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Abstract

This paper surveys recent developments in the evaluation of point and density fore-
casts in the context of forecasts made by Vector Autoregressions. Specific emphasis is
placed on highlighting those parts of the existing literature that are applicable to direct
multi-step forecasts and those parts that are applicable to iterated multi-step forecasts.
This literature includes advancements in the evaluation of forecasts in population (based
on true, unknown model coefficients) and the evaluation of forecasts in the finite sample
(based on estimated model coefficients). The paper then examines in Monte Carlo ex-
periments the finite-sample properties of some tests of equal forecast accuracy, focusing
on the comparison of VAR forecasts to AR forecasts. These experiments show the tests
to behave as should be expected given the theory. For example, using critical values
obtained by bootstrap methods, tests of equal accuracy in population have empirical
size about equal to nominal size.
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1 Introduction

Since the seminal work of Doan, Litterman, and Sims (1984), Litterman (1986), and Sims

(1980), vector autoregressions (VARs) have become an essential tool for out-of-sample fore-

casting in macroeconomics. Their key role is evident in the long list of central bank research

studies that deploy VARs, sometimes explicitly indicating VARs are in use at a particular

central bank. While a complete listing is beyond the scope of the paper, recent examples of

such studies include Coletti and Murchison (2002), Kapetanios, Labhard, and Price (2008),

Bjornland, et al. (2012), Andersson, Karlsson, and Svensson (2007), Beauchemin and Za-

man (2011), and Baumeister and Kilian (2012b,c). By now, VARs are commonly used for

not only point forecasts but also density forecasts, sometimes in the form of fan charts.

Research on VAR forecasting has almost always included comparisons of the accuracy

of VAR forecasts to the accuracy of forecasts from univariate benchmark models. Early

work, such as Litterman (1986), commonly used random walk forecasts as a benchmark for

comparison, reporting Theil’s U statistic, without a formal measure of the statistical signif-

icance of differences in forecast accuracy. It has also become common to compare forecasts

from VARs to forecasts from autoregressive models, since, for many (not all) variables of

interest, an autoregressive model forecast is more accurate than a random walk. In recent

work, it has become more common to provide some measure of the statistical significance

of differences in forecast accuracy, sometimes with caveats about a need to interpret the

results with some caution because existing asymptotic theory does not necessarily apply to

forecasts from VARs. Some recent examples include Clark and McCracken (2010), Clark

(2011), and Baumeister and Kilian (2012a). This trend of increased attempts to evaluate

statistical significance highlights the fact that, while much is now known about proper in-

ference for forecasts from a univariate model (summarized in surveys such as West (2006)

and Clark and McCracken (2011b, 2012b)), much less is known about proper methods for

testing equal accuracy of forecasts from VARs.

Accordingly, in this chapter, we review possible methods for evaluating the accuracy of

out-of-sample forecasts from VARs. As we detail below, what methods are available (and

appropriate) hinges on three aspects of the evaluation to be conducted. The first is the

model specification used to produce multi-step forecasts. If the forecasts are generated with

a direct multi-step model specification, existing results on the evaluation of forecasts from
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a single model can be applied directly.1 But if, as is more common for VARs, multi-step

forecasts are produced by iterating forward 1-step ahead projections, some of the existing

results either become much more complicated to use or cannot be used.

A second key determinant of available methods is the null hypothesis of interest –

whether the relevant null is equal accuracy in the finite sample or equal accuracy in pop-

ulation.2 The distinction between these two hypotheses is whether parameter estimation

error is captured under the null hypothesis (finite sample) or whether the parameters are

treated as known under the null (population). If the null of interest is the former, the results

of Giacomini and White (2006) permit the use of t-tests of equal accuracy and standard

normal critical values, but only for forecasts produced with a rolling window of data for

model estimation and not for forecasts produced with an expanding window. Conceptually,

this poses some challenge with the evaluation of VAR forecasts, since recursive estimation

schemes are commonly used (although the rolling scheme is also regularly used). For a

recursive scheme, at this point in time, there are no theoretically-justified methods for test-

ing equal accuracy of VAR forecasts. From our Monte Carlo analysis, it seems as though

the same tests that are theoretically appropriate under a rolling scheme and the null of

equal accuracy in the finite sample may have reasonable size and power properties under a

recursive scheme, but these tests lack a theoretical basis for the recursive scheme.

If the null hypothesis of interest is equal accuracy in population, the third key aspect of

the forecasting design is the relationship of the VAR to the benchmark forecasting model.

If the VAR does not nest the benchmark model, it is possible to rely on the results of West

(1996) for conducting formal forecast inference, using standard asymptotic distributions.

(If the forecasts are obtained by iteration, West’s (1996) results apply, but can be compu-

tationally difficult.) However, if the VAR does nest the benchmark model of interest, as is

often the case, inference becomes more complicated. At the 1-step horizon, the results of

Clark and McCracken (2001, 2005a, 2012a) and McCracken (2007) provide a basis for in-

ference, using asymptotic critical values obtained by Monte Carlo simulation or bootstrap.

For forecasts at longer horizons obtained by iteration, it becomes difficult to derive the rel-

evant asymptotic distributions. Still, in Monte Carlo experiments, some of the simulation

1Some might prefer that a system of equations all taking a direct multi-step form not be referred to as
a vector autoregression. However, because other studies, such as Koop (2012) and Schorfheide (2005), have
referred to these models as direct multi-step VARs, we follow their precedent.

2See Inoue and Kilian (2004) for an early example of a study drawing a distinction between equal accuracy
in the finite sample and in population.
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or bootstrap methods that work well at the 1-step horizon or with direct multi-step fore-

casts also seem to work well with iterated forecasts from VARs for the purpose of assessing

predictability in population (as noted above, however, this finding does not pertain to the

null of equal accuracy in the finite sample).

We begin the paper by detailing a brief summary of possible methods for testing equal

accuracy of out-of-sample forecasts from VARs, focusing on the relevant econometric theory.

Throughout our analysis we focus on evaluating accuracy variable-by-variable, rather than

on evaluating accuracy for the system of variables as a whole. Although a few studies have

considered multivariate measures of the accuracy of point forecasts (see, e.g., Komunjer

and Owyang (2012)), most research on point forecasts focuses on univariate measures of

accuracy. In the case of density evaluation, a measure of accuracy for the system of variables

— the log predictive score for the vector of variables in the model — is perhaps more natural

than in the case of point forecasts, but even studies of density accuracy commonly consider

univariate measures. We leave as a subject for future research the further development of

tests of the accuracy of point and density forecasts for a vector of variables.

We follow the theory treatment with a Monte Carlo analysis of a small range of tests

of equal accuracy, using data generating processes that allow us to impose equal accuracy

in population, but not in the finite sample. In the interest of brevity, we focus the Monte

Carlo study on nested models, comparing VAR forecasts to AR forecasts, both point and

density. In the Monte Carlo experiments, the tests of equal mean square error and forecast

encompassing considered have size and power properties that seem reasonable. Perhaps

most importantly, when the true model is a set of AR equations that are nested by the VAR

model, and therefore the null hypothesis of no predictive accuracy in population is satisfied,

using bootstrap methods to generate critical values yields rejection rates reasonably close

to the nominal size of 10 percent. As would be expected and appropriate, tests of equal

accuracy in the finite sample have lower rejection rates than tests of equal accuracy in

population.

Throughout we emphasize tests of predictive ability based on forecasts generated by

stationary VARs. We do so because the literature on tests of predictive ability is almost

completely silent on inference when unit roots are present. The sole exception is Corradi,

Swanson, and Olivetti (2001), who extend the analysis of West (1996) to permit cointegrat-

ing relationships but do so only for one-step ahead forecasts from univariate models. Their
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results indicate that in certain special cases, tests of predictive ability are asymptotically

normal as in West (1996). More generally, these tests have non-standard asymptotic dis-

tributions due to the presence of unit roots. They argue that many of their results extend

directly to longer horizon, direct multi-step forecasts but do not show this explicitly. Re-

gardless, there exist no results that are specifically applicable to VARs with unit roots and

hence we focus our attention on stationary VARs.

In addition, we focus exclusively on analytical results that ignore real-time vintage data

issues. We do so in order to focus attention on the primary results within the literature

without having to introduce the additional notation needed to keep track of data revisions.

This should not be interpreted as meaning that real-time data issues are unimportant for

out-of-sample inference. To the contrary, Clark and McCracken (2009) extend the results

in West (1996) allowing for real-time data and find that while many test statistics remain

asymptotically normal they do so with a distinct asymptotic variance structure due to the

presence of data revisions. In the context of this paper, the topic is of particular importance

since VARs are a popular tool for forecasting at many central banks which, by their very

nature, must construct forecasts in real-time using sequences of vintage data. Even so, for

clarity we omit the issue within the remainder.

The rest of the paper proceeds as follows. Section 2 gives a very brief overview of

estimation and iterated multi-step forecasting with stationary VARs, with an emphasis on

how these forecasts differ from those based on direct multi-step models. Section 3 discusses

the existing literature in the context of tests of population predictive ability as compared

to tests of finite sample predictive ability. Section 4 presents Monte Carlo results on the

performance of some basic testing procedures. Section 5 concludes.

2 Constructing the Forecasts

Before examining options for testing the predictive ability of VAR-based forecasts, it is help-

ful to review methods for generating the forecasts. Researchers and practitioners use a range

of approaches to estimating VAR models and generating forecasts. As we explain below,

how the forecasts are generated bears on how the forecasts can be evaluated. This sec-

tion proceeds by first distinguishing iterated multi-step (IMS) and direct multi-step (DMS)

approaches to producing forecasts and then detailing the most common VAR estimation

approaches.
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2.1 DMS vs. IMS Forecasts

In the VAR forecasting literature, it is most common to generate multi-step point forecasts

with the IMS approach (detailed below). However, it is sometimes the case that multi-

step point forecasts are obtained with a DMS approach (e.g., Koop 2012). As Schorfheide

(2005) and Marcellino, Stock, and Watson (2006) note, the DMS approach may yield more

accurate forecasts than the IMS approach if the VAR is sufficiently misspecified. In the

VAR results of Carriero, Clark, and Marcellino (2012), IMS and DMS forecast accuracy is

comparable, with a little advantage to the IMS approach, more so for density forecasts than

point forecasts.

While IMS forecasts are more common than DMS forecasts in VAR-based work, the

testing literature tends to, either theoretically or by example, focus on procedures designed

to accommodate forecasts constructed using the DMS approach. In some parts of the

literature, like that of Clark and McCracken (2001, 2005a), theoretical results on tests of

equal forecast accuracy between two nested models only apply to DMS forecasts. In other

parts of the literature, like West (1996) or McCracken (2000), both IMS and DMS forecasts

are allowed but the theory is much more easily implemented when DMS rather than IMS

forecasts are used and hence the empirical applications focus on DMS forecasts.

To get a feel for the difference between the two forecasting procedures and for why

results for out-of-sample tests of predictive ability may differ when IMS vs. DMS forecasts

are used, suppose we are interested in forecasting a scalar y1 variable τ -periods in the future

using the current, time t value of y1 as a predictor. A DMS approach to point forecasting

would use OLS to estimate the parameters in a simple linear regression of the form

y1,t = β0 + β1y1,t−τ + ε1,t = β′xt−τ + ε1,t (1)

and then construct the point forecast as ŷ1,t+τ = β̂0,t + β̂1,ty1,t = β̂
′
txt where β̂t =

(β̂0,t, β̂1,t)
′ = (t−1

∑t−τ
s=1 xsx

′
s)
−1(t−1

∑t−τ
s=1 xsy1,s+τ ). In contrast an IMS approach to fore-

casting would use OLS to estimate the parameters in a slightly different simple linear

regression model of the form

y1,t = β0 + β1y1,t−1 + ε1,t = β′xt−1 + ε1,t. (2)

With these parameters in hand, and with an implicit assumption that the errors in equation

(2) form a martingale difference sequence, the IMS point forecast of y1,t+τ is ŷ1,t+τ = β̂0,t(1+
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∑τ−1
j=1 β̂

j

1,t) + β̂
τ

1,ty1,t, where β̂t = (β̂0,t, β̂1,t)
′ = (t−1

∑t−1
s=1 xsx

′
s)
−1(t−1

∑t−1
s=1 xsy1,s+1). The

DMS and IMS forecasts are clearly related to one another. They are both linear functions of

xt = (1, y1,t)
′. Moreover, if the errors in equation (2) form a martingale difference sequence,

it is straightforward to show that (the population parameters) β0 and β1 in equation (1)

equal β0(1 +
∑τ−1

j=1 β
j
1) and βτ1 in equation (2) and hence in large enough samples the

forecasts are identical.

That said, as a practical matter the point forecasts made using the IMS approach

are a more complicated function of the parameter estimates β̂t than they are when using

the DMS approach. The complexity of the problem only increases as we move from IMS

forecasts from autoregressive (AR) models to IMS forecasts from VARs. To see this consider

extending the models in (1) and (2) to allow information from other time t predictors. In

particular suppose we are interested in forecasting a scalar y1 variable τ -periods in the

future using the current, time t value of y1 as a predictor and the time t values of predictors

y2 and y3. A DMS approach to point forecasting would use OLS to estimate the parameters

in the linear regression

y1,t = β0 + β1y1,t−τ + β2y2,t−τ + β3y3,t−τ + ε1,t = β′xt−τ + ε1,t (3)

and then construct the point forecast as ŷ1,t+τ = β̂0,t + β̂1,ty1,t + β̂2,ty2,t + β̂3,ty3,t = β̂
′
txt

where xt = (1, y1,t, y2,t, y3,t)
′ and β̂t = (t−1

∑t−τ
s=1 xsx

′
s)
−1(t−1

∑t−τ
s=1 xsy1,s+τ ). In contrast

an IMS approach to forecasting would use OLS to estimate the parameters in the three

equation linear system

 y1,t

y2,t

y3,t

 =

 c1

c2

c3

+

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 y1,t−1

y2,t−1

y3,t−1

+

 ε1,t

ε2,t

ε3,t

 (4)

= C +AYt−1 + εt,

which is equivalent to

Yt = Λxt−1 + εt

= (x′t−1 ⊗ I3)β + εt,

if we define Yt = (y1,t, y2,t, y3,t)
′, β = vec(Λ), and

Λ =

 c1 A11 A12 A13

c2 A21 A22 A23

c3 A31 A32 A33

 .
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With these parameters in hand, and with an implicit assumption that the errors in equa-

tion (4) form a martingale difference sequence, the IMS point forecast of y1,t+τ is ŷ1,t+τ =

ι′((I+
∑τ−1

j=0 Â
j
t )Ĉt+Â

τ
t Yt) where ι′ = (1, 0, 0) and Λ̂t = (t−1

∑t−1
s=1 Ys+1x

′
s)(t
−1
∑t−1

s=1 xsx
′
s)
−1.

The DMS and IMS forecasts continue to be related to one another. They are both linear

functions of xt and as was the case above, if the errors in equation (4) form a martin-

gale difference, it is straightforward to show that (the population) β in equation (3) equals

(ι′(I +
∑τ−1

j=0 A
j)C, ι′Aτ ) and hence in large enough samples the forecasts are identical.

Regardless, the IMS forecasts remain a much more complicated function of β for the IMS

forecasts in (4) than for the DMS forecasts in (3).

2.2 Estimating and forecasting with VARs

Of course the comparison between DMS and IMS forecasts can be generalized further to

allow more lags and more predictors in the system. Accordingly, it will be useful to general-

ize the notation for VAR-based IMS forecasts for use throughout the remainder of the text.

To do so suppose that y1 is the scalar variable we wish to predict at the τ -step horizon but

now assume that there exist n − 1 other predictors and that we allow for m ≥ 1 lags. In

lag order notation the VAR model takes the form

Yt = C +A(L)Yt−1 + εt,

where Y = (y1, y2, ..., yn)′, ε = (ε1, ε2, ..., εn)′ and A(L) =
∑m

j=1AjL
j for n × 1 and n × n

parameter matrices C and Aj , j = 1, ...,m, respectively. This is again equivalent to

Yt = Λxt−1 + ut

= (x′t−1 ⊗ In)β + εt,

if we define xt = (1, Y ′t , ..., Y
′
t−m+1)′, β = vec(Λ), and

Λ = (C,A1, ..., Am) .

Under the maintained assumption that the model errors εt form a martingale difference

sequence, the IMS τ -step ahead forecasting function ŷ1,t+τ = ι′Ŷt+τ , with ι = (1, 0, ..., 0)′,

can be inferred from the recursion Ŷt+τ = ι′(C + A1Ŷt+τ−1 + ... + AmŶt+τ−m), where for

the moment we abstract from how the regression parameters are estimated. But of course

the regression parameters do need to be estimated before the forecasts can be constructed.
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While there are many ways to do so, we focus on OLS and Bayesian estimation since they

appear to be the most common in current applied work.

2.2.1 OLS Estimation

As noted in the previous section, the OLS estimates of Λ take the simple closed form

Λ̂t = (t−1
∑t−1

s=1 Ys+1x
′
s)(t
−1
∑t−1

s=1 xsx
′
s)
−1. For reference in the following section it is

worth noting that if we’re willing to assume that εt forms a martingale difference sequence

and the observables are stationary, the vector of parameter estimates can be represented as

equivalent to the true parameter values plus a term driven by estimation error:

Λ̂t = Λ + (t−1
∑t−1

s=1
εs+1x

′
s)(t
−1
∑t−1

s=1
xsx
′
s)
−1.

Equivalently, if we map this into the definition of β = vec(Λ), this takes the form

β̂t = β +B(t)H(t),

where B = ((t−1
∑t−1

s=1 xsx
′
s)
−1 ⊗ In) and H(t) = vec(t−1

∑t−1
s=1 εs+1x

′
s).

2.2.2 Bayesian Estimation

By now, in the VAR forecasting literature, it is probably more common to use models

estimated by Bayesian methods than models estimated by least squares, particularly with

larger models. One key reason is that studies such as Clark and McCracken (2008), Banbura,

Giannone, and Reichlin (2010), and Wright (2012) have shown forecasts from BVARs to

often be more accurate than forecasts from OLS-estimated VARs, with gains that increase in

the size of the model (however, there are examples, such as Baumeister and Kilian (2012a),

in which an OLS-estimated VAR forecasts better than a BVAR). In no small part this

is due to the number of degrees of freedom used up when estimating a VAR. Bayesian

methods, like ridge regression techniques, use shrinkage of the parameters towards a given

set of priors in order to increase the (finite-sample) precision of the parameters.

As detailed in resources such as Kadiyala and Karlsson (1997), Geweke and Whiteman

(2006), and Karlsson (2012), BVARs can be estimated with a wide array of approaches,

depending in part on the priors that are used.3 Due to computational constraints, Litterman

(1986) developed an approach that is equivalent to applying ridge regression on an equation-

by-equation basis, based on an assumption of an error covariance matrix that is fixed and

3Giannone, Lenza, and Primiceri (2012) extend the common Normal-Wishart setup to incorporate a
hierarchical prior that covers the usual hyperparameters of the Minnesota prior.
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diagonal. With current computational power, Monte Carlo simulation methods are now

often seen as more or less the standard for BVAR forecasting (except with large models).

The simulation method required hinges on the particular prior used. We will proceed to

briefly describe some approaches and then conclude with a discussion of how Bayesian

estimation fits within the methods admitted in the theory underlying forecast evaluation.

Among possible prior specifications or approaches, the simplest case is the Normal-

Wishart prior, which yields a posterior of the same form. Under a Normal-Wishart prior,

the posterior mean of the VAR coefficients can be computed directly, without simulation.

As a consequence, the posterior mean of 1-step ahead forecasts, which is a linear function

of the VAR coefficients, can also be computed directly, without simulation. Studies such as

Carriero, Clark, and Marcellino (2012) and Koop (2012) use a Normal-Wishart prior with

VARs specified in DMS form to similarly obtain multi-step forecasts without simulation.4

In the IMS case, because the multi-step forecasts are non-linear functions of the VAR

coefficients, computing the mean of the posterior distribution of forecasts requires simulation

of the distribution. In practice, though, Carriero, Clark, and Marcellino (2012) find that

the properly simulated mean is essentially the same as an approximate mean computed

by using the posterior mean coefficients to compute multi-step forecasts by iteration, as

outlined above.

More specifically, consider the implementation of a Normal-Wishart prior and poste-

rior, abstracting for now from the details of the prior. By grouping the coefficients and

explanatory variables, the VAR can be written as

Yt = Λxt−1 + εt, (5)

or, even more compactly, as:

Y = XΛ′ + E, (6)

where Y = [Y1, .., YT ]′, X = [x1, .., xT ]′, and E = [ε1, .., εT ]′ are, respectively, T × n, T ×

(nm+ 1) and T × n matrices. The conjugate Normal-Wishart prior takes the form:

Λ′|Σ ∼ N(Λ′0,Σ⊗ Ω0), Σ ∼ IW (S0, v0), (7)

which yields a conditional posterior distribution that is also Normal-Wishart (Zellner 1971):

Λ′|Σ, Y ∼ N(Λ̄′,Σ⊗ Ω̄), Σ|Y ∼ IW (S̄, v̄). (8)

4However, such an approach ignores the serial correlation in the errors of a VAR in DMS form.
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Defining Λ̂′ and Ê as the OLS estimates, we have that

Λ̄′ = (Ω−1
0 +X ′X)−1(Ω−1

0 Λ′0 +X ′Y )

Ω̄ = (Ω−1
0 +X ′X)−1

v̄ = v0 + T (9)

S̄ = Λ′0 + Ê′Ê + Λ̂X ′XΛ̂′ + Λ0Ω−1
0 Λ′0 − Λ̄Ω̄−1Λ̄′.

Karlsson (2012) details the steps involved in simulating the posterior distribution.

This Normal-Wishart approach has both advantages and disadvantages. One advantage

is that the posterior mean of the coefficients can be computed without simulation, which

means that 1-step ahead forecasts can also be computed without simulation and multi-

step point forecasts can at least be approximated very well without simulation. These

considerations have led to the use of the Normal-Wishart prior and posterior (without

simulation) in large model studies such as Banbura, Giannone, and Reichlin (2010) and

Koop (2012). A second advantage is that the posterior distribution can be quickly and

easily simulated. The simulations are quick because the posterior variance of the coefficients

has a Kronecker structure, which greatly speeds the necessary matrix computations. The

simulations are easy because the distributions can be directly simulated, without resorting

to full Markov chain methods such as Gibbs sampling. The disadvantage of the Normal-

Wishart approach is that it does not permit one of the key components of the Minnesota

prior as developed by Litterman (1986): it does not permit one to make the prior on lags of

variable j in equation i tighter than the prior on lags of variable i in the same equation. The

Normal-Wishart specification instead requires the prior variances to be symmetric across

equations.

Avoiding this disadvantage of the Normal-Wishart specification requires using Markov

chain methods such as Gibbs sampling to estimate the BVAR. For example, to implement

a Minnesota prior that includes a different rate of shrinkage on “own” lags versus “other”

lags, the most common approach rests on the Normal-diffuse prior detailed in Kadiyala and

Karlsson (1997), among others. The model is then estimated by Gibbs sampling, using

conditional distributions for the VAR coefficients and the error variance-covariance matrix.

Karlsson (2012) details the steps involved in this sampling. While readily tractable with

smaller models, the computations become more costly as the model size increases, due to

the need for repeated computations with a large variance-covariance matrix of coefficients
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that lacks a Kronecker structure.5

Regardless of the particular approach used to estimate a VAR by Bayesian methods,

Bayesian estimation can be viewed as falling within the scheme of model estimation ap-

proaches assumed in the evaluation theory reviewed in the next section. Most immediately,

because the asymptotic approach of Giacomini and White (2006) does not involve any

assumptions about model estimation, forecasts from Bayesian VARs are allowed in their

framework. While the asymptotic approaches of West (1996), West and McCracken (1998),

and Clark and McCracken (2001, 2005a) each make assumptions about model estimation

methods, Bayesian estimation can be seen as fitting within these assumptions. Consider, for

example, the nested model theory of Clark and McCracken (2001, 2005a), which requires

some form of least squares estimation, but uses asymptotics that treat the estimation sample

size as diverging to infinity. As the sample size used for estimation expands, the importance

of the prior used in Bayesian estimation declines, reaching zero in the limit. This is clear in

the posterior mean of the VAR coefficients given in equation (9). As the sample size grows

to infinity, the data terms X ′X and X ′Y will overwhelm the prior terms Ω0 and Ω−1
0 Λ0,

and the posterior mean of the VAR coefficients will converge to the OLS estimates and, in

turn, the population value. Therefore, asymptotically, Bayesian estimation can be seen as

equivalent to the least squares estimation admitted by the asymptotic theory. Admittedly,

this interpretation is not as straightforward under priors that require Gibbs sampling or

other alternatives to the Normal-Wishart prior and posterior. But even in these cases, it

will generally be the case that, asymptotically, the posterior mean of the VAR coefficient

estimates will converge to the OLS estimates.

3 Theory

In this section we provide an overview of asymptotically valid tests of predictability with an

eye towards distinguishing between inference when DMS or IMS forecasts are being used.

For each test, the statistics are sample averages of functions of a sequence of forecasts and

other observables available at the time of the forecast or when the forecast error is observed.

5Carriero, Clark, and Marcellino (2012) investigate the performance of a Litterman-style approach that
is more tractable for simulation because it treats each equation separately, under the assumption of a fixed
and diagonal error covariance matrix. They don’t find such an approach to improve on a Normal-Wishart
setup, partly because the negative consequences of the assumption of a fixed and diagonal error covariance
matrix offset the positive effects of imposing cross-variable shrinkage.
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3.1 Examples and Notation

Before proceeding to the theoretical results we lay out some notation in the context of the

example of a test of zero mean prediction error when forecasts are made at a four-step

ahead horizon. We do so once assuming DMS forecasts akin to that in equation (3) and

once assuming IMS forecasts using a quarterly frequency trivariate VAR(1) akin to that

in equation (4). We then generalize this very simple testing procedure to pairwise tests of

equally accurate point and density forecasts.

Suppose we have quarterly data from 1947:Q1 - 2012:Q2 for a total of T = 262 ob-

servations. The sample is split into an in-sample period and an out-of-sample period,

respectively. The former is used to estimate the parameters associated with the first fore-

cast while the latter denotes the number of forecast origins from which four quarter-ahead

(τ = 4) forecasts can be constructed. Let 1947:Q1 - 1979:Q4 denote the in-sample period

and 1980:Q1 - 2011:Q2 denote the out-of-sample period, giving us R = 132 in-sample ob-

servations and P − 3 = 127 out-of-sample periods. Note that data from 2011:Q3 - 2012:Q2

are not treated as forecast origins but will be used to construct the forecast errors.

How we construct the test of zero mean prediction error depends on whether DMS or

IMS forecasts are being used.

1. DMS forecast: At each forecast origin t = R, ..., T − 4, the linear regression model in

equation (3) is estimated by OLS using all available data and hence

β̂t = (t−1
∑t−4

s=1 xsx
′
s)
−1(t−1

∑t−4
s=1 xsy1,s+4). Together with the predictors xt these param-

eter estimates yield a sequence of forecast errors of the form ε̂1,t+4 = y1,t+4− ŷ1,t+4, where

ŷ1,t+4 = x′tβ̂t. The test of zero mean prediction error is based on a statistic of the form

(P − 3)−1/2
∑T−4

t=R ε̂1,t+4/Ω̂
1/2, where Ω̂ is a consistent estimate of an unknown long run

variance Ω (characterized later in section 3.2). Note that the numerator of the statistic

can be written in the generic form (P − 3)−1/2
∑T−4

t=R f(Xt+4, β̂t), where Xt+4 is the vector

of observables (y1,t+4, x
′
t)
′ and f(Xt+4, β̂t) = ε̂1,t+4. In the next section we describe how

to consistently estimate Ω and conduct inference.

2. IMS forecast: At each forecast origin t = R, ..., T − 4, the VAR(1) model in equation

(4) is estimated by OLS using all available data and hence

Λ̂t = (t−1
∑t−1

s=1 Ys+1x
′
s)(t
−1
∑t−1

s=1 xsx
′
s)
−1. With these parameter estimates in hand, fore-

casts of y1,t+4 take the form ŷ1,t+4 = ι′((I+
∑3

j=0 Â
j
t )Ĉt+Â

4
tYt)) = ι′((I+

∑3
j=0 Â

j
t )Ĉt, Â

4
t )xt,

with subsequent forecast errors ε̂1,t+4 = y1,t+4− ŷ1,t+4. Based on these forecast er-
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rors a test of zero mean prediction error is constructed using the same statistic (P −

3)−1/2
∑T−4

t=R ε̂1,t+4/Ω̂
1/2, where Ω̂ is a consistent estimate of an unknown long run vari-

ance Ω which may differ from that above associated with DMS forecasts. As was the case

for the DMS forecast above, the numerator of the statistic can be written in the generic

form (P −3)−1/2
∑T−4

t=R f(Xt+4, β̂t), where Xt+4 is the vector of observables (y1,t+4, x
′
t)
′ and

f(Xt+4, β̂t) = ε̂1,t+4, but only after defining β̂t = vec(Λ̂t). It’s also worth noting that since

ε̂1,t+4 is a fourth order polynomial in the elements of Λ̂t, the function f(Xt+4, β̂t) is a far

more complex function of β̂t when IMS forecasts are used than it is when DMS forecasts

are used.

This simple example of testing for zero mean prediction error is easily generalized to

a wider range of null hypotheses of the form H0 : Ef(Xt+4, β
∗) = 0. Perhaps the most

common of these tests are ones designed to compare the relative accuracy of two models.

For example, suppose that in the zero mean prediction error example we actually had two

models, indexed as i = 1, 2, that were used to construct forecasts (either both DMS or both

IMS) rather than just one model. Both models could be used to construct a sequence

of forecast errors ε̂
(i)
1,t+4, t = R, ..., T − 4, and, for a given loss function L(·), the relative

accuracy of the two models could be evaluated. By far the most common of these loss

functions is the quadratic, for which L(ε) = ε2. If this loss function is used the relative

accuracy of the two models can be tested using the same framework described above if

we define f(Xt+4, β̂t) = (ε̂
(1)
1,t+4)2 − (ε̂

(2)
1,t+4)2, where Xt+4 denotes the vector of observables

used to construct both forecast errors and β̂t is defined as the stacked vector of parameter

estimates β̂t = (β̂
(1)′
t , β̂

(2)′
t )′ from the two models.

While quadratic loss is the most common among all loss functions, density forecasts

are increasingly common. Most typically, the density forecasts are obtained by Monte

Carlo simulation, using an IMS approach to horizons greater than one. However, studies

such as Koop (2012) obtain density forecasts directly (i.e., without simulation) from the

t-distribution implied by a Normal-Wishart posterior and a DMS specification. Regardless,

suppose that two distinct VARs are used, each of which implies a distinct predictive density

gi(Xt+τ , β̂
(i)

t ). Amisano and Giacomini (2007) consider comparing the accuracy of the two

VARs based on their relative log predictive scores. In our notation, this is equivalent to

testing the (population) null hypothesis that H0 : E[ln g1(Xt+τ , β
(1)∗)−ln g2(Xt+τ , β

(2)∗)] =

0 using the function f(Xt+τ , β̂t) = ln g1(Xt+τ , β̂
(1)

t )− ln g2(Xt+τ , β̂
(2)

t ) to construct the test

13



statistic (P − τ + 1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t)/Ω̂
1/2.

3.2 Population tests of predictive ability

In reviewing existing theory for VAR forecast evaluation, we begin with inference based

on West (1996), which, for comparisons of models, can be applied with non-nested models

only. In subsequent sections we take up nested model comparisons and then testing based

on Giacomini and White (2006) asymptotics.

Regardless of whether DMS or IMS forecasts are used, the theory in West (1996) can

be used to conduct asymptotically valid inference for many (though not all) statistics that

are scaled sample averages of the form

(P − τ + 1)−1/2
∑T−τ

t=R
f(Xt+τ , β̂t) (10)

under modest assumptions on (i) the observables Xt+τ , (ii) how the parameter estimates β̂t

are constructed, and (iii) smoothness conditions on the function f(Xt+τ , β) as a function

of β. The major building block of this theory is Lemma 4.3 of West (1996), in which it is

shown that under the null hypothesis H0 : Ef(Xt+τ , β
∗) = 0, the out of sample average of

the function f(Xt+τ , β̂t) can be decomposed into two parts:

(P − τ + 1)−1/2
∑T−τ

t=R
f(Xt+τ , β̂t) (11)

= (P − τ + 1)−1/2
∑T−τ

t=R
f(Xt+τ , β

∗) + FB((P − τ + 1)−1/2
∑T−τ

t=R
H(t)) + op(1),

where F = E∂f(Xt+τ , β)/∂β|β=β∗ , B is a non-stochastic matrix satisfying β̂t − β∗ =

BH(t) + oa.s.(1), and H(t) = t−1
∑t−τ

s=1 hs+τ for a sequence of mean zero increments hs+τ .

The first right-hand side term in equation (11) denotes that part of the statistic associated

with the forecast had the population values of the parameters been known while the second

right-hand side term denotes that part of the statistic associated with the fact that the

model parameters cannot be observed but instead must be estimated.

Building on Lemma 4.3, West (1996) shows that the statistic (P−τ+1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t)/Ω̂
1/2

is asymptotically standard normal so long as Ω is positive and Ω̂ is consistent for its pop-

ulation counterpart. The details of how to estimate Ω are perhaps the main technical

developments in West (1996). Before providing this result, some additional notation and

assumptions are needed.6

6These assumptions are intended to be expository, not complete. See West (1996) for more detail.
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(A1) β̂t = β∗ + BH(t) + oa.s.(1), where for some mean zero process ht+τ = ht+τ (β∗)

[with h denoting the orthogonality conditions used to estimate parameters, such as ht+τ =

xtut+τ for a single linear regression], H(t) equals t−1
∑t−τ

s=1 hs+τ , R−1
∑t−τ

s=t−R+1 hs+τ , and

R−1
∑R−τ

s=1 hs+τ for the recursive, rolling, and fixed schemes, respectively, and B denotes a

non-stochastic matrix.

(A2) The vector (f(Xt+τ , β
∗), h′t+τ )′ is covariance stationary and satisfies mild mixing

and moment conditions.

(A3) limP,R→∞ P/R = π, a constant that is finite for the rolling and fixed schemes but

can be infinite for the recursive scheme.

(A4) The vector F = E[∂f(Xt+τ , β)/∂β]β=β∗ is finite.7

(A5) Ω is positive definite.

Given these assumptions, West (1996) shows that the asymptotic variance Ω can take

a variety of forms depending on how the parameters are estimated:

Ω = Sff + 2λfhFBS
′
fh + λhhFBShhB

′F ′, (12)

where Sff = limT→∞ V ar(T
−1/2

∑T−τ
s=1 f(Xs+τ , β

∗)), Shh = limT→∞ V ar(T
−1/2

∑T−τ
s=1 hs+τ ),

Sfh = limT→∞Cov(T−1/2
∑T−τ

s=1 f(Xs+τ , β
∗), T−1/2

∑T−τ
s=1 hs+τ ), and

λfh = λhh =
Recursive 1− π−1 ln(1 + π) 2(1− π−1 ln(1 + π))
Rolling, π ≤ 1 π/2 π − π2/3
Rolling, 1 < π <∞ 1− (2π)−1 1− (3π)−1

Fixed 0 π

.

In equation (12) we see that Ω consists of three terms. The first, Sff , is the long-run

variance of the measure of accuracy when the parameters are known. The third term,

λhhFBShhB
′F ′, captures the contribution of the variance due purely to the fact that we

do not observe β∗ but must estimate it instead. The second term, 2λfhFBS
′
fh, captures

the covariance between the measure of accuracy and the estimation error associated with

β̂t. Because the parameter estimates can be constructed using three different observation

windows (recursive, rolling, and fixed) it is not surprising that the terms that arise due to

estimation error depend on that choice via the terms λfh and λhh.

Estimating Ω is reasonably straightforward when either IMS or DMS forecasts are used

but can be considerably simpler when DMS forecasts are used. Regardless of which ap-

proach is taken, since π̂ = P/R→ π and both λfh and λhh are continuous in π, substituting

7McCracken (2000) weakens this assumption to F = ∂E[f(Xt+τ , β)]/∂ββ=β∗ so that the function
f(Xt+τ , β) need not be differentiable in β.
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π̂ for π is sufficient for estimating both λfh and λhh. For the remaining components one

needs to know whether the IMS or DMS approach is used to construct multi-step forecasts.

The distinction matters for how B, ht+τ , and F are defined and, in turn, how each is to be

estimated.

To see this consider the test of zero mean prediction error described above with f(Xt+4, β̂t) =

ε̂1,t+4. In the following we delineate how each of the remaining components of Ω can be

estimated depending on whether DMS or IMS forecasts are used.

• B: For the DMS case B = (Extx
′
t)
−1 and hence B̂ = (T−1

∑T−4
s=1 xsx

′
s)
−1 is a

consistent estimator of B. For the IMS case B = ((Extx
′
t)
−1 ⊗ In) and hence

B̂ = ((T−1
∑T−4

s=1 xsx
′
s)
−1 ⊗ In) is a consistent estimator of B.8

• Sff , Sfh, and Shh: For the long-run variances and covariances needed to compute

the test statistic, West (1996) shows that standard kernel-based estimators, which

are averages of f(Xt+4, β̂t) and ht+4(β̂t), are consistent. We know f(Xt+4, β̂t) =

ε̂1,t+4 for both the IMS and DMS cases. For the DMS case it suffices to define

ht+4(β̂t) = xtε̂1,t+4 while for the IMS case it suffices to define ht+4(β̂t) = vec(ε̂t+4x
′
t).

With these in hand if we define f̄ = (P − 3)−1
∑T−4

t=R f(Xt+4, β̂t), Γ̂ff (j) = (P −

3)−1
∑T−τ

t=R+j(f(Xt+4, β̂t)−f̄)(f(Xt+4−j , β̂t−j)−f̄)′, Γ̂hh(j) = T−1
∑T−4

t=j+1 ht+4(β̂t)h
′
t+4−j(β̂t−j)

and Γ̂fh(j) = (P − 3)−1
∑T−τ

t=R+j f(Xt+4, β̂t)h
′
t+4−j(β̂t−j), with Γ̂ff (j) = Γ̂ff (−j),

Γ̂hh(j) = Γ̂′hh(−j), and Γ̂fh(j) = Γ̂′fh(−j), the long-run variance estimates Ŝff , Ŝhh,

and Ŝfh are then constructed by weighting the relevant leads and lags of these covari-

ances, as in HAC estimators such as the one developed by Newey and West (1987).9

• F : This term poses probably the greatest complication in estimating Ω, particularly

with the IMS approach to generating multi-step forecasts. To see this recall that

F = E[∂f(Xt+4, β)/∂β]β=β∗ .
10 In the DMS case this is trivially equal to −Ext and

can easily be estimated using F̂ = −(P − 3)−1
∑T−4

t=R xt. But in the IMS case this

term is significantly more complicated but still feasible using derivations from section

3.5.2 of Lutkepohl (1991). Specifically if we define the (nm+ 1)× (nm+ 1) matrix

8If more than one model is being used to construct f(Xt+τ , β̂t) (so that β̂t = (β̂
(1)′
t , β̂

(2)′
t )′), then B is

the block diagonal matrix diag(B(1), B(2)) and hence a consistent estimate is B̂ = diag(B̂(1), B̂(2)).
9If more than one model is being used to construct ft+τ (β̂t) (so that β̂t = (β̂

(1)′
t , β̂

(2)′
t )′), then ht+τ is the

stacked vector (h
(1)′
t+τ , h

(2)′
t+τ )′ and hence the appropriate estimator is ĥt+τ = (ĥ

(1)′
t+τ , ĥ

(2)′
t+τ )′.

10If f(Xt+τ , β) is non-differentiable see McCracken (2004) for an alternative estimator.
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W =

 1 0 ... 0
Λ

0 In(m−1) 0

 ,

the n× (nm+ 1) selection matrix J1 = (0n×1, In, 0n×n(m−1)), and Φi = J1W
iJ ′1 we obtain

F = −ι′
∑τ−1

i=0
(Ex′t(W

′)τ−1−i ⊗ Φi).

If we use the estimator Λ̂T to obtain Ŵ and Φ̂i and define x̄ = (P − 3)−1
∑T−4

t=R xt, a

straightforward estimator of F is simply

F̂ = −ι′
∑τ−1

i=0
(x̄′(Ŵ ′)τ−1−i ⊗ Φ̂i).

Interestingly, for three special cases estimating Ω is as simple as using the estimate

Ω̂ = Ŝff . This arises when the second and third terms in equation (12), those due to

estimation error, cancel and hence we say the estimation error is asymptotically irrelevant.

Case 1. If π = 0, then both λfh and λhh are zero and hence Ω = Sff . This case arises

naturally when the sample split is chosen so that the number of out-of-sample observations

is small relative to the number of in-sample observations. Chong and Hendry (1986) first

observed that parameter estimation error is irrelevant if P is small relative to R.

Case 2. If F = 0, then Ω = Sff . This case arises under certain very specific circum-

stances but arises most naturally when the measure of “accuracy” is explicitly used when

estimating the model parameters and holds regardless of whether DMS or IMS forecasts

are used. The canonical example is the use of a quadratic loss function (MSE) to evaluate

the accuracy of forecasts from two non-nested models estimated by OLS. In this situation,

the F term equals zero and estimation error is asymptotically irrelevant.

Case 3. There are instances where −SfhB′F ′ = FBShhB
′F ′ and hence under the

recursive scheme, estimation error is asymptotically irrelevant. In this case, it isn’t so much

than any particular term equals zero but that the sum of the components just happens to

cancel to zero. One such example is our test of zero mean prediction error so long as that

model contains an intercept and holds regardless of whether DMS or IMS forecasts are used.

See West (1996, 2006) and West and McCracken (1998) for other examples.

But more generally, all three components of Ω will have to be estimated and in particular

F will have to be estimated. Fortunately, the formula for F associated with a test of zero

mean prediction error can be generalized fairly easily in many useful cases. Specifically,
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if we assume that the moment function of interest satisfies f(Xt+τ , β̂t) = f̃(Xt+τ , y1,t+τ −

ŷ1,t+τ ) = f̃t+τ (ε̂1,t+τ ), and hence the parameter estimate only affects the function through

the forecast error (as it does for tests of zero mean prediction error, efficiency, and serial

correlation), we obtain

F = −ι′
∑τ−1

i=0
(E(

∂f̃t+τ (ε1,t+τ )

∂ε1
x′t)(W

′)τ−1−i ⊗ Φi).

For this scenario the same formula for F̂ applies if we continue to use the estimator Λ̂T to

obtain Ŵ and Φ̂i and redefine x̄ as (P − 3)−1
∑T−4

t=R
∂f̃t+τ (ε̂1,t+τ )

∂ε1
x′t.

3.3 Nested Model Comparisons

In the theoretical discussion above the statistic (P−τ+1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t) was asymp-

totically normal with variance Ω. To achieve this result, however, it must be the case that

Ω is positive – a point emphasized directly in West (1996) through his assumptions. Un-

fortunately Ω is not trivially positive in certain practical situations including tests of equal

forecast accuracy or encompassing when the two nested models are being compared. To

see the issue consider a simple example in which DMS forecasts from the autoregressive

model

y1,t = β
(1)
0 + β

(1)
1 y1,t−τ + ε

(1)
1,t = β(1)′x

(1)
t−τ + ε

(1)
1,t

are being compared to those from

y1,t = β
(2)
0 + β

(2)
1 y1,t−τ + β

(2)
2 y2,t−τ + β

(2)
3 y3,t−τ + ε

(2)
1,t = β(2)′x

(2)
t−τ + ε

(2)
1,t

in terms of their mean squared errors. Specifically suppose that both models are estimated

by OLS and we define (ε̂
(j)
1,t+τ )2 = (y1,t+τ − β̂

(j)′
t x

(j)
t−τ )2 for the restricted and unrestricted

models j = 1, 2, respectively. Under the null hypothesis that E((ε
(1)
1,t+τ )2 − (ε

(2)
1,t+τ )2) = 0,

Clark and McCracken (2001, 2005a) and McCracken (2007) show that the statistic (P −τ+

1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t) with f(Xt+τ , β̂t) = (ε̂
(1)
1,t+τ )2− (ε̂

(2)
1,t+τ )2 converges in probability to

zero and is therefore not asymptotically normal is any useful sense.

To get around this problem they extend the results in West (1996) to a framework

that allows for nested model comparisons but do so only when the models being compared

are OLS estimated linear models and the forecasts are formed using the DMS approach.

Specifically, under assumptions close to those considered in West (1996) they extend West’s
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Lemma 4.3 by showing

∑T−τ

t=R
f(Xt+τ , β̂t) =

∑T−τ

t=R
((ε̂

(1)
1,t+τ )2 − (ε̂

(2)
1,t+τ )2)

= 2
∑T−τ

t=R
h

(2)′
1,t+τ (−JB(1)J ′ +B(2))H(2)(t)

−
∑T−τ

t=R
H(2)(t)′(−JB(1)J ′ +B(2))H(2)(t) + op(1)

= Op(1),

where B(j) = (Ex
(j)
t x

(j)′
t )−1, h

(2)
1,t+τ = ε

(2)
1,t+τx

(2)
t , H(2)(t) = t−1

∑t−τ
s=1 h

(2)
1,s+τ , and J =

(I
dim(x

(1)
t )
, 0)′.

Building upon that expansion they derive the asymptotic distributions of the MSE-t =

(P−τ+1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t)/Ŝ
1/2
ff and MSE-F =

∑T−τ
t=R f(Xt+τ , β̂t)/((P−τ+1)−1

∑T−τ
t=R (ε̂

(2)
1,t+τ )2)

tests of equal forecast accuracy as well as the ENC-t and ENC-F tests of forecast encom-

passing, for which f(Xt+τ , β̂t) = ε̂
(1)
1,t+τ (ε̂

(1)
1,t+τ − ε̂

(2)
1,t+τ ). (Note that, in the Monte Carlo

section, we also write out these test statistics using just forecast errors.)

Each of the four statistics have asymptotic distributions that can be represented using

stochastic integrals of quadratics of Brownian motion and are, in nearly all instances, not

asymptotically normal. While useful, the analytics are derived after restricting attention to

DMS forecasts since (ε̂
(1)
1,t+τ )2−(ε̂

(2)
1,t+τ )2 (and ε̂

(1)
1,t+τ (ε̂

(1)
1,t+τ − ε̂

(2)
1,t+τ )) are then only quadratic

functions of the parameter estimates and the necessary second order Taylor expansion of∑T−τ
t=R ((ε̂

(1)
1,t+τ )2 − (ε̂

(2)
1,t+τ )2) (or

∑T−τ
t=R ε̂

(1)
1,t+τ (ε̂

(1)
1,t+τ − ε̂

(2)
1,t+τ )), as a function of β1 and β2,

is straightforward. As detailed in such sources as Clark and McCracken (2005a, 2012a,b),

critical values from these asymptotic distributions can easily be obtained by bootstrap

methods.

In contrast, if the forecasts were constructed using an IMS approach, the second order

Taylor expansion of
∑T−τ

t=R ((ε̂
(1)
1,t+τ )2 − (ε̂

(2)
1,t+τ )2) as a function of β1 and β2 would be much

more complicated. In particular, if τ = 4 we know that
∑T−τ

t=R ((ε̂
(1)
1,t+τ )2 − (ε̂

(2)
1,t+τ )2) is an

8th order polynomial in both β1 and β2. That is not to say that a similar collection of

asymptotics would not be applicable when IMS methods are used to construct forecasts,

rather that the results have not been formally derived anywhere in the literature, in large

part because to do so would be algebraically tedious and difficult. For that reason, in

section 4 we provide Monte Carlo evidence on these tests when the competing model is a

VAR that nests a baseline model AR model and all forecasts are generated using an IMS

approach. We will compare the tests against bootstrapped critical values.
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3.4 Finite Sample Tests of Predictability

The theoretical results in West (1996) and other studies such as Clark and McCracken

(2001, 2005a) focus on testing a null hypothesis of the form H0 : Ef(Xt+τ , β
∗) = 0. In

words, this hypothesis is designed to evaluate the predictive ability of a model (or models) if

the true parameter values of the model(s) are known. But as a practical matter, forecasting

agents never know the true parameter values of a model and must estimate them. Hence,

intuitively, one might prefer to evaluate the predictive content of the model accounting for

the fact that the model parameters must be estimated and will never be known. Doing

so changes the null hypothesis to something akin to H0 : Ef(Xt+τ , β̂t) = 0, where the

estimation error associated with the parameter estimates is now captured under the null

hypothesis.

While such a hypothesis could be considered for any function f(Xt+τ , β̂t), including

that associated with zero mean prediction error, the hypothesis arises most clearly when

comparing two ostensibly nested models. In the theory of Clark and McCracken (2001,

2005a) the null of equal population predictive ability maps directly into testing whether the

additional predictors in the unrestricted model are associated with coefficients that are zero

and hence the hypothesis is H0 : Ef(Xt+τ , β
∗) = E((ε

(1)
1,t+τ )2 − (ε

(2)
1,t+τ )2) = 0. In contrast,

a null of equal finite sample predictive ability between two nested models is akin to the

hypothesis H0 : Ef(Xt+τ , β̂t) = E((ε̂
(1)
1,t+τ )2 − (ε̂

(2)
1,t+τ )2) = 0. For this latter hypothesis,

the issue isn’t so much whether certain coefficients are zero or not, but whether they are

non-zero and whether they can be estimated sufficiently precisely in a finite sample to be

useful for forecasting.

Even though the null hypothesis H0 : Ef(Xt+τ , β̂t) = 0 is reasonably intuitive, the

results in West (1996) or Clark and McCracken (2001, 2005a) do not apply under this null

and hence their theory cannot be used to infer the asymptotic distribution of (P − τ +

1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t) under this null regardless of whether DMS or IMS forecasts are

used. Instead, theoretical results in Giacomini and White (2006) can be used to conduct

inference. Perhaps most importantly from the standpoint of this chapter, their results are

applicable regardless of whether DMS or IMS forecasts are being used. Specifically, Gia-

comini and White (2006) show that so long as all parameter estimates are estimated using

a small rolling window of observations (small in the sense that R is finite and P diverges to
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infinity), (P − τ + 1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t)→d N(0, Sf̂ f̂ ) under the null hypothesis

lim
P→∞

(P − τ + 1)−1/2
∑T−τ

t=R
Ef(Xt+τ , β̂t) = 0,

where Sf̂ f̂ = limP→∞ V ar(P
−1/2

∑T−τ
t=R f(Xt+τ , β̂t)).

The theoretical results in Giacomini and White (2006) can be used for a wide range of

applications, including tests of equal forecast accuracy between nested or non-nested models,

zero mean prediction error, forecast encompassing, equal log predictive densities, etc. So

long as the statistic takes the form (P−τ+1)−1/2
∑T−τ

t=R f(Xt+τ , β̂t), and all parameters are

estimated using a small rolling window of observations, normal critical values can be used

to conduct inference on the null hypothesis limP→∞(P −τ+1)−1/2
∑T−τ

t=R Ef(Xt+τ , β̂t) = 0.

Building on Giacomini and White (2006), Amisano and Giacomini (2007) formally develop

such tests of equal accuracy of density forecasts, using a logarithmic scoring rule (i.e., the

log predictive score). Their tests encompass a t-test applied to the mean score differential

and weighted likelihood ratio tests that permit concentration on particular areas of the

predictive density.

It’s important to also note that, under the asymptotics of Giacomini and White (2006),

there are almost no restrictions on how the parameters are estimated. The parameters can

be estimated by OLS but can also be estimated using Bayesian methods so long as a small

rolling window of R observations is used to estimate the parameters at each forecast origin.

Univariate as well as VAR models are permitted.

The only other set of results that apply to tests of the null of finite sample predictive

ability are those considered in Clark and McCracken (2011a). There they develop a pro-

cedure for testing the null hypothesis limP,R→∞
∑T−τ

t=R E((ε̂
(1)
1,t+τ )2 − (ε̂

(2)
1,t+τ )2) = 0 against

an alternative in which the unrestricted model 2 is more accurate than the restricted model

1. As was the case for their previous work on tests of equal population predictive abil-

ity between nested models, the asymptotic distribution is non-standard and in particular

is not asymptotically normal. Instead a bootstrap approach to inference is shown to be

asymptotically valid when OLS estimated, linear DMS forecasts are being compared. IMS

forecasts from univariate or VAR models are not allowed again due to the fact that the

forecast errors are a complicated function of the parameter estimates.
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4 Monte Carlo Evidence

In this section we examine the finite sample properties of some of the inference approaches

described above. In the interest of brevity and computational tractability, we focus our

evaluation on the subset of inference problems that seem to be most common in the VAR

forecasting literature. In particular, we examine tests that compare forecasts from VARs and

BVARs to baseline, nested AR models, with all forecasts obtained by iteration. We consider

both point and density forecasts, generated under both recursive and rolling estimation

schemes.

In these experiments, we use trivariate data-generating processes (DGPs) parameterized

on the basis of estimates of AR(4) and VAR(4) models in U.S. data on GDP growth, inflation

in the price index for personal consumption expenditures (PCE), and the 3-month Treasury

bill rate, for an estimation sample of 1961-2007.11 We consider one set of experiments in

which the DGP is a set of AR(4) models for each variable, such that forecasts from the

AR models should be at least as accurate as forecasts from a VAR or BVAR. We consider

another set of experiments in which the DGP is a VAR(4), such that, with a long enough

data sample, forecasts from the VAR or BVAR should be more accurate than forecasts

from the AR models. While we would like to be able to include experiments in which the

forecasts from the AR and VAR models are equally accurate in the finite sample, there is

no easy way of parameterizing a VAR-based DGP to make the forecasts equally accurate in

the finite sample. Such a finite-sample evaluation is an important topic for future research.

In this paper, we focus on the more tractable DGP settings just described.

In all experiments, we take forecasts from AR(4) models as benchmarks for each variable,

and compare against them forecasts from a VAR(4) and a BVAR(4). In the evaluation of

point forecasts, to make bootstrap evaluation computationally tractable, we generate the

forecasts without simulation. The AR and VAR point forecasts are obtained by using OLS

estimates of coefficients and simple iteration of forecasts based on the OLS coefficients. In

the case of the BVAR, we also obtain forecasts by iteration, using just the posterior mean

coefficient estimates obtained with the analytical solution for the Normal-Wishart posterior.

At horizons greater than 1 period, proper Bayesian methods would require simulation of the

posterior distribution, but Carriero, Clark, and Marcellino (2012) find that multi-step point

11We deliberately end the sample before the financial crisis, to avoid some of the sizable effects the severe
recession and slow recovery had on VAR coefficient estimates.
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forecasts based on just the posterior mean coefficients are essentially the same as properly

simulated point forecasts.

In the evaluation of density forecasts, because the density forecasts are obtained by

simulation, computational constraints lead us to avoid bootstrapping and instead limit our

analysis to tests compared against asymptotic critical values. We use Bayesian simulation

methods to produce the density forecasts, using a extremely loose prior to effectively imple-

ment OLS for AR and VAR forecasts and an informative prior to obtain BVAR forecasts.

We proceed by detailing the test statistics and critical values used, our implementation

of Bayesian methods, and the data-generating processes and other aspects of experiment

design. We then present the results.

4.1 Test statistics and critical values

For the evaluation of point forecasts, we consider four test statistics, consisting of both

F -type and t-tests of equal MSE and forecast encompassing. To define these tests for a

given variable yj of the VAR of interest, let model 1 denote the benchmark model for

the given variable and model 2 denote the alternative model, d̂t+τ = (ε̂
(1)
j,t+τ )2 − (ε̂

(2)
j,t+τ )2,

ĉt+τ = ε̂
(1)
j,t+τ (ε̂

(1)
j,t+τ − ε̂

(2)
j,t+τ ), and MSE(i) = (P − τ + 1)−1

T−τ∑
t=R

(ε̂
(i)
j,t+τ )2. Let Ŝdd and Ŝcc

denote the long-run variances of d̂t+τ and ĉt+τ , computed using a rectangular kernel, τ − 1

lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997). For

each variable, the four test statistics for point forecasts are computed as:

MSE-F =

(
T−τ∑
t=R

d̂t+τ

)
/MSE(2)

MSE-t =

(
(P − τ + 1)−1/2

T−τ∑
t=R

d̂t+τ

)
/Ŝ

1/2
dd

ENC-F =

(
T−τ∑
t=R

ĉt+τ

)
/MSE(2)

ENC-t =

(
(P − τ + 1)−1/2

T−τ∑
t=R

ĉt+τ

)
/Ŝ1/2

cc

(note that the ENC-t test corresponds to the MSE-adjusted test of Clark and West (2006,

2007)). We compare the t-tests against standard normal critical values and all four tests

against bootstrapped critical values. We consider two different bootstrap methods, one

we refer to as a restricted VAR bootstrap and the other a fixed regressor bootstrap, both
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detailed below.

For the evaluation of density forecasts, we consider just one test statistic, a t-test for

equal average log predictive score (based on the results of Amisano and Giacomini (2007)),

which we will identify as the score-t test. While we focus on this test because the log score

is the broadest measure of density accuracy, we certainly recognize that other density-based

tests — such as Berkowitz’s (2001) test based on normalized forecast errors, Christofferson’s

(1998) test for interval forecasts, and a test for equality of the mean cumulative ranked

probability score of Gneiting and Raftery (2007) — are also of interest. The development

and evaluation of such tests for application to VAR forecasts is an important topic for future

research.

For variable yj , letting ŝ
(i)
t+τ denote the log predictive score of model i (as described

below, computed from a simulated forecast distribution), d̂t+τ = ŝ
(2)
t+τ − ŝ

(1)
t+τ , and Ŝdd =

the long-run variance of d̂t+τ computed using a rectangular kernel, τ − 1 lags, and the

small-sample adjustment of Harvey, Leybourne, and Newbold (1997), the test is computed

as

score-t =

(
(P − τ + 1)−1/2

T−τ∑
t=R

d̂t+τ

)
/Ŝ

1/2
dd .

We compare the t-test against standard normal critical values. As noted above, our

simulation-based approach to computing density forecasts makes the evaluation of bootstrap-

based inference infeasible from a computational perspective.

Based on 2000 Monte Carlo draws, we report the percentage of Monte Carlo trials in

which the null of no predictive content is rejected — the percentage of trials in which the

sample test statistics exceed the critical values (conducting one-sided tests in all cases). In

the reported results, the tests are compared against 10% critical values. Using 5% critical

values yields similar findings.

In most cases, our Monte Carlo results apply to tests of equal accuracy in population.

For point forecasts, both the restricted VAR and fixed regressor bootstraps generate critical

values for tests of the null of equal population predictive ability. Similarly, comparing the

ENC-t test against standard normal critical values should be seen as an assessment of

predictive content in the population, since, at least in the direct multi-step forecasting case,

the normal critical values seem to be fairly close approximations of the quantiles of an

asymptotic distribution for the null of no predictive content in population (Clark and West

(2007)).
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However, comparing the MSE-t test against standard normal critical values may be seen

as a test of equal accuracy in the finite sample, since, under the asymptotics of Giacomini

and White (2006) and a null of equal accuracy in the finite sample, the t-test has a standard

normal distribution. The same applies to the score-t test used to test the equality of

average log predictive scores. That said, as noted above, the asymptotic normality results

of Giacomini and White (2006) and Amisano and Giacomini (2007) require that forecasts

be generated with a rolling sample approach to estimation. We will nonetheless evaluate

the efficacy of MSE-t and score-t tests compared against normal critical values for both

recursive and rolling estimation schemes. We leave as a subject for future research the

further investigation of inference of equal accuracy in the finite sample. As we indicated

above, this investigation will require finding a way to simulate data to ensure the model-

based forecasts are equally accurate in the finite sample. It may also involve developing

other tests or bootstrap approaches for testing equal accuracy in the finite sample.

4.1.1 Restricted VAR bootstrap

One bootstrap method we consider is patterned on the approach first used in Kilian (1999)

and applied in the univariate forecast evaluation of such studies as Clark and McCracken

(2001, 2005a). With the null forecasting model for each variable taken to be an AR model,

the bootstrap model is a set of AR(4) equations for each variable, with coefficients estimated

by OLS using the full sample of data. Bootstrapped time series on the vector yt are generated

by drawing with replacement from the vector of OLS residuals and using the autoregressive

structures of the AR models to iteratively construct data.12 In each of 499 bootstrap

replications, the bootstrapped data are used to recursively estimate AR, VAR, and BVAR

models and generate forecasts. In each replication, the resulting forecasts are then used to

calculate forecast test statistics. Critical values are simply computed as percentiles of the

bootstrapped test statistics.

4.1.2 Fixed regressor bootstrap

The other bootstrap method we consider is patterned on the fixed regressor wild bootstrap

developed in Goncalves and Kilian (2004) and extended to out-of-sample tests by Clark

and McCracken (2012a). We generate artificial data on the predictands using (a) fitted

values from AR(4) models for each variable, which correspond to the restricted forecasting

12The initial observations are selected by sampling from the actual data as in Stine (1987).
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models, and (b) residuals from the relevant unrestricted forecasting model, which is either

the VAR or BVAR. For the data simulation, all of the models used are estimated with the

full sample of data. We construct artificial time series y∗t by adding the vector of fitted

values from the AR models to a vector of innovations equal to the innovations from the

relevant unrestricted model times a draw from the standard normal distribution.

More specifically, for each variable yi,t, we use the full sample of data to estimate an

AR(4) model to obtain a vector of coefficients β̂i. We also estimate the VAR and BVAR

models, to obtain vectors of residuals ε̂
(VAR)
t and ε̂

(BVAR)
t . For comparing VAR forecasts

against the AR benchmark, we repeatedly construct a vector of simulated time series y∗i,t

using

y∗i,t = β̂i,0 +

4∑
j=1

β̂i,jyi,t−j + ηtε̂
(VAR)
i,t ,

where ηt is a draw from a N(0,1) distribution, and the same draw is used for each variable

of the VAR. To obtain a bootstrapped distribution of test statistics, for each data draw we

obtain pseudo-AR model forecasts by regressing y∗i,t on lags of yi,t, using lagged values of

yi,t to iteratively construct forecasts of horizons 1 through τ , and forming forecast errors as

y∗i,t+τ less the forecast. We obtain pseudo-VAR forecasts by regressing each variable y∗i,t on

lags of the vector yt, using lagged values of yt to iteratively construct forecasts of horizons

1 through τ , and forming forecast errors for each variable as y∗i,t+τ less the forecast. For

comparing BVAR forecasts against the AR benchmark, the procedure is the same, except

that residuals from the BVAR are used in generating artificial data y∗i,t, and simulated

forecasts are computed for the BVAR rather than the VAR. For each draw of simulated

forecast errors, we compute the four test statistics of interest, to obtain a bootstrapped

distribution against which we compare the sample test statistics from the Monte Carlo-

generated data set.

4.2 Details on implementation of Bayesian methods

The BVAR takes the form described in section 2.2.2:

Yt = C +A(L)Yt−1 + εt, εt ∼ N(0,Σ)

= Λxt−1 + εt.

For this model, we use the Normal-Wishart prior and posterior detailed in such studies as

Kadiyala and Karlsson (1997) and Banbura, Giannone, and Reichlin (2010).
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The prior takes a conventional Minnesota form, without cross-variable shrinkage, in

which the prior for the VAR coefficients is normally distributed:

vec(Λ) ∼ N(vec(µ
Λ

),ΩΛ).

Letting Λ
(ij)
l denote the coefficient on lag l of variable j in equation i and Λ

(ij)
l with l=0

denote the intercept of equation i, we define the prior mean and variance as follows:

µ
Λ

such that E[Λ
(ij)
l ] = 0 ∀ i, j, l (13)

ΩΛ such that V [Λ
(ij)
l ] =

{
θ2

l2
σ2
i

σ2
j

for l > 0

ε2σ2
i for l = 0

. (14)

In our BVAR implementation, we set the tightness hyperparameter θ at 0.5 and the intercept

hyperparameter ε to 1000, and we set the scale parameters σ2
i at estimates of residual

variances from AR(4) models from the estimation sample available at each forecast origin.

In using the same simulation code for producing density forecasts from AR and VAR models,

we make the prior uninformative by setting θ = 1000 and dropping the l2 in the denominator

of the prior variance.

For the evaluation of point forecasts from the BVAR, we obtain forecasts using the

posterior mean value of the coefficients and the iterative approach to forecasting at horizons

greater than 1 period. For the evaluation of density forecasts, we simulate 2000 draws

of forecasts from the posterior distribution as follows: for each draw of coefficients and

Σ from their posterior distributions, we (1) draw shocks to yt over the forecast horizon

with variance-covariance matrix equal to the draw of Σ, and (2) iterate forward using the

autoregressive structure of the VAR and the draw of the VAR coefficients to obtain artificial

yt+τ . At each forecast horizon, for each variable yi,t+τ , we compute the log score based on

the actual outcome for yi,t+τ and an empirical estimate of the forecast density obtained

with a Gaussian kernel and the draws of forecasts from the posterior distribution.

4.3 Monte Carlo Design

For two different trivariate DGPs — one in which the true model consists of AR(4) processes

for each variable and the other in which the true model is a VAR(4) — we generate data

using independent draws of innovations from the normal distribution and the autoregressive

structure of the DGP. The initial observations necessitated by the lag structure of each DGP

are generated with draws from the unconditional normal distribution implied by the DGP.
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With quarterly data in mind, we report results for forecast horizons of 1, 2, 4, and 8 periods

ahead, with sample sizes of R,P = 80,40; 80,80; and 80,120. We obtained qualitatively

similar results (available upon request) for sample sizes of R,P = 40,80; 40,120; 120,40;

and 120,80.13

The parameters of the DGPs are set on the basis of 1961-2007 model estimates for U.S.

data on GDP growth, PCE inflation, and the 3-month Treasury bill rate. In DGP 1, the

true model consists of AR(4) processes for each variable, with coefficients given in Table 1

and an error variance-covariance matrix of:

var(εt) =

 9.81
−0.05 1.35
0.32 0.16 0.48

 .

In DGP 2, the true model is a VAR(4), with coefficients given in Table 2 and an error

variance-covariance matrix of:

var(εt) =

 8.35
−0.06 1.16
0.36 0.13 0.41

 . (15)

4.4 Results

Tables 3 and 4 provide empirical rejection rates from Monte Carlo experiments with DGP

1 based on a recursive estimation scheme, and Tables 5 and 6 provide rejection rates from

DGP 1 experiments using a rolling estimation scheme. Tables 7 and 8 provide recursive

scheme results from experiments with DGP 2. Each table provides results for three different

sample size combinations, for either VAR versus AR forecasts or BVAR versus AR forecasts.

Each table covers all three variables being forecast and forecast horizons of 1, 2, 4, and 8

periods ahead. Because the BVAR and VAR results are broadly similar, in the ensuing

discussion we focus on the VAR versus AR comparisons, in the interest of brevity.14 The

test statistic and source of critical values are indicated in the first column of each table.

In the DGP 1 experiments, in which the true model is a set of AR equations, and there-

fore the null hypothesis of no predictive accuracy in population is satisfied, the bootstrap-

based tests yield rejection rates reasonably close to the nominal size of 10 percent. However,

the size results seem to be more consistently close to 10 percent when critical values are

13In results for these other sample sizes, the most notable difference is that, with DGP experiments using
R,P = 40,80, the tests sometimes display slightly larger size distortions.

14The largest difference seems to be that, in the DGP 1 results, the ENC-t test compared against standard
normal critical values yields a higher rejection rate when applied to BVAR versus AR forecasts than when
applied to VAR versus AR forecasts.

28



obtained from the VAR bootstrap (VARBS) than when critical values are obtained from

the fixed regressor bootstrap (FRBS). While the FRBS rejection rates are typically close

to 10 percent, there are a number of instances in which the rejection rates are somewhat

above or below 10 percent. Consider, for example, the VAR versus AR results in Table 3

for a sample size combination of R,P = 80,80. For most variables and forecast horizons,

the empirical size of the MSE-F test based on the FRBS is 10 or 11 percent. However, with

variable 1, the FRBS-based size is about 13 percent at horizons of 4 and 8, while with vari-

able 3, the FRBS-based size is about 7 percent at horizons of 4 and 8. Using critical values

from the VARBS more consistently yields empirical rejection rates close to 10 percent. In

the same example, across the three variables and four horizons, the size of the MSE-F test

based on the VARBS ranges from 9.2 to 12.6 percent. Similarly, as indicated in Table 3,

for many variables and horizons, the empirical size of the ENC-F test based on the FRBS

is 10 or 11 percent. However, with variable 2 and a 2-step-ahead horizon, the FRBS-based

size spikes to almost 16 percent. Again, size performance is more even with the VARBS,

yielding ENC-F rejection rates that range from 8.1 to 12.1 percent (compared to a range

of 9.2 to 15.9 percent with the FRBS).

Given the bootstrap method, size results are broadly similar for the MSE-F , MSE-t,

ENC-F , and ENC-t tests. The most noticeable difference is that, when the fixed regressor

bootstrap is used to generate critical values, the t-tests are less prone to oversizing and more

prone to undersizing than their F -test counterparts. Consider, for example, the FRBS-based

encompassing test results in the Table 3 experiments with R,P = 80,80. The size of the

ENC-F test ranges from 9.2 to 15.9 percent; the size of the ENC-t test varies from 5.2 to

10.9 percent. In corresponding results in the experiments with R,P = 80,40, the empirical

rejection rate of the ENC-F test ranges from 9.6 to 15.8 percent; the size of the ENC-t test

varies from 6.5 to 11.2 percent.

When the t-tests for point forecasts are compared against standard normal critical val-

ues, the MSE-t and ENC-t tests behave fairly differently, in line with expectations. As

noted above, the MSE-t test compared against normal critical values is in effect (subject to

the conditions of Giacomini and White (2006)) a test of the null of equal accuracy in the

finite sample, rather than in population. Accordingly, when the AR model is the true model

and therefore likely to be more accurate than a VAR in the finite sample, the (one-sided)

MSE-t test compared against standard normal critical values usually yields a rejection rate
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well below 10%. How much below depends on the forecast horizon: the rejection rate tends

to rise with the forecast horizon, particularly with smaller P , probably due to challenges in

estimating precisely the HAC standard deviation in the denominator of the test statistic.

For example, as shown in Table 3’s results with R,P = 80,120, the rejection rate of the

MSE-t test ranges from 0.0 to 3.8 percent. In results with R,P = 80,40, the rejection rate

varies from 1.3 to 8.8 percent.

In contrast, the ENC-t test compared against normal critical values is approximately

a test of the null of no predictive content in population and may therefore be expected

to yield rejection rates in the DGP 1 experiments that are close to the nominal size of 10

percent. The test is indeed about correctly sized when P is relatively large, but for smaller

P , it tends to be oversized at longer forecast horizons. For instance, in Table 3’s results

with R,P = 80,120, the rejection rate of the ENC-t test based on standard normal critical

values ranges from 8.4 to 11.1 percent. In results with R,P = 80,40, the rejection rate

varies from 10.5 to 15.4 percent.

Turning to the density forecast results, comparing the score-t test against standard

normal critical values yields rejection rates broadly similar to those obtained for the MSE-t

test for point forecasts. Like the MSE-t test, the score-t test compared against normal

critical values is in effect (subject to the conditions of Amisano and Giacomini (2007)) a

test of the null of equal (density) accuracy in the finite sample, rather than in population.

Accordingly, when the AR model is the true model and therefore likely to be more accurate

than a VAR in the finite sample, the (one-sided) score-t test compared against standard

normal critical values usually yields a rejection rate well below 10%, more so at shorter

horizons than longer horizons. As an example, in Table 3’s results with R,P = 80,120, the

rejection rate of the score-t test ranges from 0.1 to 3.2 percent. Taken at face value, these

findings suggest that tests for equal accuracy in density forecasts are likely to yield results

similar to tests for equal accuracy of point forecasts. In practice, however, results could

differ due to complications outside the scope of our experiments: non-Gaussian errors, time-

varying volatility (particularly if one model captures it and the other does not), or model

misspecification.

The results in Tables 5 and 6 indicate that, with DGP 1, using a rolling scheme for

estimation and forecasting yields results qualitatively similar to those obtained using a

recursive scheme. It is again the case that the bootstrap-based tests yield rejection rates

30



reasonably close to the nominal size of 10 percent, with the VAR bootstrap being more

consistent across specifications than the fixed regressor bootstrap. As an example, in Table

5’s results for the VAR versus the AR with R,P = 80,40, the size of the MSE-F test ranges

from 9.3 to 15.8 percent under the FRBS and from 9.7 to 12.0 percent under the VARBS.

In addition, size results are similar across the different tests, with the biggest difference

being that, when critical values are obtained from the FRBS, the t-tests are less prone

to oversizing and more prone to undersizing than their F -test counterparts. In the same

example, the size of the MSE-t test compared against standard normal critical values ranges

from 8.0 to 14.6 percent. Finally, under the rolling scheme, it is also the case that, when the

t-tests are compared against standard normal critical values, the MSE-t test usually yields

a rejection rate well below 10 percent, while the ENC-t test has a rejection rate ranging

from about 9 to 16 percent. As in the recursive case, the score-t test for density forecasts

yields a rejection rate very similar to the normal critical values-based rejection rate of the

MSE-t test for equal accuracy of point forecasts.

Returning to results based on the recursive estimation and forecasting scheme, in the

DGP 2 experiments of Tables 7 and 8, in which the true model is a VAR, the bootstrap-

based tests yield reasonably high rejection rates, particularly at shorter forecast horizons.

Broadly, rejection rates are similar for the VAR-based and fixed regressor bootstraps. It is

also the case that rejection rates are broadly similar for tests of VAR accuracy versus the

AR and for tests of BVAR accuracy versus the AR. Accordingly, in the interest of brevity,

in the following discussion we focus on test results for VAR forecasts obtained with the

VAR-based bootstrap and with standard normal critical values.

Consider, for example, results in Table 7 for variable 2 and R,P = 80,80 obtained with

the VAR bootstrap. At the 1-step horizon, the rejection rates are 82.6 percent for MSE-F ,

84.1 percent for MSE-t, 94.4 percent for ENC-F , and 92.8 for ENC-t. At the 4-step horizon,

the corresponding rejection rates are, respectively, 57.3, 53.1, 68.8, and 64.2 percent. As

might be expected, power systematically rises as the size of the forecast sample (P ) rises

and falls as the forecast horizon falls. For instance, using the VARBS, the rejection rate

for the MSE-F test applied to 1-step ahead forecasts of variable 2 rises from 63.6 percent

for P = 40 to 82.6 percent for P = 80 to 92.8 percent for P = 120. Using the VARBS, the

rejection rate for the MSE-F test applied to forecasts of variable 2 falls from 82.6 percent

for h = 1 to, respectively, 68.9, 57.3, and 30.1 percent for horizons 2, 4, and 8.
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For the different tests compared to bootstrap critical values, their power rankings

broadly line up with the results of Clark and McCracken (2001, 2005a,b) on univariate

forecasts. The ENC-F test rejects the null of equal accuracy in population more frequently

than does the MSE-F test. Consider the VAR bootstrap-based results for forecasts of the

second variable in experiments with R,P = 80,80 (Table 7). The ENC-F rejection rate is

94.4 percent at the 1-step horizon and 68.8 percent at the 4-step horizon; the corresponding

MSE-F rejection rates are 82.6 and 57.3 percent, respectively. It is also the case that the

ENC-t test rejects the null more frequently than does the MSE-t test. In the same example,

the ENC-t rejection rate is 92.8 and 64.2 percent at horizons of 1 and 4 periods, respectively,

compared to MSE-t rejection rates of 84.1 and 53.1 percent. As these examples suggest, it

is also usually the case that power is at least as great with the F -type tests as with t-type

tests, with larger differences at longer horizons than shorter horizons.

In the DGP 2 experiments, as in the DGP 1 experiments, the MSE-t and ENC-t tests

compared against standard normal critical values behave fairly differently. The ENC-t test

compared against normal critical values rejects the null of equal accuracy in population at

least as often as does the same test compared against bootstrapped critical values. Con-

sider again forecasts of the second variable in experiments with R,P = 80,80 (Table 7).

Comparing the ENC-t test against VARBS critical values yields a rejection rate of 92.8 and

64.2 percent at horizons of 1 and 4 periods, respectively, while comparing the test against

standard normal critical values yields corresponding rejection rates of 92.8 and 66.6 percent,

respectively. Because the MSE-t test compared against normal critical values is effectively a

test of the null of equal accuracy in the finite sample, rather than in population, it system-

atically rejects less often than do any of the other tests, all of which are more appropriately

thought of as tests of equal accuracy in population. Continuing with the same example, the

rejection rate for the MSE-t test compared against standard normal critical values is 29.4

percent at the 1-step horizon and 20.2 percent at the 4-step horizon.

Another parallel to the DGP 1 results is that, in the DGP 2 experiments, rejection

rates for the score-t test applied to density forecasts are similar to those for the MSE-t test

applied to point forecasts and compared to standard normal critical values. For instance,

in forecasts of the second variable in experiments with R,P = 80,80, the rejection rate of

the score-t test is 28.5 percent at the 1-step horizon and 22.7 percent at the 4-step horizon.

The only notable differences in the rejection rates of the two tests occur with variable 1
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and longer forecast horizons, for which the score-t test has a rejection rate as much as 10

percentage points higher than the MSE-t test.

To summarize the implications of the Monte Carlo analysis, based on our results for

testing VAR forecasts versus AR forecasts, what we refer to as the VAR-based bootstrap

(in which the null of no predictive content is imposed on the bootstrap DGP) appears to

be reasonably reliable for testing equal accuracy in population. It is harder to know much

about the reliability of tests for equal accuracy in the finite sample, based on standard

normal critical values, because there is no simple way of parameterizing a Monte Carlo

DGP to make AR and VAR forecasts equally accurate in the finite sample. Our results for

such tests, based on DGPs in which either the AR or VAR is the model generating the data,

may be seen as weakly suggestive that the finite-sample tests will behave as desired. We

draw that inference based on our finding that, when the data are generated by AR models,

such that there is no predictability in population, rejection rates for the finite sample tests

are low.

5 Conclusion

This chapter reviews recent developments in the evaluation of point and density forecasts

in the context of vector autoregressions. In particular we focus on testing issues specific to

iterated multi-step forecasts made from VARs as compared to direct multi-step forecasts

generated by single equation models. We discussed these issues as they relate to the evalu-

ation of forecasts in population (based on true, unknown model coefficients) as well as the

evaluation of forecasts in the finite sample (based on estimated model coefficients).

For evaluation in finite-samples, the results of Giacomini and White (2006) broadly

apply with VAR forecasts, subject to the requirement that the forecasts be generated with

a fixed or rolling window estimation approach. In a VAR context, it would be very difficult

to define a data generating-process that satisfied the null hypothesis and thereby permitted

an analysis of the performance of the tests in practice. However, we provide Monte Carlo

analysis to show that tests of equal accuracy in the finite sample behave as expected when

applied under a DGP designed for the null of equal accuracy in population. In particular,

the finite-sample tests are much more conservative (in rejection rates) than the tests of

equal accuracy in population.

For evaluation in population, the distinction between iterated multi-step and direct
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multi-step approaches becomes important. For direct multi-step forecasts, existing results

from sources such as West (1996), Clark and McCracken (2001, 2005a) and McCracken

(2007) go through directly and simply. For iterated multi-step forecasts and evaluations

that do not involve nested models, the results of West (1996) still apply, but the correction

to standard errors necessitated by parameter estimation becomes more complicated. For

iterated multi-step forecasts and evaluations of nested models, the asymptotic results of

Clark and McCracken (2001a, 2005) and McCracken (2007) no longer apply, because the

multi-step forecasts are not linear functions of least-squares estimated parameters.

Still, even in this case, it may that the bootstrap methods considered in Clark and

McCracken (2001a, 2005) turn out to be reasonably accurate when applied to nested model

forecasts from VAR models. Our Monte Carlo experiments bear this out. Overall, our

Monte Carlo analysis suggests that bootstrap-based tests of equal accuracy have reasonable

properties under the null of equal accuracy in population.
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Table 1. Monte Carlo DGP 1 coefficients

explanatory y1,t y2,t y3,t
variable equation equation equation
y1,t−1 0.24 0.00 0.00
y1,t−2 0.16 0.00 0.00
y1,t−3 -0.05 0.00 0.00
y1,t−4 0.03 0.00 0.00
y2,t−1 0.00 0.61 0.00
y2,t−2 0.00 0.13 0.00
y2,t−3 0.00 0.30 0.00
y2,t−4 0.00 -0.14 0.00
y3,t−1 0.00 0.00 1.30
y3,t−2 0.00 0.00 -0.64
y3,t−3 0.00 0.00 0.59
y3,t−4 0.00 0.00 -0.30
intercept 2.08 0.34 0.30

Notes:
1. The table provides the coefficients of Monte Carlo DGP 1, in the form of a VAR with 0 restrictions to make the model
correspond to an AR.
2. The variance-covariance matrix of innovations and other aspects of the Monte Carlo design are described in section 4.3.

Table 2. Monte Carlo DGP 2 coefficients

explanatory y1,t y2,t y3,t
variable equation equation equation
y1,t−1 0.18 0.04 0.05
y1,t−2 0.19 -0.01 0.04
y1,t−3 -0.04 -0.03 -0.01
y1,t−4 0.05 0.12 0.01
y2,t−1 -0.15 0.59 0.06
y2,t−2 0.09 0.17 0.10
y2,t−3 -0.19 0.28 -0.01
y2,t−4 0.14 -0.06 -0.03
y3,t−1 0.36 0.17 1.15
y3,t−2 -1.73 -0.20 -0.63
y3,t−3 1.24 -0.06 0.65
y3,t−4 -0.06 0.07 -0.26
intercept 3.47 -0.13 -0.23

Notes:
1. The table provides the coefficients of Monte Carlo DGP 2, in the form of a VAR.
2. The variance-covariance matrix of innovations and other aspects of the Monte Carlo design are described in section 4.3.
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