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Abstract

Forecasts are a central component of policy making; the Federal Reserve’s forecasts are
published in a document called the Greenbook. Previous studies of the Greenbook’s inflation
forecasts have found them to be rationalizable but asymmetric if considering particular subpe-
riods, e.g., before and after the Volcker appointment. In these papers, forecasts are analyzed
in isolation, assuming policymakers value them independently. We analyze the Greenbook fore-
casts in a framework in which the forecast errors are allowed to interact. We find that allowing
the losses to interact makes the unemployment forecasts virtually symmetric, the output fore-
casts symmetric prior to the Volcker appointment, and the inflation forecasts symmetric after
the onset of the Great Moderation.
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1 Introduction

The forecasts that the Fed produces to conduct monetary policy are contained in the Greenbook

(or, more recently, the Tealbook). Made publicly available at a 5-year lag, Greenbook forecasts

have been used to study various aspects of Fed behavior, such as whether the Fed’s forecasts are

rationalizable or whether the Fed has an informational advantage over the private sector.1 The Fed’s

forecasting behavior is important for our understanding of monetary policy design. For example,

previous studies have argued that observed shifts in Fed’s forecasting behavior relate to changes in

monetary policy objectives (see Orphanides, 2002; Capistrán, 2008).

Across the literature, forecasting behavior is modeled as a loss minimization problem in which

the losses for each variable of interest are assumed symmetric and independent of other variables.

If the forecaster has symmetric preferences, she experiences equal loss for forecast errors of the

same size regardless of the sign. In addition, underpredicting inflation and overpredicting output

growth could yield higher loss than overpredicting inflation and overpredicting output growth.

In this paper, we study the Fed’s forecasting behavior in an environment in which losses for

inflation, unemployment rate, and output growth are asymmetric (see Elliott et al., 2005, 2008)

and allowed to interact with each other (see Komunjer and Owyang, 2012). Ellison and Sargent

(2012) argue that FOMC members forecasts might be biased (and less efficient under quadratic loss)

because robust policymaking under model uncertainty may require policymakers to make “worst

case scenario” forecasts. If the risks are asymmetric (i.e., inflation above target and unemployment

above target are more costly than their counterparts), it makes sense that the forecasts could also

be asymmetric. We also formalize a multiple break test for loss asymmetry parameters.

Consistent with Capistrán (2008), we find that the forecast loss function changes at the time of

Volcker appointment as Chairman of the Fed. Unlike previous studies, we show that unemployment

forecasts are virtually symmetric, output growth forecasts are symmetric previous to Volcker’s

appointment; and that inflation forecast asymmetry in the post Volcker era is mostly accounted for

by the disinflation period.

1For example, Swanson (2004) finds that the Fed’s forecast errors are, on average, biased and/or correlated with
the information available at the time the forecasts are made. Standard tests—e.g., those employing Theil-Mincer-
Zarnowitz regressions—reject that the Fed forecasts are rationalizable (e.g., Jansen and Kishan, 1996); others (e.g.,
Sims, 2002; Romer and Romer, 2000) have determined that Fed forecasts are not only rationalizable but encompass
private sector forecasts. Other recent papers that examine the Greenbook forecasts are Wang and Lee (2012) and
Rossi and Sekhposyan (2011).
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We argue these results hint to an alternative interpretation of the historical analysis of monetary

policy. Orphanides (2001, 2002, 2004) argues that starting with Chairman Volcker, the Fed came

to terms with the difficulties in predicting real variables. Thus, the Fed became less active in trying

to stabilize the perceived output gap. Our results are broadly consistent with this previous finding,

but can be viewed from a slightly different angle based on the preferences of the forecaster. We

conclude that the Fed forecasts changed from emphasizing two-sided accuracy in output growth to

emphasizing two-sided accuracy in inflation.

The balance of the paper is outlined as follows. Section 2 reviews the multivariate non-separable

asymmetric loss function and its properties. It also provides an illustrative example of symmet-

ric/asymmetric and separable/non-separable loss. Section 3 describes the Greenbook forecast data,

the realization data, and the instruments. This section also describes the estimation of the loss

function parameters, the J-test used to evaluate forecast rationality, and the break test for the

asymmetry parameters. Section 4 describes the results of the forecast rationality test and the

estimates of the asymmetry parameters in the forecast loss function. Section 5 discusses the impli-

cations of the previous section’s findings for analyzing monetary policy. Section 6 concludes.

2 State-dependent Asymmetric Loss

The Federal Reserve’s loss function associated with particular economic outcomes may change

over time, depending, say, on the preferences of the Chairman. Furthermore, the overall loss may

be higher when overpredicting both output and unemployment than the sum of the losses from

overpredicting each of the two variables separately. We can capture this asymmetry by making

three changes to the loss function underlying the Fed’s forecasts: Assuming away symmetry for

positive and negative errors of the same magnitude, separability across variables, and time/state

invariance.2

Most models of forecaster behavior assume that predictions are generated using a loss function

that increases with squared forecast errors. A simple squared loss function is directionally symmet-

ric, separable, and time (and state) invariant. Symmetry means that positive forecast errors are

2Altering the loss function does not necessarily change the posterior distribution for the forecasts. Choosing a
loss function can be thought of as selecting the “point value” of the forecast used in, for example, policymaking. As
an example, if the loss function is the mean squared error, the point value of the forecast is the mean; If the loss
function is the mean absolute error, the point value of the forecast is the median.
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equally as costly as negative forecast errors of the same magnitude. Elliott et al. (2005) showed that

the symmetry assumption can be relaxed by including a (vector of) parameter(s) that governs the

degree of directional asymmetry. Forecasts generated from directionally asymmetric loss functions

will be biased, as the forecaster prefers to either systematically underpredict or overpredict.

Separable loss implies that the costs of forecast errors for one variable do not depend on the

forecast errors for others. This feature is clearly undesirable if we want to allow the Fed’s objectives

in forecasting, say, inflation to depend on its forecasts of output. Komunjer and Owyang (2012)

generalized the asymmetric loss introduced by Elliott et al. (2005) to allow for interactions between

forecast errors for different variables.3 For example, underpredicting inflation may be less costly if

output growth ends up higher than expected and more costly if output growth ends up lower than

expected.

Finally, some studies have argued that forecasters’ behavior may change over time.4 While

Capistrán (2008) focused on how the loss function varies across Fed chairmen, it may also be

possible that the cost of some forecast errors depends jointly on the state of the economy.

2.1 The Loss Function

We adopt the multivariate, non-separable, asymmetric loss framework of Komunjer and Owyang

(2012) that nests both separability and symmetry. The forecaster (in this case, the Fed) attempts

to predict future values of an n vector of macroeconomic variables, yt. Define ft+s,t as the s-period-

ahead forecast of yt+s computed using information available at time t. The forecaster’s information

set Ft may include lagged values of yt in addition to other covariates used to predict yt+s. Hereafter,

we focus on one-period-ahead forecasts and set s = 1. Define et+1 as the n vector of forecast errors

for yt+1, i.e., et+1 ≡ (yt+1 − ft+1,t). The forecaster’s problem is to construct a prediction which,

conditional on information known at time t, minimizes the expected loss E [Lp(τ, et+1) | Ft] with:

Lp (τ, e) ≡
(
‖e‖p + τ ′e

)
‖e‖p−1

p , (1)

3Using individual Blue Chip forecasts, Komunjer and Owyang (2012) found that the forecasters’ loss was increased
with unexpectedly worse joint economic outcomes, i.e., lower-than-expected output growth, looser-than-expected
monetary policy, and higher-than-expected inflation.

4For example, Rossi and Sekhposyan (2011) and Croushore (2012) find that the results of rationality tests can
vary depending on the subsample used.
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where e is an n vector of forecast errors, and ‖e‖p denotes its p-norm.5,6

The loss function (1) has n + 1 parameters: a shape parameter p ∈ [1,∞) and an asymmetry

parameter n vector τ that belongs to the unit ball in Rn equipped with the norm ‖ · ‖q, where

1/q + 1/p = 1, i.e., τ ∈ {u ∈ Rn : ‖u‖q ≤ 1}. When the shape parameter p = 1, the loss function

collapses to a multivariate tick loss sometimes used in quantile estimation.

The components (τ1, . . . , τn) of the n vector τ govern the degree and direction of asymmetry

associated with each of the forecasted variables. For τ = 0, there is no asymmetry: Lp (τ, e) places

equal weights on forecast errors in either direction. Values of τi (i = 1, . . . , n) greater than zero

indicate greater loss for positive forecast errors (underprediction) in the ith component of yt+1.

This means that, conditional on the information at time t, the distribution of forecast errors for

that component will have a nonzero mean. The larger |τi| is, the greater the loss and the more the

distribution of the corresponding forecast error will be biased away from zero.

In order to capture potential state-dependence, we allow the forecaster’s asymmetry parameter

τ to change. Specifically, we focus on the case in which τ can switch between two different values,

τ1 and τ2, at known switching times. Letting P be the sample size over which the forecast errors

are observed, starting at t = R and ending at t = (R+ P − 1) ≡ T , we denote by t1, t2, . . . , tS the

switching times so that

τ =

 τ1, for t ∈ [R, t1 − 1] ∪ [t2, t3 − 1] ∪ . . . ∪ [tS , T ]

τ2, for t ∈ [t1, t2 − 1] ∪ [t3, t4 − 1] ∪ . . . ∪ [tS−1, tS − 1]
(2)

if S is even. Similarly, if S is odd, then the last time intervals during which τ1 and τ2 are observed

become [tS−1, tS − 1] and [tS , T ], respectively. Figure 1 plots a simple example in which S = 6 and

τ is scalar.

{Figure 1: about here }

The forecasting is then performed as follows: The forecaster uses data from 1 to R to compute

5Komunjer and Owyang (2012) show that (i) Lp (τ, ·) is continuous and nonnegative on Rn; (ii) Lp (τ, e) = 0 if
and only if e = 0 and lim‖e‖p→∞ Lp (τ, e) =∞; (iii) Lp(τ, ·) is convex on Rn.

6In the univariate case, this flexible loss family includes: (i) the squared loss function, L2(0, e) = e2 and (ii) the
absolute deviation loss function, L1(0, e) = |e|, as well as their asymmetric counterparts obtained when τ 6= 0, which
are called (iii) the quad-quad loss, L2(τ, e) and (iv) the lin-lin loss, L1(τ, e).
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the first forecast of yR+1, f̂R+1,R; the estimation window is then rolled on, and data from 2 to R+1 is

used to compute f̂R+2,R+1. Up until t1, the forecaster’s degree of asymmetry equals τ1. This means

that the forecasts
(
f̂R+1,R, . . . , f̂t1,t1−1

)
are computed by minimizing the conditional expectations of

Lp(τ1,yt+1 − ft+1,t) (t = R, . . . , t1 − 1) given the relevant information. From time t1, i.e., starting

with the forecast f̂t1+1,t1 , the forecaster’s degree of asymmetry changes to τ2 and remains so up

to time t2. Hence, the forecasts
(
f̂t1+1,t1 , . . . , f̂t2,t2−1

)
minimize E

[
Lp(τ2,yt+1 − ft+1,t)

∣∣Ft] , with

t = t1, . . . , t2 − 1. The exercise continues until the end of the forecasting period, at t = T .

The forecaster’s problem outlined above does not depend on the specific model used to generate

the forecasts. As argued above, one can think of the loss function as affecting the forecaster’s

point estimates of the coefficients of whatever model chosen. This means that the model that

the forecaster uses does not affect the econometrician’s estimates of the forecaster’s loss function

parameters. Also, these estimates do not depend on the scheme—rolling or recursive—that the

forecaster uses to construct the time series of forecasts.

2.2 Implications for Rationality Testing

Differences in the loss function also have implications for testing rationality. Past studies have

sought to test the rational expectations hypothesis by evaluating private sector forecasts. Using

the earliest methods (e.g., the Theil-Mincer-Zarnowitz regressions), a forecast was deemed rational

if the forecast errors were mean zero and uncorrelated with information available at the time the

forecast was made.7 Many, if not most, of these studies found evidence against rationality. These

methods, however, implicitly assume that the forecaster’s loss function is symmetric (quadratic, in

most cases).

More recently, Elliott et al. (2005, 2008) showed that private sector forecasts can be rationaliz-

able under asymmetric loss. Unlike squared or absolute error loss, asymmetric loss assigns different

penalties depending on whether the realization was above or below the forecast. As an example,

Elliott et al. (2005) found that private sector forecasts could be rationalizable if forecasters were

attaching more loss to overpredicting output growth than underpredicting.

7See Theil (1958), Mincer and Zarnowitz (1969), Figlewski and Wachtel (1981), Mishkin (1981), Zarnowitz (1985),
and Keane and Runkle (1990).
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2.3 An Illustrative Example

{Figure 2: about here }

The consequences of non-separable asymmetric loss can be made more apparent by describing

the bivariate case, n = 2. For simplicity of exposition, also assume p = 2. In this case, the loss

function (1) can be rewritten as

L2 (τ, e) = e2
1 + e2

2 + (τ1e1 + τ2e2)
(
e2

1 + e2
2

)1/2
. (3)

The shape of the iso-loss curves—representing combinations of forecast errors corresponding to

constant loss—is determined by the parameters τ1 and τ2. Figure 2 shows the iso-loss curves for

several different parameterizations. When τ1 = τ2 = 0, the loss L2 (τ, e) is symmetric and the

iso-loss curves are perfectly circular. If either τ1 6= 0 or τ2 6= 0, the iso-loss curves are warped in the

direction of the asymmetry. The directions in which the iso-loss curve is the closest to the origin

are the ones in which the loss increases the most.

For general values of τ1 and τ2, the loss (3) is non-separable in the forecast errors e1 and e2.

This nonseparability is an important feature as it allows the forecast errors of one variable to affect

the forecasts in the other variable. In particular, even if loss is directionally symmetric in the first

variable (i.e., τ1 = 0), asymmetry in the second variable (i.e., τ2 6= 0) can produce bias in the

forecasts of y1. This effect is revealed in the third term of (3) when τ1 = 0. The loss induced

by e1 is e2
1 + (τ2e2)

(
e2

1 + e2
2

)1/2
, which depends on both the magnitude and direction of e2.8 This

dependence suggests an alternative explanation of the biased forecasts previously documented in

the literature: It is not that the forecaster’s loss is asymmetric in the the first variable; rather,

the loss is symmetric in e1 but its magnitude depends on the error committed in forecasting the

second variable. In this sense, our loss (3) captures the aforementioned effect that underpredicting

inflation is less costly when output is higher than expected and more costly when output is lower

than expected.

We can also examine the properties of the forecasts that would be produced from various

8Note, however, that if τ1 = 0, the direction of e1 does not enter the loss.
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parameterizations of the loss function. Suppose that yt is generated from a VAR(1):

yt = c + Ayt−1 + εt, (4)

where εt is iid multivariate normal with zero mean and covariance matrix Σ.9 Based on the loss

function, the one-period-ahead forecast is f̂t+1,t = ĉ + Âyt, where

(ĉ, Â) ≡ arg min
(c,A)

P−1
P∑
t=1

L2(τ,yt+1 − c−Ayt), (5)

which minimizes the expected value of the loss conditional on the data and a correctly-specified

VAR(1). We then construct P = 250 periods of bivariate forecasts for given sets of asymmetry

parameters using the same generated data.

{Figure 3: about here }

The joint distribution of the resulting time series of forecast errors is shown in Figure 3. The

directional bias of the forecast errors is evident from the plots.

3 Data and Estimation

3.1 Data

Our dataset contains three elements: the forecasts, the realizations, and the instruments used to

test rationality. The sample period is September 1966 to December 2007. The forecast data are the

one-quarter-ahead forecasts of the output growth rate, the inflation rate, and the unemployment

rate taken from the Greenbook. The Greenbook forecasts are publicly available at a 5-year lag

and vary in frequency over the sample period.10 At the beginning of the sample, the Greenbook

9To generate the data, we simulate T = R + P − 1 periods of data from the VAR(1) after discarding the first
1000 periods to remove any initial values effects. The forecaster uses a rolling window of size R = 100 to construct
P = 250 one-period-ahead forecasts.

10Greenbook forecasts are prepared by the Board of Governors staff and distributed a few days before each FOMC
meeting. Forecasts are constructed using both large scale econometric models and subjective assessments. In par-
ticular, the path of interest rate assumed in these forecast is subjective. Over the course of the forecast exercise,
the suggested path may be revised if the econometric models or the staff suggest that such path is unlikely to be
realized. The forecasts do not necessarily reflect board opinions, as they are calculated before the Federal Reserve
Board makes a decisions on policy.
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forecasts were available monthly; after 1981, the Greenbook was produced only for Federal Open

Market Committee (FOMC) meetings. Thus, prior to 1981, we have twelve monthly vectors of

observations per year; after 1981, we have eight or nine observations per year at irregular intervals.

The maximum forecast horizon varies across Greenbooks in particular for the earlier dates in our

sample.

The realization data is a matter of some controversy, based on one’s beliefs about the veracity

of data revisions. One could believe, for example, that the intent of the forecaster is to predict

the value released in real time. That is, the forecaster tries to predict the value of, say, output

growth for the first quarter of 1979 which is released in April 1979. On the other hand, one could

argue that the initial release of the data are poor estimates and that the revisions that occur over

time are closer to the truth. If the forecaster’s intent is to predict this latter value, one should use

the most recent vintage of the data. Similar arguments can be made for any intermediate vintage

under the assumption that significant amounts of data revisions are unpredictable and outside the

scope of most agents’ forecasting problems. Two common approaches are taken in the literature.

The first one is to use as realizations the one-year-later revision of the data. The second approach

is to use the latest vintage. We report results using the latest available vintage as the realization.

In addition to changes in frequency, the Greenbook changes the forecasted output growth vari-

able in 1992 from GNP growth to GDP growth. In order to remain consistent, when the Greenbook

changes the forecasted variable, we change the realization accordingly.

Finally, the instruments used to test rationality are one lag of the forecasted series, available

at the time the forecast is released.11 Ideally, we would like to instrument with the information

available at the time the forecast is created, but unfortunately, we cannot judge when exactly the

forecast is created. We know only the time at which the Greenbook was released. We assume

that any data released in the previous month was available to the forecaster. Because forecasters

would not have revisions available at the time they made the forecasts, we use the previous month’s

vintage of the forecasted variables in our instrument set.

11In principle, one could use many lags. However, Komunjer and Owyang (2012) noted that this could lead to the
common “many instruments problem” and result in size distortions of the rationality test.
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3.2 Estimation and Rationality Testing

Komunjer and Owyang (2012) show that the asymmetry parameters in the loss function can be

estimated from the forecast errors using GMM. Using Monte Carlo evidence, they argue that the

shape parameter requires a very long time series for inference—much longer than we have for the

Greenbook forecasts; hence, they suggest calibrating p. We report results for the shape parameter

calibrated to 2, i.e., p = 2. The estimation chooses the value of the asymmetry parameter that

maximizes the GMM objective function derived from the first-order condition for the non-separable

asymmetric loss.

The resulting value of the GMM objective function is used to construct the J-statistic for use in

the rationality test. The test employs the standard test for overidentification to determine whether

the forecasts are rationalizable, conditional on the instrument set (see Komunjer and Owyang,

2012, for details).

3.3 Testing for State-Dependence

To test for state dependence, we construct a Wald test of the no-change hypothesis,

H0 : τ1 = τ2,

against the switching alternative,

H1 : τ =

 τ1, for t ∈ [R, t1 − 1] ∪ [t2, t3 − 1] ∪ . . . ∪ [tS , T ]

τ2, for t ∈ [t1, t2 − 1] ∪ [t3, t4 − 1] ∪ . . . ∪ [tS−1, tS − 1]

when the number of possible states, S, is even and with an analogous definition when S is odd. To

describe the proposed test, split the sample of observed forecast errors into two parts,

D1 ≡ [R, t1 − 1] ∪ [t2, t3 − 1] ∪ . . . ∪ [tS , T ],

D2 ≡ [t1, t2 − 1] ∪ [t3, t4 − 1] ∪ . . . ∪ [tS−1, tS − 1].

if S is even, and use an analogous definition (that swaps the last two intervals) if S is odd. The

idea is then to use a partial-sample GMM estimator that uses the data in D1 to estimate τ1 and
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the data in D2 to estimate τ2. Call τ̂1P and τ̂2P the partial-sample GMM estimators of τ1 and τ2

obtained using the data in D1 and D2, respectively. The Wald statistic for testing H0 against H1

then takes the form

WP ≡ P (τ̂1P − τ̂2P )′
(

1

π

(
B̂′P Ŝ−1

1P B̂P

)−1
+

1

1− π

(
B̂′P Ŝ−1

2P B̂P

)−1
)−1

(τ̂1P − τ̂2P ) ,

where P is the size of the entire forecasting sample, π ∈ [0, 1] is the limit of the ratio P1
P1+P2

when

the sizes P1 and P2 of the partial samples D1 and D2 go to infinity, the estimators Ŝ1P and Ŝ2P

are constructed using the data in D1 and D2, respectively, while the estimator B̂P is constructed

using the entire sample, i.e.,

B̂P ≡
1

T

T∑
t=R

[
‖êt+1‖p−1

p (In ⊗ xt) + (p− 1) ‖êt+1‖−1
p (νp(êt+1)⊗ xt)ê

′
1,t+1

]
,

Ŝ1P ≡
1

πT

∑
t∈D1

[(
M̂1,t+1M̂

′
1,t+1

)
⊗
(
xtx
′
t

)]
,

M̂1,t+1 ≡
(
pνp(êt+1) + τ̂1P ‖êt+1‖p−1

p + (p− 1)τ̂ ′1P êt+1 ‖êt+1‖−1
p νp(êt+1)

)
,

with analogous definitions for Ŝ2P and M̂2,t+1. Note that we can use the entire sample to construct

an estimator for B because the latter does not depend on τ .12 Under the null of no structural

breaks, the partial-sample GMM estimator (τ̂1P , τ̂2P ) has a known distribution, and the Wald

statistic is distributed as χ2 (n), where n is the number of forecasted variables.

4 Empirical Results

In this section, we assess the directional asymmetry in the Fed’s forecast loss function, estimated

using data from the Greenbook forecast. In evaluating the results, it is important to keep in mind

that τ > 0 indicates greater loss for positive forecast errors (underprediction) and that τ < 0 indi-

cates greater loss for negative forecast errors (overprediction). Values of τ that are not statistically

different from zero suggest symmetric loss. In each case, the estimated asymmetry parameter can

be interpreted as the (smallest) degree of asymmetry most consistent with rationality, assuming

the forecast can be rationalized; larger magnitudes of τ suggest more asymmetric preferences.

12Technical details for the test can be found in the Appendix.
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4.1 Benchmark Full Sample Results

As a benchmark, we first estimate a set of (constant) asymmetry parameters for the full sample of

Greenbook forecasts (1966:09 to 2007:12) using both separable loss—which assumes independent

losses for all of the variables—and non-separable loss—which assumes that the directional losses

interact. We obtain the separable loss function parameters by estimating univariate versions of the

loss function, equation (1).

The top row of Table 1 compares the estimates obtained with the separable and non-separable

loss functions for the full sample; the bottom row shows the values of the J-statistic used to test

rationalizability. Consistent with previous studies of both Fed and private sector forecasts, the

Greenbook forecasts are rationalizable if one takes into account potential directional asymmetry.

This result obtains regardless of whether we assume that the loss function is separable or non-

separable; separability only affects the estimates of the minimum degree of asymmetry required

to obtain rationality.13 While the Greenbook forecasts for inflation appear unbiased (and, hence,

symmetric) in the full sample, the loss function parameter most consistent with rationality for

output growth exhibits a substantial degree of asymmetry. The inflation result is also consistent

with the full sample result in Capistrán (2008) and is invariant to the assumption of separable

versus non-separable loss.

The difference between separable and non-separable loss is highlighted by the results for the

unemployment rate. The Greenbook forecasts underpredict the unemployment rate if losses are

assumed to be independent—that is, the unemployment forecasts are unconditionally biased down-

ward. However, if the magnitude and direction of the inflation and output growth forecast errors

are taken into account, the loss for unemployment is essentially symmetric—the unemployment

forecast errors are conditionally unbiased.

This result could imply that policymaking is conducted under the belief of some type of Phillips

curve or Okun-type relationship that relates these variables. In either case, once asymmetry in

inflation and output growth are accounted for, unemployment forecast errors appear symmetric.14

13One might be concerned that using a flexible loss results in an “automatic” finding of rationality. Komunjer and
Owyang (2012), however, found that some private sector forecasters can be found to be unrationalizeable even under
asymmetric loss.

14While the parameter remains statistically different from zero, the value is small, implying that the relative
differences in the directional losses are very small.
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4.2 Changes in the Fed’s Behavior

The empirical literature on the behavior of U.S. monetary policy is rife with instances of instability

attributed to any number of different root causes: Changes in the Fed leadership, differences in

the Fed’s operating procedure, or variation in the volatility of macroeconomic aggregates could be

thought to alter the Fed’s forecast behavior. Capistrán (2008) examines whether the forecast behav-

ior of the Fed has changed over time, focusing primarily on the change in the Fed’s leadership when

Paul Volcker became the chairman of the FOMC. His benchmark model considers the Greenbook’s

inflation forecasts and splits the sample in 1979. Capistrán finds evidence that the asymmetry

parameter for inflation changes across the Volcker split, with higher losses for overprediction in the

pre-Volcker sample and higher losses for underprediction in the post-Volcker sample.15

If the Fed’s forecasting behavior is indeed related to its perception of policy risk, as Ellison and

Sargent (2012) seem to suggest, the asymmetries may imply that the Fed perceived the risk of being

above the inflation objective differently under the two regimes. Thus, Capistrán’s result suggests

that the attitude of policymakers toward inflation changed significantly across the Volcker disin-

flation, a result consistent with other studies (e.g., Clarida et al. (2000)). However, (Orphanides,

2004, 2001) argue against changes in policymaker preferences, opting instead to attribute the differ-

ences in policymaker behavior to variation in the quality of the real-time data. In addition, studies

in the forecasting literature suggest that the volatility reduction that occurred during the Great

Moderation may have changed the overall forecastability of macroeconomic aggregates.

Given the potential differences in the interpretation of the loss function asymmetry parameter

shift occurring at various times, we tested a few different break dates using the fixed-break-date

test proposed above. In particular, we tested for breaks at (1) the Volcker appointment, (2) the

Great Moderation, and (3) jointly at the Volcker appointment and at the Great Moderation.16

Table 2 contains the results of our break tests. The top panel shows the Wald statistics for a

joint break in the asymmetry parameters of the full vector of variables under non-separable loss

at the two single-break dates. The second panel contains the results for tests considering breaks

in each individual data series, estimated with separable loss. We perform the second set of ex-

15Capistrán’s univariate analysis is equivalent to isolating the inflation parameter in a separable loss function. In
this sense, our loss function can be thought of as nesting the baseline model in Capistrán.

16The Volcker appointment is assumed to occur in October 1979 and the Great Moderation break is assumed to
occur in January 1984 (see McConnell and Perez-Quiros (2000)).
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periments in order to determine if there are breaks in the forecast error series for the individual

datasets and we use separable loss to avoid imposing a null hypothesis on the other variables. The

third panel contains the Wald statistics for the joint break. In this panel, we are testing for a break

at the onset of the Great Moderation, assuming the existence of a break at the Volcker appointment.

We find strong evidence of a break—in particular, at the time of the Volcker appointment.

However, we also find evidence of a second break in at least two of the three variables occurring at

the time of the Great Moderation, even after the sample is split at the Volcker appointment.

Based on these tests, we propose an alternative cause for the variation in the forecasting be-

havior. The break results suggest that the Volcker disinflation—the time between the Volcker’s

appointment and the beginning of the Great Moderation—was a possibly unique period for fore-

casting. The change in inflation’s forecastability subsequent to the onset of the Great Moderation

(and post Volcker disinflation) was highlighted in Atkeson and Ohanian (2001), who argued that

simple random-walk forecasts outperform Phillips curve models during the Great Moderation pe-

riod, and Stock and Watson (2007), who argue for an integrated moving-average forecast of inflation

given the variation in trends over the U.S. post-War period.

Whether the cause is a decline in macroeconomic volatility or an increase in the central bank’s

anti-inflation credibility in the wake of the Volcker disinflation, it seems sensible to analyze inde-

pendently the forecasts before the Volcker appointment and subsequent to the onset of the Great

Moderation. In addition to including two breaks, we allow the forecast errors to interact in the

loss function, taking into account the possibility of the forecaster’s belief in Phillips curve-type

macroeconomic relationships.

Table 3 contains the estimates of the asymmetry parameters for the loss functions with various

break dates. The last column of the first two rows of Table 3 repeats Capistrán’s one-break,

separable loss, inflation-only experiment with longer subsamples. Results for the Volcker break are

broadly consistent with Capistrán’s results for inflation: If the sample is split in 1979:III, the Fed

appears to prefer overprediction prior to Volcker and underprediction after Volcker is appointed.

The other columns of Table 3 show the parameter for separable and non-separable loss. In both

cases, output forecasts are essentially symmetric prior to Volcker but very conservative subsequent

to the Volcker appointment. Consistent with the full sample results, unemployment rate forecasts
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appear asymmetric when analyzed in isolation but appear symmetric if taken together with other

forecasts.

The next two rows of Table 3 show the estimated asymmetry parameters for a single break at

the onset of the Great Moderation. Our preferred specification is the two break model that treats

the Volcker disinflation as a special event and, thus, consists of the first and fourth rows under the

non-separable loss. The salient features of this specification are that (1) inflation forecasts were

asymmetric (underpredictive) prior to the Volcker disinflation but essentially symmetric after the

volatility reduction; (2) output forecasts were essentially symmetric prior to the Volcker disinflation

but underpredictive during the volatility reduction; and (3) unemployment rate forecasts were

always symmetric when analyzed in the context of the other forecasts, regardless of the sample.

5 Implications for How We Interpret Monetary Policy

Our results may have additional implications for the historical analysis of monetary policy. Clarida

et al. (2000) argued that, prior to Volcker’s appointment, the Fed’s policy rule put too little emphasis

on stabilizing inflation. Subsequently, under Volcker and Greenspan, the Fed responded to expected

inflation more aggressively, resulting in the end of the Great Inflation. Orphanides (2004), using

real-time data and Greenbook forecasts, finds that the policy rule was essentially stable since the

1960s except for the output response. Thus, Orphanides concludes that the period of high inflation

was the result of inaccurate real-time data leading to inaccurate forecasts rather than a policy not

aggressive enough in fighting inflation. Capistrán’s result tends to support Clarida et al. (2000),

claiming that the Fed became more pro-active about maintaining price stability simultaneously

with an increased loss for underpredicting inflation.

On one hand, we can think of our results as augmenting Capistrán’s result. He argued that

the Volcker disinflation changed the preferences from underpredictive to overpredictive. Indeed, we

find a change in the forecast behavior for inflation consistent with this directionality; however, we

do not find that the inflation forecasts are overpredictive once we account for the forecast errors of

the other variables.

Could our result be consistent with Orphanides? If the pre-Volcker Fed cared about output and

had a misspecified Phillips curve, the Greenbook inflation forecasts may have been consistently be

14



low. Thus, prior to the Volcker break, the forecast errors are consistent with a model in which

the policymaker believes in a Phillips curve-type trade-off. Subsequent to the onset of the Great

Moderation, an apparent Phillips curve-type trade-off still exists but more emphasis appears to be

placed on accurate inflation forecasts. In a Taylor-type policy rule, “overly optimistic” downward

biased inflation forecasts can result in overly accommodative policy. The forecast biases appear

even controlling for the real-time data environment, suggesting a preference-based alternative to

Orphanides view from the trenches. As in Orphanides, policymakers can be forward-looking and

attempting to implement optimal policy, yet still induce instability based on biases in the forecasts.

In our case, however, these biases appear to be recurring, if not intentional.

6 Conclusions

We study the forecasting behavior of the Federal Reserve and attempt to understand its implications

for policy design. We find evidence of systematic bias in the Greenbook forecasts of inflation and

output growth used to conduct policy. Biases in the unemployment forecasts are mitigated when

taken into context with the directionally-biased forecasts in the other variables.

We find an interesting pattern in the forecasts when considering subsamples prior to the Volcker

appointment and subsequent to the onset of the Great Moderation. In the former subperiod,

inflation forecasts are biased downward but output growth forecasts are essentially unbiased. In

the latter period, the opposite is true: Inflation forecast errors are essentially mean zero and output

forecasts appear conservative.

These results are broadly consistent with other studies on the change in monetary policy that

occurred in the late 1970s, which has been interpreted by Orphanides as the Fed coming to terms

with the difficulties in predicting real variables and by Capistrán as a change in the Fed’s forecast

behavior for inflation. Our results extend and refine Capistrán’s in a multivariate setting, where

the inflation forecasts are not taken in isolation. The change in the policy behavior observed in the

literature appears to be simultaneous with a shift in the Fed’s forecast behavior.
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A Testing for Breaks in Parameter Estimates

We consider the setup in which, at time t, the forecaster is interested in constructing one-step-ahead

predictions of an n-vector of interest, yt+1 (n > 1). Letting ft+1,t and et+1 ≡ yt+1 − ft+1,t denote

the one-step-ahead forecast and the corresponding forecast error, we shall assume that the forecasts

are constructed to minimize the expected n-variate loss, Lp (τ0, ·),

Lp (τ0, e) ≡
(
‖e‖p + τ0

′e
)
‖e‖p−1

p , (6)

with unknown parameter τ0 ∈ Bnq , where 1/p+ 1/q = 1 and 1 6 p <∞ is known. Specifically, the

forecaster is assumed to solve the following minimization problem:

f∗t+1,t = arg min
{ft+1,t}

E [Lp (τ0,yt+1 − ft+1,t)| Ft] , (7)

where Ft denotes the forecaster’s information set that is informative for yt+1 (e.g., lagged values

of yt as well as other covariates), and the loss Lp (τ0, ·) is defined as above. Komunjer and Owyang

(2012) show that (7) is equivalent to the following forecast rationality condition:

E

[
pνp(e

∗
t+1) + τ0

∥∥e∗t+1

∥∥p−1

p
+ (p− 1)τ ′0e

∗
t+1

νp(e
∗
t+1)∥∥e∗t+1

∥∥
p

∣∣∣∣∣Ft
]

= 0, a.s.− P, (8)

where e∗t+1 ≡ yt+1 − f∗t+1,t is the optimal forecast error, and for any u = (u1, . . . , un),

νp(u) ≡ c(lim sgn(u1)|u1|p−1, . . . , lim sgn(un)|un|p−1)′

We are concerned with situations in which the forecaster’s asymmetry parameter τ is allowed

to change in time. We focus on the case in which τ can switch between two different values, τ1

and τ2, at known switching times. Letting P be the sample size over which the forecast errors

are observed, starting at t = R and ending at t = R + P − 1 ≡ T , we denote by t1, t2, . . . , tS the

switching times so that

τ =

 τ1, for t ∈ [R, t1 − 1] ∪ [t2, t3 − 1] ∪ . . . ∪ [tS , T ]

τ2, for t ∈ [t1, t2 − 1] ∪ [t3, t4 − 1] ∪ . . . ∪ [tS−1, tS − 1]
(9)
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if S is even. Similarly, if S is odd, then the last time intervals during which τ1 and τ2 are observed

become [tS−1, tS − 1] and [tS , T ], respectively.

The forecaster then uses data from 1 to R to compute the first forecast of yR+1, f̂R+1,R; the

estimation window is then rolled on, and data from 2 to R + 1 is used to compute f̂R+2,R+1. Up

until t1, the forecaster’s degree of asymmetry equals τ1. From t1, i.e., starting with the forecast

f̂t1+1,t1 , the forecaster’s degree of asymmetry is allowed to change to τ2 up to time t2. The exercise

continues until the end of the forecasting period, at t = T . We shall make the following assumption:

Assumption 1 Let P1 and P2 denote the lengths of the forecasting samples corresponding to

regimes 1 and 2, respectively, i.e., P1 ≡ (t1 − R) + (t3 − t2) + . . . + (T − tS) and P2 ≡ (t2 −

t1) + (t4 − t3) + . . .+ (tS − tS−1) if S is even, and P1 ≡ (t1 −R) + (t3 − t2) + . . .+ (tS − tS−1) and

P2 ≡ (t2− t1)+(t4− t3)+ . . .+(T − tS) if S is odd. Then, (R,P1, P2)→∞ and P1
P1+P2

→ π ∈ [0, 1].

Put in words, Assumption 1 says the following: Consider the two samples of forecast errors

êt+1 ≡ yt+1 − f̂t+1,t: those of size P1 constructed under τ1, and those of size P2 constructed under

τ2. Then, the first requirement is that both sample sizes P1 and P2 go to infinity. This requirement

restricts the class of switching processes we can allow for, though the restriction is fairly weak.

The number of switches S can be either finite or infinite and either deterministic or random. For

example, if S is finite, then Assumption 1 requires that the forecaster starts the forecasting exercise

with the parameter τ1 and ends the latter with τ2, thus ensuring that both P1 and P2 go to infinity.

This situation would exclude situations in which the forecaster’s parameter shifts from τ1 to τ2 and

back somewhere within the forecasting sample, since in this case P2 remains finite. With P2 finite,

it would be impossible to distinguish this case from the “no-switch” one in which the parameters

remains equal to τ1 throughout the forecasting sample. As already pointed out, the switching

process can be either deterministic or random. In the latter case, however, it is necessary that the

process be such that the ratio P1/(P1 + P2) converges to some known constant π in [0, 1]. The

final requirement of Assumption 1 is that the length R of the first estimation window also goes to

infinity, which is a standard requirement in the forecasting literature (see, e.g., West, 2006).

For simplicity, we shall in the first approximation ignore the forecast estimation uncertainty and

thus assume that the observed forecast errors êt+1 do not differ from their optimal counterparts

e∗t+1. To keep the notation simple, we hereafter denote the forecast errors by et+1. The objective
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of the exercise is to estimate τ1 and τ2 from the sequences of observed forecast errors and to test

whether or not they are equal. Here, the sequence of times of change t1, . . . , tS is assumed to be

known to the forecast evaluator.

Estimation and testing is done following the ideas in (Andrews and Fair, 1988; Andrews, 1993).

For this, we first need to generalize their setup, which allows only for a single shift (break). We

start by splitting the sample of observed forecast errors into two parts,

D1 ≡ [R, t1 − 1] ∪ [t2, t3 − 1] ∪ . . . ∪ [tS , T ],

D2 ≡ [t1, t2 − 1] ∪ [t3, t4 − 1] ∪ . . . ∪ [tS−1, tS − 1],

if S is even, with an analogous definition (that swaps the last two intervals) if S is odd. The idea

is then to use a partial-sample GMM (PS-GMM) estimator that uses the data in D1 to estimate

τ1 and the data in D2 to estimate τ2. This estimator is the building block of the Wald test of the

asymmetry parameter constancy. To describe the estimator, suppose the true value of θ ≡ (τ ′1, τ
′
2)′

is θ0 ≡ (τ ′10, τ
′
20)′. Note that the dimension of the parameter θ equals 2n and that θ takes values in

Θ ≡ Bnq × Bnq . For the observations t ∈ D1, we have the population orthogonality conditions

E[gp(τ10; et+1,xt)] = 0, (10)

while for the observations t ∈ D2 we have the population orthogonality conditions

E[gp(τ20; et+1,xt)] = 0, (11)

where xt is an Ft-measurable d-vector of instruments, and gp(·; et+1,xt) : Bnq → Rnd is the nd-

vector-valued moment function given by

gp(τ ; et+1,xt) ≡
(
pνp(et+1) + τ ‖et+1‖p−1

p + (p− 1)τ ′et+1 ‖et+1‖−1
p νp(et+1)

)
⊗ xt. (12)

The idea is then to define an estimator

θ̂P ≡ (τ̂ ′1P , τ̂
′
2P )′
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of θ0 = (τ ′10, τ
′
20)′ that is based on the sample analogues of these orthogonality conditions. Given

p and π, 1 6 p < ∞ and π ∈ (0, 1), and given the observations ((x′R, ê
′
R+1)′, . . . , (x′T , ê

′
T+1)′)′, the

PS-GMM estimator θ̂P is defined as a solution to the minimization problem:

min
θ∈Θ

gp(θ; êt+1,xt)
′Wgp(θ; êt+1,xt), (13)

where gp(; êt+1,xt) : Θ→ R2nd is a 2nd-vector of stacked moment functions,

gp(θ; êt+1,xt) ≡
1

P

∑
t∈D1

 gp(τ1; êt+1,xt)

0

+
1

P

∑
t∈D2

 0

gp(τ2; êt+1,xt)

 , (14)

P = P1 +P2 as before, and W is a positive definite symmetric 2nd× 2nd weighting matrix. As the

definition of the moment function gp in (14) indicates, the estimator θ̂P consists of two components:

τ̂1P , which uses the data in D1 to estimate τ1, and τ̂2P , which uses the data in D2 to estimate τ2.

The estimator of Andrews and Fair (1988) is a special case of the above estimator obtained under

a single shift (break).

We now establish the asymptotic distribution of the PS-GMM estimator θ̂P for the case of no

structural change. Let θ0 ≡ (τ ′0, τ
′
0)′ denote the true value of θ in the case when no structural

change occurs. The following quantities shall be of importance in the asymptotic variance of θ̂P :

Mt+1 ≡
(
pνp(et+1) + τ ‖et+1‖p−1

p + (p− 1)τ ′et+1 ‖et+1‖−1
p νp(et+1)

)
∈ Rn,

S ≡ E
[(

Mt+1M
′
t+1

)
⊗
(
xtx
′
t

)]
∈ Rnd×nd,

B ≡ E
[
‖et+1‖p−1

p (In ⊗ xt) + (p− 1) ‖et+1‖−1
p (νp(et+1)⊗ xt)e

′
t+1

]
∈ Rnd×n,

where π = P1/P as defined before. We shall consider the case where the weighting matrix W in

(13) is optimally chosen as W = V−1.

Theorem 1 Let Assumption A1 and additional technical conditions hold. Then, given p, 1 6 p <

∞, and as (R,P1, P2)→∞, we have

√
P (θ̂P − θ0)

d→ N (0,Ω) where Ω ≡

 1
π (B′S−1B)−1 0

0 1
1−π (B′S−1B)−1

 .
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The above distribution is needed to construct a Wald test of the no change hypothesis,

H0 : τ1 = τ2,

against the switching alternative,

H1 : τ =

 τ1, for t ∈ [R, t1 − 1] ∪ [t2, t3 − 1] ∪ . . . ∪ [tS , T ]

τ2, for t ∈ [t1, t2 − 1] ∪ [t3, t4 − 1] ∪ . . . ∪ [tS−1, tS − 1]
.

Using the result of Theorem 1, we get the following:

Corollary 2 Let the assumptions of Theorem 1 hold. Then, given p, 1 6 p < ∞, and as

(R,P1, P2)→∞, we have

(
1

π
+

1

1− π

)−1

P (τ̂1P − τ̂2P )′B′S−1B (τ̂1P − τ̂2P )
d→ χ2

n under H0.

The Wald statistic for testing H0 against H1 takes the form

WP ≡ P (τ̂1P − τ̂2P )′
(

1

π

(
B̂′P Ŝ−1

1P B̂P

)−1
+

1

1− π

(
B̂′P Ŝ−1

2P B̂P

)−1
)−1

(τ̂1P − τ̂2P ) ,

where the estimators Ŝ1P and Ŝ2P are constructed using the data in D1 and D2, respectively, while

the estimator B̂P is constructed using the entire sample, i.e.,

B̂P ≡
1

T

T∑
t=R

[
‖êt+1‖p−1

p (In ⊗ xt) + (p− 1) ‖êt+1‖−1
p (νp(êt+1)⊗ xt)ê

′
1,t+1

]
,

Ŝ1P ≡
1

πT

∑
t∈D1

[(
M̂1,t+1M̂

′
1,t+1

)
⊗
(
xtx
′
t

)]
,

M̂1,t+1 ≡
(
pνp(êt+1) + τ̂1P ‖êt+1‖p−1

p + (p− 1)τ̂ ′1P êt+1 ‖êt+1‖−1
p νp(êt+1)

)
,

with analogous definitions for Ŝ2P and M̂2,t+1. Note that we can use the entire sample to construct

an estimator for B because the latter does not depend on τ .
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Figure 1: Switching times, S = 6
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Figure 2: Iso-loss contours.
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(b) Higher losses from overestimation. (c) Higher losses from underestimation.

Figure 3: Contour plots of the distribution of simulated forecast errors (kernel density smoothed).
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Nonseparable Loss Separable Loss

UR Growth Inflation UR Growth Inflation

τn 0.03∗∗∗
(0.01)

−0.32∗∗∗
(0.08)

−0.03
(0.05)

0.28∗∗∗
(0.1)

−0.34∗∗∗
(0.08)

0.01
(0.08)

J -stat† 9.53 (p-value, 0.14) 9.44 (p-value, 0.15)

Table 1: Full sample estimates, p = 2.

Notes: The table shows the asymmetry parameters for the unemployment rate

(UR), output growth, and inflation for the Greenbook forecasts using the full

sample of data, 1966:09-2005:12. Standard errors are shown in parentheses.

p-values correspond to the 99th percentile (***), 95th percentile (**), and 90th

percentile (*). The J-stat tests the null of rationalizability of the forecasts. p-

values of the J-test correspond to a χ2 distribution with six degrees of freedom.
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Nonseparable Loss

Volcker Great Moderation

Joint 23.03
(0.00)

7.80
(0.05)

Separable Loss

Volcker Great Moderation

Output growth 13.99
(0.00)

7.50
(0.01)

Inflation 17.32
(0.00)

1.96
(0.16)

Unempl. rate 0.30
(0.58)

0.05
(0.83)

Second Break

Volcker Great Moderation

Output growth - 0.00
(0.98)

Inflation - 30.64
(0.00)

Unempl. rate - 5.88
(0.02)

Table 2: Loss function subsample analysis: Wald tests.

Notes: The table contains the Wald statistic and the

p-values for the tests of breaks in the asymmetry pa-

rameters. The top panel tests for a joint break in each

variable’s asymmetry parameter. The middle panel tests

for breaks in each of the three variables assuming sepa-

rable loss. The bottom panel tests for a one-time break

at the Great Moderation date using only data from the

post-Volcker period. The Volcker break is October 1979.

The Great Moderation break is January 1984.
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Pre-
Volcker

Post-Volcker
Pre-Great
Moderation

Post-Great
Moderation

Nonseparable Loss

Unemp. Rate 0.03∗
(0.01)

0.03∗∗
(0.01)

0.03∗∗
(0.01)

0.03∗
(0.01)

Output Growth −0.01
(0.13)

−0.54∗∗∗
(0.07)

−0.17
(0.11)

−0.52∗∗∗
(0.08)

Inflation −0.24∗∗∗
(0.07)

0.13∗∗
(0.06)

−0.08
(0.06)

0.03
(0.08)

J-Stat 4.57
(0.60)

6.25
(0.40)

6.15
(0.41)

5.98
(0.43)

Separable Loss

Unemp. Rate 0.24∗
(0.13)

0.33∗∗∗
(0.12)

0.28∗∗
(0.12)

0.24∗
(0.13)

Output Growth 0.02
(0.13)

−0.55∗∗∗
(0.07)

−0.17
(0.11)

−0.55∗∗∗
(0.09)

Inflation −0.34∗∗∗
(0.11)

0.28∗∗∗
(0.10)

−0.09
(0.10)

0.15
(0.13)

J-Stat 4.55
(0.60)

6.39
(0.38)

6.3
(0.39)

5.44
(0.49)

Table 3: Subsample analysis: τn estimates, p = 2.

Notes: The asymmetry parameter is asymptotically normal. p-values correspond to the

99th percentile (***), 95th percentile (**), and 90th percentile (*). The J-stat tests the null

of nonrationalizability of the forecasts. p-values of the J-test correspond to a 2 distribution

with sixdegrees of freedom. The asymmetry parameter is asymptotically normal. p-values

correspond to the 99th percentile (***), 95th percentile (**), and 90th percentile (*).
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