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Abstract
This paper develops a monetary model with taxes to account for the time-varying effects

of energy shocks on output and hours worked in post-World War II U.S. data. In our model,
the real effects of an energy shock are amplified when the monetary authority responds to
that shock by changing its inflation objective. Specifically, higher inflation raises households’
nominal capital gains taxes since those taxes are not indexed to inflation. The increase in taxes
behaves as a negative wealth effect and generates an immediate decline in output, investment,
and hours worked. The large drop in investment then causes a gradual but very persistent
decline in the capital stock. That protracted decline in the capital stock is associated with
an extended period of low labor productivity and high inflation. The real effects from the
increase in nominal capital gains taxes are magnified by the tax on nominal interest income,
which is also not indexed to inflation. A prolonged period of higher inflation and lower labor
productivity following a negative energy shock is consistent with the stagflation of the 1970s.
The negative effects, however, subsided greatly after 1980 due to the Volcker disinflation policy
which prevented the Fed from accommodating negative energy shocks with higher inflation.
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1 Introduction
Research economists over the past 35 years have worked to understand the effects of energy shocks
on aggregate fluctuations. One problem is to justify theoretically how an energy shock could have
such a large impact on output and hours worked when energy is such a small factor in production.
Another problem is to explain why the negative impact of higher energy prices moderated so much
after 1983.
In this paper, we develop a monetary model with taxes to account for the time-varying effects

of energy shocks on output and hours worked. The model includes energy as a consumption good
and as a third factor in a CES production function with capital and labor. It also incorporates taxes
on income from labor, capital, bonds, and realized capital gains. All of the real income from capital
is taxed as capital income paid out on an accrual basis. In our model, all capital gains are due to
increases in the nominal price of capital. Shifts in the monetary policy regime change the way in
which inflation expectations respond to energy shocks. Monetary policy has real effects because
shifts in inflation expectations change the expected tax on bond interest income and capital gains.
This paper replicates the dynamics observed between energy shocks and real economic activity

from the 1970s in a real business cycle (RBC) model with energy shocks, accommodative monetary
policy, and the taxation of nominal capital gains and bond interest income. Our model captures the
nuance that capital gains are taxed only when they are realized. In our framework, energy shocks
directly affect output and hours worked by altering the relative price of energy. Those direct effects
are amplified by indirect effects that operate through the interaction between monetary policy and
the tax code and can be larger in size than the direct effects.
The model is used to compute the effects of energy shocks under alternative policy regimes,

which are calibrated to post-World War II U.S. data. We find that energy shocks had a large impact
on the real economy before 1980 because the Fed allowed the implicit inflation target to change in
response to those shocks. Medium- to long-run inflation expectations rose with adverse shocks to
the energy supply. Higher expected inflation increased the expected taxes on capital gains, which
caused an immediate decline in output and hours worked. That effect was amplified by the tax on
bond interest income. Beginning in October 1979, Fed Chairman Paul Volcker announced a shift
toward an aggressive anti-inflation policy. After that successful regime shift, the Fed no longer
adjusted its inflation rate target in response to energy shocks, which may explain the substantially
diminished effect of energy shocks on the real economy, as documented in Hooker (1996).
The next section briefly reviews the literature on the macroeconomic consequences of energy

shocks. Following that, we describe the model used in this study with an emphasis on the tax code
and the role of energy. We calibrate the model based on long-run relationships and microeconomic
studies. Our results show that a monetary policy that accommodates energy price hikes can have
large effects on the real economy, both in the short run on output and hours worked and in the long
run on capital and productivity.

2 Energy Shocks in the U.S. Postwar Economy
In this paper, energy shocks represent supply shocks to all forms of energy with the understanding
that, historically, the largest shocks to the U.S. energy supply have been to the supply of crude oil.
Because of the quality and availability of data, our model is calibrated to data on energy consumed
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by U.S. households despite the fact that the model has energy in consumption and production. We
model the energy shock as an exogenous innovation to supply. Overall, our paper contributes to
a large literature on the empirical regularities of oil prices, output, and inflation by examining the
interaction between taxation and monetary policy.
Hamilton (1983, 2009) documents that all but one of the post-World War II recessions were

preceded by a significant increase in the price of crude oil. The tripling of oil prices prior to the
deep recession of 1974 had a profound impact on the conventional wisdom about the effects of
energy shocks. Following a sharp rise in oil prices, initial estimates from January 1976 indicate
that GDP declined 7.7 percent from the business cycle peak in 1973:Q4 to the trough in 1975:Q1.
In comparison, initial estimates in January 2010 of the “Great Recession” indicate that GDP fell
only 3.7 percent from its 2007:Q4 peak to the 2009:Q2 trough.1 That large GDP decline in 1974
motivated economists to examine the effects of energy shocks on the real economy.
Baily (1981) argues that the capital stock in place prior to 1973 was dependent on low-price en-

ergy and that the sharp rise in the relative price of oil caused a substantial share of the capital stock
to become obsolete. Wei (2003) develops a general equilibrium model with putty-clay investment
and shows that this feature cannot account for either the magnitude of the declines in output and
hours worked or the large drop in equity prices that occurred in 1973-1974. Alpanda and Peralta-
Alva (2010) show that Wei’s results for equity prices depend on the particular method she utilizes
to define investment. Using a standard definition of investment and the putty-clay model of capital,
Alpanda and Peralta-Alva (2010) find that the oil shock could explain about half of the decline in
equity prices; but, like Wei (2003), they cannot explain the large drop in output and hours worked.
The failure of the U.S. economy to respond positively to the oil price declines of 1986 and

the mild recession following the oil price hikes of 1990 led researchers to ask whether changes
in the oil market could explain the moderation in aggregate volatility that occurred around 1983
(the “Great Moderation”). Part of the decrease in volatility is attributable to a decline in the size
of shocks and part is due to an increase in the efficiency of energy use, as the ratio of energy
consumption to GDP fell by about half from 1974 to 2008. Although most studies assume a break
in the early 1980s, with distinct periods of high and low efficiency, the actual change in the ratio
of energy use to GDP occurs around 1973-1974. Energy use prior to 1973 grew at about the same
rate as real GDP. After 1973, per capita energy use remained relatively constant, while per capita
real GDP continued to grow.
Rotemberg and Woodford (1996) argue that monopolistic competition is needed to capture the

large effects of oil prices on the economy. Finn (2000) shows that making capacity utilization and
the depreciation rate dependent on energy use has the same relative effect as introducing monop-
olistic competition. Leduc and Sill (2004) determine that the monetary policy rule matters in a
general equilibrium model with oil prices. Specifically, they find that the Fed negatively affected
output following the 1970s oil price shocks because they overtightened the money supply after
each shock. Aguiar-Conraria and Wen (2007) develop a model with increasing returns to scale and
a multiplier-accelerator mechanism that tracks the real economy very well following the 1973 oil
price shock, but cannot explain why the economy does not respond to later oil price shocks in a
similar way.
Dhawan, Jeske, and Silos (2010) offer an empirical explanation for the large effects of energy
1The vintage data sets can be found at the Federal Reserve Bank of Philadelphia’s website:
http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-files/ROUTPUT/.
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shocks during the 1970s. Using a Markov-switching model with shocks to energy prices and total
factor productivity, they find that energy shocks have a spillover effect on total factor productivity
that has a large and significant impact on output prior to 1983. The model then switches in 1983,
and the post-1983 estimates show that the spillover effect disappears. They do not, however, offer
an economic explanation for the spillover that amplifies the effect of energy shocks on output or a
reason why it disappears. Our model provides a theory that could account for their results.
Although all of those papers make important contributions to the literature, none of them ex-

amines the effects of energy shocks in a model with taxes. This paper investigates the impact that
taxes and monetary policy have on the response of key economic variables to an energy shock. Our
results provide a potential theoretical explanation for the large real effects generated following an
energy shock prior to the early 1980s and the small real effects observed afterward.

3 The Model
This paper develops a RBC model with taxation to examine the impact of an energy shock when
the central bank endogenously adjusts its inflation target to that shock. Our model incorporates
an energy sector into Gavin, Kydland, and Pakko’s (2007) monetary policy model with taxation.
Energy in our specification is both a consumption good and a factor of production. The government
taxes four sources of household income: labor, bond interest, capital, and realized capital gains.
Labor and capital income taxes affect the steady state, but do not have a measurable effect on
business cycle dynamics. Capital gains are modeled such that households can choose when their
capital gains are realized (and taxable) subject to some adjustment costs.

3.1 Energy
Each period, the economy is endowed with a level of energy, et, which follows an AR(1) process:

ln(et/e) = ρe ln(et−1/e) + σeεe,t, (1)

where e is the steady-state level of et, 0 ≤ ρe < 1, σe > 0, and εe,t ∼ N(0, 1). Energy is purchased
in a perfectly competitive market for a price of Pe,t by households for consumption, ec,t, and by
firms for use in the production process, ey,t, such that

et = ec,t + ey,t. (2)

Finally, the profits from the energy sector, T et = Pe,tet, are remitted to the households via a lump-
sum payment.2

2We also solved the model assuming that the price of energy was exogenous. Our qualitative results are basically
the same with either a price or quantity shock. A major problem with defining energy shocks by innovations to its
price series is that energy prices are much more volatile than energy quantities in the late period. If energy prices
are assumed to be exogenous, we get unrealistically large direct effects of energy on output in the late period, even
with reduced energy shares in consumption and aggregate output. Our intuition, as noted in Kilian (2009), is that
fluctuations in world energy demand have made energy prices more volatile and less predictable. Newly-formed
commodity derivative markets and sophisticated distribution systems, however, have enabled firms to hedge much of
the risk caused by the increase in price volatility, which has insulated output from those price variations.
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3.2 Firms
Since energy, ey,t, is an input into the production of non-energy output, yn,t, we use a CES produc-
tion function for non-energy output.3 Specifically, non-energy output is produced by combining
labor, nt, capital, kt, and energy inputs with a stochastic level of technology, zt, and a nonstochastic
level of labor-augmenting technological progress, xt, such that

yn,t = zt(ψk
υf
t + (1− ψ)e

υf
y,t)

α/υf (xtnt)
1−α, (3)

where ψ > 0 represents the steady-state ratio of energy used in production to capital, υf is the
elasticity of substitution between energy and capital, and 0 < α < 1. The stochastic technology
factor, zt, follows an AR(1) process:

ln(zt/z) = ρz ln(zt−1/z) + σzεz,t, (4)

where z is the steady-state level of zt, 0 ≤ ρz < 1, σz > 0, and εz,t ∼ N(0, 1). Lastly, the labor-
augmenting technological progress, xt, increases at a deterministic gross growth rate of γ1/(1−α).
Each period, firms sell non-energy output in a perfectly competitive market at a price of Pn,t

and purchase labor, capital services, and energy in competitive markets for a nominal wage ofWt,
a nominal capital rental rate of Pn,tqt, and an energy price of Pe,t, respectively, where qt is the
real rental rate of capital. Firms’ profit maximization under the assumption of perfect competi-
tion implies that the nominal wage, the nominal capital rental rate, and the price of energy equal
the price of non-energy output multiplied by the marginal products of labor, capital, and energy,
respectively. Aggregate output, yt, then is calculated as follows:

Ptyt = Pn,tyn,t + Pe,tet, (5)

where Pt is the aggregate price level, which is

Pt = P
(1−ωy)
n,t P

ωy
e,t , (6)

and ωy = Pee/(Pnyn + Pee) is energy’s share of aggregate output in the steady state.

3.3 Households
Households gain a discounted stream of expected utility from consumption, ct, and leisure, lt,

E0

∞

t=0

βt
cθt l

1−θ
t

1−ζ

1− ζ
, (7)

whereE0 is the expectational operator at time 0, the discount factor is 0 < β < 1, the intertemporal
elasticity of consumption is 1/ζ > 0, and the preference parameter θ is between 0 and 1. The

3A similar production function has been used in other macroeconomic studies of energy effects. See, for example,
Kim and Loungani (1992), Alpanda and Peralta-Alva (2010), and Dhawan, Jeske, and Silos (2010). See Díaz and Puch
(2013) for an explanation of the time-varying role of energy in output production based on a complex production func-
tion that studies the interaction of the traditional separate investment specific technology factor with an independent
technology factor that affects the energy efficiency built into capital goods.
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households’ consumption good is a CES composite of non-energy consumption, cn,t, and energy
consumption,

ct = (b1c
υh
n,t + b2e

υh
c,t)

1/υh , (8)

where υh is the elasticity of substitution between non-energy and energy consumption and b1 and
b2 are constants that are calibrated such that b1(cn,t/ct)υh and b2(en,t/ct)υh are set equal to non-
energy’s and energy’s shares of consumption, respectively.
The endowment of time available to households is normalized to one in order to identify the

fraction of time households spend on leisure, lt, work, nt, and adjusting their financial portfolio,
st:

lt + nt + st = 1. (9)

The time households spend adjusting their portfolio, st, is the shopping-time cost associated with
holding money balances. Specifically, the shopping-time cost increases as the ratio of nominal
consumption spending to the amount of money carried over from the previous period,Mt−1, rises:

st = χ
Ptct
Mt−1

η

, (10)

where χ > 0 is a scale parameter and η > 0 is the curvature parameter in the money-time trade-off.
Households, who own the capital, rent it to the firms and select their level of investment, it,

such that

kt+1 = it + (1− δ)kt, (11)

where δ is the depreciation rate. As the nominal value of their capital stock changes, households
accrue capital gains (or losses), but can choose when those capital gains are realized. The timing
is important because realized capital gains, Gt, are taxed by the government at a distortionary rate
of τG. Specifically, households manage their level of unrealized capital gains, Ut, subject to some
capital gains adjustment costs, ACt,

Ut+1 = Ut + (Pn,t − Pn,t−1) kt −Gt + ACt, (12)

where (Pn,t − Pn,t−1) kt are the capital gains accrued in period t. Those adjustment costs,
ACt = Gt − Φ(Gt/Ut)Ut, (13)

represent the penalty households incur to delay the realization of capital gains.4 The capital gains
adjustment costs are assumed to be zero in the steady state (i.e.,Φ(G/U) = G/U ). We also assume
that it is less costly to realize capital gains sooner rather than later, so that Φ�(·) > 0 and Φ��(·) < 0.
In an accrual system, the expression Φ�(Gt/Ut) is equal to unity.5

4When the realization of capital gains is deferred, the capital gains adjustment costs penalize households with
extra unrealized capital gains which are in addition to the amount of capital gains deferred. Those higher levels of
unrealized capital gains do not change the size of the capital stock but, instead, simply increase the future tax liability
of households.

5See Anagnostopoulos, Cárceles-Proveda, and Lin (2012) for an analysis of capital gains taxation when taxes are
paid on an accrual basis.
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Households begin each period with their initial nominal money balances,Mt−1, and receive the
principal plus after-tax interest from their nominal bond holdings, (1 + (1− τB)(Rt−1 − 1))Bt−1,
where Rt is the gross nominal interest rate on bond holdings, Bt, from period t to t + 1. During
the period, households receive after-tax earnings from labor, (1−τn)Wtnt, after-tax earnings from
their capital income, ((1−τ k)qt+ τ kδ)Pn,tkt, government transfer payments, TGt , and profits from
the energy sector, TEt , where τB, τn, and τ k are the distortionary tax rates that apply to bond inter-
est income, labor income, and capital income, respectively. Those funds are utilized by households
to finance their purchases of non-energy consumption goods, Pn,tcn,t, investment goods, Pn,tit, en-
ergy consumption, Pe,tec,t, and to pay taxes on realized capital gains. The remaining funds are
used by households to purchase bonds, Bt, and acquire end-of-period money balances,Mt. Thus,
the households’ nominal budget constraint is

Pn,t(cn,t + it) + Pe,tec,t +Bt +Mt + τGGt = (1 + (1− τB)(Rt−1 − 1))Bt−1 +Mt−1
+((1− τ k)qt + τ kδ)Pn,tkt

+(1− τn)Wtnt + T
G
t + T

E
t . (14)

3.4 Government
The government collects revenue by printing money, TMt =Mt −Mt−1, and taxing labor income,
bond interest income, capital income, and nominal capital gains. It then redistributes all tax revenue
back to households in the form of a lump-sum payment, TGt . Therefore, the government’s budget
constraint is

TGt = τnWtnt + τ k(qt − δ)Pn,tkt + τB (Rt−1 − 1)Bt + τGGt + T
M
t . (15)

The government, via its central bank, sets monetary policy using a nominal interest rate rule:

ln
Rt
R

= (1 + φπ) ln
πt
π∗t

+ φy ln
yn,t
yn

, (16)

where πt = Pt/Pt−1 is the aggregate inflation rate, π∗t is the time-varying inflation rate target, yn
is steady-state non-energy output, φπ > 0, and φy > 0. Prior to January 2012, the Fed did not have
an explicit inflation rate target but, instead shifted their implied target over time. We incorporate
that concept into our model by assuming that the central bank’s inflation target adjusts in response
to energy supply shocks:

ln(π∗t/π
∗) = ρπ ln(π

∗
t−1/π

∗)− ξσeε
e
t , (17)

where ξ ≥ 0 is the central bank’s endogenous response of monetary policy to energy shocks, π∗ is
the steady-state inflation rate target, and 0 ≤ ρπ < 1. Finally, the money stock under any nominal
interest rate rule is determined endogenously from the households’ money demand.

4 Equilibrium and Calibration
The equations representing our model’s first-order conditions, identity equations, and exogenous
shocks comprise the set of difference equations that generate the model’s systematic equilibrium.
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To obtain a stationary equilibrium, the nominal and real trends in the model data are eliminated
by dividing the nominal variables by γtPt and the real variables with a deterministic trend by γt.6
Given that all of the transformed variables are stationary, the model’s nonstochastic steady-state
equilibrium can be determined. We then linearize the system of equations around its nonstochastic
steady state and apply standard techniques to find the linearized model’s solution.

4.1 Calibration
We consider and label two monetary policy regimes (early and late), which are calibrated to pe-
riods with different energy shares and distinctly different monetary policies. The early regime is
calibrated to a period, 1973:Q1-1979:Q3, roughly spanning the time between the end of the Bret-
ton Woods fixed exchange rate system and the beginning of the Volcker monetary policy reform in
October 1979. We ignore the short period, October 1979 through October 1982, during which the
Fed targeted a reserve quantity rather than the federal funds rate. The late regime is calibrated to
a later period, 1983:Q1-2007:Q4.7 Therefore, we exclude the beginning of the financial crisis and
a period in which monetary policy was constrained by the zero lower bound on nominal interest
rates. Parameter assignments for the two monetary policy regimes are discussed below and sum-
marized in Table 1. With the exception of the energy shares and the monetary policy parameters,
all of the structural parameters are the same across both regimes.
We calibrate the quarterly discount factor, β, to be equal to 0.99. The quarterly gross steady-

state inflation rate is 1.01, which assumes a trend annual inflation rate of 4 percent in both the early
and late periods. The gross quarterly real growth rate, γ, is set to 1.004 in order to match the U.S.
post-World War II average annual per capita real GDP growth rate of 1.6 percent.
Capital’s share of output, α, is fixed to 0.33. The persistence of the technology shock, ρz, is

assumed to be equal to 0.95 in both periods, while the standard deviation of the technology shock
is set to 0.59 percent per quarter in the early period and 0.47 percent in the late period. Those
values are estimated using residuals from the output equation in a bivariate VAR including energy
and output, which are discussed in detail below. The elasticity of substitution between energy
and capital, υf , is set to −0.9, which is larger in absolute value than the −0.7 used by Kim and
Loungani (1992) and Dhawan, Jeske, and Silos (2010). When υf = −0.7, the price elasticity of
demand for energy is about unity. Empirical estimates, however, suggest that the price elasticity
of energy is greater than 2. Therefore, we assume υf = −0.9 because that calibration generates
the most price-inelastic short-run factor demand for our model (around 1.5). A parameterization of
υf < 0 also signifies that energy and capital are complements in the production process. Parameter
ψ is set so that energy’s share in the production of output is 5.3 percent in the early period and 3.7
percent in the late period based on work by Alpanda and Peralta Alva (2010). The steady-state
relative prices of energy and non-energy are assumed to be equal (Pn = Pe). Persistence in the
energy series, ρe, is equal to 0.92, which is obtained from the estimates in Dhawan, Jeske, and
Silos (2010). The standard deviation of the energy shock, σe, is calibrated using estimates from

6Since the variables in the time constraint, nt, lt, and st, do not have a deterministic trend, they are not divided by
γt.

7Our two monetary policy regimes are roughly consistent with Schorfheide’s (2005) estimates of a high-inflation
regime from the early 1970s to the Volcker stabilization policy at the beginning of the 1980s and a low-inflation regime
following that time period.
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our bivariate VAR with energy and output. That is, σe is set to 2.81 percent in the early period and
1.26 percent in the late period as discussed below.
Turning to the households sector, the preference parameter, θ, is specified to be consistent

with Ghez and Becker’s (1975) panel-data estimates in which households spend approximately 30
percent of their available time working. The risk-aversion parameter, σ, is set equal to 2, while the
quarterly depreciation rate, δ, is assumed to be 2.5 percent. Our parameterization of b1 and b2 from
the CES component of the utility function is consistent with the average ratio of energy used in
consumption to aggregate consumption, 0.072 in the early period (1969:Q1-1979:Q3) and 0.046 in
the late period (1983:Q1-2007:Q4). The elasticity of substitution between energy and non-energy
consumption, υh, is set to−0.9 in order to generate a high degree of short-run inelasticity in energy
demand. The shopping-time parameter η is set to−1. That calibration implies that the interest rate
elasticity of money demand is −0.5, which is consistent with empirical evidence summarized by
Mulligan and Sala-i-Martin (1997) and Lucas (2000). The scale parameter χ is specified such that,
in the steady state, households spend an additional 1 percent of their working time adjusting their
portfolio, s, or 0.3 percent of their total available time.
The tax rates are calibrated based on the average marginal tax rates for 1960 to 2002 from the

NBER TAXSIM model.8 Specifically, the tax rate is set to 24.4 percent for labor income, 25.8
percent for bond interest income, 34.1 percent for capital income, and 20.2 percent for realized
capital gains. We assume that capital gains adjustment costs are present when the economy deviates
from its steady state but are zero at the steady state (i.e., Φ(G/U) = G/U ). Since the model is
solved using linearizing approximation methods, we need to identify the parameter values only
for Φ, Φ�(·), and Φ��(·) and do not have to specify a functional form for Φ(Gt/Ut). The value for
Φ�(·) is calibrated, so that the steady-state ratio of realized capital gains to accrued capital gains,
G/((1 − 1/π)k), is 0.4.9 As for Φ��(·), that value is determined by setting the elasticity of the
marginal capital gains adjustment costs with respect to G/U , (G/U)Φ��(·)/Φ�(·), equal to −1.1.10
In both periods, we assume that the Fed follows a standard Taylor (1993) rule, where φπ and

φy are set equal to 0.5 and 0.125, respectively. When a nominal bond income tax is present in a
model with a Taylor-type monetary policy rule, the inflation coefficient in the policy rule, 1 + φπ,
must be noticeably larger than one to ensure the model has a unique equilibrium. The determinacy
condition in our model is simplest to calculate when φy = 0.11 This condition is given as:

1− βτB

πγ
(1 + φπ) > 1. (18)

The condition necessary for model determinacy when τB = 0 and φy = 0 is just the Taylor princi-
8See Table 9 in Feenberg and Poterba (2003).
9Over the sample period, realized capital gains are equal to about 40 percent of accrued capital gains–changes in

the nominal capital stock measured as the net stock of private nonresidential assets. Some capital gains are never
realized. For example, capital gains taxes are not paid by tax-exempt institutions such as pension funds. When assets
with unrealized capital gains are bequeathed to heirs, the basis for the capital gains is reset to current market value and
no capital gains tax is due on the increased asset value earned during the lifetime of the deceased. (Note: Those assets
are still subject to estate taxes for higher-valued estates.)
10This calibration is consistent with Auerbach’s (1988) regression results showing that a 1 percent increase in the

capital gains tax rate is associated with a 0.56 percent decline in realized capital gains. A simulation experiment using
the time-series property of Auerbach’s data on capital gains realizations generates a similar result with an elasticity
measure equal to −1.1.
11The derivation of this result is in an appendix available upon request.
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ple, 1+φπ > 1. When τB > 0, the value of φπ necessary for the model to have a unique equilibrium
rises as τB gets bigger. Edge and Rudd (2007) also show that the determinacy threshold value of
φπ rises as the value of φy increases. For our baseline model with φy = 0, the minimum value of
φπ needed for determinacy is approximately equal to 0.337. When τB increases to 30 percent, the
determinacy value of φπ rises to approximately 0.414.
One difference between regimes is the calibration of the driving process for the inflation target.

We set ρπ equal to 0.97 in the early period and 0.84 in the late period based on estimates of
the largest root in an augmented Dickey-Fuller equation used to test for unit roots. (See Gavin,
Kydland, and Pakko, 2007.) Empirical evidence from the pre-1979 period finds that the inflation
rate follows a stochastic trend and that the inflation premium in long-term interest rates displays a
unit root.12 The problem for our model is that when the inflation target is a random walk, the tax
effects from an energy shock are incredibly large in the early regime. Those shocks raise long-run
inflation expectations and the expected tax on bond interest income and capital gains. Stock (1991)
derives confidence intervals for the largest roots in the macro data set used by Nelson and Plosser
(1982). For CPI inflation, the 80 percent confidence interval ranges from 0.922 to 1.031. Our early
regime value for ρπ lies in the middle of that range.
Our calibration of the size of the inflation rate target’s response to an energy supply shock, ξ,

depends on the policy regime. For both regimes, establishing a direct calibration target is difficult
because the Fed did not have an explicit numerical objective for inflation until 2012. Kozicki and
Tinsley (2005) estimate a time-series model with two unobserved variables–a perceived and an
actual inflation target. In their framework, the actual inflation target accommodates, on average,
73 percent of each cost-push shock.13 While that paper’s results are generally supportive of our
early-regime calibration for ξ, their results are not directly transferrable to our specification.
Bernanke (2003) argues that the Fed accommodated higher oil prices during the 1970s but

did not do so during the 1990s. To support his claim, Bernanke notes that during the 1970s “oil
price shocks were in fact associated with substantial ... increases in core inflation.” Evidence
suggests that most major shocks that affected inflation in the 1970s were associated with the energy
market. As noted above, empirical evidence supports the notion that long-run inflation expectations
appeared to follow a random walk in this period. Our calibrated value of ξ = 0.072 for the early
period is consistent with the belief that the Fed did in fact accommodate cost-push shocks during
that period. This paper focuses on cost-push shocks from changes in the energy supply because
we are examining how such an accommodative policy impacts the observed relationship between
energy and economic activity.
By the 1990s, Bernanke (2003) states that “oil price changes seemed to have no noticeable

effect on core inflation.” That analysis suggests that we should set ξ to 0 in the late regime. Our
results, however, do not depend on setting that parameter to zero because the lower value of ρπ
calibrated for the late period will eliminate any persistent effect induced by having ξ > 0. We
report the sensitivity of our results to policy parameter values in the computational experiments in
the next two sections.
12Ireland (2007) estimates a DSGE model of the U.S. economy. He finds that in the pre-1980 period the inflation

target can be modeled as a random walk with exogenous shocks or as a stochastic trend that reacts to other economic
shocks. Ellingsen and Soderstrom (2004) and Dewachter and Lyrio (2006) find that the inflation premium in long-term
interest rates also has a unit root.
13An energy shock is one type of cost-push shock.
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4.2 The Data: Energy Shocks and Capital Gains
What percentage of non-energy output fluctuations can be attributed to energy shocks in U.S.
data? To answer that question, we estimate a bivariate VAR with energy and output.14 Energy
is measured as the log of per capita energy from the personal consumption expenditures (PCE)
component of GDP, while output is calculated as the log of per capita value of real PCE minus the
energy component of PCE plus real investment. Figure 1 shows the energy shock (i.e., the energy
residual identified in a Cholesky decomposition) for the periods 1973:Q1-1979:Q3 and 1983:Q1-
2007:Q4. One key result from our estimated VARmodel is that the standard deviation of the energy
supply shock in the early period is twice the size of that in the late period. Figure 2 presents the
dynamic responses of energy and output to a one-standard-deviation shock to the energy supply
in that VAR. The left column displays the impulse responses for the early period, while the right
column presents the responses for the late period. In both samples, the energy shocks are persistent
and the effects on output are positive and significant. Note that the energy shock’s contribution to
the variance of output is much smaller in the late period than in the early period. Specifically, the
first row of Table 2 shows that energy shocks account for 47.6 percent and 66.4 percent of output’s
variability at the 4- and 8-quarter forecast horizons, respectively, in the early period, but account
for only 13.4 percent and 19.7 percent, respectively, in the late period.
The taxation of capital gains is quite complicated in the U.S. tax code. One prominent feature

is that nominal capital gains are taxed, but only when they are realized. In this paper, all capital
gains are generated from inflation in the price of capital goods. Income from capital that is paid to
the households as dividends is taxed as capital income. In the U.S., most capital gains are earned
by households in the higher income tax brackets. The statutory rate on long-term capital gains
has always been lower than marginal income tax rates, so investors have had an incentive to retain
capital income, reinvest it, and report the earnings as capital gains. Therefore, the data on reported
capital gains includes nominal income from both capital income that is held as retained earnings
and inflation in the price of the capital stock.
Figure 3 illustrates that relative size of two measures of capital gains from 1949 through 2010.

The solid blue line displays the change in the price of investment goods multiplied by the capital
stock as a fraction of nominal GDP. That data series is the counterpart to the model definition
of accrued capital gains, (Pn,t − Pn,t−1) kt, divided by nominal GDP. Furthermore, that ratio is
understated, on average, because it should also include the price changes in manufacturing and
trade inventories, which account for about 10 percent of the level of private nonresidential fixed
capital stock. The big spikes in the series are due to jumps in inflation. This figure illustrates that
capital gains from inflation were high, volatile, and represented a sizeable share of GDP before
1983, but not afterward.
The dashed red line in Figure 3 shows the value of realized capital gains as a share of GDP.

This data represents capital gains reported for tax purposes and includes the components from
both inflation and real capital income that was not paid out as dividends. The first spike in realized
capital gains occurs in 1986 as a result of a legislated increase in the statutory capital gains tax that
commenced in 1987. After the legislation passed in May 1986, investors sharply increased their
realization of capital gains in order to avoid paying a substantially higher tax rate after that period.
The legislation raised the maximum statutory rate on long-term capital gains from 20 percent in
1986 to 28 percent in 1987. In the NBER TAXSIM time series, the average marginal tax rises from
14The VAR also includes two lags and a time trend.
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17.97 percent in 1986 to 24.52 percent in 1987. The second spike happens in the late 1990s and is
caused by the enormous increase in equity prices from the dot-com boom. The third spike occurs
in the mid-2000s and is due to the asset price inflation associated with the Fed’s very low interest
rate policy prior to the 2008 financial crisis. In the last two cases, a large share of the realized
capital gains are short-term in nature that by law are taxed at the higher personal income tax rate.

5 Computational Experiments
This section examines the effects of energy supply shocks on the economy under alternative as-
sumptions about monetary policy, taxes, and the structure of the energy sector. The key issue
that we investigate is why energy appears to impact the economy so much more before 1980 and
so much less afterward. In our analysis, the two periods are treated as separate monetary policy
regimes and each period has its own level of efficiency in energy use. We proceed to explain how
monetary policy interacts with the tax code and show how capital gains and bond income taxes
influence the effects of energy shocks on the economy.

5.1 Model Results
In the early regime, the Fed accommodates a temporary increase in energy prices caused by a
negative energy supply shock by raising its inflation rate target. It does not, however, adjust its
inflation target in response to an energy shock in the late regime. A persistent 1-percent negative
energy supply shock takes about 10 years to decay back to its steady state. Figure 4 displays
the impulse responses of key economic variables for the following three specifications: the early
regime is indicated by a solid blue line; the early regime with late-regime energy shares is indicated
by a dashed-dot green line; and the late regime is indicated by a dashed red line. The area between
the solid blue line and the dashed-dot green line represents the effect due to the smaller energy
shares in consumption and output. The area between the dashed-dot green line and the dashed
red line shows the effect from different monetary policy parameters. In Figure 4, the vertical axis
of each chart reports the percent deviation from the steady state. The horizontal axis displays the
number of quarters, from 0 to 100. In the top two panels, inflation and the interest rate are shown
at quarterly rates. In the bottom right panel, the figure shows the deviation of the ratio of realized
capital gains to output from its steady-state ratio, which is 2.3 percent.
Higher energy prices following a negative energy supply shock push up production costs, which

in turn encourages firms to raise prices. In the early regime, the inflation target process is very
persistent, ρπ = 0.97, and the Fed raises its inflation rate target, ξ > 0, to accommodate higher
energy prices. Inflation rises more in that regime because the public knows that the Fed is soft on
inflation. The inflation increase in the late regime, however, is much smaller because the inflation
target is less persistent, ρπ = 0.84, and the Fed does not accommodate higher energy prices by
changing the inflation target, ξ = 0. In other words, the Fed is more hawkish in fighting inflation.
As Equation (18) demonstrates, the presence of the bond interest income tax introduces another
term into the condition for determinacy in the nominal interest rate rule. That tax effectively lowers
the central bank’s response to inflation for any given value of φπ. Intuitively, the inflation rate, the
nominal interest rate, and the pre-tax real interest rate have to rise enough to pay the fluctuating
tax on bond interest income. The after-tax real interest rate, on the other hand, remains relatively
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constant, as in a standard RBC model. That tax mechanism is present in both regimes, but a more
aggressive monetary policy against inflation in the late regime helps minimize the effects of energy
shocks on the economy.
The nominal interest rate responses look similar to those for inflation. In the policy rule, a

value of φπ > 0.339 means that the nominal interest rate jumps more than inflation. Inflation and
the nominal interest rate move less in the early regime with the late-regime energy shares because
the value of ξ is lower, 0.046, reflecting the smaller share of energy in the consumer basket. As
demonstrated below, the important effect of the late-regime energy shares on inflation and interest
rates comes from the fact that the coefficient on the energy shock in the inflation target equation,
ξ, is equal to the smaller share of energy in consumption. The lower persistence in the inflation
target and no accommodative policy response to an energy shock in the late regime keeps inflation
and interest rates even closer to the steady state.
The 1-percent energy shock causes an immediate decline in output of about 0.2 percent in the

early regime, which is slightly more than double the effect in the late regime. The large jump in
inflation expectations in the early regime raises the expected capital gains tax. That higher tax acts
as a negative wealth shock and amplifies the drop in output after a negative energy shock. Initially,
the higher energy share and the more accommodative monetary policy are responsible for about an
equal amount of the additional output decline. In subsequent periods, however, the impact from the
higher energy share dissipates more quickly, so that by year 10 most of the additional fall in output
is due to the loose monetary policy of the early regime. The response of consumption to an energy
shock is influenced by households’ ability to smooth consumption by selecting the timing of when
to realize accrued capital gains. Immediately following a negative energy shock, households delay
the realization of capital gains and reduce investment to mitigate a drop in consumption. That
decline in consumption continues for the next 20 or so quarters in the early regime, but quickly
reverses course in the late regime.
The energy shock reduces the combined energy/capital input and, as a result, pushes down the

marginal product of labor. A lower marginal product of labor reduces both labor demand and the
real wage, which encourages households to substitute away from work and toward leisure. When
the effects of the energy shock are amplified and propagated by monetary policy, households expect
the capital stock to decline for a longer period of time and anticipate that the real wage will remain
persistently low in the near term. As time progresses, labor hours recover faster than the real wage
or the capital stock. The reason why labor returns to its steady state more quickly is that the wealth
effect from a lower capital stock mitigates the substitution effect caused by a lower real wage.
The capital stock falls in response to a lower supply of energy. The direct effect of less energy

is a reduction in the marginal product of capital. That effect is enhanced by the temporary increase
in the expected tax on capital gains. When the inflation target is very persistent (i.e., ρπ is large),
the expected tax on capital gains rises substantially, which further pushes down the capital stock.
The higher inflation also pushes up accrued capital gains. Households, however, initially decide
to reduce their realized capital gains in order to decrease their short-term tax liability. Smaller tax
payments provide households additional resources to offset some of the decline in consumption
caused by a drop in their income. After 10 quarters, households’ incomes have started to recover,
which enables them to increase realized capital gains and pay the additional associated taxes.
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5.2 Inspecting the Mechanism: Monetary Policy and the Tax Code
Both monetary and fiscal policy influence the effects of energy shocks on the economy. Although
monetary policy determines how inflation responds to energy shocks, the tax code, which is imper-
fectly indexed to inflation, controls how the real economy reacts to changes in inflation expecta-
tions. Our model ignores the lack of inflation indexing in labor and capital income taxes present in
the economy prior to the Tax Reform Act of 1981. Findings by Altig and Carlstrom (1991) suggest
that the direction and magnitude of our results would be stronger if we incorporated the pre-1981
tax code in the model. Our focus, however, is on modeling the economic effects of an energy shock
in a specification that includes the tax structure currently in place. In other words, we specify a
tax code in which only bond interest income and capital gains taxes are not indexed to inflation.
This analysis would be particularly useful to policymakers if the Fed were deciding whether or not
to implement a monetary regime in which they adjust their inflation target in response to energy
shocks.15
To examine the sensitivity of our results, we analyze the effects of key monetary and fiscal pol-

icy parameters on consumption’s response to a 1-percent negative energy supply shock. Our focus
is to determine the longer-term effects of a negative energy shock on consumption. We examine the
present value of consumption deviations rather than that of output because consumption is more
intuitively associated with welfare effects. Furthermore, long-run consumption and output behav-
ior are very similar. Figure 5 displays the sensitivity of consumption’s response to a 1-percent
energy shock as a function of four key policy parameters, the tax rates on capital gains and bond
interest income, as well as the monetary policy parameters in the inflation target equation. In each
panel, the values on the vertical axis represent the present value of consumption lost following a
1-percent negative energy shock.16 The losses are measured as percent deviations from the steady
state. In the baseline early regime model, a 1-percent negative energy shock generates a loss in
the present value of consumption of 4.65 percent. That loss is denoted on each chart by a circle
marker. When the monetary policy from the late regime (ρπ = 0.84 and ξ = 0) is imposed on the
early regime, the present value of the consumption loss is only 2.84 percent.17
The top row of Figure 5 shows how the consumption loss changes with the statutory tax rates

on capital gains, τG, and bond interest income tax, τB. Higher values of τG enhance the negative
wealth effect from increased inflation, which causes consumption and capital investment to fall.
With less capital investment, future consumption also falls, which contributes to the slight nonlin-
ear response of the consumption loss to changes in τG. Increased values of τB have a much greater
nonlinear effect on the consumption loss because the higher tax rate interacts with the inflation
15There is a substantial amount of literature on how monetary policy has responded or should respond to energy or

oil price shocks. That literature, however, does not take into account the tax code. See, for example, Leduc and Sill
(2004), Bodenstein, Erceg, and Guerrieri (2011), and Kormilitsina (2011).
16These are approximations to the present value using computed values for the first 100 quarters,

PV =
i=99

i=0

βixt+i,

where β = 0.99 and the elements of xt are deviations of model variables from their steady states.
17This specification assumes that energy shares of consumption and output are equal to their early regime values

and that all of the tax rates are at their baseline values. If, however, the specification does not include any taxes, then
the consumption loss would fall to 2 percent.
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coefficient, φπ,in the Taylor rule to move the model closer to its determinacy boundary. Raising
τB essentially has the same effect as lowering φπ in the sense that both changes exacerbate the
economy’s response to an energy shock. When τB rises to around 31 percent, our calibrated model
of the early regime no longer generates a unique equilibrium.
The bottom row of Figure 5 illustrates the impact of monetary policy on the size of the con-

sumption loss. The inflation rate target persistence parameter, ρπ, has an extremely nonlinear effect
on the consumption loss following a 1-percent negative energy shock. When ρπ = 0.84, as it is in
the late regime, the consumption loss is only 2.88 percent, which is only 0.04 percent higher than
when ρπ = 0. The consumption loss starts to grow more sharply as ρπ > 0.9. As ρπ gets close
to unity, an energy shock generates a considerable amount of consumption loss because the shock
begins to behave as if it is permanently raising the inflation rate target. Finally, the extent to which
the Fed decides to accommodate energy shocks, ξ, has a linear effect on the consumption loss.
When the Fed does not accommodate energy shocks (ξ = 0), that loss is only 2.84 percent which
is equivalent to its loss when ρπ = 0. Thus, the consumption loss from a negative energy shock can
be reduced substantially by either lowering ρπ below 0.9 or by not accommodating energy shocks
(ξ = 0).
Our sensitivity tests in Figure 5 reveal that in the early regime the taxation of nominal capital

gains and bond interest income combined with a persistent inflation target (ρπ = 0.97) and a
monetary accommodation of energy shocks (ξ = 0.072) created a perfect storm that exaggerated
the effects of energy shocks. The results indicate that a drastic reduction in any one of those fiscal
or monetary policy parameters would generate a much smaller loss in consumption. Thus, the
reduced economic volatility after an energy shock observed in the late regime can be attributed, in
part, to the lower values of ρπ and ξ.

6 Conclusion
This paper investigates how the oil price shocks of the 1970s could have led to both a large decline
in output and hours worked and a sharp rise in the inflation rate. Prior to 1980, the Fed responded
to oil price shocks by allowing the inflation rate to rise. Although the Fed raised interest rates
following the 1970s oil shocks, that particular increase was insufficient to prevent inflation and
long-run inflation expectations from rising. As a result, higher inflation increased the effective
taxes on both bond interest income and capital gains. Capital gains taxes are paid on realized capital
gains, so the accrual equivalent tax rate is much lower than the statutory tax rate. Households select
when to pay the capital gains taxes and can avoid those taxes entirely on about 60 percent of the
gains. For example, capital gains taxation can be avoided taxation by placing funds in tax-exempt
retirement accounts or by bequeathing the capital to heirs. Nevertheless, that mechanism is still
powerful enough to generate sizable real effects from oil price shocks. Once Fed Chairman Paul
Volcker adopted a disinflationary policy and stopped accommodating energy price shocks, the
impact of oil price shocks on the economy was greatly reduced.
Our model generates solutions for some apparent problems from the 1970s macroeconomic

experience. First, it explains why the real economy reacted so sharply to the first oil shocks and
how both a stagnant economy and high inflation could exist simultaneously. Second, it rationalizes
why the real effects from an oil price shock dissipated after 1980 and accounts for the apparent
asymmetry in the response of the economy to positive and negative shocks. The large negative
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shocks that occurred in the 1970s were accompanied by an easier monetary policy that amplified
the real effects. The positive shocks in the later period occurred after the Fed had earned credibility
for its low-inflation policy.
This paper contributes to our understanding of the past, but also carries an important warning

for policymakers today. Since bond interest income and capital gains taxes are still not indexed
to inflation, reversion to a monetary policy regime that accommodates energy price shocks risks
returning us to the high inflation and slow growth economy of the 1970s. Some economists argue
that the Fed should raise the inflation target but for a variety of different reasons, including the zero
lower bound on interest rates, the large stock of outstanding government debt, the loss of home
equity during the financial crisis, the high unemployment rate, and the rising cost of crude oil.
Each of those recommendations must be evaluated separately on its merits in a model that includes
the relevant features. One critical feature that should be included in any business cycle model is
the tax code and how it interacts with inflation under the proposed monetary policy regime.
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Figure 5. Sensitivity of the Consumption Loss to Policy Parameters* 

* The values on the vertical axis represent the present value of consumption lost 
following a 1-percent negative energy supply shock. The computations are from the 
Early Regime baseline calibration, which is indicated by the circles in each panel.
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