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Abstract 

Event studies show that the Federal Reserve’s announcements of forward guidance and large-
scale asset purchases had large and desired effects on asset prices but these studies do not tell us 
how long such effects last. Wright (2012) used a structural vector autoregression (SVAR) to 
argue that unconventional policies have very transient effects on bond yields, with half-lives of 3 
to 6 months. The present paper shows, however, that this inference is unsupported for several 
reasons. First, accounting for model uncertainty greatly lengthens the estimated persistence. 
Second, and more seriously, the inference is unreliable because the SVAR is structurally 
unstable and forecasts very poorly. Finally, the implied in-sample return predictability from the 
SVAR greatly exceeds a level consistent with rational asset pricing and reasonable risk aversion. 
Restricted models that respect more plausible asset return predictability are more stable and 
imply that unconventional monetary policy shocks were fairly persistent. Estimates of the 
dynamic effects of shocks should respect the limited predictability in asset prices.  
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The financial market turmoil that followed Lehman Brothers’ September 2008 bankruptcy 

prompted extraordinary measures from monetary authorities. The Federal Reserve created 

special facilities to support lending, expanded swap lines with foreign central banks, and reduced 

the federal funds rate to very low levels by December 16, 2008. These measures failed to stem 

the economic slide, however, and the Federal Reserve soon pursued outright asset purchases to 

support the economy, especially housing markets. These quantitative easing (QE) purchases 

occurred in several phases: QE1 was announced on November 25, 2008, and March 18, 2009; 

QE2 on November 3, 2010, a maturity extension program (“Operation Twist”) on September 21, 

2011; and QE3 on September 13, 2012. Collectively, these programs committed the Fed to 

purchasing trillions of dollars of long-term assets. 

Event studies have established that QE announcements strongly affected asset prices. Gagnon 

et al.’s (2011a,b) study finds that the Fed’s 2008-09 QE announcements reduced U.S. long-term 

yields. Joyce et al. (2011) find quantitatively similar effects for U.K. QE. Hamilton and Wu 

(2012) indirectly calculate the effects of the Fed’s 2008-09 QE programs with a term structure 

model. Neely (2015) evaluates the effect of QE1 on international long bond yields and exchange 

rates. Bauer and Neely (2014) evaluate the relative importance of the signaling and portfolio 

balance channels on international interest rates with term structure models.  

Despite this profusion of event studies on purchase announcements, there has been much less 

work on the impact of QE on macroeconomic variables (Baumeister and Benati, 2010; 

Gambacorta, Hofmann, and Peersman, 2012; and Gertler and Karadi, 2013). A significant 

difficulty with such research is that the macro effects of QE depend on the persistence of the 

asset price effects of QE. Transient QE shocks to interest rates presumably imply that QE is a 

much less effective policy than would persistent QE effects.  
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It is very difficult, however, to estimate the persistence of unconventional policy shocks 

because it implicitly requires accurately estimating a counterfactual path—a path in the absence 

of the policy shock—for asset prices. Wright (2012) suggests measuring the persistence of 

monetary shocks with a structural vector autoregression (SVAR) estimated on 6 daily U.S. yields 

and inflation compensation series. The heteroskedasticity in interest rates on days of 

unconventional monetary policy shocks identifies the contemporaneous effects of 

unconventional monetary shocks (Rigobon and Sack, 2004, and Craine and Martin, 2008). 

Wright’s impulse responses imply that unconventional monetary policy shocks have large, but 

very transient, effects on U.S. interest rates; most of the impact of large-scale asset purchases 

(LSAPs) on 10-year Treasury, Aaa-rated, and Baa-rated yields dissipate within 6 months. This is 

consistent with anecdotal conclusions. Many market observers concluded that QE1 failed 

because long yields rose in the late spring of 2009 (Woodhill, 2013). Figure 1 illustrates this 

more than 100-basis-point rise from late April through June. 

There are good reasons to question this finding, however. Wright’s methods assume that a 

VAR accurately describes the stable dynamics of the first two moments of the data, but 

overfitting and structural instability are ubiquitous in models of asset prices. Meese and Rogoff 

(1983) made this point forcefully in the context of structural models of the exchange rate. They 

showed that very poor out-of-sample (OOS) performance accompanied good in-sample 

performance. Neely and Weller (2000) show that inferring long-run asset price behavior from 

VARs is unreliable (Bekaert and Hodrick, 1992). Faust, Rogers, and Wright (2003) convincingly 

argue that Mark’s (1995) foreign exchange forecasting model is fragile with respect to data 

vintage. Goyal and Welch (2008) question the usefulness of traditional equity premium 

predictors in OOS forecasting exercises. Ubiquitously poor OOS forecasting reflects the 
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structural instability of the equations explaining asset returns. The estimated dynamic relations 

are spurious. 

The contribution of this paper is its careful analysis of the VAR system used by Wright to 

show that the data do not support the inference that unconventional monetary policy shocks have 

transient effects.1 Specifically, the VAR lag length is likely misspecified, the VAR forecasts very 

poorly OOS, and fails structural stability tests. Therefore, its conclusions about shock persistence 

are unreliable. In contrast, a naive, no-change model outperforms the VAR, suggesting that 

monetary shocks likely have very persistent effects. 

This paper also argues that transient policy effects are inconsistent with rational asset pricing 

and reasonable risk aversion because the former would create an opportunity for risk-adjusted 

expected returns. Restricted VAR models that are consistent with reasonable risk aversion and 

rational asset pricing forecast better than the unrestricted VAR and imply more plausible, 

persistent responses to monetary shocks.  

This paper confronts the specific problem of the persistence of unconventional monetary 

policy shocks in the context of a VAR, but it also has a much larger lesson: Exercises to estimate 

the dynamic path of asset prices are to be viewed with caution. Thus, the evidence supports the 

view that unconventional monetary policy shocks probably have fairly persistent effects on long 

yields but we cannot tell exactly how persistent, and our uncertainty about the effects of shocks 

grows with the forecast horizon.  

The next section of the paper describes Wright’s SVAR methodology. Section 3 describes 

and replicates Wright’s main findings. Section 4 illustrates the failure of VAR forecasting and 

structural stability. Section 5 shows that the baseline VAR is inconsistent with rational asset 

                                                 
1 This paper does not examine all of Wright’s conclusions. In a second part of his paper, Wright also constructs a set 
of unconventional monetary shocks from high-frequency data. This paper does not critique that methodology. 
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pricing and reasonable risk aversion, while Section 6 presents the results of restricted VARs that 

are consistent with rational pricing and reasonable risk aversion. Section 7 concludes.  

2. The Structural VAR Methodology 

The reduced-form VAR can be written as follows:  

𝐴𝐴(𝐿𝐿)𝑦𝑦𝑡𝑡 = 𝜀𝜀𝑡𝑡,     (1) 

where 𝐴𝐴(𝐿𝐿) is a polynomial in the lag operator and 𝜀𝜀𝑡𝑡 denotes the reduced-form error vector, 

which is related to the structural errors as follows: 𝜀𝜀𝑡𝑡 = ∑ 𝑅𝑅𝑖𝑖𝑢𝑢𝑡𝑡,𝑖𝑖
6
𝑖𝑖=1 , where 𝑅𝑅𝑖𝑖 is a 6 × 1 vector of 

the initial impacts of the ith structural shock, 𝑢𝑢𝑡𝑡,𝑖𝑖, on each of the endogenous variables. The 

reduced-form covariance matrix is the following function of structural parameters: 

Σ = ∑ 𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖′𝜊𝜊𝑖𝑖26
𝑖𝑖=1 ,       (2) 

where 𝜊𝜊𝑖𝑖2 denotes the variance of the ith structural shock. The moving average representation for 

the ith structural shock would be �𝐼𝐼 − 𝐴𝐴(𝐿𝐿)�
−1
𝑅𝑅𝑖𝑖.2 

Ordinary least squares (OLS) estimates of coefficients on lagged endogenous regressors will 

be biased in finite samples and will generally underestimate the persistence of the data. 

Therefore, Wright follows Kilian (1998) in correcting this bias with a bootstrapping procedure.3 

                                                 
2 A VAR is atheoretic. Duffee (2013) surveys the literature on forecasting interest rates with dynamic models that 
impose economic theory in the form of no-arbitrage conditions. He argues that more economic theory is needed to 
pin down risk premia dynamics. 
3 Mankiw and Shapiro (1986) and Stambaugh (1986) discuss the small-sample bias imparted by lagged endogenous 
regressors. Bekaert, Hodrick, and Marshall (1997) use Monte Carlo procedures to correct for such a bias in term 
structure tests. Although the present paper constructs bias-corrected impulse responses and forecasts, uncorrected 
models behave grossly similarly.  

Bauer, Rudebusch, and Wu (2014) criticize the lack of bias correction in term structure models in Wright 
(2011). Wright (2014) responds that the uncorrected estimates are more consistent with survey measures.  

For the present paper, the author experimented with several types of bootstrapping, all of which incorporated 
the assumed heteroskedastic structure of the data-generating process. The results presented here use a bootstrap 
drawn from two distributions, a moving block bootstrap, with the block length of 10, for non-monetary policy days, 
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Appendix A describes the bias correction and bootstrapping methods used in this paper.  

The identification scheme assumes neither a pattern of contemporaneous interactions 

(Bernanke, 1986; Blanchard and Watson, 1986; and Sims, 1986) nor long-run relations (Shapiro 

and Watson, 1988, and Blanchard and Quah, 1989). Instead, Wright (2012) follows the spirit of 

Rigobon and Sack’s (2004) identification-through-heteroskedasticity procedures that the latter 

use to estimate the effect of monetary policy shocks on asset prices.4  

Wright assumes only that the variance of the structural monetary policy shock, 𝑢𝑢𝑡𝑡,1, is higher 

on 28 specific monetary announcement days (𝜊𝜊1,𝐴𝐴
2 ) than on non-announcement days (𝜊𝜊1,𝑁𝑁

2 ), which 

creates heteroskedastic reduced-form errors, 𝜀𝜀𝑡𝑡.5 The announcement set included dates of Federal 

Open Market Committee (FOMC) meetings and other announcements or speeches by the 

Chairman that were relevant to unconventional monetary policy.6 Under this assumption and 

using (2), the difference in the residual reduced-form covariance matrices on announcement and 

non-announcement days is a function of the initial impact vector, 𝑅𝑅1, of monetary shocks: 

Σ1 − Σ0 = 𝑅𝑅1𝑅𝑅1′�𝜊𝜊1,𝐴𝐴
2 − 𝜊𝜊1,𝑁𝑁

2 �.     (3) 

The VAR estimation of (1) provides estimates of 𝐴𝐴(𝐿𝐿), Σ1, and Σ0 that enable one to estimate 𝑅𝑅1 

from (3). Because the terms in the product 𝑅𝑅1𝑅𝑅1′�𝜊𝜊1,𝐴𝐴
2 − 𝜊𝜊1,𝑁𝑁

2 � are not separately identified, 

Wright normalizes �𝜊𝜊1,𝐴𝐴
2 − 𝜊𝜊1,𝑁𝑁

2 � to 1 and solves for the elements of 𝑅𝑅1 by minimizing the 

                                                 
overlaid with draws on the monetary policy days from the distribution of residuals on those days. Results were fairly 
similar with other bootstrapping methods (e.g., the wild bootstrap or other block lengths). 
4 Rudebusch (1998a) marks the first use of financial market data to describe monetary shocks in a VAR. Sims 
(1998) criticizes this approach and Rudebusch (1998b) responds.  
5 The normalization that the monetary policy shock is the first structural shock is innocuous and does not affect any 
results. It is not related to the ordering of variables in a VAR under a Cholesky factorization. 
6  The monetary announcement dates were as follows: 11/25/2008, 12/1/2008, 12/16/2008, 1/28/2009, 3/18/2009, 
4/29/2009, 6/24/2009, 8/12/2009, 9/23/2009, 11/4/2009, 12/16/2009, 1/27/2010, 3/16/2010, 4/28/2010, 6/23/2010, 
8/10/2010, 8/27/2010, 9/21/2010, 10/15/2010, 11/3/2010, 12/14/2010, 1/26/2011, 3/15/2011, 4/27/2011, 6/22/2011, 
8/9/2011, 8/26/2011, and 9/21/2011. Wright’s Table 5 incorrectly lists June 2, 2011, as a monetary policy 
announcement date. The correct date should be June 22, 2011, which was the date of an FOMC meeting.  
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quadratic function of the difference vector, 𝑣𝑣𝑣𝑣𝑣𝑣ℎ�𝑅𝑅�1𝑅𝑅�1′ − �Σ�1 − Σ�0��, using the covariance 

matrix of �Σ�1 − Σ�0� to appropriately weight the moments.  

Estimates of 𝐴𝐴(𝐿𝐿) and 𝑅𝑅1 permit one to construct impulse response functions for the 

unconventional monetary policy shocks. As Wright is interested only in the impact of 

unconventional monetary policy shocks, there is no need for additional identifying assumptions. 

Wright block bootstraps the VAR system to test two hypotheses: 1) The covariance matrices 

are the same on announcement and non-announcement days (i.e., Σ1 = Σ0 ), and 2) there is a 

single monetary policy shock (i.e., 𝑅𝑅𝑖𝑖𝑅𝑅𝑖𝑖′ = (Σ1 − Σ0)). The bootstrapping tests, which are 

implicitly conducted under the assumption of a VAR system whose first two moments are stable, 

reject the null that Σ1 = Σ0 but fail to reject that there is a single monetary policy shock.  

3. Data and Replication of SVAR Results  

3.1 Replication of Wright (2012) 

Wright (2012) estimates a 1-lag VAR, using the bias-adjusted bootstrap of Kilian (1998), 

with 6 daily U.S. interest rates—the 2- and 10-year nominal Treasury yield; the 5-year and 5-

year, 10-year forward inflation compensation yields; and the Moody’s Baa- and Aaa-rated 

corporate bond yield indices—using daily data from November 3, 2008, to September 30, 2011. 

The Moody’s yields are semiannually compounded; the Treasury yields are continuously 

compounded. The block bootstrap provides confidence intervals on the impulse response 

functions. This paper replicates Wright’s VAR results with similar data, estimation procedures, 

and identification scheme. 

The reduced-form VAR coefficients and the initial impact of the structural shocks determine 

the impulse response functions. The moving average representation can be written as follows:  

𝑦𝑦𝑡𝑡 = 𝐴𝐴(𝐿𝐿)−1𝜀𝜀𝑡𝑡 = (𝐼𝐼 − 𝐴𝐴1𝐿𝐿)−1𝑅𝑅𝑢𝑢𝑡𝑡,     (4) 
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where 𝐴𝐴1 is the matrix of reduced-form VAR coefficients and R is the 6 × 6 matrix relating the 

structural error vector, 𝑢𝑢𝑡𝑡, to the reduced-form error vector, 𝜀𝜀𝑡𝑡. R’s first column is 𝑅𝑅1. In 

calculating the impulse responses, Wright normalizes the monetary shock to reduce 10-year 

yields by 25 basis points on impact. Figure 2 illustrates the resulting impulse responses and 90 

percent bootstrapped confidence intervals, which are similar to — perhaps a bit wider than — 

those in Wright’s paper.7 Monetary policy shocks significantly change 10-year Treasury, Baa, 

and Aaa rates, with the corporate rates showing immediate effects ranging from 40 to more than 

100 percent of the Treasury changes.8 This immediate effect is consistent with event studies of 

unconventional monetary policy (e.g., Gagnon et al., 2011a,b, and Neely, 2015).  

The significant initial effects of the monetary policy shock wear off very quickly, however. 

The half-lives of the responses of the 10-year Treasury and corporate yields range from 3 to 6 

months. Although the 90 percent confidence interval for the 10-year Treasury indicates that one 

cannot reject that the half-life of the monetary shock on that yield is at least a year, Wright 

focuses on the point estimates: “[T]he impulse responses on 10-year Treasuries and corporate 

yields are statistically significant but only for a short time. The half-life of the estimated impulse 

responses for Treasury and corporate yields is two or three months.” — Wright (2012, page 

F452). Readers have understandably followed this interpretation of the results, e.g., Joyce, Miles, 

Scott, and Vayanos (2012), Gagnon (2016), and Yu (2016). The existence of only short-lived 

effects is a potentially very important result: It suggests that unconventional policy actions have 

only very transient effects on yields and therefore very modest effects on macroeconomic 

                                                 
7 The results presented use a 10-day moving block bootstrap overlaid with separate draws for the announcement 
days. The results are not very sensitive to the block length or the use of the wild bootstrap. 
8 The bias-corrected coefficients that produced Figure 2 do imply a stationary system, but the implied behavior of 
the response point estimates is sensitive to small changes in the coefficients near the stationarity boundary, 
especially at long horizons. Therefore, the point estimates for the impulse responses can easily fail to coincide with 
the median of the distribution of responses.  
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variables. Wright (2012, p. F465) summarizes as follows: “To the extent that longer term interest 

rates are important for aggregate demand, unconventional monetary policy at the zero bound 

has had a stimulative effect on the economy but it might have been quite modest.” 

3.2 The effect of model uncertainty 

The impulse response confidence intervals in Figure 2 imply fairly precise estimates of 

dynamic behavior. But these confidence intervals are both pointwise—that is, narrower than 

uniform confidence bands—and conditional on the assumed lag length for the VAR. Such 

conditional confidence intervals disguise any uncertainty about the true model/lag length, 

suggesting a misleading degree of precision. It is therefore worth considering the effect of model 

(i.e., lag length) uncertainty on inference.  

Wright (2012) chose a VAR lag length of 1 to minimize the Bayesian information criterion 

(BIC) that has a strong preference for parsimony. Intuitively, a VAR(1) seems unlikely to 

accurately characterize the impact of shocks at long horizons, as the time path of the estimated 

responses will be a function of just a few first-order covariances. A 3-year sample will have very 

little information about long-run relationships, and so larger models that might govern those 

relationships will be estimated imprecisely and discarded by the BIC.   

Even empirically, however, a VAR(1) appears to be insufficient. Ljung-Box Q tests on the 

residuals from 1- and 2-lag VARs often reject the null of no autocorrelation, suggesting that 

VARs with these lag lengths are misspecified and more than 2 lags are needed. Indeed, the 

Akaike information criterion prefers a lag length of 3, although 2, 3, 4, and 5 lags outperform 1 

lag by this criterion.9 Full results are omitted for brevity but are available on request. 

                                                 
9 The reader might think that a 1-lag structure would be most consistent with term structure models, which are often 
Markovian.  Markovian term structure models take that structure for reasons of tractability / parsimony, rather than 
consistency with economic theory. The well-known Heath-Jarrow-Morton term structure framework allows for non-
Markovian dynamics under the physical measure, even while the risk-adjusted dynamics remain Markovian. 
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Philosophically, this model selection exercise points out a decision theoretic problem with 

standard econometric practice. Applied econometricians typically search for a parsimonious 

model, setting parameters equal to zero that are statistically insignificant (i.e., small compared 

with the precision of the estimate). The pragmatic desire to avoid overfitting, poor OOS 

forecasting, and spurious economic inference motivates this practice. Insignificant parameters 

are generally assumed to be economically unimportant. But statistical tests can only reject or fail 

to reject null hypotheses, they cannot “accept” them. The assumption that imprecisely estimated 

parameters from a short sample are exactly zero can affect economic inference, particularly for 

sensitive, nonlinear functions such as impulse responses.  

Because economic inference can be very sensitive to the conditioning imparted by model 

selection tests, it is worth examining impulse responses generated by VARs with longer lag 

lengths. The top panel of Figure 3 shows the point estimates of the impulse responses for VARs 

estimated with lag lengths of 1, 3, 5, and 10 lags. This top panel omits confidence intervals to 

focus on the pattern in persistence by lag. The graph shows that persistence monotonically rises 

with VAR lag length for the 10-year yield. For the 5- and 10-lag models, the increase in point 

estimate persistence is very substantial.10 One obvious interpretation of these results is that, if the 

coefficients on higher lags are truly “small” compared to the precision with which they can be 

estimated, then the BIC will set them to zero. This does not mean that these coefficients are 

actually zero, merely that their contribution to 1-step ahead forecasting in the 3-year sample is 

too modest for the BIC. We shall see that including these “small” coefficients significantly 

                                                 
Further, it is well-known that standard term structure models fit the cross-section well but dynamics badly. There is 
evidence that additional lags (Cochrane and Piazzesi (2005), Joslin et al., (2013)) or moving average terms (Feunou 
and Fontaine (2015)) can improve the dynamic fitting. 
10 Although the VAR(10) impulse responses appear to show potential nonstationary behavior, examination of very 
long-horizon behavior confirms that the system is stationary.  
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increases the estimated persistence in the VAR, however.  

The fact that the economic inference depends on the number of lags in the VAR raises the 

concern that the BIC, which values parsimony, might choose an incorrect model. To determine 

the likelihood of incorrectly choosing a 1-lag model using the VAR yield data, we simulated 

1000 data sets from VARs with higher lag orders—2, 3, 5 and 10 lags—using pseudo-true VAR 

coefficients that were estimated from the real data. We then compared the BIC for 1-lag and N-

lag VAR models on the simulated data sets. The BIC incorrectly chose the 1-lag model over the 

correct N-lag model a very high proportion of times: 95, 55, 91 and 94 percent of the time for 2-, 

3-, 5- and 10-lag models, respectively. Thus—conditional on a higher order VAR—the model 

selection procedure alone is very likely to distort inference toward choosing a lower lag length 

and inferring transient shocks. Full results are available from the author. 

This exercise does not reveal that the BIC is a bad model selection tool. Given an infinite 

amount of data from a stable data generating process, it will pick the correct model. Rather, this 

exercise shows that with only a relatively short sample of noisy data, the BIC — which fits 1-

step ahead forecasts — tends to pick small models. But a parsimonious model will not 

necessarily describe the long-run dynamics well. Rather, this exercise suggests that the apparent 

transience of the monetary policy shocks in the VAR(1) is partly due to the emphasis on point 

estimates and may be an artifact of the lag length selection process, which is heavily influenced 

by the short length of the sample.  

One can partially account for such uncertainty within a finite model set by model averaging 

over VARs of various lengths, weighting each model’s parameters by model’s BIC, as suggested 

by Buckland, Burnham, and Augustin (1997).11 The top panel of Figure 3 illustrates the point 

                                                 
11 Wang, X Zhang, G Zou (2009) usefully review the literature on frequentist model averaging. 
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estimate of the impulse response of the 10-year Treasury from the averaged estimated, using a 

model set of VARs from 1 to 15 lags. The bottom panel of Figure 3 displays the point estimates 

and 90 percent confidence intervals from the 1-lag and averaged model. The averaged model 

implies a much more persistent response than does the 1-lag model and its confidence interval is 

shifted toward persistence. The half-life of the shock is more than doubled and one cannot reject 

the hypothesis of no diminution in the shock for more than a year.12 In other words, formally 

accounting for model uncertainty substantially increases the estimated persistence of the 

monetary policy shocks on the 10-year Treasury. The next sections of the paper, however, 

suggest that the VAR(1) exhibits more serious problems that imply great caution about drawing 

conclusions on persistence from VAR models.  

4. Analysis of the VAR’s Stability  

The first two moments of the estimated VAR must be stable over time or the impulse 

responses in Figure 2 are spurious and the data fail to support their apparent implication that 

unconventional policy has very transient effects. That is, although unrestricted VARs are not 

necessarily the best forecasting models, they nevertheless must describe stable dynamic relations 

between the variables to accurately describe the responses of variables to shocks.  

A potentially serious difficulty is that VARs—and other time-series relations—are 

notoriously unstable predictors of asset prices (Rossi, 2013, and Stock and Watson, 2003). 

Empirical models have failed to forecast a sundry asset prices in OOS exercises: exchange rates 

(Meese and Rogoff, 1983; Faust, Rogers, and Wright, 2003); equities (Goyal and Welch, 2008); 

interest rates (Thornton and Valente, 2012), and cross-asset studies (Neely and Weller, 2000).  

                                                 
12 Note that the relative positions of the point estimate and the 5 percent path shows that the distribution is skewed 
left, reminiscent of the well-known left skew in sampling distributions of persistence in univariate autoregressive 
processes. 
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4.1 Forecasting exercises 

Econometric tests, as in Andrews (1993) or Bai and Perron (1998, 2003), constitute the most 

powerful tests for structural stability, but OOS forecasting exercises provide an informal and 

intuitively attractive supplement to formal tests (Rapach and Wohar, 2006). Therefore, before 

formally testing the stability of the VAR, this paper first considers whether the VAR forecasts 

outperform a no-change (i.e., martingale) benchmark.  

The in-sample forecasting results are unremarkable and are omitted for brevity. Within the 

estimation sample, the VARs have lower root mean square forecasting errors (RMSFEs) than the 

naive, no-change predictions and are approximately unbiased at horizons from 1 to 120 days.  

Even excellent in-sample performance does not necessarily mean that the model will predict 

OOS returns better than some simple benchmark model. A well-specified VAR with a stable 

covariance structure should be able to forecast asset prices during the OOS period, 2011-13, with 

the parameter estimates from 2008-11. Thus, OOS forecasting implicitly tests the structural 

stability of the VAR structure.  

To investigate the OOS forecast performance of the VARs, we estimate the coefficients with 

in-sample data (2008:11:03–2011:09:30) to forecast each of the variables in the system over the 

OOS period (2011:10:01–2013:11:27) at horizons of 1, 20, 60, and 120 days. At each date in the 

OOS period, we condition on the actual data at date t and the parameters as estimated over the 

fixed sample period and project the path of the system at dates t + 1 through t + 120. We then 

update the data for the next period’s set of forecasts. This provides a set of 538 one-period-ahead 

forecasts, 519 overlapping 20-period-ahead forecasts, 479 overlapping 60-period forecasts, and 

419 overlapping 120-period forecasts.13  

                                                 
13 The overlapping n-period forecast errors will have at least an n–1-order serial correlation that must be taken into 
account in the tests.  
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Table 1 shows the OOS RMSFEs in basis points, over 1-, 20-, 60- and 120-day horizons, for 

a naive, no-change model for the interest rates and the bias-adjusted VAR, respectively. The 

third panel of Table 1 shows the ratio of those RMSFEs, the Theil U-statistics. Theil ratios less 

than 1 favor the VAR model; ratios greater than 1 favor the naive model. The bottom panel of 

Table 1 shows the proportion of the bootstrapped Theil statistics that exceed the real Theil 

statistics under the null that the VAR generated the data. 

The VAR’s OOS forecast performance is poor. A naive, no-change prediction is superior to 

the VAR forecasts for 18 of 24 horizon-yield combinations considered (Table 1). The only cases 

for which the VAR is competitive with the no-change forecast are for changes in inflation 

compensation. Even for these variables, the VAR does not clearly outperform the naive forecast.  

In contrast, the naive, no-change forecast outperforms the VAR at every horizon for every 

yield variable. This strongly suggests that the VAR does not accurately model true dynamic 

relations between the variables and that the martingale describes them better. In other words, the 

impulse response functions in Figure 2 are very likely based on spurious dynamic relations.  

Table 2 shows the OOS bias (mean errors) and Newey-West t-statistics for the null of 

unbiased forecasts (Newey and West, 1994). The naive predictions are never systematically 

biased in a statistically significant way but the VAR yield predictions are biased at all horizons. 

It is true that misspecified models sometimes forecast better than correctly specified models, 

out-of-sample. This, however, is generally only true when the correctly specified model’s 

parameters are estimated so poorly in a finite sample that the misspecified model actually 

describes the dynamic relations better than the correctly specified, but poorly estimated, model. 

A correctly specified linear model with the true parameters will always outforecast a 

misspecified model. In the present case, the naïve model clearly outperforms the VAR(1) in 5 of 
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6 equations at nearly every horizon, indicating that the estimated VAR(1) describes the dynamics 

very poorly.  

One might think that modifying the VAR procedure would improve the forecasting 

performance and rescue the possibility of constructing informative impulse responses for 

monetary shocks. There is considerable evidence that combining Bayesian techniques with 

VARs is helpful in forecasting (Litterman, 1986). Wright (2012), however, already considered 

such techniques in his robustness checks and found impulse responses that are similar to those in 

Figure 2, which suggests that the VARs that produced them also have unstable moments. Of 

course, one could tighten up the priors on the Bayesian VAR to essentially reproduce the naive 

forecasts, but then one would obtain very persistent impulse responses, not the mean-reverting 

impulse responses that indicate transient effects.  

4.2 Formal structural stability tests  

Structural instability, a form of model misspecification, is common in time-series 

regressions. Formal econometric tests are more powerful tests of stability than OOS forecasting 

exercises. To test for structural instability, we follow Andrews (1993) by calculating the Wald 

test statistics for a structural break in the uncorrected VAR coefficients at each observation in the 

middle third of each sample.14 Newey-West covariance matrices are calculated with automatic 

lag length selection (Newey and West, 1994). The supremum of these test statistics identifies a 

possible structural break in the series but will have a nonstandard distribution (Andrews, 1993). 

The critical values for the supremum are calculated from a Monte Carlo simulation using a 

moving block bootstrap with a window of length 10.  

                                                 
14 We construct the Andrews test statistics for the uncorrected VAR coefficients to keep computational cost within 
reasonable bounds. The bias correction—the addition of a very “small” matrix to the VAR coefficients—is very 
unlikely to change the outcome of the structural stability tests. In addition, the asymptotic test statistics for structural 
stability should be identical for both sets of VAR coefficients.  
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Consistent with this poor OOS forecasting performance, the top panel of Figure 4 plots the 

Andrews (1993) unknown-point structural break statistics for the null that the VAR parameters 

are stable over time, along with 1, 5, and 10 percent critical values. The structural break statistics 

are often well above the 5 percent critical value—particularly during the QE1 period —rejecting 

the null of stable VAR parameters. The intertemporal instability of the VAR indicates that the 

VAR impulse response functions in Figure 2 are spurious and the inference from them is suspect.  

To determine the prevalence of breaks in the six individual VAR equations during the sample 

period, one can conduct Bai-Perron (1998, 2003) tests for breaks at unknown points for the 

uncorrected VAR estimates. Bai and Perron (2003) recommend that one first test for the 

presence of any breaks with the UD max or WD max tests and then evaluate the number of 

breaks by sequentially testing up for the maximum number of breaks with the SupF tests.15  

This paper follows those Bai-Perron guidelines under the assumptions of a maximum of 3 

breaks with at least 20 percent of the original sample between each break. The first and second 

rows of Table 3 show that the UD max and WD max statistics reject the null of no breaks for all 

equations at conventional significance levels. The third row of Table 3 illustrates that one reject 

the null of 1 break in favor of 2 breaks for 4 of the 6 equations at the 5 percent level (row 4), but 

one cannot reject the null of 2 breaks in favor of 3 breaks. In summary, all equations exhibit at 

least one break and most exhibit at least two breaks.  

Figure 4 and Table 3 are strong evidence against stability: Because the Andrews (1993) and 

Bai and Perron (1998, 2003) structural stability tests do not require one to specify the date of the 

break, they generally have much less power to reject the null of stability than tests that do so. 

                                                 
15 Denoting the maximum number of breaks permitted by M, the UD max statistic tests for a break by considering 
whether the maximum of all M F-statistics exceeds its critical value, while the WD max statistic also tests for breaks 
with a weighted average of the F-statistics in which the marginal p-values are equalized across statistics. See Bai 
and Perron (1998, 2003). 
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Such tests typically require large separation between the models, i.e., big breaks.  

In summary, the VAR that produced Figure 2—evidence for the transient effects of 

unconventional monetary policy shocks—forecasts very poorly OOS and fails tests of structural 

stability, for both the whole VAR and the individual equations. That is, the data do not support 

the inference from Figure 2 that monetary shocks are transient. Instead, the relative success of 

the martingale model indicates that very persistent shocks probably better approximate the 

dynamic structure.  

4.3 Does the yield data or the sample period create instability? 

The highly significant break statistics in the top panel of Figure 4 raises the question of 

whether it is the nature of the yield data or the particular sample that generated such instability. 

To investigate this question, one can compare the break statistics for the yields during 2008-11 

with those from a VAR on the same data during a more calm sample,1999-2006, and on 

dissimilar data—monthly macro data—from 1983 to 2006. These samples were chosen to 

coincide with the “Great Moderation.” The macro data have been commonly used in VAR 

studies and include industrial production (IP), the consumer price index for all urban consumers 

(CPI-U [CPI]), personal consumption expenditures (PCE), the 3-month Treasury yield (3M), the 

price of West Texas Intermediate crude (WTI), and the civilian unemployment rate (UR).  

Bias-corrected VAR(1) models were estimated on both datasets, and Andrews break statistics 

and critical values were constructed with Newey-West covariance matrices with automatic lag 

length selection and a moving block bootstrap to simulate data. The center and bottom panels of 

Figure 4 display the break statistics for the two VARs. Neither system shows clear evidence of 

instability, though the macro break statistics do approach the 10 percent region near the end of 

the sample. This suggests that a VAR on yields is not necessarily unstable but that the turbulent 
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conditions during the 2008:11–2011:10 sample were likely an important factor in the instability. 

5. Is the Estimated Predictability Consistent with Rational Pricing?  

In a world of risk neutral investors, expected excess returns should be bid to zero. But non-

zero expected excess returns are consistent with risk-averse investors and greater risk aversion 

should permit more predictability. This section asks if the predictability in the VAR—i.e., mean 

reverting impulse responses—is consistent with rational pricing and reasonable risk aversion.  

Potì and Siddique (2013) show that the product of the square of the coefficient of risk 

aversion and the variance of the market return must exceed the 𝑅𝑅2 from a predictive regression.16  

𝑅𝑅2 ≤ �1 + 𝑅𝑅𝑓𝑓�
2𝑅𝑅𝑅𝑅𝐴𝐴𝑉𝑉2𝜎𝜎2�𝑟𝑟𝑚𝑚,𝑡𝑡+1� ≅  𝑅𝑅𝑅𝑅𝐴𝐴𝑉𝑉2𝜎𝜎2�𝑟𝑟𝑚𝑚,𝑡𝑡+1�,    (5) 

where 𝑅𝑅𝑓𝑓 is the riskless rate, 𝑅𝑅𝑅𝑅𝐴𝐴𝑉𝑉 is the upper bound on relative risk aversion (RRA), and 

𝜎𝜎2�𝑟𝑟𝑚𝑚,𝑡𝑡+1� is the variance of the market excess return, 𝑟𝑟𝑚𝑚,𝑡𝑡+1.  

Are the VAR relations that Wright estimates consistent with these rational bounds?17 

Wright’s VAR uses a combination of continuously compounded and semiannual yields and 

inflation compensation, of course, so the bounds don’t directly apply to all equations. The 

bounds should apply to any VAR equation predicting with continuously compounded gross 

yields (i.e., Treasury yields) because those equations can be transformed linearly into return 

equations. That is, log gross yields are transformations of log prices—𝑚𝑚 × 𝑙𝑙𝑙𝑙(1 + 𝑦𝑦) =

−𝑙𝑙𝑙𝑙(𝑝𝑝)—and returns are differenced log prices. One can similarly convert semiannual corporate 

yields to continuously compounded gross yields, The inflation compensation spreads are not 

                                                 
16 Kirby (1998) first formalized the intuition that the willingness to substitute consumption across states of nature 
must bound the 𝑅𝑅2 from a predictive regression of asset returns. Appendix B summarizes the implications of Potì 
and Siddique’s (2013) work for the present paper.  
17 The reader might wonder if rational bounds should apply in the post-crisis financial environment of 2008:11-
2011:10. Standard measures of market stress indicate that the market was definitely more volatile than average but 
still functioning within normal bounds. For example, the mean value of the MOVE index over the sample (2008:11 
to 2009:09:30) was higher than the daily MOVE index in “normal” times (1998- 2007) 76 percent of the time.  
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exactly liquid asset prices and can take negative values. Therefore, this paper does not transform 

the inflation compensation variables. These transformations produce a new VAR that is very 

similar to the original VAR.  

We can denote the transformed vector as 𝑦𝑦�𝑡𝑡, where 𝑦𝑦�𝑖𝑖,𝑡𝑡 = ln�1 + 𝑦𝑦𝑖𝑖,𝑡𝑡� for i = 1, 2, 5, and 6 

and 𝑦𝑦�𝑖𝑖,𝑡𝑡 = 𝑦𝑦𝑖𝑖,𝑡𝑡 for i = 3 and 4.18 One could write the VAR in transformed data as follows: 

𝑦𝑦�𝑡𝑡 = 𝐴̃𝐴 𝑦𝑦�𝑡𝑡−1 + 𝑐̃𝑐 + 𝜀𝜀𝑡𝑡,      (6) 

where 𝐴̃𝐴 and 𝑐̃𝑐 will be very similar to 𝐴𝐴 and c to the extent that the data transformation is linear. 

Subtracting 𝑦𝑦�𝑡𝑡−1 from both sides of (6) then relates the differenced variables—a transformation 

of returns—to the lagged level variables. The result resembles an error correction framework:  

𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡−1 = −𝑟𝑟𝑡𝑡 = �𝐴̃𝐴 − 𝐼𝐼�𝑦𝑦�𝑡𝑡−1 + 𝑐̃𝑐 + 𝜀𝜀𝑡𝑡.    (7) 

The advantage of (7) is that it contains essentially the same information as the original VAR in 

yields, (1), but it enables us to judge the plausibility of the in-sample fit versus a rational asset 

pricing model for those four equations within (7) —the four yield equations—that can be written 

with the dependent variable as the difference of log gross yields, i.e., returns.  

One can estimate (7) to determine if the in-sample 𝑅𝑅2s are too large to be consistent with 

rational pricing models for a given level of risk aversion. Excessive predictability indicates that 

the VAR overfits the data. One can also gauge excessive fit by comparing the in-sample 𝑅𝑅2 of 

the regressions in (7) with a Campbell and Thompson (2008) OOS 𝑅𝑅2 statistic,  

 

𝑅𝑅𝑂𝑂𝑂𝑂2 = 1 − ∑ (𝑟𝑟𝑡𝑡−𝑟𝑟𝑡𝑡� )2𝑇𝑇
𝑡𝑡=1

∑ (𝑟𝑟𝑡𝑡−𝑟𝑟𝑡𝑡� )2𝑇𝑇
𝑡𝑡=1

,      (8) 

where 𝑟𝑟𝑡𝑡�  is the fitted value from a predictive, OOS regression of returns using expanding sample 

                                                 
18 The transformed data are extremely similar to the original data and difficult to tell apart graphically. 
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coefficients and data through t–1 and 𝑟𝑟𝑡𝑡�  is the historical average return estimated with data 

through t–1. The 𝑅𝑅𝑂𝑂𝑂𝑂2  statistic—reported in the same units as the in-sample R2— measures the 

proportional reduction in RMSFE for the predictive regression relative to the historical average. 

A positive value thus indicates that the predictive regression outperforms the historical average 

in terms of RMSFE, while a negative value signals the opposite.  

To determine the extent to which the VAR might overfit the data, Table 4 reports the in-

sample 𝑅𝑅2, the OOS 𝑅𝑅2, and the bounds on the R2s implied by Kirby’s (1998) calculations on the 

bond return data (equation (7)) from the bias-adjusted VAR. The OOS forecast statistics are 

constructed with expanding samples, updating the VAR coefficients every 20 business days. The 

𝑅𝑅2  bounds are calculated for values of relative risk aversion of 2.5 and 5, with a generous 

estimate of the annualized standard deviation of the market return: 20 percent. Levich and Potì 

(2015) cite Ross (2005) to argue that 5 is an upper bound on reasonable values of risk aversion.  

Table 4 shows clear results: Every in-sample R2 estimate for bond returns is well above—5 to 

7 times as big as—the higher bound on R2 in a rational pricing model (columns 2 and 5). The 

minimum in-sample R2s for a bond return is 2.0 percent, for the 10-year Treasury, which is 5 

times the 0.4 percent upper bound for daily 𝑅𝑅2. Tellingly, the OOS R2s are negative for most of 

the yield/return regressions and smaller but positive for the inflation compensation equations. 

These negative values are consistent with the VAR’s poor OOS forecasting performance. In 

summary, the VAR has too much in-sample return predictability to be consistent with rational 

pricing and the negative OOS 𝑅𝑅2s strongly indicate that the in-sample predictability is spurious. 

6. A VAR That Is Consistent with Rational Pricing 

One can restrict the coefficients in the return equations in (7) to produce 𝑅𝑅2s that are 

consistent with rational asset pricing and then convert the estimated system back to a VAR in 
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yields to obtain impulse response functions and other statistics.19 One might hope that such a 

restricted VAR would also be more stable over time than the unrestricted VAR. Of course, this 

restricted model does not constitute independent evidence for persistence; rather, it formalizes 

restrictions on persistence implied by rational asset pricing.  

We estimate such a bias-corrected VAR on the transformed yield data over the in-sample 

period in an unrestricted form—equation (6)—and under the restrictions that the R2s implied for 

the bond return equations in (7) cannot exceed the upper bounds in Table 4: 0.001 and 0.004. We 

then examine the forecasting performance and implied impulse responses of these models. The 

restricted models were not estimated with a bias correction.20  

The three panels of Table 5 show the OOS RMSE Theil statistics under an unrestricted VAR 

and similar VARs restricting the R2s to 0.004 and 0.001, respectively.21 All three VARs used the 

same transformed data. Although none of the VARs consistently outperform the martingale 

model in the OOS period (i.e., the Theil statistics usually exceed 1), restricting the R2 improves 

the OOS forecasting performance. The most tightly restricted model has the best Theil statistics 

(bottom panel), and the unrestricted model (top panel) has the worst OOS Theil statistics. This 

pattern is clearest for the bond yield equations.  

Figure 5 illustrates the greater shock persistence implied by restricted models. In particular, 

the upper panel of Figure 5 shows that restricting the R2s in the bond yield equations to 0.004 

                                                 
19 One can use Kuhn-Tucker conditions to restrict the VAR coefficients. A binding constraint restricts the return 
regression coefficients to be proportional to but smaller than the unrestricted coefficients: 𝐵𝐵� =

 �1
𝑘𝑘
𝑌𝑌′𝑋𝑋(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌�(𝑌𝑌 − 𝑌𝑌�)′(𝑌𝑌 − 𝑌𝑌�)�−1�

−1/2
(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌, where Y denotes the vector of the dependent variable 

(i.e., the return), X denotes the matrix of independent variables, and k is the upper bound on the R2. The restriction 
effectively shrinks the VAR representation of the coefficients toward an identity matrix. 
20 As the restriction tightens (i.e., as the allowable R2 goes to zero), the VAR representation would become 
arbitrarily close to a martingale.  
21 Note first that the Theil statistics for the unrestricted VAR in log gross yields (top panel of Table 5) are very 
similar to the Theil statistics for the baseline VAR in net yields in panel 3 of Table 1.  
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increases the half-life of the shock to the 10-year Treasury bond from 109 days to 241 days. 

Restricting the R2s to 0.001 increases the half-life of the point estimate of the shock to the 10-

year bond to more than a year. The point estimates for the Aaa and Baa bonds similarly get much 

more persistent. The confidence intervals are omitted for clarity in the graph but tend to become 

tighter—naturally—as more restrictions are imposed. One cannot reject the hypothesis that the 

half-life of the shock exceeds a year for any case.  

7. Discussion and Conclusion 

Event studies show that the Federal Reserve’s unconventional monetary policy 

announcements elicited the desired effects on asset prices and substantially reduced U.S. and 

foreign long-term yields, as well as the value of the dollar. These immediate, large reductions in 

long yields were often followed by weeks or months of increases in yields, however. Many 

observers interpreted these rising yields in the wake of QE announcements to mean that the 

unconventional shocks had very transient effects on asset prices. If that interpretation were true, 

it would suggest that unconventional policy has very limited ability to stimulate the economy.  

It is very difficult, however, to measure the persistence of the monetary shock effects on 

yields. Wright (2012) offers a clever and potentially very helpful resolution to this problem: He 

identifies a structural VAR on interest rate and inflation compensation data under the assumption 

that interest rate variance is higher on monetary announcement days. The impulse response 

functions from this VAR(1) indicate that unconventional monetary shocks have very transient 

effects on long yields, with median half-lives of perhaps 3 to 6 months.  

The present paper showed that accounting for lag length uncertainty with model averaging 

implies substantially more persistence in the estimated response of the 10-year Treasury rate, 

with the half-life of the shock more than doubling. One should not place too much confidence in 
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this model-average, however, as the VAR(1) exhibits serious problems that suggest caution in 

drawing any conclusions about shock persistence from a VAR estimated on this sample. In 

particular, the VAR(1) forecasts very poorly, OOS, and is structurally unstable. Structural 

instability implies that the dynamic relations that the VAR coefficients purport to describe do not 

really exist and therefore the data do not support the transience of monetary policy shocks shown 

in Figure 2.  

In addition, the estimated VAR violates bounds on predictability in rational asset pricing 

models. VARs that are constrained to be consistent with rational asset pricing models forecast 

better and generate much more persistent impulse responses to monetary policy shocks. This 

formalizes the notion that rational asset pricing must imply fairly persistent effects of shocks on 

asset prices. We cannot measure, however, precisely how persistent any such effects are.  

Although this paper has confronted a specific problem—the duration of the effects of 

monetary policy shocks in a VAR—it has a larger lesson: One should be circumspect in 

forecasting asset prices or describing their dynamics. There is good reason to believe that asset 

prices should exhibit limited predictability and the empirical literature has repeatedly confirmed 

this point.  

This paper does not argue that we should discard SVARs or select models on their 

forecasting performance. Structural VARs can usefully answer interesting economic questions 

that outweigh the fact that other models forecast better. But economists should respect the 

limited predictability of asset prices in estimating dynamic relations. Further, standard model 

selection procedures can affect inference and asset pricing models are often unstable.  

How should one interpret the rise in yields after expansionary unconventional monetary 

policy shocks? Wright suggested the first two possibilities: 1) that the stimulus provided by the 
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monetary policy actions caused a delayed increase in yields by stimulating the economy and 2) 

that markets simply initially overreacted to the quantitative easing actions. According to Wright 

(2012, p. F464), 

A possible—although optimistic—interpretation is that the economic stimulus provided by 

these Federal Reserve actions caused the economy to pick up. Another interpretation is that 

markets initially overreacted to the news of these quantitative easing actions. 

The first hypothesis is that successful unconventional monetary policy actions sowed the 

seeds of their own reversal by generating higher confidence and expectations of higher growth. 

This “delayed stimulus effect” hypothesis, however, would require a lot of predictability in long 

yields that is probably inconsistent with rational pricing and reasonable risk aversion.  

The second hypothesis is that markets simply overreacted. Such an “overreaction” 

interpretation would require systematic overreaction to many FOMC announcements over a 

period of almost five years, through the “taper tantrum” of the summer and fall of 2013. It seems 

implausible that market participants fail to learn from repeated mistakes.  

A third explanation is that all sorts of shocks continually influence the economy and asset 

prices and that nonmonetary shocks coincidentally increased long yields after the unconventional 

policy actions. For example, Meyer and Bomfim (2009) argue that higher expected growth, new 

Treasury issuance, and the return of investors’ risk appetite drove the increase in Treasury yields 

from late March through mid-June 2009. A parallel rise in equity and oil prices over the same 

March-to-June period is consistent with the explanation that higher expected growth and a rise in 

appetite for risk raised long rates. This “other shocks” interpretation would be consistent with the 

usual assumption that shocks to asset prices are very persistent.  
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Appendix A: Bias Adjustment and Bootstrapping 

This appendix briefly describes the bias adjustment used in this paper, as well as many previous 

papers. It follows the discussions in Kilian (1998) and Efron and Tibshirani (1993). 

1. Estimate the VAR parameter matrix, A, with the original T × k sample to obtain the OLS 

estimates of the parameters, AOLS, residuals, 𝜀𝜀𝑂𝑂𝑂𝑂𝑂𝑂, and the associated covariance matrix. 

2. Using the estimated VAR as the data-generating process, bootstrap 10,000 samples of size T × 

k, by resampling from the residuals, 𝜀𝜀𝑂𝑂𝑂𝑂𝑂𝑂, using coefficients AOLS and drawing initial conditions 

from the unconditional distribution of the data. The residuals were separated into two sets for 

resampling. The two sets contained residuals from days with and without monetary 

announcements. Simulated data for non-announcement days were generated with a moving 

block bootstrap of length 10 from the second set of residuals, and simulated data for 

announcements were generated by sampling residuals from the first set. This procedure 

maintained the assumed heteroskedasticity of the data-generating process. Results were fairly 

robust to variations of the block length or use of the wild bootstrap.  

3. Estimate the VAR parameter matrix, A*, for each simulated dataset using OLS, and calculate 

the average of those matrices, AMC, over the bootstrapped samples.  

4. The difference between the true parameters for the simulated data-generating process, AOLS, 

and that of the average estimated VAR coefficient matrix, AMC, is the estimate of the bias in 

the original VAR on the real data. Therefore, the bias-adjusted coefficient matrix is computed 

as )( MCOLSOLSBA AAAA −+= . 

5. The modulus of BAA  is checked to ensure that it implies a stationary system. If it does not, the 

bias correction term, )( MCOLS AA − , is gradually reduced until the modulus of the implied BAA  

is less than 1.  
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Appendix B: The Bound on R2s in Asset Return Equations 

In a risk-neutral environment, investors would bid away any positive expected excess returns. 

Therefore, predictability must stem from risk aversion, the unwillingness of individuals to 

substitute consumption across states of the world. This appendix summarizes previous work that 

has established the limits of predictability.  

Although Kirby (1997) was important in connecting asset return predictability to risk 

aversion, this appendix essentially condenses work from the appendices to Potì and Siddique 

(2013), who draw on arguments in Cochrane (1999) and Potì and Wang (2010). Their arguments 

are applied in Levich and Potì (2015).  

Strictly speaking, the arguments here apply to predicting excess returns but they can be 

modified to apply directly to returns. In Wright’s (2012) sample—November 2008 through 

September 2011—the riskless rate was nearly zero and very stable, so excess returns to holding a 

bond are nearly identical to returns to holding the same bond.  

Researchers often predict excess returns with a set of conditioning variables, X:  

𝑟𝑟𝑡𝑡 = 𝛽𝛽𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡         (B.1) 

Potì and Siddique (2013) point out that the R2 of such a regression can be written in terms of the 

variance of the return’s predictable component, 𝜇𝜇𝑡𝑡, to its total variance, 𝜎𝜎𝜇𝜇2: 

𝑅𝑅2 ≡
𝜎𝜎𝜇𝜇2

𝜎𝜎𝑟𝑟2
=
𝐸𝐸(𝜇𝜇𝑡𝑡2) − 𝐸𝐸(𝜇𝜇𝑡𝑡)2

𝜎𝜎𝑟𝑟2
=

𝐸𝐸(𝜇𝜇𝑡𝑡2)
𝜎𝜎𝜇𝜇2/1 − 𝑅𝑅2

−
𝐸𝐸(𝜇𝜇𝑡𝑡)2

𝜎𝜎𝑟𝑟2
 

= 𝐸𝐸 �𝜇𝜇𝑡𝑡
2

𝜎𝜎𝜇𝜇2
� (1 − 𝑅𝑅2) − 𝐸𝐸 �𝜇𝜇𝑡𝑡

𝜎𝜎𝑟𝑟
�
2

= 𝐸𝐸 ��𝜇𝜇𝑡𝑡
𝜎𝜎𝜇𝜇
�
2
� (1 − 𝑅𝑅2) − 𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡)2,  (B.2) 

where E ��𝜇𝜇𝑡𝑡
𝜎𝜎𝑢𝑢
�
2
� is the squared conditional Sharpe ratio (SR) and 𝐸𝐸 �𝜇𝜇𝑡𝑡

𝜎𝜎𝑟𝑟
� is the SR to a static long 

position. Introducing the notation 𝑆𝑆𝑆𝑆𝑡𝑡−1(𝑟𝑟𝑡𝑡) to denote a conditional SR, (A.2) becomes  
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 𝑅𝑅2 = 𝐸𝐸(𝑆𝑆𝑆𝑆𝑡𝑡−1(𝑟𝑟𝑡𝑡)2)(1− 𝑅𝑅2) − 𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡)2.     (B.3)
 

Potì and Siddique (2013) cite Cochrane (1999) to argue that the squared unconditional SR is 

the expectation of the squared conditional SR, 𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡)2 = 𝐸𝐸(𝑆𝑆𝑆𝑆𝑡𝑡−1(𝑟𝑟𝑡𝑡)2), and they denote the 

return to a time-varying position in the asset as 𝑟𝑟𝑡𝑡∗. The unconditional SR of such a strategy can be 

denoted as 𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡∗)2 = 𝐸𝐸(𝑆𝑆𝑆𝑆𝑡𝑡−1(𝑟𝑟𝑡𝑡∗)2) = 𝐸𝐸(𝑆𝑆𝑆𝑆𝑡𝑡−1(𝑟𝑟𝑡𝑡)2) and one can rewrite (A.3) as  

 𝑅𝑅2 = 𝑆𝑆𝑅𝑅(𝑟𝑟𝑡𝑡∗)2(1 − 𝑅𝑅2) − 𝑆𝑆𝑆𝑆2(𝑟𝑟𝑡𝑡).     (B.4) 

Solving (B.4) for the squared unconditional SR of the time-varying strategy,  

 𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡∗)2 = 𝑆𝑆𝑆𝑆2(𝑟𝑟𝑡𝑡)+𝑅𝑅2

1−𝑅𝑅2
,
       

 (B.5) 

Potì and Siddique (2013) interpret the SR of the time-varying strategy on the left-hand side as 

a function of the SR of a “static” long position in the asset—𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡)—and the coefficient of 

determination 𝑅𝑅2 of the predictive strategy. Equation (B.5) implies that the 𝑅𝑅2 of the predictive 

regression cannot exceed the squared SR of the time-varying investment strategy: 

 𝑅𝑅2 ≤ 𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡∗)2.      (B.6) 

Citing Potì and Wang (2010) and Ross (2005), Potì and Siddique (2013) use a capital asset 

pricing model framework to bound the SR of the time-varying trading strategy as a function of the 

relative risk aversion (RRA) of the marginal trader and the market return:  

 𝑆𝑆𝑆𝑆(𝑟𝑟𝑡𝑡∗)2 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉2𝜎𝜎(𝑟𝑟𝑚𝑚,𝑡𝑡)2,      (B.7) 

where 𝑟𝑟𝑚𝑚,𝑡𝑡 is the return to the market portfolio at time t. Combining (B.6) and (B.7), we obtain 

the bound on the 𝑅𝑅2 for the predictive regression as a function of the RRA of the marginal trader 

and the variance of the market return, 𝜎𝜎2�𝑟𝑟𝑚𝑚,𝑡𝑡+1�: 

𝑅𝑅2 ≤ �1 + 𝑅𝑅𝑓𝑓�
2
𝑅𝑅𝑅𝑅𝐴𝐴𝑉𝑉2𝜎𝜎2�𝑟𝑟𝑚𝑚,𝑡𝑡+1� ≅  𝑅𝑅𝑅𝑅𝐴𝐴𝑉𝑉2𝜎𝜎2�𝑟𝑟𝑚𝑚,𝑡𝑡+1�.  (B.8) 
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Figure 1: Nominal yields on 10-year Treasuries 

 
 

Notes: The figure depicts yields on 10-year Treasuries from June 2008 through June 2009. 
Vertical lines denote the dates of LSAP announcements on November 25, 2008, and March 18, 
2009.  

Source: FRED®, Federal Reserve Economic Data, Federal Reserve Bank of St. Louis. 
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Figure 2: Impulse responses from the baseline VAR 

 

Notes: The figure illustrates impulse responses and 90 percent confidence intervals for the 
impact of monetary policy shocks on daily yields/inflation compensation in a 6-variable VAR in 
net yields. The impulse responses are structurally identified by the greater variance of interest 
rates on days of monetary policy announcements. The figure essentially replicates Wright’s 
(2012) study of the impact of unconventional monetary policy shocks. infl. comp., inflation 
compensation. 

Source: Haver Analytics.  
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Figure 3: Impulse responses from the baseline VAR with alternative lag lengths 

 

 

Notes: The top panel of the figure illustrates the responses in basis points of yields on the 10-
year Treasury to unconventional monetary policy shocks using VARs with 1, 3, 5 and 10 lags, as 
well as a frequentist model-average of VARs with lags from 1 to 15. The bottom panel of the 
figure shows the 1-lag (red) and model averaged (blue) impulse responses to yields on the 10-
year Treasury using VARs along with a bootstrapped 90 percent confidence interval. The 
confidence intervals on the model-averaged specification are “jagged” because the model is 
drawing from a mixture of distributions. 
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Figure 4: Andrews (1993) structural break statistics for the VAR 

 

Notes: The three panels of the figure plot the Andrews test statistics and the bootstrapped 1, 5, 
and 10 percent critical values from the 25th to the 75th percentile of the samples, for a structural 
break in three VARs: 1) the baseline VAR in yields, estimated from September 2008 through 
November 2011; 2) the same VAR in yields, but estimated from 1999 through 2006; and 3) a 
VAR estimated on macro variables (industrial production, CPI-U, personal consumption 
expenditures, 3-month Treasury yield, price of West Texas Intermediate crude, and the civilian 
unemployment rate) from 1983 through 2006. Critical values were obtained with a moving block 
bootstrap with a 10-day block, overlaid with draws from the days of monetary policy 
announcements from the distribution of residuals on those days.  
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Figure 5: Impulse responses from the unrestricted and R2 restricted VARs 

 

Notes: The figure illustrates impulse responses in basis points to yields on the 10-year Treasury, 
Aaa, and Baa bonds from monetary policy shocks. Each panel of the figure illustrates impulse 
responses from the unrestricted, baseline VAR, and VARs in which the equations for the bond 
yields—Treasuries and corporates—are restricted to imply R2s for the returns that do not exceed 
0.004 and 0.001, respectively. The structural shocks are identified, as in Wright (2012), by the 
greater variance of interest rates on days of monetary policy announcements.  
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Table 1: Out-of-sample root mean squared error forecast statistics  

 
2-yr 

Treasury 
10-yr 

Treasury 
5-yr infl 

comp 
5-yr, 10-yr fwd  

infl comp 
Baa 

Yield 
Aaa 

Yield 
1-day Naive RMSFE 0.02 0.05 0.03 0.04 0.05 0.05 
20-day Naive RMSFE 0.06 0.22 0.15 0.13 0.19 0.18 
60-day Naive RMSFE 0.07 0.40 0.30 0.18 0.31 0.32 
120-day Naive RMSFE 0.08 0.54 0.34 0.22 0.43 0.48 

 
      

1-day VAR RMSFE 0.02 0.06 0.03 0.04 0.05 0.06 
20-day VAR RMSFE 0.16 0.49 0.15 0.14 0.27 0.41 
60-day VAR RMSFE 0.23 0.92 0.28 0.23 0.53 0.75 
120-day VAR RMSFE 0.24 1.11 0.27 0.27 0.70 0.91 

 
      

1-day Theil 1.24 1.12 1.00 0.99 1.01 1.10 
20-day Theil 2.63 2.24 0.97 1.02 1.42 2.32 
60-day Theil 3.20 2.28 0.93 1.25 1.71 2.39 
120-day Theil 2.90 2.04 0.80 1.22 1.62 1.90 

 
      

1-day Theil p-value 0.01 0.18 0.91 0.96 0.77 0.50 
20-day Theil p-value 0.02 0.12 0.89 0.74 0.69 0.43 
60-day Theil p-value 0.04 0.21 0.85 0.56 0.68 0.46 
120-day Theil p-value 0.17 0.32 0.88 0.56 0.70 0.54 

 

Notes: This table shows OOS root mean square forecast statistics from the 6-variable VAR. The top panel shows the RMSFE for the 
naive (martingale) forecast; the second panel shows the RMSFE for the bias-adjusted VAR predictions; the third panel shows Theil 
statistics, the ratio of the VAR RMSFE to the naïve RMSFE; the fourth panel shows the bootstrapped proportion of samples in which 
bootstrapped Theil statistics from the VAR null are greater than the actual Theil statistics in the third panel. The OOS period is from 
October 2011 through November 2013. fwd, forward; infl comp, inflation compensation. 
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Table 2: Out-of-sample mean error (bias) forecast statistics, constructed in an ex post sample  

 
2-Yr  

Treasury 
10-yr  

Treasury 
5-yr infl  

comp 
5-yr, 10-yr fwd  

infl comp 
Baa  

Yield 
Aaa  

Yield 
1-day Naive ME 0.00 0.00 0.00 0.00 0.00 0.00 
20-day Naive ME 0.00 0.02 0.01 0.01 0.00 0.02 
60-day Naive ME 0.01 0.09 0.03 0.02 0.02 0.08 
120-day Naive ME 0.03 0.18 0.01 0.02 0.04 0.17 

 
      

1-day Naive ME t-statistics 0.05 0.77 0.58 0.47 0.22 0.71 
20-day Naive ME t-statistics 0.05 0.62 0.44 0.29 0.00 0.91 
60-day Naive ME t-statistics 0.75 0.81 0.32 0.45 0.19 0.95 
120-day Naive ME t-statistics 0.99 0.82 0.10 0.29 0.20 0.86 

 
      

1-day VAR ME –0.01 –0.02 0.00 0.00 –0.01 –0.02 
20-day VAR ME –0.13 –0.38 –0.04 –0.07 –0.19 –0.32 
60-day VAR ME –0.19 –0.75 –0.01 –0.17 –0.42 –0.62 
120-day VAR ME –0.22 –0.95 0.03 –0.22 –0.57 –0.77 

 
      

1-day VAR ME t-statistics –11.85 –8.89 –2.89 –1.05 –4.32 –8.84 
20-day VAR ME t-statistics –7.35 –6.78 –1.70 –3.63 –5.58 –6.99 
60-day VAR ME t-statistics –5.60 –4.59 –0.07 –4.49 –4.28 –4.61 
120-day VAR ME t-statistics –5.03 –3.81 0.28 –4.75 –3.28 –3.52 

 

Notes: This table shows OOS mean error (ME) forecast statistics from the 6-variable VAR. The top panel shows the ME for the naive 
(martingale) forecast; the second panel shows the t-statistics for those naive mean errors, constructed with Newey-West statistics using 
appropriate lag length for the forecast horizon; the third and fourth panels show the same statistics for the bias-adjusted VAR 
coefficients. The OOS period is from October 2011 through November 2013.  
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Table 3: Bai-Perron structural stability tests  

 

Test 
2-yr US  
Treasury yield 

10-yr US  
Treasury yield 

5-yr US  
infl comp 

5-yr, 10 yr US 
 fwd infl comp 

Moody’s  
Baa yield 

Moody’s  
Aaa yield 

UD max 29.26 32.21 31.63 21.52 23.38 22.46 
       
WD max 5% 34.40 32.21 32.45 23.25 32.04 30.80 
       
SupF(3|2) 10.74 12.08 10.32 13.23 15.61 15.17 
       
SupF(2|1) 23.62 16.00 22.00 9.30 26.48 27.79 

 
Notes: The table displays the results of Bai-Perron (1998, 2003) tests for breaks at unknown points over the in-sample period. The null 
hypotheses for the UD max and WD max tests are that each equation is stable. The null hypothesis for the SupF(3|2) test is that there 
are no more than 2 breaks in the respective equations; the null hypothesis for the SupF(2|1) test is that there is no more than 1 break in 
the respective equations. Italicized, bold, and bold/italicized test statistics denote significance at the 10, 5, and 1 percent levels, 
respectively.  
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Table 4: In-sample and out-of-sample R2 as well as rational bounds 

 In-sample R2 OOS R2 Rational R2 bounds 
 Bias-corrected  Bias-corrected  RRA = 2.5 RRA = 5 
2-Yr Treasury return 2.2 –14.7 0.1 0.4 
10-Yr Treasury return 2.0 –6.4 0.1 0.4 
5-Yr ∆ inflation comp 1.1 0.6 0.1 0.4 
5-Yr-fwd ∆ inflation comp 2.1 1.1 0.1 0.4 
Baa return 2.2 –3.4 0.1 0.4 
Aaa return 2.7 –7.1 0.1 0.4 

 

Notes: This table shows the in-sample 𝑅𝑅2s and Campbell and Thompson (2008) OOS 𝑅𝑅2s, in percentage terms, for the regressions of 
log returns onto lagged gross log yields (equation (7)) and the bounds on return 𝑅𝑅2s implied by rational asset pricing and given 
coefficients of relative risk aversion (RRA). These 𝑅𝑅2s are generated with bias-corrected coefficients, as in the baseline VAR. The 
bounds assume an annualized standard deviation to the market return of 20 percent. The coefficients for the expanding, OOS forecasts 
were updated every 20 days. The in-sample period was November 2008 through September 2011 and the OOS period was October 
2011 through November 2013.  
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Table 5: Out-of-sample root mean square forecast statistics for the restricted VAR 

 2-yr  
Treasury 

10-yr  
Treasury 

5-yr infl 
 comp 

5-yr, 10-yr fwd 
 infl comp 

Baa Yield Aaa Yield 

Bias-corrected VAR       
1-day Theil 1.16 1.09 1.00 0.99 1.02 1.12 
20-day Theil 1.94 1.92 0.99 0.94 1.51 2.32 
60-day Theil 2.13 1.86 1.11 1.03 1.84 2.22 
120-day Theil 2.09 1.72 1.02 0.99 1.91 1.82 
       
R2 restricted to 0.004       
1-day Theil 1.05 1.03 0.99 0.99 1.01 1.03 
20-day Theil 1.64 1.52 0.96 0.97 1.27 1.62 
60-day Theil 2.48 1.74 0.94 0.97 1.54 1.88 
120-day Theil 2.67 1.76 0.79 0.91 1.62 1.71 
       
R2 restricted to 0.001       
1-day Theil 1.01 1.01 0.99 0.99 1.00 1.00 
20-day Theil 1.23 1.16 0.99 0.97 1.08 1.18 
60-day Theil 1.84 1.30 1.02 0.93 1.20 1.35 
120-day Theil 2.24 1.39 0.86 0.82 1.28 1.35 

       
Notes: This table shows OOS root mean square forecast statistics from the 6-variable transformed (equation (6)) VAR. The top panel 
shows the Theil statistics for the bias-corrected VAR forecast; the second and third panels show the Theil statistics for the VAR 
predictions with the 𝑅𝑅2 restricted to be no greater than 0.004 and 0.001, respectively. Bold Theil statistics show the best of the three 
models for each horizon-variable combination. The in-sample period was November 2008 through September 2011 and the OOS 
period was October 2011 through November 2013.  

 


