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Abstract

We identify financial stress regimes using a model that explicitly links financial
variables with the macroeconomy. The financial stress regimes are identified using a
large unbalanced panel of financial variables with an embedded method for variable
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results on the selection of financial variables support the use of credit spreads to identify
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time.
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1 Introduction

In the aftermath of the 2008-2009 worldwide downturn, the research effort in macroeconomics

concentrated on models with financial frictions able to describe nonlinearities in how shocks

to the financial sector affect the macroeconomy. These models typically characterize two

regimes: In the high-stress regime– or high-systemic-risk regime– financial constraints are

binding; thus, shocks to the financial sector have stronger negative effects on investment (He

and Krishnamurthy, 2014). This literature is supported by empirical evidence on the predic-

tive content of financial condition indexes for financial variables (Hatzius, Hooper, Mishkin,

Schoenholtz andWatson, 2010). Hubrich and Tetlow (2011) and Hartmann, Hubrich, Kremer

and Telow (2013) show how financial shocks have larger variance and stronger transmission

to macroeconomic variables in periods of financial stress.1

A caveat of previous empirical exercises is that the measure of financial conditions is

taken as given based on a financial condition index computed by central banks and economic

institutions. Kliesen, Owyang and Vermann (2012) show that these indexes combine infor-

mation from different sets of financial variables and they have different levels of correlation

with future economic activity.

In this paper, we use a novel econometric approach to identify financial stress regimes

using a large unbalanced panel of financial variables jointly with changes in macroeconomic

dynamics. Our approach allows us to choose a subset of financial variables that better de-

scribes nonlinearities from the financial sector to the macroeconomy. Our main empirical

result is that periods of financial stress are defined by (i) two measures of credit risk– such as

the spread between Baa corporate bonds and 10-year Treasuries and high-yield spread, (ii)

a measure of equity market returns (Wilshire 5000) and (iii) consumer survey data on con-

ditions for buying large goods. Variables such as market volatility and the slope of the yield

curve are less important. Our findings agree with those of He and Krishnamurthy (2014),

1Additionally, Dahlhaus (2014) examines how changes in financial stress can alter the channels through
which monetary policy acts.
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who use credit risk spreads to characterize periods of high systemic risk, and the results of

Del Negro, Hasegawa and Schorfheide (2013), who show that DSGE models that incorporate

financial frictions and credit spreads forecast better than models with no financial frictions

in periods of financial stress. Gilchrist and Zakrajsek (2012) explain that the information

content of their credit spread index for economic activity is mainly related to changes in the

excess bond premium.

Our modeling approach allows for dynamic responses to differ depending on the regime

at the time of the shock. A one-standard-deviation shock to financial conditions that occurs

during a high-financial-stress regime has a significant 0.2% negative impact on inflation at

a horizon of one year. On the other hand, the dynamic effect on inflation of a shock to

financial stress occurring during a low-stress regime is statistically zero at all horizons. This

highly asymmetric response of inflation to financial conditions is one of the main empirical

contributions of this paper and supports the development of macroeconomic models with

nonlinearities from financial variables to aggregate prices.2

The response of the growth in industrial production is not as asymmetric as the response

of inflation, but the negative response is faster if the shock occurs in the high-stress regime,

with negative significant effects to a one-standard-deviation shock of 0.8% after only four

months. This weak evidence of asymmetric responses of economic activity is supported by

Ng and Wright (2013), who argue that it is hard to find nonlinearities in the dynamics of

business cycles using aggregate data. We can clearly show that our identified periods of

financial stress are strongly correlated with NBER recessions. Similar sizable responses from

a standard deviation financial shock to industrial production were presented by Caldara,

Fuentes-Albero, Gilchrist and Zakrajsek (2014), who employed excess bond premium as the

2Gilchrist, Schoenle, Sim and Zakrajsek (2014) provide evidence that firms with "weak" balance sheets
increased their price during the 2008 crisis, while firms with "strong" balance sheets decreased their prices
as expected. Our results support the claim that after a negative financial shock (a type of negative demand
shock), average prices go down significantly during periods of high financial stress but do not change during
periods of low financial stress. Because we also find that financial shocks are larger in periods of high financial
stress and we only look at aggregate prices, our results are agreeable with the attenuation in price dynamics
caused by financial distortions of the model in Gilchrist et al. (2014).
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measure of financial tightening and an alternative identification strategy that also includes

uncertainty shocks.

Throughout the paper we compare two specifications of our nonlinear VAR model: one

that allows for dynamic feedback from macroeconomic variables to the financial conditions

factor (or index) and another that does not. The dynamic responses from a financial shock

in the model without the feedback are more persistent because the effect of the shock on

financial conditions themselves is more persistent. This supports the claim that it is bet-

ter to estimate financial conditions indexes within a macroeconomic model since there are

strong feedbacks in both directions: from financial conditions to the macroeconomy and

from the macroeconomy to financial conditions. A disadvantage of the model with feed-

backs in both directions is that the confidence bands for the weights of the financial stress

regime are wider, implying additional regime identification uncertainty. In general, financial

stress indexes published by central banks and economic institutions do not take into account

feedback effects between the financial sector and the macroeconomy. Hatzius et al. (2010)

filter the time series of financial variables to exclude the effect of macroeconomic conditions

before building their financial condition index (Brave and Butters (2012) also follow a sim-

ilar approach). This novelty in our approach may also explain why we cannot find large

asymmetric responses from economic activity to financial shocks as in Hubrich and Tetlow

(2011) and Hartmann et al. (2013).

We evaluate our econometric modeling approach to identify periods of high-stress regimes

in pseudo real-time from September 2007 up to April 2010. Our results show that we could

have signalized the high-stress regime with a probability higher than 80% from February

2008, while this probability is below a 50% threshold in January 2010. The pseudo real-

time analysis also shows that the financial variable selection changes after January 2009.

Before 2009, measures such as housing inflation, long-term interest rates and the growth

in credit stock would have been selected more than 84% of the time based on the posterior

distribution. After January 2009, the number of variables that are frequently selected shrinks
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and a larger weight is given to the Baa—10-year Treasury spread.

In this paper, we develop aMetropolis-in-Gibbs approach to estimate a Factor-Augmented

Smooth-Transition Vector Autoregressive Model (FASTVAR). The model has two regimes,

allowing for dynamics changes depending on the financial condition factor. The proposed

model augments the smooth-transition VAR model (surveyed by Van Dijk, Terasvirta and

Franses (2002)) with an unobserved factor as in Bernanke, Boivin and Eliasz (2005). Thus,

the strength of the relation between financial conditions and economic activity depends ex-

plicitly on the unobserved financial conditions factor linked to a set of observed financial

variables.

The unobserved factor is jointly estimated with the parameters of a smooth-transition

function that describe the weights given to each regime over time. We also include a step in

the estimation that allows for covariate selection to determine the composition of the data

vector included in the financial conditions factor. A method to choose variables to enter

factors was also performed by Kaufmann and Schumacher (2012) using sparse priors in the

context of dynamic factor models and Koop and Korobilis (2013) using model averaging in

FAVAR models.

Estimation of the model is conducted in a Bayesian environment using Metropolis-

Hastings steps to draw the transition function parameters and a vector of indicator vari-

ables determining the financial series entering the factor. Because of the nonlinearity in the

autoregressive parameters, the factor must be estimated using a nonlinear filter. We use

the extended Kalman filter, implying that we use a first-order approximation of the state

equation.

The balance of the paper proceeds as follows: Section 2 describes the general FASTVAR

model with model indicators used for model selection. Section 3 outlines the Gibbs sampler

used to estimate the model parameters, the factor, and the posterior distributions for the

model inclusion indicators. Section 4 describes our dataset and presents and analyzes the

results of our empirical exercise. Section 5 summarizes and offers some conclusions.
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2 The Empirical Model

In this section, we propose a method to identify financial stress regimes. We begin by describ-

ing a VAR model that links an exogenously-defined financial condition index to economic

activity. Then, we propose a FASTVAR model that allows for the joint estimation of a

financial condition factor and the time-varying weights for the financial stress regime.

2.1 The Smooth-Transition VAR Model

Let ft represent the period−t value of a financial conditions index. For now, assume that ft

is scalar, observed and exogenously determined. Define zt as an (Nz × 1) vector of macro-

economic variables of interest– e.g., GDP growth, employment, inflation. Suppose that the

effect of a shock to financial conditions on macroeconomic variables is linear but that finan-

cial conditions are also affected by macroeconomic variables– in particular, current economic

activity. In this case, the dynamic response can be evaluated in a standard VAR framework.

Define the ((Nz + 1)× 1) vector yt = [z′t, ft]
′, where the ordering of ft last is intentional

and provides the identifying restriction used to construct impulse responses. The VAR in

question is then

yt = A (L) yt−1 + εt, (1)

where A (L) is a matrix polynomial in the lag operator, εt ∼ N (0,Ω), and we have sup-

pressed any constants and trends. The matrixes A (L) drive the transmission of financial

shocks– shocks to ft– to macroeconomic variables zt. However the transmission in this

specification cannot change over time or with the level of financial stress. Suppose that the

transmission mechanism changes over time and depends on the size and sign of the financial

conditions index; then, we can write

yt = [1− πt (ft−1; γ, c)] A1 (L) yt−1 + πt (ft−1; γ, c) A2 (L) yt−1 + εt, (2)
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where A1 (L) and A2 (L) are matrices of lag polynomials, εt ∼ N (0Nz+1,Ωt), and Ωt is the

variance-covariance matrix. If ft is observed, the model described in (2) is a standard smooth-

transition vector autoregression (STVAR) as in Van Dijk et al. (2002). In the parlance of the

STAR models, ft−1 is the transition variable and πt (ft−1) is the transition function, where

0 ≤ πt (ft−1) ≤ 1. The transition function πt (ft−1) determines the time-varying weights of

each set of autoregressive parameters A1 (L) and A2 (L) on the path of yt.

The transition function can take a number of forms. One example is a first-order logistic

transition function of the following form:

πt (ft−1; γ, c) = [1 + exp (−γ (ft−1 − c))]−1 , (3)

where γ ≥ 0 is the speed of transition and c is a fixed threshold. In (3), the regime process

is determined by the sign and magnitude of the deviation of lagged financial conditions,

ft−1, from the threshold c. If ft−1 is less than c, the transition function, πt (ft−1), gives

more weight to the autoregressive parameters of the first regime, A1 (L).3 The coeffi cient γ

determines the speed of adjustment: as |γ| → ∞, the transition becomes sharper and the

regime switches resemble a pure threshold model. At γ = 0, the model collapses to a linear

model. Smooth-transition and threshold VARs have been employed to measure asymmetries

in the dynamic effects of monetary shocks (Weise, 1999; Ravn and Sola, 2004) and in the

effect of credit conditions on economic activity (Balke, 2000).

We allow for regime-dependent heteroskedasticity, so the variance-covariance matrix of

the VAR equation is

Ωt = [1− πt (ft−1; γ, c)] Ω1 + πt (ft−1; γ, c) Ω2,

where Ω1 and Ω2 are ((Nz + 1)× (Nz + 1)) symmetric matrices. A STVAR specification

3This analysis implicitly assumes that the transition variable delay is equal to 1. Because typically
financial condition factors are persistent time series, the assumption that the delay is equal to 1 is not very
restrictive.
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with regime-dependent heteroskedasticity as above but with c = 0 and a calibrated γ has

been employed to measure asymmetries over business cycles of the impact of fiscal policy

shocks by Auerback and Gorodnichenko (2012) and Bachmann and Sims (2012), and of

uncertainty shocks by Caggiano, Castelnuovo and Groshenny (2014).

In the model composed of (2) and (3), a shock propagates differently depending on the

(lagged) state of financial conditions. Shocks to macro variables have regime-dependent

effects that can be determined conditional on ambient financial conditions. Shocks to fi-

nancial conditions, on the other hand, have two effects. Conditional on the regime, the

response to a financial conditions shock can be computed as a standard (state-dependent)

impulse response. In addition, shocks to financial conditions can cause a change in future

macroeconomic dynamics by driving the economy away from one regime toward the other.

2.2 The Factor-Augmented STVAR

The STVAR model in the preceding subsection relies on the fact that ft is observed. This

could be true if one used an observed proxy for financial stress or if one used a constant

weight measure, as in the financial condition indexes surveyed by Hatzius et al. (2010). But

how can we be sure we are properly modeling financial conditions such that we correctly

identify financial stress periods? As a consequence, we estimate the financial conditions

index as a factor within a FASTVAR based on a vector of financial variables, xt.

Let ft be the factor that summarizes the comovements across Nx demeaned financial

series, xt:

xt = βft + ut, (4)

where β is the matrix of factor loadings and uit are iid N (0, σ2
i ). Equations (2), (3) and

(4) comprise the FASTVAR model. The factor is jointly determined by the cross-series

movements in the financial variables and the behavior of the macroeconomic variables.
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One of the central issues in the literature measuring financial stress is how to determine

which financial series should comprise xt. For example, Kliesen et al. (2012) surveyed 11

different indexes constructed from 4 to 100 indicators. While more series may provide a

more complete view, increasing the cross-sectional dimension of xt may result in estimated

factors that do not truly represent financial stress. We are interested in determining the

set of financial variables that alters the underlying dynamics of the macroeconomy– that

is, which financial variables switch the macroeconomic dynamics from A1 (L) to A2 (L) and

vice versa.

To accomplish this, we augment (4) with a set of model inclusion dummies, Λ = [λ1, ..., λNx ]
′,

λi ∈ {0, 1}. The inclusion dummies indicate whether a particular financial series should be

included in the set of variables that make up the factor– that is, if λi = 1, xi is included in

the set of variables that determine the factor. If λi = 0, xi is excluded of the estimation of

the factor; the effect of λi = 0 is to set the factor loading associated with the ith element of

xt to zero. We can then rewrite (4) as

xt = (Λ� β) ft + ut. (5)

The vector of inclusion indicators, Λ, can be estimated along with the other parameters in

the model.

2.2.1 The State-Space Representation

The state-space form of the model consisting of (2), (3), and (4) summarizes the assumptions

behind the FASTVAR model that we have made thus far. For exposition, we assume that

p = 1 and Nz = 2. The measurement equation is

 zt

xt

 =

 I 0

0 (Λ� β)


 zt

ft

+

 0

ut

 ;ut ∼ iidN(0, σ2
i ). (6)
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This differs from the FAVAR specification of Bernanke et al. (2005) by excluding the macro-

economic variables zt as observable factors in the measurement equation of the financial

variables xt.

The state equation is


z1,t

z2,t

ft

 =


c1

c2

0

+


a11 a12 a13

a21 a22 a23

0 0 a33



z1,t−1

z2,t−1

ft−1

 (7)

+πt(ft−1; γ, c)




d11 d12 d13

d21 d22 d23

0 0 d33



z1,t−1

z2,t−1

ft−1


+


ε1t

ε2t

εft

 ,

where εt ∼ N(0,Ω), πt(ft−1; γ, c) = [1 + exp(−γ(ft−1− c))]−1 and dij = a2,ij − a1,ij measures

the change in the autoregressive coeffi cients across regimes. In equation (7), we include

additional restrictions in the factor dynamics, excluding the possibility of direct dynamic

effects of macroeconomic variables on the financial factor. This is justified by the fact that

the factor is estimated/filtered using both the measurement (6) and the state (7) equations,

and we would like to relate the factor more strongly to financial variables in xt than economic

variables in zt. However, if there is a strong feedback from the macroeconomy to the financial

sector, then these restrictions imply that we miss important dynamic effects when measuring

the effect of exogenous financial shocks on the macroeconomic variables. As a consequence,

we use both the restricted specification in (7) and an unrestricted specification that also

estimates c3, a31, a32, d31 and d32.

2.2.2 Impulse Response Functions

The FASTVAR allows for asymmetric transmission of financial shocks (i.e., to the ft equa-

tion) to the macroeconomic variables. However, asymmetries will prevail only if estimates of

dij do not collapse to zero or, alternatively, if the transmission of shocks differs even though
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the size and sign of the shocks are invariant. We split the data on macroeconomic variables

and a factor ft (for t = 1, ..., T ) draw into two subsets to verify whether the dynamic transmis-

sion changes with regimes. The first subset refers to the histories during the lower regime,

πt(ft−1; γ, c) ≤ 0.5, and the other subset refers to the upper regime, πt(ft−1; γ, c) > 0.5.

Based on these two sets of histories, we compute generalized impulse responses conditional

on the regime as suggested by Koop, Pesaran and Potter (1996) and applied by Galvao and

Marcellino (2014). The responses measure the effect of a one-standard-deviation shock to

financial conditions on the endogenous variables, assuming (i) a specific set of histories at

the impact (either lower or upper regime) and (ii) that the regimes may change over horizon.

We simulate data to compute the conditional expectations of yt+h with and without the

shock to compute responses:

IRFh,v,s =
1

Ts

Ts∑
t=1

{
E[yt+h|z(s)

t , vt = v]− E[yt+h|z(s)
t ]
}
, (8)

where Ts is the number of histories in regime s, z(s)
t is a history from regime s (typically

including zt, ..., zt−p+1 and ft, ..., ft−p+1) and vt = v is the shock vector. In the empirical

application, we use 200 draws from the disturbances distribution to compute each conditional

expectation using a given set of FASTVAR parameters. The IRFh,v,s measures the responses

of both macroeconomic variables and the factor at horizon h from shock v that hit the model

in regime s (either the lower or the upper regime defined using the transition function as

above). This approach for computing impulse responses takes the nonlinear dynamics of the

FASTVAR fully into consideration.

In the computation in (8), we are implicitly assuming a fixed set of parameters of the

FASTVAR (A1(L), A2(L), γ, c, Ω1,Ω2) and a specific estimate of ft. In our empirical

implementation, we compute the impulse response function for many parameters and factor

draws from the posterior distribution. We use a set of equally spaced draws from the posterior

distribution, and we plot the posterior mean for IRFh,v,s and 68% confidence intervals.
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3 Estimation

We estimate the model using the Gibbs sampler with a Metropolis-in-Gibbs step. Let Θ

collect all of the model parameters. We can partition the set of model parameters into blocks:

(1) Ψ = [A1 (L) ,A2 (L)], the VAR coeffi cients; (2) Ω1 and Ω2, which are the regime-specific

VAR variance-covariance matrixes; (3) γ and c, the transition speed and the threshold; (4) β,

Λ and fT = {ft}Tt=1, the factor loadings, the inclusion indicators and the factor, respectively;

and (5) {σ2
it}

Nx
i=1, the variances of financial variables. The algorithm samples from each block

conditional on the other blocks. After a suitable number of draws are discarded to achieve

convergence, the set of conditional draws forms the joint distribution of the whole model.

3.1 Priors

Table A: Priors for Estimation

Parameter Prior Distribution Hyperparameters

vec (Ψ) N (m0,M0) m0 = 0N ; M0=10IN N = 2Nz (Nz + 1)P + 2Nz + 2P

Ω−1
1 ,Ω−1

2 W
(
ν0

2
, D0

2

)
ν0 = 1000 ; D0 = IN ∆Ω1 = ∆Ω2 = 150

γ Γ (g0,G0) g0 = 6 ; G0 = 3 ∆γ = 0.01

c Unif (cL, cH) cL = f0.10 ; cH = f0.90

σ−2
n Γ (ω0,W0) ω0 = 1 ; W0 = 1 ∀n

βn N (b0,B0) b0= −100 ; B0=0.01 ∀n

λn ρ0 ρ0 = 0.01 ∀n

We assume a proper normal—inverse-Wishart prior for the VAR(P ): Each regime-dependent

coeffi cient matrix has a multivariate normal prior; the covariance matrix is inverse Wishart.

The threshold in the transition function has a uniform prior bounded by the 10th and 90th

quantiles of the distribution of the factors; the transition speed has a gamma prior. We also

adopt a normal—inverse-gamma prior for the factor equation: Each of the factor loadings has

a normal prior and each variance is inverse gamma. The prior for the inclusion indicator is
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set such that more weight is assigned to excluding variables. This makes the factor estimated

over, ex ante, as parsimonious a vector of financial indicators as possible. Table A presents

the prior hyperparameters. We describe the tuning parameters ∆γ, ∆Ω1 and ∆Ω2 below.

The values of these tuning parameters in Table A are set such that the acceptance rate of

both Metropolis steps is around 10% after 10000 initial (discarded) draws.

3.2 Drawing Ψ conditional on Θ−Ψ, fT , zd,T and xT

Conditional on πt (ft−1), a draw from the posterior distributions for the VAR parameters is

a straightforward application of Chib (1993) and Chib and Greenberg (1996). Rewrite the

VAR of yt = [z′t, ft]
′ as follows:

yt = θtΨ̃ + εt, (9)

where Ψ̃ is the (2 (Nz + 1)NzP + 2Nz + 2P × 1) stacked vector of parameters,

θt =

 INz ⊗ ŷt−1 02P

0 f̂t−1

 ,
ŷt−1 =

[
πt (ft−1) ypt−1, (1− πt (ft−1)) ypt−1

]
,

ypt−1 =
[
1,y′t−1, ...,y

′
t−p
]
,

f̂t−1 =
[
πt (ft−1) fpt−1, (1− πt (ft−1)) fpt−1

]
,

and fpt−1 =
[
f ′t−1, ..., f

′
t−p
]′
. Then, given the prior N (m0,M0), the (stacked) joint parameter

vector can be drawn from

Ψ ∼ N (m,M) ,

where

12



M =

(
M−1

0 +

T∑
t=1

θ′tΩ
−1
t θt

)−1

and

m = M

(
M−1

0 m0 +
T∑
t=1

θ′tΩ
−1
t yt

)
.

3.3 Drawing c̃, γ̃ conditional on Θ−[c̃,γ̃], fT , zd,T and xT

The prior on the hyperparameters of the transition equation is jointly Normal-Gamma. Given

the prior, the posterior is not a standard form; γ, however, can be drawn using a Metropolis-

in-Gibbs step (Lopes and Salazar, 2005). To do this, we first draw the candidates, γ∗ and

c∗, separately from random walk gamma and normal proposal densities, respectively:

γ∗ ∼ G

((
γ[i−1]

)2

∆γ

,
γ[i−1]

∆γ

)
and

c∗ ∼ Unif (cL, cH) ,

where the superscript [i− 1] represents the values retained from the past Gibbs iteration and

∆γ is a tuning parameter and the bounds of the uniform distribution are chosen such that

the proposed threshold always lies on the interior of the distribution of the factors for the

current factor draw. The joint candidate vector is accepted with probability a = min {A, 1},

where
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A =

∏
t φ (zt|πt (ft−1|γ∗,c∗) ,Ψ, ft)∏

t φ (zt|πt (ft−1|γ[i−1],c[i−1]) ,Ψ, ft)

× dUnif (c∗|cL, cH)

dUnif (c[i−1]|cL, cH)

dG
(
γ∗|
(
γ[i−1]

)2
/∆γ, γ

[i−1]/∆γ

)
dG
(
γ[i−1]| (γ[i−1])

2
/∆γ, γ[i−1]/∆γ

) ,
γ[i] represents the last accepted value of γ, dUnif (.) is the uniform pdf, and dG (.) is the

gamma pdf.

3.4 Drawing Ω1 conditional on Θ−Ω1, fT , zd,T and xT

Under the assumption of homoskedasticity, Ωt = Ω is constant and can be drawn from a

conjugate inverse Wishart distribution with scale and shape determined, in part, by the

number of observations and the sum of squared errors.

Under the assumption of regime-dependent heteroskedasticity, the draws of Ω1 and Ω2

are no longer conjugate and each requires Metropolis-in-Gibbs steps. Here, we describe

the draw for Ω1; the draw for Ω2 is similar and can be inferred. To obtain a draw for

Ω1 conditional on Ω2 and the other parameters, we draw a candidate Ω̂1 from an inverse

Wishart distribution. Rewrite (2) in terms of the residual as

εt = yt − [(1− πt (ft−1))A1(L) + πt (ft−1)A2(L)] yt−1.

Then, given the priorW (ν0, D0) forΩ−1
1 , the candidate is drawn fromΩ−1

1 ∼ W
(

ν
2∆Ω1

, D
2∆Ω1

)
,

where

ν = ν0 +
∑
t

(1− πt (ft−1)) ,

D = D0 +
∑
t

(1− πt (ft−1)) εtε
′
t,

and ∆Ω1 is a tuning parameter. The draw is then accepted or rejected similar to the step
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above.

3.5 Drawing β, and Λ conditional on Θ−β,Λ, zd,T , ft and xT

In a standard FAVAR, the factors can be drawn by a number of methods including the

Kalman filter and the factor loadings are conjugate normal. In our case, we have two

issues that can complicate estimation. First, because the composition of the vector of data

determining the factor is unknown, we must sample the inclusion indicators, loadings and

factors jointly. This joint draw requires a Metropolis step. Second, because the factors also

affect the regimes through the transition equation, the state-space representation is nonlinear

and a standard Kalman filter cannot be used.

The joint draw proceeds as follows. Our plan is to draw Λ via a reversible-jumpMetropolis

step; however, a new candidate Λ∗ invalidates the β from the previous draw. Thus, it is more

effi cient to draw β and Λ jointly. Define the joint proposal density, q (β∗,Λ∗), as

q (β∗,Λ∗) = q (β∗|Λ∗) q (Λ∗) .

First, we draw a set of inclusion candidates, Λ∗, from q (Λ∗). Then, conditional on these

candidates, we draw a candidate factor loading, β∗, from q (β∗|Λ∗). This allows us to simplify

the acceptance probability of the joint candidate.

3.5.1 Drawing the Inclusion Indicator Candidate

The financial stress index may be sensitive to small shocks in the financial variables because

of the nonlinearities in the transition function, making variable selection important. Let

Λ[i−1] =
[
λ

[i−1]
1 , ..., λ

[i−1]
Nx

]
represent the last iteration’s draw of the matrix of inclusion indi-

cator with λ[i−1] ∈ {0, 1}. We draw an index candidate, n∗, from a discrete uniform with

support 1 to Nx. The candidate Λ∗ is then
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Λ∗ =
[
λ

[i−1]
1 , ..., λ

[i−1]
n−1 , 1− λ[i−1]

n , λ
[i−1]
n+1 , ..., λ

[i−1]
Nx

]
,

which essentially turns the n∗ switch on and off.

3.5.2 Drawing the Loading Candidate

Conditional on the factors and variances, the factor loadings can be drawn from a normal

posterior given the normal prior, N (b0, B0). Moreover, because the x′s are assumed to be

orthogonal conditional on the factors, we can draw the candidate loadings one at a time:

β∗n ∼ N (bn,Bn), where

bn = B−1
n

(
B−1

0 b0 + σ−2
n f ′TxnT

)
and

B−1
n = B−1

0 + σ−2
n f ′TfT .

3.5.3 Accepting the Draw

Once we have a set of proposals, we accept them with probability

An,γ = min

{
1,
|B∗|1/2

|B|1/2
exp

(
1
2
b∗B∗−1b∗

)
exp

(
1
2
bB−1b

) π (Λ∗)

π (Λ[i−1])

q (Λ∗)

q (Λ[i−1])

}
, (10)

where b∗ and B∗ are defined and bn and Bn are defined for Λ[i−1].

3.6 Drawing the Factor

To implement the extended Kalman filter, we rewrite the model in its state-space represen-

tation. The state variable is ξt = ypt as defined above; let Yt = [z′t,x
′
t]
′. Then,
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Yt = Hξt + et,

ξt = G
(
ξt−1

)
+ vt,

where

H =

 INz+1 0Nz×1 0Nz×Nc

0Nx×Nz+1 Λ� β 0Nx×Nc

 ,
et =

[
0′Nz×1,u

′
t

]′
, vt =

[
ε′t,0

′
(Nc+1)×1

]′
, Nc = (Nx + 1) (P − 1), Ete′tet = R and Etv′tvt = Q.

Note that, in general, both Q and R will be singular. The function G (.) is

G
(
ξt−1

)
= [1− πt (ft−1)]A1 (L) + (πt (ft−1))A2 (L)] yt−1,

which is nonlinear in the state variable.

We can then draw ξT ∼ p
(
ξT |T ,PT |T

)
which is obtained from the extended Kalman filter

(EKF). The EKF utilizes a (first-order) approximation of the nonlinear model. The EKF,

then, uses the familiar Kalman prediction and update steps to generate the posterior distri-

butions for the state variable, ξt ∼ p
(
ξt|t,Pt|t

)
. The distribution ξT−1 ∼ p

(
ξT−1|T ,PT−1|T

)
is obtained via smoothing and preceding periods are drawn recursively.

3.7 Drawing σ2 conditional on Ψ−σ2,ZT and XT

Given the inverse gamma prior, the measurement variances can be drawn from an inverse

gamma posterior, σ−2
i ∼ Γ (ωi,Wi), where

ωi =
1

2
(ω0 + T ) ,
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Wi =
1

2
(W0 + uitu

′
it) ,

and

uit = xit − Λift.

4 Empirical Results

4.1 Data

To measure financial stress through its effects on the transition dynamics of macroeconomic

variables, we require two sets of data. First, we need financial data with which we can

search for common fluctuations. Second, we need a set of macroeconomic variables. For

the former, we consider an unbalanced panel consisting of a vector of 23 financial series also

used in Hatzius et al. (2010). These financial indicators include term spreads, credit spreads,

Treasury rates, commercial paper rates and survey data. The data end in September 2012.

All variables are monthly and described in Table 1. The selection of variables encompasses

all subgroups described in Hatzius et al. (2010), Brave and Butters (2012) and Kliesen et al.

(2012). These variables were all demeaned before estimation.

Because the financial data are monthly, we use the year-on-year growth rate in industrial

production as our main economic indicator. We also include a monthly inflation measure,

the year-on-year rate of change of headline CPI. Both series are seasonally adjusted.

4.2 Financial Conditions Factor and Regime Changes.

Figure 1 presents the estimates of the unobserved financial factor over two FASTVAR speci-

fications: the one described in (7) that does not allow for dynamic feedback from the macro

variables to the factor and the unrestricted version. In both cases, we present the posterior
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mean and 68% confidence bands. We also show the results of applying principal components

to a balanced version of our dataset of 23 monthly financial variables.

Two clear results emerge. First, both the restricted and unrestricted specifications gen-

erate very similar factor estimates. Second, if large positive values of the factor are normally

associated with financial stress periods, the periods identified by the principal-component

approach may differ from those using the FASTVAR approach. This provides some initial

evidence that estimating the factor jointly with the VAR for macro data may matter for

identifying periods of financial stress.

Table 2 presents the posterior means of the inclusion dummies (λi) for each financial

variable for both the restricted and unrestricted specifications. The posterior means for

both specifications are very similar, in agreement with Figure 1. The variables selected over

more than 84% of the posterior distribution are (i) two credit spreads (baa10ysp and high-

yieldspread), (ii) a measure of equity returns (wilrate) and (iii) a consumer survey measure

(migoodsurv). Other credit conditions variables also have a high probability of being se-

lected. However, variables such as term spreads are not very important to define financial

stress regimes. Our variable selection takes into account the link between the financial factor

and future economic activity, so our support to measures of credit conditions as measure of

financial stress are in agreement with Gilchrist and Zakrajsek (2012), who show that credit

spreads lead economic activity.

Figure 2 presents the posterior mean of the transition function (equation 3) for both

FASTVAR specifications. As opposed to the Markov-switching VAR model, in the FAST-

VAR model, the economy can reside in the transition state between the two extreme regimes.

The values of the transition function over time represent the weights given to the high stress

regime at each date. Values near zero imply that the economy is in the lower stress regime;

NBER recessions are shaded in gray. Two results are clear: (i) as before, both specifications

identify similar regime-switching history and (ii) the weights on the second regime’s coeffi -

cients are higher than 80% during most of the NBER recessions. Based on this, we classify
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the second regime as the financial stress regime. We can also interpret the estimates in Fig-

ure 2 as a time series of the posterior probability of the financial stress regime. We have at

least one month of financial stress regime (probability/weights higher than 50%) within each

one of the four recession episodes covered. Since we estimate both the unobserved factor and

the transition function within the FASTVAR model, the model is able to detect financial

stress regimes correlated with recessions.

Figure 3 represents the posterior mean of the transition function for both FASTVAR

specifications but now includes the 68% confidence bands. The confidence intervals on the

regime weights are generally narrower using the restricted model. The unrestricted model

allows for 3 extra parameters to change over regime, creating additional estimation uncer-

tainty. The fact that regime definition is not as clear-cut in the unrestricted FASTVAR

specification will have implications for the performance of the model in real time, as will be

discussed later.

Figure 4 presents the square root of the posterior mean of the diagonal of Ωt, which is

the regime-dependent variance-covariance matrix of the disturbances, for both FASTVAR

specifications. The sizes of the volatility changes are generally larger for the restricted model

than for the unrestricted specification. If we compare the relative size of the standard de-

viations in each regime, we can say that differences are very small for industrial production

innovations. However, for inflation and financial factor innovations, the volatility of innova-

tions in the high-stress regime are roughly 15% larger than in the low-stress regime. Because

of the VAR ordering, this implies that financial shocks have higher volatility during financial

stress periods, with a sizable increase of around 15%.

4.3 Impulse Responses

Figure 5 presents the 48-month dynamic responses from a one-standard-deviation financial

shock with an assumed zero impact effect on industrial production growth and inflation.

These are generalized responses– that is, they allow for regime switching over horizons and
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are computed conditional on the regime histories as described in Section 2.2.2. We use the

average variance-covariance matrix over time to set the size of the shock (ν in equation (8))

such that the size of the shock is the same for both regimes, so asymmetries in the responses

are caused only by nonlinearities in the VAR dynamics and not by the changes in the regime-

conditional variances reported in Figure 4. The plots present the mean response over 150

equally spaced draws from the parameter posterior distributions (based on 15000 draws) for

the FASTVAR parameters and the factor time series, including 68% confidence bands. As

before, we compute responses for both restricted and unrestricted specifications. Regime 2

is the financial stress regime.

The dynamic responses computed using the restricted FASTVAR parameters show a more

persistent response to the financial shock than the unrestricted model. In both specifications,

a negative financial shock (equivalent to an increase in the financial factor) has a large

significant negative effect on economic activity with a peak effect of -0.8%. However, the

response is zero after 3 years (68% confidence bands include zero) using unrestricted model

estimates, but it is still sizable with the restricted model. The lack of feedback effects

from macro variables to the financial factor explains this excessive persistence, which is

not compatible with the average duration of recessions of around 1 year during the period.

Similar excessive persistence is also detected for inflation.

Both specifications agree, however, that there is little asymmetry between regimes in

the IP growth responses but substantial asymmetries on the inflation responses. During

financial stress regimes, an exogenous increase in stress significantly decreases inflation by

0.2% nine months after the shock. A similar shock occurring in the low-stress regime has

no effect on inflation. The posterior mean response of IP growth during the financial stress

regime is -0.84% at a 4-month horizon and -0.74% when not initially in the financial stress

regime. The cumulative effect after four years is -11% for IP growth and -4% for inflation

in the financial stress regime. These results based on the unrestricted model are, in general,

compatible with typical recession characteristics. They are also compatible with the results of
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Caldara et al. (2014) who found a similar sized variation in industrial production as response

to a shock that raises financial market tightening. Recall also that our high-stress regime is

strongly correlated with recessions, so our results agree with Ng and Wright (2013) who argue

that is hard of find evidence of asymmetries over business cycles in responses of aggregate

economic activity to shocks.

In summary, these results indicate that exogenous changes in the financial factor have

significant negative effects on economic activity even if they do not initially occur in the

financial stress regime. If in the high-stress regime, we find significant negative responses of

inflation to the financial shocks, while the results in Section 4.2 suggest we should expect

larger financial shocks.

4.4 Identifying financial stress regimes during 2007-2010

One of the possible uses of the empirical model proposed in this paper is to provide an early

warning mechanism for financial stress periods. If the economy is in financial stress, the

likelihood of large financial shocks increases and inflation is more responsive to exogenous

variation in the financial variables– in particular, to credit spread measures. Thus, it is

important for policymakers to identify the onset of these regimes.

We evaluate the FASTVAR’s ability to detect financial stress periods from September

2007 up to April 2010. Figure 6 shows the posterior means of the regime weights for both

the restricted and unrestricted models estimated with final data for this subperiod. The

figure also presents pseudo real-time estimates computed by re-estimating the models over

increasing windows of data starting from 1981M9 and ending at each month from 2007M9 to

2010M4. For each window, we re-estimate the model (20000 draws with the initial 5000 draws

discarded) and save the posterior mean of the transition function for the last observation–

that is, we compute real-time probabilities of being in the financial stress regime.

As in our previous results, the unrestricted model exhibits more uncertainty in identifying
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the financial stress regime than the restricted model.4 Using the restricted model, we are

able to initially detect a probability of financial stress higher than 80% in February 2008,

even though using data up to 2012M9, the estimated probability is only 32%. Both real-time

and final measures drop to values below 50% in January 2010.

We also look at the selection of the financial variables into the financial factor during the

period. Figure 7 presents the posterior mean of the λis for each window of data finishing

at the indicated date, computed using the restricted specification (results are similar for the

unrestricted one). For data windows up to January 2009, many variables are selected more

than 80% of the time. The figure shows the selection by categories. When looking at interest

rates and term spread, only the long-term interest rate is frequently selected before 2009.

Both housing and equity prices changes are also selected, while the oil price is not. We

consider many different measures of credit spreads and almost all of them are highly selected

in the earlier period. Consumer survey measures and measures of growth of credit stock are

also selected. After January 2009, with stronger evidence of a financial-related recession,

the only variable that is selected more than 80% of the time is the Baa—10-year Treasury

spread. Recall that when looking at the full sample, we find also three additional variables

that are typically selected. These results support the development of macroeconomic models

able to explain why credit spreads vary over time and how large credit spreads amplify the

transmission of shocks, particularly to inflation.

In summary, the restricted FASTVARmodel is adequate to detect financial stress regimes

in real time. The flexibility from selecting the financial variables into the financial factor for

a specific window of data is one of the key elements in this good performance.

4For some windows of data, the estimates of the factor loadings are, in general, negative instead of
positive, as in the case of the full sample. This means that the factor and regimes flip. If this was the case,
we flip the obtained estimates such that transition function values near 1 are associated with the financial
stress regime.
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4.5 Robustness Exercises

The financial variables in Table 1 might be strongly related to monetary policy. One way to

be sure that our dynamic responses are computed for financial shocks that are not caused by

unexpected changes in monetary policy is to add a measure of monetary policy in the VAR

vector zt in equation (2). An issue with this approach is that while it is easy to assume that

the fed funds rate is a measure of monetary policy for the period before 2008, this is harder

for the later period. This explains why we decide against including the fed funds rate in our

baseline specification, differing from the specification of Bernanke et al. (2005) and Hubrich

and Tetlow (2011). As a robustness check, we estimate an unrestricted FASTVAR model

with the fed funds rate in addition to growth in industrial production and CPI inflation in

the vector zt.

Figure 8 presents the posterior mean of the transition function in the upper-left panel

and responses from exogenous changes in financial stress computed as in Section 4.3. The

identification of the financial stress regime does not change qualitatively with the inclusion

of the monetary policy measure. Responses of IP growth and inflation are also qualitatively

similar. The response of the fed funds rate is negative and persistent. The monetary policy

reaction is weaker during the financial stress regime. This relative shallowness might explain

why the response of inflation is stronger if the shock hits in the financial stress regime.

However, it may also be related to zero lower bound constraints in the latter part of the

sample.

5 Conclusions

The financial crisis emphasized the importance of identifying periods of high financial stress

as these periods can have important and detrimental effects on the macroeconomy. In this

paper, we construct a measure of the probability of a financial stress regime which– by

design– includes only financial variables that alter the economic dynamics between financial

24



conditions and macroeconomic variables such as industrial production and inflation. We find

evidence that credit spread measures help to detect nonlinear dynamics from the financial

sector to the macroeconomy. We also find that exogenous increases in financial stress have

not only large negative effects on economic activity as in Caldara et al. (2014), but also

amplification effects on inflation responses and the variance of financial shocks.

These empirical results based on our novel modeling approach support the development

of models that describe amplifying effects from financial shocks to the macroeconomy during

periods of large credit spreads, negative stock returns and low consumer confidence. The

amplifying effect is relevant particularly when looking at aggregate inflation.
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Figure 1: Financial Factor Estimates.  
The figure shows estimates using the unrestricted FASTVAR model (solid dark line), the restricted FASTVAR 

model (dashed dark line) and principal components (dotted line). The principal components factor is estimated with 

a balanced panel, leading to a shorter sample. The 68-percent error bands for the unrestricted FASTVAR are shaded 

in gray. 
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Figure 2: Transition Function over time and NBER recessions.  
The figure shows the values of the transition function for the unrestricted FASTVAR (grey solid line) and the 

restricted FASTVAR (dashed line). The NBER recessions are shaded in gray. 
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Figure 3: Posterior Values of the Financial Stress Regime Weights.  
The two panels show the mean value of the posterior distributions of the transition function for the unrestricted 

FASTVAR (panel A) and the restricted FASTVAR (panel B). The 68-percent error bands are shown shaded in grey. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

v
-8

1

D
ec

-8
2

Ja
n

-8
4

F
eb

-8
5

M
ar

-8
6

A
p

r-
8

7

M
ay

-8
8

Ju
n

-8
9

Ju
l-

9
0

A
u

g
-9

1

S
ep

-9
2

O
ct

-9
3

N
o

v
-9

4

D
ec

-9
5

Ja
n

-9
7

F
eb

-9
8

M
ar

-9
9

A
p

r-
0

0

M
ay

-0
1

Ju
n

-0
2

Ju
l-

0
3

A
u

g
-0

4

S
ep

-0
5

O
ct

-0
6

N
o

v
-0

7

D
ec

-0
8

Ja
n

-1
0

F
eb

-1
1

M
ar

-1
2

Confidence Interval FASTVAR

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
o

v
-8

1

D
ec

-8
2

Ja
n

-8
4

F
eb

-8
5

M
ar

-8
6

A
p

r-
8

7

M
ay

-8
8

Ju
n

-8
9

Ju
l-

9
0

A
u

g
-9

1

S
ep

-9
2

O
ct

-9
3

N
o

v
-9

4

D
ec

-9
5

Ja
n

-9
7

F
eb

-9
8

M
ar

-9
9

A
p

r-
0

0

M
ay

-0
1

Ju
n

-0
2

Ju
l-

0
3

A
u

g
-0

4

S
ep

-0
5

O
ct

-0
6

N
o

v
-0

7

D
ec

-0
8

Ja
n

-1
0

F
eb

-1
1

M
ar

-1
2

Confidence Interval FASTVAR_r



32 

 

 

Figure 4: Time-varying Volatilities.  

The figure shows the square root of the diagonal elements of the posterior mean of the variance-covariance matrix 

for the FASTVAR (std) and the restricted FASTVAR (std_rest) specifications. The first panel shows the value for 

the IP growth equation, the second panel shows the value for the CPI inflation equation, and third is for the factor 

equation. 
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Figure 5: Generalized responses of IP growth and inflation to a financial factor shock. 
The response to a shock that occurs in regime 2 (_2; financial stress regime) is denoted in light grey with dark grey 

shaded error bands and the response to a shock that occurs in regime 1 (_1;  low stress regime) is denoted in black 

with light grey error bands. The top panel shows the responses of industrial production (IP) growth and inflation (P) 

in the unrestricted FASTVAR model. The bottom panel shows the responses of both variables in the restricted 

FASTVAR model. The generalized impulse responses are computed with 200 draws from the historical shock 

distribution for each draw from the Gibbs sampler. We thin the sampling distribution using only every tenth Gibbs 

draw.  
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Figure 6: Probabilities of Financial Stress Regime during 2007-2010.  
The figure shows in-sample (F) and pseudo-out-of-sample (RT) estimates of the weights/probabilities of the 

financial stress regime for the Great Recession period starting September 2007 and ending April 2010. The solid 

lines are the in-sample estimates of the weights for the restricted (black line) and the unrestricted (grey line) models. 

The dashed lines are the pseudo-out-of-sample estimates of the weights for the restricted (black dashed) and the 

unrestricted (grey dashed) models. In the pseudo-out-of-sample estimates, the line reports the value of the weights 

for period t estimated with all data prior to period t. 
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Figure 7: Posterior Inclusion Probabilities for Covariates during 2007-2010.  
The figure shows the posterior inclusion probabilities for various variables for the Great Recession period starting in 

September 2007 and ending in April 2010. The posterior inclusion probability is the mean of the estimate of the 

inclusion dummy across Gibbs iterations computed using data up to t.  

0

0.2

0.4

0.6

0.8

1

S
ep

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n

-0
8

S
ep

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

S
ep

-0
9

D
ec

-0
9

M
ar

-1
0

10y

FFR 3mo Spread

2yr 2mo Spread

10yr 30mo Spread

0

0.2

0.4

0.6

0.8

1

S
ep

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n

-0
8

S
ep

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

S
ep

-0
9

D
ec

-0
9

M
ar

-1
0

Oil Price

Wilshire

House Inflation

Exchange Rate

0

0.2

0.4

0.6

0.8

1

S
ep

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n

-0
8

S
ep

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

S
ep

-0
9

D
ec

-0
9

M
ar

-1
0

BAA 10yr Spread

30yr Mortgage 10yr Spread

TED Spread

Credit Spread

0

0.2

0.4

0.6

0.8

1

S
ep

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n

-0
8

S
ep

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

S
ep

-0
9

D
ec

-0
9

M
ar

-1
0

Credit Rate

Commercial Paper

Rate
Money Rate

0

0.2

0.4

0.6

0.8

1

S
ep

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n

-0
8

S
ep

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

S
ep

-0
9

D
ec

-0
9

M
ar

-1
0

Consumer Goods

Auto

NFIB

Housing

0

0.2

0.4

0.6

0.8

1

S
ep

-0
7

D
ec

-0
7

M
ar

-0
8

Ju
n

-0
8

S
ep

-0
8

D
ec

-0
8

M
ar

-0
9

Ju
n

-0
9

S
ep

-0
9

D
ec

-0
9

M
ar

-1
0

High Yield Spread

OIS spread

Jumbo Spread

VIX



36 

 

 

Figure 8: Results for the FASTVAR model with the Fed rate.  
Panel A shows the posterior means of the transition function for the model with the fed fund rates (grey line) and the 

benchmark (black line) with the NBER recessions shaded in grey. Panels B-D show the generalized impulse 

responses of IP growth (panel B), CPI inflation (panel C), and the fed funds rate (panel D) to a shock to the factor. 

For these graphs, the response to a shock that occurs in regime 1 is denoted in grey with light grey shaded error 

bands and the response to a shock that occurs in regime 2 (financial stress regime) is denoted in black with dark grey 

error bands. 
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Table 1 – Financial Variables included in the FASTVAR estimation.  

 

 Description  Sample  

10y annual growth rate of the 10 year treasury rate 1981M9-2012M9 

FFR3msp fed fund rates - 3month tbill rates 1981M9-2012M9 

2y3msp 2-year treasury rates – 3-month tbill rates 1981M9-2012M9 

10y3msp 10-year treasury rates – 3-month tbill rates 1981M9-2012M9 

baa10ysp Baa corporate rates – 10-year treasury rates 1981M9-2012M9 

30mort10ysp 30-year mortgage rates – 10-year treasury rates 1981M9-2012M9 

tedsp TED spread 1981M9-2012M9 

creditsp Citibank corporate credit spread 1981M9-2012M9 

exchrate annual growth rate of the exchange rate 1981M9-2012M9 

wilrate annual growth rate of the Wishire 5000 1981M9-2012M9 

houseinf annual growth rate of the national house index 1981M9-2012M9 

creditrate annual growth rate of bank credit of commercial banks 1981M9-2012M9 

compaperrate annual growth rate of commercial paper outstanding 1981M9-2012M9 

moneyrate annual growth rate of money stock (zero maturity) 1981M9-2012M9 

nfibsurv %credit was harder to get than last time 1981M9-2012M9 

migoodsurv %good-%bad conditions for buying large goods 1981M9-2012M9 

mihousesurv %good-%bad conditions for buying a house 1981M9-2012M9 

miautosurv %good-%bad conditions for buying a car 1981M9-2012M9 

vix  VIX (monthly average) 1990M1-2012M9 

jumbospread Jumbo rates - 30-year conventional rates 1998M6-2012M9 

OIS spread 3-month libor rates - overnight index swap rates 2001M12-2012M9 

highyieldspre High-yield corporate rates – Baa corporate rates 1997M1-2012M9 

oil price price of oil relative to a 2-year moving average 1981M9-2012M9 
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Table 2 – Posterior Inclusion Probabilities for Covariates (full sample).  

 

 FASTVAR_r FASTVAR 

10y 0.63 0.65 

FFR3msp 0.42 0.43 

2y3msp 0.40 0.40 

10y3msp 0.40 0.40 

baa10ysp 0.96 0.97 

30mort10ysp 0.77 0.82 

tedsp 0.65 0.62 

creditsp 0.70 0.70 

exchrate 0.51 0.48 

wilrate 0.86 0.89 

houseinf 0.67 0.65 

creditrate 0.43 0.39 

compaperrate 0.68 0.71 

moneyrate 0.50 0.49 

nfibsurv 0.67 0.69 

migoodsurv 0.88 0.84 

mihousesurv 0.56 0.55 

miautosurv 0.50 0.44 

vix 0.73 0.74 

jumbospread 0.66 0.66 

OIS spread 0.70 0.67 

highyieldspre 0.97 0.96 

oil price 0.44 0.49 

  

Note: FASTVAR_r restricts the VAR coefficients such that there is no dynamic 

spillovers between macro variables and the factor. Based on 15000 draws of the 

posterior distribution (25000 draws with 10000 discharged).  
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