rules to represent those that the academic literature has investigated but also to 

be chosen dynamically, to exploit changing patterns in adaptive markets. In order to do 

so, we follow Neely and Weller (2013) who dynamically constructed portfolio strategies 

from an underlying pool of frequently studied rules— 7 filter rules, 3 moving average 

rules, 3 momentum rules, and 3 channel rules— on 19 dollar and 21 cross exchange 

rates.2 These rule sets are among the most commonly studied in the academic literature 

and therefore are appropriate to study the puzzle. Although there are many reasonable 

variations on rule selection, the robustness of academic results on technical trading 

profitability leads us to believe that reasonable perturbations are unlikely to 

substantially change inference for risk adjustment. There is one notable difference 

between the rules used in this paper and those in Neely and Weller (2013): to isolate the 

determinants of technical trading rules, the present paper does not include carry trade 

returns among the rules.   

All of the bilateral rules borrow in one currency and lend in the other to produce 

excess returns. We will first describe the types of trading rules before detailing the 

                                                        
2 Dooley and Shafer (1984) and Sweeney (1986) look at filter rules; Levich and Thomas (1993) look at 
filter and moving average rules; Jegadeesh and Titman (1993) consider momentum rules in equities, citing 
Bernard (1984) on the topic; and Taylor (1994) tests channel rules, for example.   
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dynamic rebalancing procedure for currency trading strategies.  

A filter rule generates a buy signal for a foreign currency when the exchange rate 

𝑆𝑆𝑡𝑡 (domestic price of foreign currency) has risen by more than y percent above its most 

recent low. It generates a sell signal when the exchange rate has fallen by more than the 

same percentage from its most recent high. Thus,  

𝑧𝑧𝑡𝑡 =  
1
−1
𝑧𝑧𝑡𝑡−1

    
𝑖𝑖𝑖𝑖 𝑆𝑆𝑡𝑡 ≥ 𝑛𝑛𝑡𝑡(1 + 𝑦𝑦)
𝑖𝑖𝑖𝑖 𝑆𝑆𝑡𝑡 ≤ 𝑥𝑥𝑡𝑡(1 + 𝑦𝑦)

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒,
           (1) 

where 𝑧𝑧𝑡𝑡 takes the value +1 for a long position in foreign currency and –1 for a short 

position. nt is the most recent local minimum of 𝑆𝑆𝑡𝑡  and xt the most recent local 

maximum. The seven filter sizes (y) are 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, and 0.1.  

A moving average rule generates a buy signal when a short-horizon moving 

average of past exchange rates crosses a long-horizon moving average from below. It 

generates a sell signal when the short moving average crosses the long moving average 

from above. We denote these rules by MA(S, L), where S and L are the number of days 

in the short and long moving averages, respectively. The moving average rules are 

MA(1, 5), MA(5, 20), and MA(1, 200). Thus, MA(1, 5) compares the current exchange rate 

with its 5-day moving average and records a buy (sell) signal if the exchange rate is 

currently above (below) its 5-day moving average.  
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Our momentum rules take a long (short) position in an exchange rate when the 

n-day cumulative return is positive (negative). We consider windows of 5, 20 and 60 

days for the momentum rules.3  

A channel rule takes a long (short) position if the exchange rate exceeds (is less 

than) the maximum (minimum) over the previous n days plus (minus) the band of 

inaction (x). Thus, 

𝑧𝑧𝑡𝑡 =  
1
−1
𝑧𝑧𝑡𝑡−1

    
𝑖𝑖𝑖𝑖        𝑆𝑆𝑡𝑡 ≥ 𝑚𝑚𝑚𝑚𝑥𝑥(𝑆𝑆𝑡𝑡−1,𝑆𝑆𝑡𝑡−2, … 𝑆𝑆𝑡𝑡−𝑛𝑛) (1 + 𝑥𝑥)
𝑖𝑖𝑖𝑖         𝑆𝑆𝑡𝑡 ≤ 𝑚𝑚𝑖𝑖𝑛𝑛(𝑆𝑆𝑡𝑡−1,𝑆𝑆𝑡𝑡−2, … 𝑆𝑆𝑡𝑡−𝑛𝑛) (1 + 𝑥𝑥)

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒,
                        (2) 

We set n to be 5, 10, and 20, and x to be 0.001 for all channel rules. 

We apply these 16 bilateral rules —7 filter rules, 3 moving average rules, 3 

momentum rules, and 3 channel rules— to daily data on 19 dollar and 21 cross exchange 

rates, listed in Table 1. The series for the DEM was spliced with that for the EUR after 

January 1, 1999. For simplicity we refer to this series throughout as the EUR. Not all 

exchange rates are tradable throughout the sample. Table 1 details the dates on which 

we permit trading in each exchange rate.  

In any study of trading performance—especially when using exotic currencies—

it is important to pay close attention to transaction costs. Rules and strategies that may 

appear to be profitable when such costs are ignored turn out not to be once the 

                                                        
3 Menkhoff et al. (2012b) empirically compare several moving average rules, which they consider to be 
benchmark technical rules, with cross-sectional, momentum rules on monthly currency data and argue that 
the two types of rules behave quite differently. We obtained the monthly returns constructed by Menkhoff 
et al. (2012b) from the Journal of Financial Economics website and investigated the relation between those 
rules and the monthly returns to our portfolios. The Menkhoff et al. (2012b) Mom(1,1) rule has the highest 
correlations with our portfolio returns, having a correlation of 0.23 with P1 returns, for example. Most 
correlations between the cross-section momentum and our technical rules were lower, some as low as 0. 
The median correlation was 0.13. Therefore, we concur with Menkhoff et al.’s (2012b) conclusion that 
monthly cross-sectional rules are only weakly related to traditional technical rules. 
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appropriate adjustments have been made. We follow the methods in Neely and Weller 

(2013) and calculate transactions costs using historical estimates for such costs in the 

distant past and fractions of Bloomberg spreads for dates after which  such  spreads 

were available. Appendix A of Neely and Weller (2013) detail these calculations. 

Dynamic Trading Strategies 
 

We would like to construct dynamic strategies to mimic the actions of foreign 

exchange traders who backtest potential rules on historical data to determine trading 

strategies. Accurately modeling potential trading returns provides the most realistic 

environment for assessing whether risk adjustment explains such returns. We therefore 

employ the previously described trading rules to construct dynamic trading strategies. 

Each trading strategy uses rules and exchange rate combinations that vary over time. 

We construct dynamic trading strategies as follows:   

1. We apply the 16 bilateral rules to all tradable exchange rates at each point 

in the sample, calculating the historical return statistics for each exchange rate-rule pair 

at each point.  There is a maximum of (16*40=) 640 exchange rate-rules on any given day, 

but missing data for some exchange rates often leave fewer than half that number of 

currency-rule pairs. 

2. Starting 500 days into the sample, we evaluate the Sharpe ratios of all 

exchange rate-rule pairs with at least 250 days of data since the beginning of the 

respective samples. We then sort the rate-rule pairs by their ex post Sharpe ratios, 
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ranking the rate-rule pairs by Sharpe ratio from 1 to 640.  We then measure the 

performance of the strategies over the next 20 days. 

3. Every 20 business days, we evaluate, sort and rank all available rate-rule 

pairs using the complete sample of data available to that point. Thus, the returns on the 

top-ranked strategy pair will be generated by a given trading rule applied to a particular 

exchange rate for a minimum of 20 days, at which point it may (or may not) be replaced 

by another rule applied to the same or a different currency.4 

Although we select the rate-rule pairs for the dynamic strategies based upon 

historical performance, as described above, we evaluate the strategies’ performance after 

they are selected.  That is, all return performance statistics in this paper are for strategies 

that were chosen ex ante and are thus implementable in real time.   

Currency portfolios 

As is customary in the related asset-pricing literature, we examine the risk-

adjustment of technical trading rules in the following way: Using strategies 1 to 300 to 

use as test assets, we form 12 equally weighted portfolios of 25 strategies per portfolio. 

Thus portfolio p1 at time t consists of the 25 currency-rule pairs with Sharpe ratios 

ranked 1 to 25. Portfolio p2 consists of the 25 currency-rule pairs with Sharpe ratios 

ranked 26 to 50, and so on. The makeup of the portfolios of currency-rule pairs may 

change from period to period with ex post Sharpe ratio rankings. 

                                                        
4 We emphasize that our strategies do not use 20-day holding periods for positions. The holding period for 
the trading rules are always 1-day. Each strategy, however, can switch rule/exchange rate combinations 
every 20-days. Within each 20-day period, the rule can instruct the strategy to switch back and forth 
between long and short positions in the particular exchange rate.  



 

9 
 

Figure 1 shows the spread in excess return, standard deviation and Sharpe ratios 

over the 12 portfolios. The top panel shows that all 12 portfolios have positive excess 

returns, generally declining as one goes from p1 (4.35% per annum) to p12 (0.69% per 

annum).  The middle panel shows that the high ranked portfolios also tend to have more 

volatile returns, though the relation is not as steep as for returns. The third panel 

confirms this: ex post Sharpe ratios are higher for the portfolios with higher ex ante 

rankings, ranging from 0.82 for p1 to 0.16 for p12. 

Theoretical framework 
 

To provide a general framework within which to measure risk exposure we need 

to characterize equilibrium in the foreign exchange market. We assume the existence of a 

representative, US-based investor and introduce a stochastic discount factor (SDF), 

𝑀𝑀𝑡𝑡+1 that prices payoffs in dollars.5 It represents a marginal rate of substitution between 

present and future consumption in different states of the world. The first order 

conditions for utility maximization subject to an intertemporal budget constraint imply 

that any asset return 𝑅𝑅𝑡𝑡+1 must satisfy  

𝐸𝐸(𝑀𝑀𝑡𝑡+1𝑅𝑅𝑡𝑡+1|𝐼𝐼𝑡𝑡) = 1                           (3) 

where 𝐼𝐼𝑡𝑡 denotes the information available to the investor at time t. Varying assumptions 

about the content of 𝐼𝐼𝑡𝑡 produce the different categories of market efficiency advanced by 

Fama (1970). Since we are modeling the risk exposure of technical trading rules we will 

be exclusively concerned with weak-form efficiency, in which the information set 𝐼𝐼𝑡𝑡 

                                                        
5 Although we motivate the SDF framework with a representative investor, much weaker assumptions are 
sufficient. In particular, absence of arbitrage implies the existence of a SDF framework, as in equation (3).  
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contains only past prices.   

Equation (3) implies that the risk-free asset return 𝑅𝑅𝑡𝑡
𝑓𝑓 is given by   

 𝑅𝑅𝑡𝑡
𝑓𝑓 = 1

𝐸𝐸�𝑀𝑀𝑡𝑡+1�𝐼𝐼𝑡𝑡�
         (4) 

Using (3), (4) and the definition of covariance, it follows that  

𝐸𝐸(𝑅𝑅𝑡𝑡+1|𝐼𝐼𝑡𝑡) = 𝑅𝑅𝑡𝑡
𝑓𝑓 - cov�𝑀𝑀𝑡𝑡+1,𝑅𝑅𝑡𝑡+1�𝐼𝐼𝑡𝑡�

𝐸𝐸�𝑀𝑀𝑡𝑡+1�𝐼𝐼𝑡𝑡�
.       (5) 

That is, the excess return to any asset, and by extension any trading strategy, will 

be proportional to the covariance of the asset return with the SDF. 

The implication for technical trading strategies that take positions in foreign 

currencies based on past prices is then straightforward. Positive excess returns to a 

strategy are consistent with market efficiency only if those excess returns covary 

negatively with the SDF. This then raises the question of how to model the SDF and how 

to test whether equation (5) or some variant explains returns.  

There are potentially several ways in which one could test the extent to which 

the SDF framework can explain excess returns to the trading rules.  The most direct 

would be to model the SDF, 𝑀𝑀𝑡𝑡+1, in (3) with a specific utility function and calibrated 

parameters and test whether the errors from (3) are mean zero. Alternatively, one could 

estimate the parameters of 𝑀𝑀𝑡𝑡+1 with some nonlinear optimization method, such as the 

generalized method of moments (GMM), and test the overidentifying restrictions. 

Finally, one could linearize the SDF, 𝑀𝑀𝑡𝑡+1, with a Taylor series expansion, estimate a 

linear time series or a return-beta model and evaluate whether the risk factors explain 

the expected returns. The next subsections describe those testing procedures.  
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Testing a Calibrated SDF 
 

Our initial approach to risk adjustment will be to follow Lustig and Verdelhan 

(2007) in using an extended version of the C-CAPM that employs Yogo’s (2006) 

representative agent framework with Epstein-Zin preferences over durable consumption 

𝐷𝐷𝑡𝑡 and nondurable consumption, 𝐶𝐶𝑡𝑡. Utility is given by 

𝑈𝑈𝑡𝑡 = �(1 − 𝛿𝛿)𝑢𝑢(𝐶𝐶𝑡𝑡 ,𝐷𝐷𝑡𝑡)1−(1 𝜎𝜎⁄ ) + 𝛿𝛿𝐸𝐸𝑡𝑡�𝑈𝑈𝑡𝑡+1
1−𝛾𝛾�

1 𝜅𝜅⁄
�
1 [1−(1 𝜎𝜎⁄ )]⁄

           (6) 

where 𝛿𝛿 is the time discount factor, 𝛾𝛾 is a measure of risk aversion, 𝜎𝜎 is the elasticity of 

intertemporal substitution in consumption, and 𝜅𝜅 = (1 − 𝛾𝛾) �1 − (1 𝜎𝜎⁄ )�⁄ . 

The one-period utility function is given by 

𝑢𝑢(𝐶𝐶,𝐷𝐷) = �(1 − 𝛼𝛼)𝐶𝐶1−(1 𝜌𝜌⁄ ) + 𝛼𝛼𝐷𝐷1−(1 𝜌𝜌⁄ )�
1 �1−(1 𝜌𝜌⁄ )�⁄

                        (7) 

where 𝛼𝛼 is the weight on durable consumption and 𝜌𝜌 is the elasticity of substitution 

between durable and nondurable consumption. Yogo (2006) shows that the stochastic 

discount factor takes the form 

𝑀𝑀𝑡𝑡+1 = �𝛿𝛿 �𝐶𝐶𝑡𝑡+1
𝐶𝐶𝑡𝑡
�
−1 𝜎𝜎⁄

�𝑣𝑣(𝐷𝐷𝑡𝑡+1 𝐶𝐶𝑡𝑡+1⁄ )
𝑣𝑣(𝐷𝐷𝑡𝑡 𝐶𝐶𝑡𝑡⁄ ) �

1 𝜌𝜌−1 𝜎𝜎⁄⁄
𝑅𝑅𝑊𝑊,𝑡𝑡+1
1−1 𝜅𝜅⁄ �

𝜅𝜅
,                        (8) 

where  𝑣𝑣 �𝐷𝐷
𝐶𝐶
� = �1 − 𝛼𝛼 + 𝛼𝛼 �𝐷𝐷

𝐶𝐶
�
1−1 𝜌𝜌⁄

�
1 (1−1 𝜌𝜌⁄ )⁄

and 𝑅𝑅𝑊𝑊,𝑡𝑡 is the market portfolio return. 

This model, the Epstein-Zin durable consumption CAPM (EZ-DCAPM) nests 

two other models of interest: the durable consumption CAPM (DCAPM) and the 

CCAPM. The DCAPM holds under the restriction 𝛾𝛾 = 1 𝜎𝜎⁄ . The CCAPM holds if, in 

addition, one imposes 𝜌𝜌 = 𝜎𝜎. The stochastic discount factor in (8) satisfies the familiar 

Euler equation in (3).  



 

12 
 

To initially assess the performance of these models we carry out a calibration 

exercise similar to that in Lustig and Verdelhan (2007). We choose parameter values 

identified in Yogo (2006): 𝜎𝜎 = 0.023,𝛼𝛼 = 0.802,𝜌𝜌 = 0.700. Then we use sample data on 

durable and non-durable consumption and the return on the market portfolio to 

generate pricing errors, 𝐸𝐸�𝑀𝑀𝑡𝑡+1𝑅𝑅𝑡𝑡+1𝑒𝑒𝑒𝑒 �𝐼𝐼𝑡𝑡�, where Rt+1
ei  is the excess return to portfolio pi, 

and i = 1, … ,12 .6 The coefficient of relative risk aversion 𝛾𝛾 is chosen to minimize the 

sum of squared pricing errors in the EZ-DCAPM. Appendix B details the construction of 

the variables used in this paper.  

Table 2 presents these results. All models clearly perform very poorly; the 𝑅𝑅2 is 

negative in every case.7 The maximum Sharpe ratios and price of risk are substantially 

different from those reported in Table 4 of Lustig and Verdelhan (2007). Since their test 

assets are currency portfolios sorted according to interest differential we would expect 

these numbers to be similar. The portfolios with the highest returns have negative betas; 

p1 has a beta of -1.97. This implies that the portfolio return covaries positively with M. 

Since M is high in bad times when marginal utility is high and consumption is low, these 

portfolios act as consumption hedges and would be expected to earn relatively low 

returns according to the theory. 

 

 

                                                        
6 Recall that portfolios p1 to p12 each consist of 25 currency-rule pairs, ranked every 20 days by ex ante 
Sharpe ratio. P1 contains strategies 1 to 25; p2 contains strategies 26 to 50 and so on.  
7 The R2 can be negative because we are assessing the predictive value of a calibrated, ex ante model, not 
the predictive value of a model estimated to maximize the R2. 
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Linear Factor Models 
 

Researchers often linearize the SDF with a first order Taylor approximation and 

then assess the model’s fit of the data with that linear system.  Although it is not clear 

how well the linear model approximates the SDF, this procedure makes estimation 

somewhat easier and is consistent with the literature.  

Therefore, we consider the class of linear SDFs that take the form 

𝑀𝑀𝑡𝑡 = 𝑚𝑚 + 𝑏𝑏′𝑖𝑖𝑡𝑡         (9) 

where 𝑚𝑚 is a scalar, 𝑏𝑏 is a 𝑘𝑘 × 1 vector of parameters and 𝑖𝑖𝑡𝑡 is a 𝑘𝑘 × 1 vector of demeaned 

factors that explain asset price returns. Then the constant 𝑚𝑚 in (9) is not identified and we 

can normalize it to unity.8 The SDF must also price portfolios of excess trading rule 

returns, 𝑥𝑥𝑡𝑡, in which case equation (3) implies that   

 𝐸𝐸(𝑀𝑀𝑡𝑡+1𝑥𝑥𝑡𝑡+1|𝐼𝐼𝑡𝑡) = 0        (10) 

The unconditional version of (10) is  

𝐸𝐸(𝑀𝑀𝑥𝑥) = 𝐸𝐸[(1 + 𝑏𝑏′𝑖𝑖)𝑥𝑥] = 0        (11) 

from which it follows that  

𝐸𝐸(𝑥𝑥) = − 𝐸𝐸(𝑥𝑥𝑖𝑖′)𝑏𝑏 = − 𝐸𝐸(𝑥𝑥𝑖𝑖′)Σ𝑓𝑓−1 ∙ Σ𝑓𝑓𝑏𝑏 = 𝛽𝛽′𝜆𝜆     (12) 

where Σ𝑖𝑖 is the factor covariance matrix, 𝛽𝛽 = Σ𝑓𝑓−1𝐸𝐸(𝑥𝑥𝑖𝑖) is a 𝑘𝑘 × 1 vector of coefficients in 

a regression of 𝑥𝑥𝑡𝑡 on 𝑖𝑖𝑡𝑡 and 𝜆𝜆 = −Σ𝑓𝑓𝑏𝑏 is a 𝑘𝑘 × 1 vector of factor risk premia.  

The model (12) is a return-beta representation. It implies that an asset’s expected 

return is proportional to its covariance with the risk factors.  The betas are defined as the 

                                                        
8 For any pair, {a, b}, such that 𝐸𝐸[(𝑚𝑚 + 𝑏𝑏′𝑖𝑖)𝑥𝑥] = 0, any {ca, cb} where c is a real constant would also 
satisfy the equation because  𝐸𝐸[(𝑐𝑐𝑚𝑚 + 𝑐𝑐𝑏𝑏′𝑖𝑖)𝑥𝑥] = 0. Therefore, only the ratio b/a matters and one can 
normalize a to 1 or to any other constant.  
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time series regression coefficients  

𝑥𝑥𝑒𝑒𝑡𝑡 = 𝑚𝑚𝑒𝑒 + 𝛽𝛽𝑒𝑒′𝑖𝑖𝑡𝑡 + 𝜀𝜀𝑒𝑒𝑡𝑡,  𝑜𝑜 = 1, … ,𝑇𝑇, 𝑖𝑖 = 1, … ,𝑁𝑁,        (13) 

where 𝑖𝑖𝑡𝑡 is the non-demeaned factor at time t. In the special case that the factors, 𝑖𝑖𝑡𝑡, are 

excess returns, then the intercepts (𝑚𝑚𝑒𝑒) in the time series representation (13) are zero. We 

can see this by first noting that the expectation of the factor must satisfy (12) because we 

have assumed that the factor is also a return.  

𝐸𝐸�𝑖𝑖� = 𝛽𝛽𝑓𝑓𝜆𝜆 = 𝜆𝜆        (14) 

where the second equality follows because 𝛽𝛽𝑓𝑓 must equal one because the factor covaries 

perfectly with itself. Second, we take expectations in (13) and solve for the constant  

𝑚𝑚𝑒𝑒 = 𝐸𝐸(𝑥𝑥𝑒𝑒) − 𝛽𝛽𝑒𝑒′𝐸𝐸�𝑖𝑖� = 𝛽𝛽𝑒𝑒′𝜆𝜆 − 𝛽𝛽𝑒𝑒′𝜆𝜆 = 0      (15) 

The second equality in (15) uses (12) and (14). 

Therefore, when the factor is itself an excess return —e.g., the CAPM—one can 

test the model by regressing a set of N excess returns to “test assets” on the factor, as in 

(13), and then directly testing whether the constants (𝑚𝑚𝑒𝑒) are zero.  

For tests of more general sets of factors, Fama and MacBeth (1973) suggest a two-

stage procedure that first estimates the βs for each test asset with the time series 

regression (13). 9  The second stage then estimates the factor prices λ from a cross-

sectional regression of average excess returns from the test assets on the betas.  

𝐸𝐸(𝑥𝑥𝑒𝑒) = 𝛽𝛽𝑒𝑒′𝜆𝜆 + 𝛼𝛼𝑒𝑒,         (16) 

where λ is the coefficient to be estimated and 𝛼𝛼𝑒𝑒s are the pricing errors. The model 

                                                        
9 Fama and MacBeth (1973) originally used rolling regressions to estimate the βs and cross-sectional 
regressions at each point in time to estimate 𝜆𝜆 and 𝛼𝛼𝑒𝑒 for each time period, then using averages of those 
estimates to get overall estimates.  The time series of 𝜆𝜆 and 𝛼𝛼𝑒𝑒 estimates could then be used to estimate 
standard errors for the overall estimates that correct for cross-sectional correlation.  
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implies no constant in (16) but one is often included with the reasoning that it will pick 

up estimation error in the riskless rate. A large value of 𝛼𝛼𝑒𝑒, or a significant change in the 

fit of the model with a constant indicates a poor fit (Burnside (2011)). For a set of test 

assets, the variation of the betas in (14) determines the precision of the estimated factor 

risk premia, λ. If the betas do not vary sufficiently, then λ is not identified and the test is 

inconclusive.  

The OLS standard errors in the second stage of the Fama-MacBeth procedure do 

not account for the fact that the regressors (�̂�𝛽𝑒𝑒′) are generated regressors.10 One can use 

GMM, however, to simultaneously estimate both (13) and (16), obtaining the identical 

point estimates as the 2-stage procedure but properly accounting for cross-sectional 

correlation, heteroskedasticity and the uncertainty about �̂�𝛽𝑒𝑒′ in the covariance matrix of 

the parameters (see Cochrane, 2005 chapter 10). The moment restrictions are given by 

𝐸𝐸�𝑅𝑅𝑒𝑒,𝑡𝑡 −  𝑚𝑚𝑒𝑒 − 𝛽𝛽𝑒𝑒𝑖𝑖𝑡𝑡� = 0

𝐸𝐸 ��𝑅𝑅𝑒𝑒,𝑡𝑡 −  𝑚𝑚𝑒𝑒 − 𝛽𝛽𝑒𝑒𝑖𝑖𝑡𝑡�𝑖𝑖𝑡𝑡� = 0

𝐸𝐸�𝑅𝑅𝑒𝑒,𝑡𝑡 − 𝛽𝛽𝑒𝑒𝜆𝜆� = 0

    for 𝑜𝑜 = 1,2, …𝑇𝑇 and 𝑖𝑖 = 1,2, …𝑁𝑁                           (17) 

Results 
 
CAPM models applied to the returns of portfolios p1 through p12  
 

Figure 1 showed that the ex post Sharpe ratios of the technical strategies varied 

with their ex ante rank. That is, past returns tend to predict future returns. Is there a 

model for which the implied risk-adjustment explains the expected cross-section of 

returns? 

                                                        
10 Shanken (1992) suggests a correction to account for the generated regressor in a 2-stage framework.  
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As a benchmark we first look at whether the CAPM can explain the excess 

returns to the 12 portfolios, p1-p12, which consist of strategies 1-25, 26-50, … 276-300, 

respectively. The model has a single factor, the market excess return, and so we consider 

the following regression equation for each portfolio:  

𝑥𝑥𝑑𝑑,𝑡𝑡 =  𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑𝑅𝑅𝑚𝑚,𝑡𝑡 + 𝜀𝜀𝑡𝑡                         (18)  

where 𝑥𝑥𝑑𝑑 is the excess return to the dynamic portfolio strategy and 𝑅𝑅𝑚𝑚 is the market 

excess return. Because the factor is a return, the intercept, alpha, must not be 

significantly positive if the model is to explain the return.  

Panel A of Table 3 shows the results for regression (18) for the 12 portfolios.  The 

risk-adjustment leaves the mean return (alphas) essentially unchanged for all 12 

portfolios. Portfolio p1, for example, has a highly significant monthly alpha of 0.39, or 

4.68 percent per annum. The highly significant alphas suggest that the market factor 

cannot explain the excess returns to the technical portfolios and the negative betas 

indicate that the returns are not even positively correlated with the market returns. We 

conclude that the CAPM fails to explain the excess returns of the dynamic portfolio 

strategies. 

We turn to the quadratic CAPM in Table 3, which adds the squared market 

return factor  𝑅𝑅𝑚𝑚,𝑡𝑡
2   to the CAPM equation. 

𝑥𝑥𝑑𝑑,𝑡𝑡 =  𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑,𝑅𝑅𝑚𝑚 𝑅𝑅𝑚𝑚,𝑡𝑡 + 𝛽𝛽𝑑𝑑,𝑅𝑅𝑚𝑚2  𝑅𝑅𝑚𝑚,𝑡𝑡
2 + 𝜀𝜀𝑡𝑡     (19) 

Here too, the coefficients on the market (𝛽𝛽𝑑𝑑,𝑅𝑅𝑚𝑚) are all negative, which would tend to 

indicate that the market risk did not explain the forex portfolio returns, but the quadratic 

terms have positive coefficients (𝛽𝛽𝑑𝑑,𝑅𝑅𝑚𝑚2 ) only some of which are significant. The right-
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most columns show that these coefficients jointly differ from zero and from each other. 

The positive 𝛽𝛽𝑑𝑑,𝑅𝑅𝑚𝑚2  values suggest that market volatility influences dynamic technical 

portfolio returns. Menkhoff et al. (2012a) document a similar phenomenon for carry 

trade returns. When the constant is included in the cross-sectional regression, the R2 

rises from 0.11 to 0.18 but the constant is not statistically significant (see Panel B, Table 

3).  The price of risk for the quadratic market return is 0.31 and statistically significant. 

This is not consistent with the theoretical expectation of a negative price of risk, 

however, which leads us to conclude that the quadratic CAPM cannot explain the excess 

returns of the dynamic portfolio strategies. 

Another variant on the CAPM analyzed in a recent paper by Lettau, Maggiori 

and Weber (2014) has had considerable success in explaining returns to the carry trade. 

They construct a factor which is designed to capture the possibility that investors are 

concerned specifically about downside risk in the stock market. They follow the 

approach of Ang, Chen and Xing (2006) in allowing the price of risk and the beta of 

currency portfolios to vary conditional on the return on the market. They call the 

underlying model the downside risk CAPM or DR-CAPM. It takes the following form: 

𝐸𝐸[𝑅𝑅𝑒𝑒] = 𝛽𝛽𝑒𝑒𝜆𝜆 + (𝛽𝛽𝑒𝑒− − 𝛽𝛽𝑒𝑒)𝜆𝜆−    𝑖𝑖 = 1, … ,𝑁𝑁  

𝛽𝛽𝑒𝑒 = 𝑐𝑐𝑐𝑐𝑣𝑣(𝑅𝑅𝑖𝑖,𝑅𝑅𝑚𝑚)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑚𝑚)          (20) 

𝛽𝛽𝑒𝑒− = 𝑐𝑐𝑐𝑐𝑣𝑣(𝑅𝑅𝑖𝑖,𝑅𝑅𝑚𝑚|𝑅𝑅𝑚𝑚<𝛿𝛿)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑚𝑚|𝑅𝑅𝑚𝑚<𝛿𝛿)   

where 𝑅𝑅𝑒𝑒 is the log excess return for asset i, and 𝛽𝛽𝑒𝑒 and 𝛽𝛽𝑒𝑒− are the unconditional and 

conditional market betas. The conditional market beta is specified for an exogenously 

given threshold 𝛿𝛿 . The unconditional and downside prices of risk are 𝜆𝜆  and 𝜆𝜆− 
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respectively. We follow Lettau, Maggiori and Weber (2014) in defining a down state to 

be one where the contemporaneous market return is more than one standard deviation 

below its sample average. The unconditional price of risk is also set to the average 

market return following Lettau, Maggiori and Weber (2014). 

Panel A of Table 3 shows that although the conditional betas are generally 

significant, they are incorrectly signed. This is not particularly surprising, given that the 

CAPM also produced such behavior. Panel B of Table 3 indicates that the model 

produces a negative price of risk, and that it is not significant. These results demonstrate 

that the DR-CAPM is incapable of explaining the returns to the dynamic currency 

portfolios. 

We next examine Carhart’s (1997) four-factor extension of the three-factor Fama 

and French (1993) model, where the risk factors are the excess return on the U.S. stock 

market (𝑅𝑅𝑀𝑀), the size factor (𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆), the value factor (𝑅𝑅𝐻𝐻𝑀𝑀𝐻𝐻) and the momentum factor 

(𝑅𝑅𝑈𝑈𝑀𝑀𝐷𝐷).11  

𝑥𝑥𝑑𝑑,𝑡𝑡 =  𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑,𝑚𝑚𝑅𝑅𝑚𝑚,𝑡𝑡 + 𝛽𝛽𝑑𝑑,𝑆𝑆𝑀𝑀𝑆𝑆𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆,𝑡𝑡 + 𝛽𝛽𝑑𝑑,𝐻𝐻𝑀𝑀𝐻𝐻𝑅𝑅𝐻𝐻𝑀𝑀𝐻𝐻,𝑡𝑡 + 𝛽𝛽𝑑𝑑,𝑈𝑈𝑀𝑀𝐷𝐷𝑅𝑅𝑈𝑈𝑀𝑀𝐷𝐷,𝑡𝑡 + 𝜀𝜀𝑡𝑡 (21) 

Panel A of Table 3 shows that the alphas for the top portfolios are positive and 

highly significant and the coefficients on the regressors are generally negative (𝑅𝑅𝑚𝑚, 𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆 

and 𝑅𝑅𝐻𝐻𝑀𝑀𝐻𝐻) or insignificant (𝑅𝑅𝑈𝑈𝑀𝑀𝐷𝐷). The rightmost columns of Panel A show that one 

cannot reject the nulls of no variation in any of the four beta vectors. This indicates that 

                                                        
11 Fama and French (1993) showed that 3-factors, market return, firm size and book-to-market ratios very 
effectively explained the returns of certain test assets. The factors used in equation (20) are returns to zero-
investment portfolios that are simultaneously long/short in stocks that are in the highest/lowest quantiles of 
the sorted distribution. For example, the small-minus-big (SMB) portfolio takes a long position in small 
firms and a short position in large firms.  
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one cannot conclusively identify the price of risk for these factors. Perhaps because of 

this lack of identification, the prices of factor risk estimated by cross-sectional regression 

for both 𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆and 𝑅𝑅𝐻𝐻𝑀𝑀𝐻𝐻are negative, which is inconsistent with estimates derived from 

the sample mean. As noted above, when the factors are tradable excess returns then 

factor means are equal to prices of risk. The monthly factor means in our sample are 

0.58% (𝑅𝑅𝑚𝑚), 0.24% (𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆), 0.29% (𝑅𝑅𝐻𝐻𝑀𝑀𝐻𝐻) and 0.68% (𝑅𝑅𝑈𝑈𝑀𝑀𝐷𝐷). There is no evidence that the 

four-factor model explains the excess returns to the dynamic portfolio strategies. 

Consumption-based models applied to the returns of portfolios p1 through p12  

We now turn to examining whether consumption-based models of asset pricing 

can explain the returns to the 12 portfolios of dynamic strategies. The C-CAPM relates 

asset returns to the real consumption growth of a risk-averse representative agent, as in 

equation (8).  

We first consider three variations of the linear approximation of the factor model 

in (8), the C-CAPM, D-CAPM and EZ-DCAPM (Yogo (2006)).   

𝐸𝐸�𝑥𝑥𝑒𝑒,𝑡𝑡� = 𝑏𝑏1𝑐𝑐𝑜𝑜𝑣𝑣�∆𝑐𝑐𝑡𝑡 ,𝑥𝑥𝑒𝑒,𝑡𝑡�+ 𝑏𝑏2𝑐𝑐𝑜𝑜𝑣𝑣�∆𝑑𝑑𝑡𝑡 ,𝑥𝑥𝑒𝑒,𝑡𝑡�+ 𝑏𝑏3𝑐𝑐𝑜𝑜𝑣𝑣�𝑒𝑒𝑊𝑊,𝑡𝑡 ,𝑥𝑥𝑒𝑒,𝑡𝑡�   (22) 

where ∆𝑐𝑐𝑡𝑡 and ∆𝑑𝑑𝑡𝑡 are log nondurable and durable consumption growth respectively, 

and 𝑒𝑒𝑊𝑊,𝑡𝑡 is the log return on the market portfolio. The linear approximation for the most 

general of these nested models, the EZ-DCAPM, uses nondurables plus services, 

durables and the market excess return as factors. This factor model has a beta 

representation as given in equations (13) and (16) above. This representation allows us to 

estimate the factor prices, λ, and portfolio betas, 𝛽𝛽. 

𝑥𝑥𝑒𝑒,𝑡𝑡 =  𝑚𝑚𝑒𝑒 + 𝛽𝛽𝑐𝑐,𝑒𝑒∆𝑐𝑐𝑡𝑡 + 𝛽𝛽𝑑𝑑,𝑒𝑒∆𝑑𝑑𝑡𝑡 + 𝛽𝛽𝑊𝑊,𝑒𝑒𝑒𝑒𝑊𝑊,𝑡𝑡  + 𝜀𝜀𝑒𝑒,𝑡𝑡      (23) 
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𝐸𝐸�𝑥𝑥𝑒𝑒,𝑡𝑡� = 𝛽𝛽𝑐𝑐,𝑒𝑒𝜆𝜆𝑐𝑐 + 𝛽𝛽𝑑𝑑,𝑒𝑒𝜆𝜆𝑑𝑑 + 𝛽𝛽𝑊𝑊,𝑒𝑒𝜆𝜆𝑊𝑊      (24) 

where  𝜆𝜆 = Σ𝑓𝑓𝑓𝑓𝑏𝑏  12 , 𝛽𝛽 = Σ𝑓𝑓𝑓𝑓−1 Σ𝑓𝑓𝑓𝑓 , Σ𝑓𝑓𝑓𝑓  is the factor covariance matrix and  Σ𝑓𝑓𝑓𝑓  is the 

covariance matrix between the test returns and the factors. The D-CAPM and C-CAPM 

restrict 𝛽𝛽𝑊𝑊,𝑒𝑒 and the pair, {𝛽𝛽𝑑𝑑,𝑒𝑒, 𝛽𝛽𝑊𝑊,𝑒𝑒} to equal zero, respectively. We can infer the utility 

function parameter values from the estimates of the coefficients on the factors in the 

linear model, as in Lustig and Verdelhan (2007) (see equation (4) in that paper). 

Table 4, Panel A presents the results of the times series regressions. All models, 

C-CAPM, D-CAPM and EZ-DCAPM perform poorly. For the C-CAPM, the beta for 

portfolio p1 is significant at the 5 percent level but has the wrong (negative) sign; none 

of the other betas are significant at the 5 percent level. Most of the betas for the D-CAPM 

and EZ-DCAPM are also insignificant.  The right-most columns of Panel A show that the 

beta vectors all vary significantly from zero and from each other, permitting 

identification of the prices of risk.  

Panel B shows the results of the cross-sectional regressions for each model 

estimated with and without a constant.  Including constants changes the fit of the C-

CAPM and D-CAPM models: The constants are not significant at the one-side 10 percent 

level and change the R2s from negative to positive levels.  The negative R2s for the 

models that exclude the constants are damning: They indicate that a simple constant 

would explain the expected returns better than the model.  

The EZ-DCAPM model appears to fit better. The constant is not significant and 

the R2 is sizable, at 0.61 and does not change much with the addition of the constant. The 

                                                        
12 Equation (21) defines 𝑏𝑏. 
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price of risk for non-durable consumption in the EZ-DCAPM model is statistically 

significant but negative, –2.24 percent.  This negative price of risk is implausible, since 

the theory predicts that it should be positive in the case where the coefficient of risk 

aversion 𝛾𝛾 > 1, and the elasticity of substitution in consumption 𝜎𝜎 < 1 . The estimate of  

𝜎𝜎  in Yogo (2006) for the EZ-DCAPM is 0.210.  

The coefficient of risk aversion is estimated to be significantly negative in all 

cases. The reason for this can be seen clearly in the case of the C-CAPM. From equation 

(5) above we know that  

𝐸𝐸(𝑥𝑥) = −𝑐𝑐𝑐𝑐𝑣𝑣(𝑀𝑀,𝑓𝑓)
𝐸𝐸(𝑀𝑀)        (25) 

The Fundamental Theorem of Asset Pricing implies that 𝐸𝐸(𝑀𝑀) must be positive 

and so it follows that if an asset has a positive expected excess return its returns must 

covary negatively with the SDF. The SDF (M), in turn, is marginal utility, which will 

covary negatively with consumption. In the case of the C-CAPM where the single factor 

is consumption growth, this means that the model predicts that returns to the higher 

ranking dynamic portfolio strategies (those with positive excess returns) should be 

positively correlated with consumption growth. In fact, we find the reverse: the dynamic 

portfolio strategies tend to perform well in states when consumption growth is low, and 

thus provide a hedge against consumption risk. To be consistent with the model such 

strategies should earn negative excess returns. 

Figure 2 displays the actual mean excess return to each portfolio (𝐸𝐸(𝑥𝑥𝑒𝑒)) versus 

the predicted return (𝛽𝛽𝑒𝑒′𝜆𝜆) for the cross-sectional regressions that include a constant. 

Intriguingly, there does appear to be a positive relationship between the predicted and 
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actual return for all three models, CCAPM, DCAPM and EZ-DCAPM.  Recall, however, 

that the prices of risk are implausibly signed, the estimates of the coefficient of risk 

aversion are negative and that the cross-section regression should exclude the constant. 

We conclude that none of these models can provided a satisfactory explanation for the 

observed returns to the test assets. 

Foreign-exchange-based models applied to the returns of portfolios p1 through p12  
 

Consumption-based models have generally failed to explain risk adjusted 

returns to many assets, so the results in Table 4 come as no surprise (see Campbell and 

Cochrane (2000) and Campbell (2003)). This failure of consumption-based models has 

led researchers to look for other risk factors that might proxy for future investment 

opportunities. In the context of stock returns, it has become commonplace to work with 

factors that are the returns to various stock portfolios (see Fama and French (1993) and 

Carhart (1997)). We showed that these factors failed to explain the returns to technical 

trading rules in foreign exchange markets (Table 3).  

Lustig, Roussanov and Verdelhan (2011) have recently applied this general idea 

to carry trade portfolios. They form currency portfolios on the basis of interest rates. 

Portfolio 1 contains those currencies with the lowest interest rates, portfolio 6 those 

currencies with the highest interest rates. The portfolios are rebalanced at the end of 

each month. From these portfolios Lustig et al. (2011) construct two risk factors. The first 

factor, which they denote RX, is the average currency excess return to going short in the 

dollar and long in the basket of six foreign currency portfolios. The second factor, 
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HMLFX, is the return to a strategy that borrows low interest rate currencies (portfolio 1) 

and invests in high interest rate currencies (portfolio 6), in other words a carry trade.13 

Can these factors explain the cross-sectional variation in expected returns across 

the 12 technical portfolios that were sorted on past Sharpe ratio? We examine this 

question with GMM estimation of beta-return models using the RX and HMLFX   risk 

factors that enable us to estimate the factor risk premia (𝜆𝜆𝑅𝑅𝑅𝑅  and 𝜆𝜆𝐻𝐻𝑀𝑀𝐻𝐻𝐹𝐹𝐹𝐹 ) and the 

parameters of the model. Because the factors are returns to tradable portfolios we can 

test the model by comparing the estimates of the risk premia with the factor means. We 

reject the model if they differ significantly.   

𝑥𝑥𝑑𝑑,𝑡𝑡 =  𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑,𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡 + +𝛽𝛽𝑑𝑑,𝐻𝐻𝑀𝑀𝐻𝐻𝐹𝐹𝐹𝐹,𝑡𝑡𝐻𝐻𝑀𝑀𝐿𝐿𝑑𝑑,𝐹𝐹𝑅𝑅,𝑡𝑡 + 𝜀𝜀𝑡𝑡     (26) 

The “LV factors” subsection of panel A of Table 5 shows that the betas on the RX 

factor are small and always insignificant. However, for eight of the dynamic portfolios 

the betas on the HMLFX factor are significantly negative at the ten percent level, or 

higher, and all of the point estimates are negative (row 3, Table 5). The negative signs of 

the betas suggest that the returns to the technical trading rules tend to be high when the 

carry trade returns are low. The HMLFX  betas for portfolios p1, p3, p4, and p5 are not 

significant, however, and the alphas for the top five portfolios are often significant and 

always higher than the unadjusted mean returns. The fact that the constants are higher 

than the unadjusted mean returns indicates that accounting for HMLFX and RX risk 

actually deepens the puzzle of the profitability of technical trading rules. These results 

                                                        
13 RX and HMLFX are very similar to the first two principal components of the returns to the 6 portfolios.  
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make it seem unlikely that any risk factor that explained the carry trade could also 

explain the technical returns.  

In the second stage of the HMLFX–RX regression, the price of risk for the HMLFX   

factor is 2.08, with a t statistic of 1.78, which is not significant at the 5 percent level for a 

one-sided test.14 The R2 for this regression with the constant is 0.35 (Table 5, Panel B). But 

the constant in the regression is 0.22, with a t statistic of 1.84, and this is significant at the 

5% level for a one-sided test. Excluding the constant makes the R2 negative (-0.24), 

implying that the HMLFX   factor does not explain the cross-section of dynamic portfolio 

returns.  

Volatility is another factor that can potentially explain the returns to investment 

strategies. Indeed, Menkhoff, Sarno, Schmeling and Schrimpf (2012a) find that global 

foreign exchange volatility is an important factor in explaining carry trade returns.  To 

investigate this factor’s explanatory power for our technical returns, we estimate a 

global volatility factor in a manner very similar to that of Menkhoff, Sarno, Schmeling 

and Schrimpf (2012a). We first calculate the monthly return variance for each of the 

available exchange rates at each month in our sample and then calculate a global foreign 

exchange volatility factor from the first principal component of the monthly variances. 

VOL1 is the series of innovations of an AR(1) process fit to this principal component 

while VOL2 is the first difference in this principal component. We then estimate a beta 

representation using these volatility factors and a dollar exposure factor that Menkhoff, 

                                                        
14 The t statistics in the regression with a constant have 9 degrees of freedom (12 observations less 3 
coefficients). The two-sided 10, 5 and 1 percent critical values for this distribution are 1.83, 2.26 and 3.25, 
respectively.  
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Sarno, Schmeling and Schrimpf (2012a) note is very similar to the Lustig, Roussanov and 

Verdelhan (2011) RX factor. Menkhoff, Sarno, Schmeling and Schrimpf (2012a) denote 

this as the DOL factor in their work.  

𝑥𝑥𝑑𝑑,𝑡𝑡 =  𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑,𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡 + +𝛽𝛽𝑑𝑑,𝑉𝑉𝑉𝑉𝐻𝐻1𝑡𝑡𝑉𝑉𝑉𝑉𝐿𝐿1𝑡𝑡 + 𝜀𝜀𝑡𝑡     (27) 

𝑥𝑥𝑑𝑑,𝑡𝑡 =  𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑,𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡 + +𝛽𝛽𝑑𝑑,𝑉𝑉𝑉𝑉𝐻𝐻2𝑡𝑡𝑉𝑉𝑉𝑉𝐿𝐿2𝑡𝑡 + 𝜀𝜀𝑡𝑡      (28) 

Table 5 displays the results from the GMM estimation of the beta system.  Panel 

A of Table 5 shows that the betas on RX are not jointly statistically significant nor 

significantly different from each other (see rows labeled “VOL factors”).  Thus the price 

of RX risk is not identified.  In contrast, betas on the volatility factors are positive and 

highly significant but do not appear to capture any of the cross-sectional spread in 

returns. That is, there is no obvious pattern to the betas from the low to high ranking 

portfolios.  Instead, higher volatility seems to predict higher returns to all technical 

portfolios, both good and bad.  

Panel B of Table 5 shows no evidence for a negative price of volatility risk, as the 

theory would predict, when one omits a constant in the cross-sectional equation.  

Specifically, the prices of risk on VOL1 and VOL2 are positive but insignificant with no 

constant, and the R2s of the second stage regressions are negative if no constant is 

permitted (see columns 3 to 6, Panel B).  In addition, the constant terms are significant. 

In other words, the volatility factor picks up time series variation in returns which is 

common to all portfolios, but the model does not explain the cross-sectional spread in 

returns, or the level of returns for portfolios p1 and p2.  
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Researchers have also explored skewness as a risk factor for carry trade returns 

(Rafferty (2012)) and the cross-section of equity returns (Amaya, Christoffersen, Jacobs, 

and Vasquez (2011)).  To investigate whether exposure to skewness can generate the 

returns to the technical trading rules, we form a skewness factor, SKEW, a tradable 

portfolio that is long currencies in the highest (positive) skewness quintile and short 

currencies in the lowest (negative) quintile in a given month. We then estimate the 

model’s beta representation and present those results in Table 5.  

𝑥𝑥𝑑𝑑,𝑡𝑡 =  𝛼𝛼𝑑𝑑 + 𝛽𝛽𝑑𝑑,𝑆𝑆𝑆𝑆𝐸𝐸𝑊𝑊𝑡𝑡𝑆𝑆𝑆𝑆𝐸𝐸𝑊𝑊𝑡𝑡 + 𝜀𝜀𝑡𝑡       (29) 

The Skewness factor subsection of panel A of Table 5 shows that the skewness 

betas are all positive and highly significant. One cannot, however, reject the hypothesis 

that they are all equal to each other, precluding strong identification of the prices of risk.  

Also, the constants in the time series regressions are generally highly significant, and 

very close in magnitude to the excess returns to the test assets. Thus, the skewness factor 

is able to account for at most ten percent of the returns to these assets.  

 
Macro-based model applied to the returns of portfolios p1 through p12 

 

Berg and Mark (2015) use results from Backus et al. (2002) to relate expected 

excess carry trade returns to the variance and skewness of SDFs. Holding currencies 

from countries whose log SDFs exhibit more variance or positive skewness is “risky” 

and investors in those currencies receive an excess return. Berg and Mark (2015) test a 

number of quarterly macro variables that could be closely related to the SDF as 
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explanatory variables for carry trade portfolio returns. They find that the skewness of a 

country’s unemployment gap is a robust risk factor priced into currency excess returns.   

To determine whether this unemployment gap skewness factor could be 

responsible for the returns to technical trading, we follow Berg and Mark (2015) in 

constructing such a factor from quarterly macro data and then we use it as a risk factor 

in a beta representation. Because the macro data are available at a quarterly frequency — 

rather than monthly, as in the previous exercises — we estimate the unemployment gap 

skewness risk factor separately and report the results in Table 6.  Panel A of Table 6 

shows that none of the betas on the unemployment gap skewness are significantly 

different from zero. Neither are they jointly different from zero or from each other, 

leaving the risk premium only weakly identified.  Panel B shows that the R2 is small in 

the model with a constant and negative in the model excluding the constant. In 

summary, there is no evidence that the unemployment skewness gap explains the 

returns to technical trading.  

Discussion and Conclusion  
 

Researchers have long documented the profitability of technical analysis in 

foreign exchange rates. Studies that found positive results include Poole (1967), Dooley 

and Shafer (1984), Sweeney (1986), Levich and Thomas (1993), Neely, Weller and 

Dittmar (1997), Gençay (1999), Lee, Gleason and Mathur (2001) and Martin (2001).  

Despite such a substantial record of documented gains, the reasons for this 

success remain mysterious. The findings of Neely (2002) appear to rule out the central 
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bank intervention explanation suggested by LeBaron (1999). To investigate the 

possibility of data snooping, data mining and publication bias, Neely, Weller and Ulrich 

(2009) analyze the performance of rules in true out-of-sample tests that occur long after 

an important study. They conclude that data snooping, data mining and publication bias 

are unlikely explanations but that the adaptive markets hypothesis is plausible.   

It remains possible, however, that exposure to some sort of risk generates the 

technical trading rule profitability. Recently, several authors have considered modern 

techniques for risk adjustment of the carry trade or momentum rules in foreign 

exchange markets. If these risk-based explanations for the carry trade could also explain 

the returns to technical trading in foreign exchange markets, it would appear very likely 

that these factors represent genuine sources of risk. With that in mind, the goal of this 

paper has been to apply a broad range of risk adjustment techniques to evaluate the 

evidence that exposure to risk plausibly explains the profitability of technical analysis in 

the foreign exchange market. 

We examine many types of risk adjustment models, including the CAPM, a four 

factor model, several consumption-based models, factors that explain equity returns and 

factors motivated by the carry trade puzzle, including a dollar factor, a carry trade 

factor, foreign exchange volatility, foreign exchange skewness and the skewness of 

unemployment gaps. We find that no model of risk adjustment can plausibly explain the 

very robust findings of profitability of technical analysis in the foreign exchange market. 

This paper has documented that a large set of known risk factors has failed to 

explain the returns to technical trading that have existed over long periods. We argue 
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that this failure strengthens the case for considering models incorporating cognitive bias 

and the processes of learning and adaptation, as exemplified in the Adaptive Markets 

Hypothesis. 
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Table 1: Data description  
 

 
 
Notes: The table depicts the 21 exchange rates versus the USD and 19 non-USD cross 
rates used in our sample along with the number of trading dates, the starting and 
ending dates of the samples, average transaction cost, and standard deviation of 
annualized log returns. 

Currency Group Country
Currency abbreviation 
versus the USD

# of trading 
obs

Trading start 
date

Trading end 
date Mean TC

STD of Annualized 
FX Return

Advanced Australia AUD 9008 4/7/1976 12/31/2012 3.1 11.6
Advanced Canada CAD 9344 1/2/1975 12/31/2012 2.9 6.7
Advanced Euro Area EUR 9717 4/3/1973 12/31/2012 3.0 10.6
Advanced Japan JPY 9599 4/3/1973 12/28/2012 3.0 10.5
Advanced New Zealand NZD 6027 8/3/1987 12/31/2012 3.9 12.4
Advanced Norway NOK 6515 1/2/1986 12/31/2012 3.4 11.6
Advanced Sweden SEK 7278 1/3/1983 12/28/2012 3.3 11.4
Advanced Switzerland CHF 9697 4/3/1973 12/31/2012 3.1 12.0
Advanced UK GBP 9338 1/2/1975 12/31/2012 2.9 9.9
Dev. Europe Czech Republic CZK 5049 1/5/1993 12/31/2012 5.2 12.4
Dev. Europe Hungary HUF 4466 1/2/1995 12/28/2012 10.3 14.3
Dev. Europe Hungary/Switzerland HUF_CHF 4165 1/3/1996 12/28/2012 10.5 12.0
Dev. Europe Poland PLN 3918 2/24/1997 12/31/2012 7.1 14.6
Dev. Europe Russia RUB 3055 8/1/2000 12/28/2012 3.6 7.4
Dev. Europe Turkey TRY 2769 1/2/2002 12/31/2012 12.9 15.4
Latin America Brazil BRL 3330 5/3/1999 12/31/2012 6.0 16.8
Latin America Chile CLP 4359 6/1/1995 12/28/2012 5.9 9.5
Latin America Japan/Mexico JPY_MXN 3887 1/4/1996 12/28/2012 4.6 16.9
Latin America Mexico MXN 4220 1/4/1996 12/31/2012 4.6 10.5
Latin America Peru PEN 4252 4/1/1996 12/31/2012 5.3 5.0
Other Israel ILS 3750 7/20/1998 12/31/2012 8.1 7.8
Other Israel/Euro Area ILS_EUR 2552 1/2/2003 12/31/2012 8.5 10.2
Other South Africa ZAR 4394 4/3/1995 12/31/2012 8.7 16.4
Other Taiwan TWD 3605 1/5/1998 12/28/2012 5.0 5.3
Adv. Cross Rates Switzerland/UK CHF_GBP 9169 1/3/1975 12/31/2012 3.0 9.8
Adv. Cross Rates Australia/UK AUD_GBP 8920 4/7/1976 12/31/2012 3.2 12.4
Adv. Cross Rates Canada/UK CAD_GBP 9217 1/2/1975 12/31/2012 3.0 10.3
Adv. Cross Rates Japan/UK JPY_GBP 8982 1/2/1975 12/28/2012 3.0 12.2
Adv. Cross Rates Euro Area/UK EUR_GBP 9187 1/2/1975 12/31/2012 3.0 8.1
Adv. Cross Rates Australia/Switzerland AUD_CHF 8848 4/7/1976 12/31/2012 3.2 14.4
Adv. Cross Rates Canada/Switzerland CAD_CHF 9150 1/3/1975 12/31/2012 3.1 12.4
Adv. Cross Rates Japan/Switzerland JPY_CHF 9338 4/3/1973 12/28/2012 3.2 11.7
Adv. Cross Rates Euro Area/Switzerland EUR_CHF 9602 4/3/1973 12/31/2012 3.2 5.9
Adv. Cross Rates Canada/Australia CAD_AUD 8894 4/7/1976 12/31/2012 3.2 10.3
Adv. Cross Rates Japan/Australia JPY_AUD 8633 4/7/1976 12/28/2012 3.2 15.3
Adv. Cross Rates Euro Area/Australia EUR_AUD 8861 4/7/1976 12/31/2012 3.2 12.8
Adv. Cross Rates Japan/Canada JPY_CAD 8968 1/2/1975 12/28/2012 3.1 12.7
Adv. Cross Rates Euro Area/Canada EUR_CAD 9158 1/2/1975 12/31/2012 3.1 10.7
Adv. Cross Rates Japan/Euro Area JPY_EUR 9347 4/3/1973 12/28/2012 3.1 11.3
Adv. Cross Rates New Zealand/Australia NZD_AUD 5943 8/3/1987 12/31/2012 3.9 8.7
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Table 2:  Calibration  
 
 

  
 

C-CAPM D-CAPM EZ-CCAPM EZ-DCAPM 
    

stdT[M]/ET[M] 0.93 1.22 0.92 1.22     
varT[M]/ET[M] 0.60 0.61 0.59 0.61     
MAE (in %) 1.32 0.96 1.33 0.96     
R2 -1.50 -0.13 -1.50 -0.13     

 

 
Notes: The sample is 1978–2010 (annual data). The returns are those to portfolios p1 to 
p12, as described in the text. The first two rows report the maximum Sharpe ratio (row 
1) and the price of risk (row 2). The last two rows report the mean absolute pricing error 
(in percentage points) and the R2. Following Yogo (2006), we fixed sigma (σ) at 0.023 
(EZ-CCAPM and EZ-DCAPM), alpha (α) at 0.802 (DCAPM and EZ-DCAPM), delta (δ) 
at 0.98, and rho (ρ) at 0.700 (DCAPM, EZ-DCAPM). Gamma (γ) is fixed at 41.16 to 
minimize the mean squared pricing error in the EZ-DCAPM.  
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Table 3: Results for CAPM, Quadratic CAPM, Downside risk CAPM and Carhart model for portfolios p1-p12  
 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
CAPM
Constant 0.39 *** 0.25 *** 0.21 *** 0.13 * 0.20 *** 0.07 0.14 ** 0.14 ** 0.12 * 0.13 ** 0.11 * 0.08
Rm β -0.04 * -0.05 ** -0.04 * -0.04 * -0.03 -0.05 ** -0.05 *** -0.04 * -0.05 *** -0.04 ** -0.04 * -0.04 **

R2 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.02 0.03 0.03 0.02 0.03

Quad.CAPM
Constant 0.26 *** 0.17 ** 0.12 * 0.05 0.14 ** 0.00 0.09 0.07 0.05 0.09 -0.02 -0.03
Rm β -0.03 -0.04 * -0.03 -0.04 * -0.02 -0.04 ** -0.05 *** -0.03 -0.05 *** -0.04 *** -0.03 * -0.03 **
Rm2 β 0.65 *** 0.39 0.46 0.38 0.25 0.35 0.23 0.32 0.33 0.20 0.60 ** 0.52 ***

R2 0.04 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.04 0.03 0.05 0.06

Downside risk CAPM
Constant 0.27 *** 0.14 ** 0.11 * 0.04 0.13 ** -0.04 0.03 0.05 -0.01 0.04 0.00 -0.03
Rm Down  -0.10 *** -0.09 *** -0.08 ** -0.07 * -0.05 -0.09 ** -0.08 ** -0.07 ** -0.10 *** -0.08 ** -0.08 * -0.09 ***

R2 0.03 0.03 0.03 0.02 0.01 0.04 0.03 0.03 0.04 0.03 0.03 0.05

Carhart
Constant 0.41 *** 0.27 *** 0.21 *** 0.13 * 0.17 *** 0.07 0.13 * 0.13 ** 0.11 0.12 ** 0.08 0.08
Rm β -0.04 * -0.05 ** -0.03 -0.04 ** -0.02 -0.04 * -0.03 -0.03 -0.04 ** -0.03 -0.02 -0.03
SMB β -0.05 * -0.04 * -0.04 -0.02 -0.02 -0.03 -0.03 * -0.03 -0.04 * -0.04 * -0.03 -0.05 ***
HML β -0.06 * -0.03 -0.02 -0.02 0.01 -0.01 0.01 0.01 0.01 0.01 0.02 0.00
UMD β 0.03 * 0.02 0.02 0.02 0.03 ** 0.02 0.02 0.02 0.02 * 0.03 ** 0.03 ** 0.01

R2 0.04 0.03 0.02 0.02 0.02 0.04 0.03 0.03 0.05 0.04 0.03 0.05

Mean R 0.37 0.23 0.19 0.11 0.18 0.05 0.11 0.12 0.09 0.11 0.09 0.06

0.17 0.15
0.27 0.70

0.00 0.00

0.03 0.13
0.49 0.94

0.09 0.77

0.00 0.11

Panel A: Time Series Regressions
β1=…=βn=0 

p-value
β1=…=βn    

p-value

0.18 0.78
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Rm λ 3.34 -3.29 2.99 -0.61 3.16 2.27
{1.44} {-2.02} * {1.26} {-0.33} {1.06} {0.62}

Rm2 λ 0.17 0.31
{1.31} {3.10} **

Down λ -3.94 -4.08
{-0.76} {-0.87}

SMB λ -1.64 -2.41
{-0.44} {-0.90}

HML λ -3.76 -3.50
{-1.92} * {-1.70}

UMD λ 4.01 5.37
{1.08} {1.60}

Constant 0.28 0.18 0.01 0.09
{2.33} ** {1.29} {0.04} {0.35}

R2 0.05 -0.16 0.18 0.11 0.19 0.19 0.73 0.72

Panel B: Cross Sectional Regressions

CAPM Quad. CAPM Carhart Conditional CAPM

 
 

Notes: Monthly data 06/1977 – 12/2012. Factors are the excess return on the U.S. 
stock market (𝑅𝑅𝑚𝑚 ), the excess return on the U.S. stock market in downturn 
(𝑅𝑅𝑚𝑚 𝐷𝐷𝑜𝑜𝑒𝑒𝑛𝑛), the size factor (SMB), the value factor (𝐻𝐻𝑀𝑀𝐿𝐿) and the momentum 
factor (𝑈𝑈𝑀𝑀𝐷𝐷). { } denotes t-statistics based on GMM standard errors.  t-statistics 
based on OLS and Shanken standard errors can be provided upon request. 
Significance levels:  *** 1%, ** 5%, * 10%. 
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Table 4: Results for C-CAPM, D-CAPM and EZ-DCAPM model for portfolios p1-p12 
 
 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
C-CAPM
Constant 5.95 *** 3.36 ** 2.56 1.14 2.14 0.89 1.18 2.39 ** 1.12 0.91 0.29 0.68
Nondurables β -0.99 ** -0.44 -0.29 0.09 0.09 -0.05 0.19 -0.67 -0.11 0.20 0.46 -0.11

R2 0.11 0.02 0.01 0.00 0.00 0.00 0.00 0.07 0.00 0.01 0.03 0.00

D-CAPM
Constant 4.75 *** 4.66 *** 2.93 3.22 ** 3.90 1.37 2.78 3.76 * 1.83 1.30 0.33 0.32
Nondurables β -1.55 *** 0.16 -0.12 1.05 * 0.90 0.17 0.92 -0.04 0.22 0.37 0.48 -0.27
Durables β 0.56 -0.61 * -0.17 -0.97 ** -0.82 -0.23 -0.74 * -0.64 -0.33 -0.18 -0.02 0.17

R2 0.14 0.07 0.01 0.09 0.09 0.01 0.08 0.14 0.02 0.01 0.03 0.01

EZ-DCAPM `
Constant 5.73 *** 5.46 ** 3.56 4.82 *** 5.24 ** 2.32 3.52 4.35 ** 2.04 1.81 1.49 0.85
Nondurables β -1.33 ** 0.34 0.02 1.41 * 1.20 0.38 1.09 0.10 0.27 0.49 0.74 -0.16
Durables β 0.37 -0.76 -0.29 -1.29 ** -1.08 -0.41 -0.89 -0.75 -0.37 -0.28 -0.25 0.06
Market β -0.07 -0.05 -0.04 -0.11 ** -0.09 ** -0.06 -0.05 -0.04 -0.01 -0.04 -0.08 -0.04

R2 0.20 0.12 0.04 0.23 0.21 0.07 0.12 0.17 0.02 0.03 0.15 0.04

Mean R 4.57 2.76 2.16 1.26 2.27 0.81 1.44 1.46 0.97 1.19 0.94 0.53

0.00 0.00

0.00 0.00

0.00 0.00

0.03 0.03

0.00 0.00

β1=…=βn=0 
p-value

β1=…=βn    
p-value

0.00 0.00

Panel A: Time Series Regressions
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Nondurables λ -1.95 -3.09 -1.90 -3.20 -2.03 -2.24
{-3.08} ** {-2.76} ** {-3.29} *** {-2.02} * {-2.44} ** {-2.65} **

Durables λ -1.76 -4.77 -1.61 -1.89
{-2.06} * {-1.31} {-1.43} {-1.46}

Market λ -19.32 -26.95
{-1.56} {-1.21}

Constant 1.43 1.48 0.58
{1.54} {1.68} {0.41}

Parameters
γ -84.32 -133.94 -82.33 -139.40 -91.89 -102.72

{-3.08} ** {-2.76} ** {-3.28} *** {-2.01} * {-2.45} ** {-2.66} **

σ -0.09 -0.11
{-2.14} * {-1.32}

α -0.06 0.50 0.01 0.12
{-0.19} {0.87} {0.04} {0.26}

R2 0.50 -1.10 0.50 -0.45 0.65 0.61

Panel B: Cross Sectional Regressions

C-CAPM D-CAPM EZ-DCAPM

 
Notes: Annual data 1978 – 2010. Nondurables (∆𝑐𝑐𝑡𝑡 ) and Durables ( ∆𝑑𝑑𝑡𝑡 ) are log 
nondurable (plus services) and durable consumption growth respectively, and Market ( 
𝑒𝑒𝑊𝑊,𝑡𝑡) is the log return on the market portfolio. { } denotes t-statistics based on GMM 
standard errors. t-statistics based on OLS and Shanken standard errors can be provided 
upon request. Significance levels:  *** 1%, ** 5%, * 10%. 
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Table 5: Results for FX-based models for portfolios p1-p12  
 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
LV factors
Constant 0.35 *** 0.20 *** 0.17 ** 0.06 0.12 0.04 0.10 0.09 0.12 0.15 * 0.11 0.10
Rx β -0.02 -0.03 -0.04 -0.02 -0.02 -0.02 0.01 -0.02 -0.06 -0.04 -0.02 0.01
HMLfx β -0.03 -0.07 * -0.05 -0.05 -0.03 -0.08 ** -0.09 ** -0.07 * -0.09 ** -0.10 ** -0.09 ** -0.09 **

R2 0.00 0.02 0.01 0.01 0.01 0.03 0.04 0.02 0.05 0.06 0.04 0.04

VOL factors
Constant 0.29 *** 0.12 ** 0.11 * -0.01 0.08 -0.05 0.01 0.03 0.02 0.04 0.02 0.01
Rx β -0.01 -0.03 -0.03 -0.01 -0.01 -0.01 0.01 -0.02 -0.05 -0.04 -0.02 0.01
VOL1 β 2.33 ** 2.15 ** 1.71 2.51 ** 1.70 ** 2.93 *** 1.94 ** 1.75 * 2.60 ** 2.63 ** 2.01 2.63 **

R2 0.03 0.03 0.02 0.05 0.03 0.07 0.03 0.03 0.06 0.07 0.04 0.06

Constant 0.32 *** 0.15 ** 0.13 ** 0.02 0.10 -0.02 0.04 0.05 0.05 0.08 0.05 0.04
Rx β -0.01 -0.03 -0.03 -0.01 -0.01 -0.01 0.02 -0.02 -0.05 -0.03 -0.02 0.01
VOL2 β 1.86 ** 1.92 ** 1.67 * 2.39 *** 1.73 *** 2.83 *** 2.22 *** 1.62 ** 2.72 *** 2.64 *** 1.77 ** 2.17 **

R2 0.02 0.03 0.03 0.05 0.03 0.08 0.05 0.03 0.08 0.09 0.03 0.05

Skewness factor
Constant 0.35 *** 0.20 *** 0.17 *** 0.09 0.16 *** 0.02 0.09 0.10 * 0.07 0.10 * 0.07 0.03
SKEW β 0.10 *** 0.11 *** 0.10 *** 0.09 *** 0.09 *** 0.10 *** 0.10 *** 0.10 *** 0.07 *** 0.08 *** 0.07 *** 0.10 ***

R2 0.05 0.08 0.06 0.06 0.06 0.08 0.07 0.08 0.04 0.05 0.05 0.09

Constant 0.35 *** 0.21 *** 0.17 *** 0.10 0.16 *** 0.02 0.09 * 0.10 * 0.08 0.10 ** 0.07 0.03
VOL2 β 1.89 * 1.84 * 1.40 2.25 ** 1.43 ** 2.57 ** 1.91 ** 1.63 ** 2.50 ** 2.53 ** 1.62 * 1.88 * 0.00
SKEW β 0.10 *** 0.11 *** 0.10 *** 0.09 *** 0.08 *** 0.10 *** 0.09 *** 0.10 *** 0.07 *** 0.07 ** 0.07 *** 0.10 *** 0.34

R2 0.07 0.11 0.08 0.10 0.08 0.14 0.10 0.11 0.10 0.12 0.07 0.13

Constant 0.31 *** 0.15 ** 0.12 * 0.02 0.08 -0.02 0.07 0.06 0.08 0.11 * 0.08 0.06
Rx β -0.02 -0.03 -0.03 -0.01 -0.02 -0.02 0.01 -0.03 -0.05 -0.04 -0.03 0.01 0.21 0.18
HMLfx β 0.00 -0.03 -0.02 -0.01 0.01 -0.03 -0.06 * -0.04 -0.05 -0.06 * -0.07 * -0.05 0.10 0.11
VOL2 β 1.87 * 1.74 1.47 2.23 ** 1.76 *** 2.58 ** 1.85 ** 1.44 * 2.42 ** 2.34 ** 1.42 1.81 0.01 0.03
SKEW β 0.11 *** 0.12 *** 0.10 *** 0.09 *** 0.09 *** 0.10 *** 0.09 *** 0.10 *** 0.07 ** 0.08 ** 0.07 ** 0.10 *** 0.00 0.07

R2 0.08 0.13 0.09 0.11 0.10 0.16 0.14 0.13 0.14 0.16 0.09 0.16

Mean R (11/83-12/12) 0.32 0.15 0.12 0.02 0.10 -0.03 0.04 0.05 0.04 0.07 0.04 0.04
Mean R (06/77-12/12) 0.38 0.23 0.19 0.12 0.18 0.05 0.12 0.13 0.09 0.12 0.09 0.06

0.00
0.00

0.11 0.12

0.30 0.24
0.00 0.01

0.32 0.26
0.00 0.01

0.00 0.34

Panel A: Time Series Regressions
β1=…=βn=0 

p-value
β1=…=βn    

p-value

0.19 0.19
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Constant 0.22 0.19 0.28 -0.16 0.00 0.09
{1.84} * {1.91} * {2.42} ** {-0.80} {-0.02} {0.41}

RX  λ -0.29 -1.73 -0.02 -0.22 -0.55 -0.64 -1.15 -1.30
{-0.39} {-1.68} {-0.03} {-0.41} {-0.68} {-1.06} {-1.28} {-1.53}

HMLfx λ 2.08 -0.32 1.36 1.14
{1.78} {-0.31} {1.30} {0.96}

VOL1 λ -0.05 0.03
{-1.62} {1.35}

VOL2 λ -0.10 0.03 -0.05 -0.05 -0.06 -0.05
{-2.22} * {1.01} {-1.54} {-1.18} {-1.41} {-1.04}

SKEW λ 3.25 1.58 2.78 2.76 1.32 1.90
{1.87} * {2.15} * {1.60} {2.76} ** {0.73} {1.69}

R2 0.35 -0.24 0.06 -0.11 0.22 -0.17 0.19 0.14 0.26 0.26 0.41 0.40

Panel B: Cross Sectional Regression

 
 
Note: LV and VOL factors - monthly data 11/ 1983 – 12/2012.  Skewness factor - monthly data 06/1977 – 12/2012.  Rx- the average currency excess 
return to going short in the dollar and long in the basket of six foreign currency portfolios. HMLFX - the return to a strategy that borrows low 
interest rate currencies and invests in high interest rate currencies, in other words a carry trade. VOL1 - volatility innovations measured by the 
residuals from AR(1). VOL2 - volatility innovations measured by first difference.  SKEW – return of a portfolio that is long currencies in the 
highest skewness (positive) quintile and short currencies in the lowest (negative) skewness quintile for a given month. { } denotes t- statistics 
based on GMM standard errors.  t-statistics based on OLS and Shanken standard errors can be provided upon request. Significance levels:  *** 1%, 
** 5%, * 10%. Rows labeled “Mean R” in panel A show the mean monthly returns for each portfolio.  
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Table 6: Results for macro-based models for portfolios p1-p12 
 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Constant 0.93 ** 0.71 ** 0.44 0.19 0.51 * 0.26 0.28 0.58 * 0.17 0.27 0.04 0.29
UR GAP SKEW 0.15 -0.18 0.09 0.08 -0.05 -0.20 0.02 -0.38 0.12 0.06 0.22 -0.19

R2 0.001 0.002 0.001 0.000 0.000 0.003 0.000 0.010 0.001 0.000 0.004 0.003

Mean R 1.02 0.58 0.50 0.25 0.47 0.11 0.29 0.32 0.25 0.31 0.20 0.15

Panel A: Time Series Regressions
β1=…=βn=0 

p-value
β1=…=βn    

p-value

0.37 0.35

 
 
 

Constant 0.38
{2.24} **

UR GAP SKEW  λ 0.32 0.04
{1.70} {0.23}

R2 0.05 -2.40

Panel B: Cross Sectional Regression

 
 

Note: Quarterly data 4Q/1978 – 4Q/2012. UR  GAP  SKEW  (unemployment rate gap skewness)  is an HML (high-minus-low)  macro factor 
composed as the average skewness in Q1 minus the average skewness  in Q4.  Q1 and Q4 are the quartiles of currencies with the highest and 
lowest skewness of the unemployment rate gap for a given quarter. { } denotes t- statistics based on GMM standard errors.  t-statistics based on 
OLS and Shanken standard errors can be provided upon request. Significance levels:  *** 1%, ** 5%, * 10%.  
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Figure 1: Summary return statistics from sorted portfolios p1 to p12 (mean, standard 
deviation, skewness, kurtosis, Sharpe ratio) 
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Figure 1 (continued): Summary return statistics from sorted portfolios p1 to p12 
(mean, standard deviation, skewness, kurtosis, Sharpe ratio) 
 

 
 

 

 

Notes:  The five panels of the figure show summary return statistics from sorted 
portfolios p1 to p12. From top to bottom, the five panels depict mean, standard 
deviation, skewness, kurtosis, and Sharpe ratio, respectively. 
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Figure 2: Actual mean annual returns vs. predicted returns for portfolios p1 through 
p12 (cross sectional regression with a constant) 1978-2010 
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Appendix A – Computation of Transactions Costs 
 

Any study of trading performance must to pay close attention to transaction 

costs, especially when using exotic currencies. The magnitude and the frequency 

of trades influences the impact of transaction costs. Spreads in emerging markets 

are typically much larger than those in developed countries and so are more 

important for emerging market currencies. Burnside et al. (2007) estimated 

emerging market bid-ask spreads to be two-to-four times bigger than those for 

developed market currencies over the period 1997 to 2006.  

Neely and Weller (2015) used Bloomberg data on one-month forward bid-ask 

spreads as the basis for estimating transaction costs that vary both over 

currencies and over time. Correspondence with several foreign exchange traders 

and with the head of the foreign exchange department of a commercial bank led 

Neely and Weller to believe that the quoted Bloomberg spreads substantially 

overestimated the spreads actually available to traders. After comparing spreads 

from Bloomberg with those on traders’ screens and then discussing the size of 

spreads with traders, the authors concluded that quoted spreads were roughly 

three times actual spreads. Therefore, Neely and Weller calculated transaction 

costs as follows: Before December 1995, the start of spread data from Bloomberg, 

the cost of a one-way trade for advanced countries (UK, Germany, Switzerland, 

Australia, Canada, Sweden, Norway, New Zealand and Japan) was set at 5 basis 
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points in the 1970s, 4 basis points in the 1980s and 3 basis points in the 1990s. The 

authors set the cost at one third of the average of the first 500 bid-ask 

observations for all other countries.15 Once Bloomberg data become available, the 

authors estimated the spread as one third of the quoted one-month forward 

spread. Deliverable forwards are available for all countries but Russia, Brazil, 

Peru, Chile and Taiwan, for which only non-deliverable forward data are 

available. For cross-rate transaction costs, Neely and Weller use the maximum of 

the two transaction costs against the dollar. All currencies have a minimum of 

one basis point transaction cost at all times. Figure A1 shows the estimated 

transaction costs for each currency over time. The greater magnitude and 

volatility of these emerging market costs is readily apparent. 

The rules/strategies switch between long and short positions in the domestic 

and foreign currencies. The continuously compounded (log) excess return is ztrt+1, 

where zt is an indicator variable taking the value +1 for a long position and –1 for 

a short position, and rt+1 is defined as 

)1ln()1ln(lnln *
11 ttttt iiSSr +−++−= ++ .     (A1) 

                                                        
15 The costs during the 1970s and 1980s are consistent with triangular arbitrage estimates originally done 

by Frenkel and Levich (1975, 1977) and McCormick (1979), and used by Sweeney (1986) and Levich and 

Thomas (1993). 
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The cumulative excess return from a single round-trip trade (go long at date t, go 

short at date t + k), with one-way proportional transaction cost, ct, is 

𝑒𝑒𝑡𝑡,𝑡𝑡+𝑘𝑘 = ∑ 𝑒𝑒𝑡𝑡+𝑒𝑒𝑘𝑘
𝑒𝑒=1 + ln(1 − 𝑐𝑐𝑡𝑡+𝑘𝑘) − ln (1 + 𝑐𝑐𝑡𝑡).    (A2) 

A trading strategy may incur transaction costs even when individual trading 

rules do not, and conversely. This will happen if a strategy requires a switch 

between two rules holding different positions but the rules themselves signal no 

change of position. In this case, the strategy incurs a transaction cost but the 

individual rules do not. If, on the other hand, a strategy dictates a switch from a 

rule requiring—let us say, a long position at time t to a different rule requiring a 

long position in the same currency at time 𝑜𝑜 + 1—then no transaction cost is 

incurred, even though one or both individual rules may have signaled a change 

of position from time t to 𝑜𝑜 + 1. 
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Figure A1 
Transaction costs 
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Notes: The figure displays the time series of transaction costs used for each 
exchange rate in basis points.   
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Appendix B– Variable Definitions 
 

Variable Definition 

𝑅𝑅𝑚𝑚,𝑡𝑡 Market excess return (used in CAPM) measured by the excess return of 
the S&P 500  Equity Index 

𝑅𝑅𝑚𝑚,𝑡𝑡
2  Squared market excess return (used in the squared CAPM) calculated 

by squaring the excess return of the S&P 500  Equity Index  
𝑅𝑅𝑚𝑚,𝑡𝑡 (FF) Fama-French market return is the excess return on the market as 

measured by the value-weight return of all CRSP firms incorporated in 
the US and listed on the NYSE, AMEX, or NASDAQ that have a CRSP 
share code of 10 or 11 at the beginning of month t, good shares and 
price data at the beginning of t, and good return data for t minus the 
one-month Treasury bill rate (from Ibbotson Associates). 

𝑅𝑅𝑆𝑆𝑀𝑀𝑆𝑆,𝑡𝑡 Small Minus Big is the Fama- French size factor. The Fama-French 
factors are constructed using the 6 value-weight portfolios formed on 
size and book-to-market.  SMB is the average return on the three small 
portfolios minus the average return on the three big portfolios. The 
portfolios, which are constructed at the end of each June, are the 
intersections of 2 portfolios formed on size (market equity, ME) and 3 
portfolios formed on the ratio of book equity to market equity (BE/ME). 
The size breakpoint for year t is the median NYSE market equity at the 
end of June of year t. BE/ME for June of year t is the book equity for the 
last fiscal year end in t-1 divided by ME for December of t-1. The 
BE/ME breakpoints are the 30th and 70th NYSE percentiles.  

SMB =
1
3

(Small Value + Small Neutral + Small Growth)

−
1
3

(Big Value + Big Neutral + Big Growth) 

 
𝑅𝑅𝐻𝐻𝑀𝑀𝐻𝐻,𝑡𝑡 High Minus Low is the Fama- French value factor. The Fama-French 

factors are constructed using the 6 value-weight portfolios formed on 
size and book-to-market. HML is the average return on the two value 
portfolios minus the average return on the two growth portfolios. For 
more details about the construction of the portfolios refer to the 
description of the SMB factor.  

HML =
1
2

(Small Value + Big Value)−
1
2

(Small Growth + Big Growth) 
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Variable Definition 

𝑅𝑅𝑈𝑈𝑀𝑀𝐷𝐷,𝑡𝑡 Up Minus Down is the Fama- French momentum factor. Fama – French 
use six value-weight portfolios formed on size and prior (2-12) returns 
to construct the momentum factor. The monthly size breakpoint is the 
median NYSE market equity. The monthly prior (2-12) return 
breakpoints are the 30th and 70th NYSE percentiles. UMD  is the 
average return on the two high prior return portfolios minus the 
average return on the two low prior return portfolios.  

UMD =
1
2

(Small High + Big High) −
1
2

(Small Low + Big Low) 

 
𝑅𝑅𝑚𝑚,𝑡𝑡 Down  Downside market return. The market excess return used is the same as 

in Rm,t (FF). The downside factor is constructed as Rm Down = Rm if 
Rm ≤ μ – σ where μ and σ are the sample time series average and 
standard deviation of the market excess return.  

∆𝑐𝑐𝑡𝑡 Log nondurable (plus services) consumption growth.  Nondurable 
consumption is the sum of the nominal ND series (deflated by the Price 
Index for Personal Consumption Expenditures for Nondurables Goods) 
and the nominal S series (deflated the Price Index for Personal 
Consumption Expenditures  Services).   ND is the Personal 
Consumption Expenditures: Goods: Nondurable Goods series divided 
by the number of households. S is the Personal consumption 
expenditures: Services series divided by the number of households.  

∆𝑑𝑑𝑡𝑡 Log durable consumption growth. Durable consumption is calculated 
as the Durable Chain-Type Quantity Indexes for Net Stock of 
Consumer Durable Goods divided by number of households.  

𝑒𝑒𝑊𝑊,𝑡𝑡 Log return on the market portfolio. It is measured by the value-weight 
return of all CRSP firms including dividends minus the return of the 
Consumer Price Index.  

𝑅𝑅𝑅𝑅 LRV dollar factor. It is the average currency excess return to going 
short in the dollar and long in a basket of six foreign currency 
portfolios. The six currency portfolios are formed on the basis of 
interest rates. Portfolio 1 contains the currencies with the lowest 
interest rates and portfolio 6 - the currencies with the highest interest 
rates. RX is the mean of the returns of the six currency portfolios.  

𝐻𝐻𝑀𝑀𝐿𝐿𝐹𝐹𝑅𝑅 LRV carry trade factor. It is the return to a strategy that borrows low 
interest rate currencies and invests in high interest rate currencies, 
namely a carry trade. LRV form six currency portfolios on the basis of 
interest rates. Portfolio 1 contains the currencies with the lowest 
interest rates and portfolio 6 - the currencies with the highest interest 
rates. 𝐻𝐻𝑀𝑀𝐿𝐿𝐹𝐹𝑅𝑅 is the return of portfolio 6 minus the return of portfolio 1.  
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Variable Definition 

VOL1 Volatility innovations measured by the residuals from AR(1) process fit 
to the Global FX Volatility factor (VOL). Firstly, we estimate the 
monthly return variance for each of the available exchange rates at each 
month in the sample and then calculate the Global Foreign Exchange 
Volatility factor from the first principal component of the monthly 
variances. Specifically, VOL is calculated as  

𝑉𝑉𝑉𝑉𝐿𝐿𝑡𝑡 =  
1
𝑆𝑆𝑡𝑡

� ��
�𝑒𝑒𝑘𝑘,𝜏𝜏�
𝑇𝑇𝑘𝑘,𝑡𝑡𝜏𝜏∈𝑇𝑇𝑡𝑡

�
𝑘𝑘∈𝑆𝑆𝑡𝑡

 

where 𝑒𝑒𝑘𝑘,𝜏𝜏 is the return for particular currency 𝑘𝑘 on day 𝜏𝜏 of month t 
and 𝑆𝑆𝑡𝑡 and 𝑇𝑇𝑘𝑘,𝑡𝑡 are the total number of available currencies for month t 
and the total number of days in month t for currency  𝑘𝑘. Currencies 
with fewer than ten observations for a particular month are excluded 
from the calculation.  

VOL2 Volatility innovations measured by first difference of the Global FX 
Volatility factor (VOL). For detailed description of VOL, refer to the 
definition of VOL1.  

SKEW 
 

Skewness factor.  Firstly, we calculate the monthly return skewness for 
each of the available exchange rates at each month in the sample.  
Specifically, the return skewness for currency k in month t is calculated 
as 

𝑆𝑆𝑆𝑆𝐸𝐸𝑊𝑊𝑘𝑘,𝑡𝑡 =  

1
Tt
∑ �rk,τ − rk,t�����3Tt
τ

�1
Tt
∑ �rk,τ − rk,t�����2Tt
τ �

3
2
 

Where rk,τ is the return for is the return for particular currency 𝑘𝑘 on 
day 𝜏𝜏 of month t,  rk,t���� is the average return for currency 𝑘𝑘 for month t 
and  Tt is the number of available observations in month t for that 
currency. Currencies with fewer than ten observations for a particular 
month are excluded from the calculation. Then for each month, 
currencies are ranked according to their skewness and separated into 
quintiles.  Quintile 5 is the portfolio with currencies in the highest 
skewness quintile and Quintile 1 is the portfolio with currencies with 
the lowest skewness quintile.  Lastly, we form the Global FX Skewness 
factor SKEW as the return of a tradable portfolio that is long the 
currencies in the highest skewness quintile in a given month and short 
the currencies in the lowest skewness quintile in a given month. Thus, 
SKEW is the return of Quintile 5 minus the return of Quintile 1.  
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Variable Definition 

UR GAP 
SKEW 
 

Unemployment gap skewness factor. We follow Berg and Mark (2015) 
in the construction of the factor. Initially, the Hodrick-Prescott (HP) 
filter is applied to the unemployment rate of each country to induce 
stationarity, which produces the unemployment rate gap. Then the 
skewness of the unemployment rate gap is calculated for each country 
for each quarter based on a back-ward looking moving 20-quarter 
window. In each quarter countries are ranked according to their 
skewness and placed into quartiles: P4 contains the countries with the 
highest unemployment gap skewness and P1 containing the countries 
with the lowest skewness. The UR GAP SKEW factor for every quarter 
is constructed as the average skewness of the unemployment gap of the 
countries in P4 minus the average skewness of the unemployment gap 
of the countries in P1.  
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