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Abstract

Private information may limit insurance possibilities when a few agents form a part-

nership to pool idiosyncratic risk. We show that these insurance possibilities can improve

if the partnership’s income depends on capital accumulation and production, because

cheating distorts investment. As agents’ weights in the partnership increase, they are

more affected by the investment distortion, and their incentives to misreport under the

full information allocation are reduced. In the long run, either one of the partners is

driven to immiseration, or both partners’ lifetime utilities are approximately equal. The

second case is only possible with capital accumulation. The theory’s testable implications

are in line with empirical evidence on the organization of small-business partnerships.
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1 Introduction

Private information limits insurance possibilities when a few agents form a partnership to pool

idiosyncratic risk. We show that if the partnership’s income depends on capital accumulation

and production, insurance possibilities improve because cheating distorts investment. This

occurs because cheating implies that the misrepresenting partner will receive higher utility today

at the expense of reducing the other partner’s current consumption and reducing investment.

The latter reduces future value of the partnership, and therefore provides incentives to prevent

cheating. This mechanism is more significant when the agent’s weight in the partnership is

larger, as he cares more about the future of the partnership. In the long run, either one of the

partners is driven to immiseration, or both partners’ lifetime utilities are approximately equal.

We show that the second case is only possible in economies with capital accumulation. The

theory’s testable implications are in line with empirical evidence on the organization of small-

business partnerships.1 The result transcends this model and also holds in other applications

with private information, a small number of agents, and capital accumulation (e.g., economic

unions among countries or states).

We study the optimal arrangement between two risk-averse agents who are partners in the

ownership of a production technology and capital. Partners face preference shocks that vary

from period to period.2 In this environment, the optimal contract maximizes the weighted

sum of the partners’ lifetime utility and the solution determines how to split output between

investment and consumption of each agent. Ideally, each partner’s consumption should depend

on his preference shock. However, if shocks are private information, the optimal arrangement

must also deal with incentives to misreport. Thus, private information limits the extent of the

partnership’s insurance capabilities.

To understand the role of capital accumulation for incentives under private information,

consider first the simpler case of an endowment economy. In that case, the incentives to cheat

exist because reporting a high preference shock increases consumption of the reporting agent

at the expense of reducing consumption of the other agent. Thus, unless promises about future

consumption are modified as a function of the report, agents always want to report the highest

value of the preference shock. In contrast, with capital accumulation, if a partner chooses

to cheat, she will consume more this period at the cost (at least partially) of disinvestment,

which will reduce her future consumption. We show that this force is more important for

providing incentives for agents with larger shares in the partnership (represented by their Pareto

1See Vereshchagina (2015), Encinosa III, Gaynor, and Rebitzer (2007), Fehr, Kremhelmer, and Schmidt
(2008), Espino, Kowloski, and Sanchez (forthcoming), and Hellmann and Wasserman (forthcoming), among
others.

2As in Diamond and Dybvig (1983) and Atkeson and Lucas (1992).
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weights), as they more strongly internalize the future of the partnership. Thus, in addition to

incorporating capital accumulation, it is crucial to consider a small number of agents. To the

best of our knowledge, this result was not previously demonstrated or understood, since past

work looked at only a continuum of agents or an endowment economy.3

We made two additional assumptions that help simplify the analysis: partners are ex-ante

identical and the preference shock can be either high or low. Under these conditions we derive

three key results as summarized by Propositions 1, 2, and 3. First, Proposition 1 shows that an

agent has no incentives to cheat under the full information allocation when his weight is above

a threshold smaller than one. To understand this result, note that if an agent’s weight is equal

to one, all the extra funds she receives after cheating are only financed by disinvesting in the

partnership, since the consumption of the other agent is already zero. She also fully internalizes

the effect of the investment distortion, because given that her weight is one, she will receive

all future output. Thus, she would be strictly worse off misrepresenting her preference shock

when her weight is exactly one. Now, as a small change in the weight changes consumption and

investment only slightly (by continuity of the full information allocation), cheating will not be

desirable even if the weight were slightly smaller than one. Although this result demonstrates

that at some point the incentives to cheat vanish completely, the main takeaways are: (i) there

is a force created by the behavior of investment in the full information allocation that helps

provide incentives for truthful revelation, and (ii) this force is increasing in the value of the

agent’s weight in the partnership.

Proposition 2 shows that, under certain conditions, both agents have no incentives to cheat

under the full information allocation for a partnership with equal weights. In particular, the

additional assumption is that the spread between the low and the high value of the preference

shock is sufficiently large. To understand the result, consider the extreme case in which con-

sumption is not valued if the low preference shock is realized. In this case, agents with the low

value of the preference shock would be strictly worse off misrepresenting their shock; they would

obtain extra consumption today, when it is not valued, at the expense of lower consumption

tomorrow (because investment decreases), when it is valued. Similarly, if their valuation of

consumption in the low state is close to zero and each agent weight is sufficiently high, the

same forces are present and there are no incentives to cheat; i.e., the full information plan is

incentive compatible for both agents.

Proposition 3 shows that in the long run private information becomes irrelevant and the

agents’ weights remain unchanged. This may happen because either one of the partners has all

3A notable exception is Marcet and Marimon (1992). The key difference is that in their work one of the
agents has linear preferences and deep pockets. As we show in Section 5.1 this assumption eliminates the
disinvestment mechanism studied here.
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the weight in the partnership, or the weights are approximately equal. This proposition hinges

on the existence of a region of weights such that both incentive compatibility constraints are

not binding. This result is important because it implies that the immiseration result, which

has been widely studied in private information problems, does not hold. More generally, when

the condition in Proposition 2 is not satisfied, for instance, because the preference shock is

less coarse, the main takeaway is that due to the incentives provided by capital accumulation,

the economy spends more time in the surroundings of equal weights than in an endowment

economy.

The framework presented in this paper has several features that resemble the organization

of small-business partnerships.4 Small businesses are recognized to be an important driver of

the economy (see Hurst and Pugsley (2011)). These businesses are concentrated among skilled

craftsmen, lawyers, real estate agents, doctors, small shopkeepers, and restaurateurs, among

others. There are five characteristics of small-business partnerships that are well captured by

our framework: small number of owners, shared ownership, production possibilities, liquidity

shocks, and internal financing. We argue that our theory can account for two common findings

in the study of partnerships: (i) increasing the number of partners worsens incentives prob-

lems, and (ii) partners having equal shares of ownership facilitates the provision of incentives.

Moreover, our theory has other testable predictions about the dynamics of ownership shares

that are, a priori, harder to rationalize with other existing theories. In particular, under pri-

vate information, our theory implies that: (i) ownership shares change more frequently when

firm ownership is unequally distributed, and (ii) the distribution of ownership shares moves

over time towards either equal distribution of ownership or sole-proprietorship. We argue these

two findings are in line with empirical evidence we present in Espino, Kowloski, and Sanchez

(forthcoming).

Related literature. This paper is related to long standing theoretical literature studying

private information problems. Previous work had made at least one of three assumptions: (i)

resources available are not affected by the agents’ decisions —“endowment economy” (Thomas

and Worral, 1990); (ii) there is a continuum of agents (Atkeson and Lucas, 1992); (iii) one of the

agents is risk neutral with deep pockets (Marcet and Marimon, 1992; Clementi and Hopenhayn,

2006).5 We find that these assumptions are not innocuous. When we relax these assumptions

and consider a production economy with a finite number of risk-averse agents, we find that

4Notice that we refer to these firms as small-business partnerships to differentiate them from large public
companies. We do not mean partnership in the legal status sense. The legal status and tax treatment differences
are ignored in this analysis.

5See also Green (1987), Spear and Srivastava (1987), Quadrini (2004), Clementi, Cooley, and Giannatale
(2010), and Cole, Greenwood, and Sanchez (2012).
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investment provides incentives to prevent cheating, in particular for partners with large weight

in the partnership.

Our work is also related to theoretical and empirical literature studying the organization of

partnerships. The theoretical literature in this case is more scarce, mainly because the stan-

dard assumptions made in previous private information setups do not apply to partnerships.

Although there are a few notable exemptions, they all consider a static environment and there-

fore ignore investment and the evolution of ownership shares, which are the main ingredients

for our analysis. Bhattacharyya and Lafontaine (1995) study how to split revenue in fran-

chises in a static environment in which the unobservable effort of both partners affects output.

More recent theoretical work focuses on the choices of businesses to organize as partnerships or

corporations (Kaya and Vereshchagina, 2014; Levin and Tadelis, 2005, among others).

Empirical work on partnerships presents evidence in line with our findings. Drawing on

previous research, Wasserman (2012) documents the prevalence of equal equity splits in star-

tups.6 Other works study medical practices (Gaynor and Gertler, 1995) and law partnerships

(Kevin Lang, 1995) in which the partners get together to share risk, as in our framework. Their

main finding is that increasing the number of partners (diminishing the share each partner has)

reduces the risk-sharing ability of the partnership. This result is in line with our finding that

having all partners with large ownership shares facilitates the provision of incentives.

The paper is organized as follows. Section 2 describes the model and shows how the problem

of organizing a partnership can be represented recursively using Pareto weights and capital as

state variables. Section 3 characterizes the optimal allocation under full and private information.

Section 4 argues that allowing for capital accumulation is crucial for our results. The robustness

of the result to other assumptions is discussed in Section 5. Section 6 asserts that our theory

can be used to understand the organization of small-business partnerships. Finally, Section

7 provides conclusions. The recursive formulation of the partnership problem is provided in

Appendix A while the rest of the proofs are provided in Appendices B and C.

2 Model

Time is discrete and the time horizon is infinite. At date 0, two agents, indexed by i = 1, 2,

start operating a decreasing return to scale technology that delivers a profits function f(k) with

f ′(k) > and f ′′(k) < 0. They start with capital k0 = k0,1 + k0,2, contributed by agents 1 and

2, respectively.7 Capital depreciates at the rate δ ∈ (0, 1). Given technological assumptions,

6Since most of the start-ups are small, our results for small-business partnerships can also be applied to
startups. More on this in Section 6.

7This paper studies neither the formation nor the break-up of the contract. The formation could be de-
termined by Nash bargaining between agents who would split the benefits of the partnership (raising capital
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there exists some k such that X = [0, k] denotes the sustainable levels of capital.8

Agents have preferences à la Diamond and Dybvig (1983) as they face liquidity shocks.9

At the beginning of date t, agent i privately observes his shock si,t ∈ Si,t = {sL, sH}, where

sH > sL and define Sti = ×th=0Si,h, St = S1,t × S2,t and St = ×tj=0St.

These shocks are assumed to be i.i.d. across time and agents, where π(si,t) > 0 is the

probability of si,t. Let st = (s1,t, s2,t) ∈ St be the joint shock at date t with probability

π(st) = π(s1,t) × π(s2,t); s−i denotes a liquidity shock that excludes agent i’s element (e.g.,

s−1 = s2) and st = (s0, ..., st) ∈ St denotes a partial history of events from date 0 to date t.

The probability at date 0 of a partial history st is π(st) = π(s0)...π(st).

Given a consumption path {ci,t}∞t=0 such that ci,t : St → R+, agent i’s preferences are

represented by

E

{
∞∑
t=0

βt si,t u(ci,t)

}
=
∞∑
t=0

∑
st

βtπ(st) si,t u(ci(s
t)),

where u : R+ → R+ is strictly increasing, strictly concave, and twice differentiable; lim
ct→0

u′(ct) =

+∞; and β ∈ (0, 1). A higher value of the agent’s liquidity needs implies that he is willing to

take more resources to consume more today compared with the future.

Let K ′ = {Kt+1}∞t=0 be an investment plan that every period allocates next-period capital,

given a history of joint reports (i.e. Kt+1 : St → R+ for all t), given K0. Similarly, let

C = {(C1,t, C2,t)}∞t=0 be a distribution plan, where Ci,t : St → R+ for all t, i = 1, 2.

Any (C,K ′) satisfying these properties is called a sequential plan and it is feasible if

K(st) +
2∑
i=1

Ci(s
t) ≤ f(K(st−1)) + (1− δ)K(st−1), (1)

for all st and all t.

Intuitively, feasibility at the firm’s level means that part of the output is reinvested in the

partnership, K(st) − (1 − δ)K(st−1), and part is paid out to the partners, C1(st) + C2(st).

Importantly, note that there is no external finance available to the partnership.10 In what

follows, we refer to K as the stock of capital as well as the size of the partnership indistinctly.

and providing insurance). To allow for break-ups, the model could be extended by adding some type of lack of
commitment, along the lines of Wang (2011) or Amador, Werning, Hopenhayn, and Aguiar (2015).

8All the analysis regarding the solution method also applies to the general case in which there is an arbitrary
number of partners I.

9This class of preferences is standard in the literature; see Tirole (2005), Chapter 12. Moreover, liquidity
shocks are multiplicative as in Atkeson and Lucas (1992).

10In Section 5 we study the case in which partners can obtain unlimited resources at a given interest rate r.
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Given a sequential plan (C,K ′), agent i’s utility at date t given the partial history st is

Ui,t(C,K
′‖st−1) =

∞∑
j=0

βj
∑

(st,...,st+j)

π(st, ..., st+j) si,t+j u(Ci(s
t−1, st, ..., st+j)).

As liquidity shock realizations are privately observed, any mechanism for allocating invest-

ment and consumption must be incentive compatible.11 A sequential plan (C,K ′) is incentive

compatible if no agent has incentives to misreport his liquidity shocks and so truth-telling is

the best response; i.e. for each i,∑
s−i

π(s−i)
(
si u(Ci(s

t−1, si, s−i)) + β Ui,t+1(C,K ′‖(st−1, si, s−i))
)

(2)

≥
∑
s−i

π(s−i)
(
si u(Ci(s

t−1, s̃i, s−i)) + β Ui,t+1(C,K ′‖(st−1, s̃i, s−i))
)

for all t ≥ 0, all st−1 and all (si, s̃i).
12

To solve for the constrained efficient arrangement, we consider a fictitious planner who

chooses among plans that are incentive compatible and feasible. Let Ψ∗(K) be the utility

possibility correspondence—that is, the levels of utility of the partners that can be attained by

a corresponding plan that is incentive compatible and feasible at K,

Ψ∗(K) ≡
{
w ∈ R2

+ : ∃ (C,K ′) satisfying (1)− (2)

and wi ≤ Ui(C,K
′, z∗) ∀ i, K0 = K

}
.

As Ψ∗ is a continuous, compact-valued, and convex correspondence (see Espino (2005)), the

set of constrained efficient plans can be parameterized by (θ1, θ2) ∈ R2
+. We say that (C∗, K ′∗)

is constrained efficient if is the corresponding plan sustaining the levels of lifetime utility that

solves

h∗(K, θ) = max
w ∈ Ψ∗(K)

(θ1w1 + θ2w2) , (3)

for some (θ1, θ2) ∈ R2
+. That is, h∗(K, θ) captures the Pareto frontier of the utility possibility

correspondence Ψ∗ by solving for the highest level of weighted lifetime utility given weights

(θ1, θ2).13 Hereafter we restrict the welfare weights to add up to 1; that is, ∆ ≡ {θ ∈ R2
+ :

11This restriction is without loss of generality since the Revelation Principle holds and it allows us to restrict
attention to mechanisms that rely on truthful reports of these shocks.

12We restrict to temporary incentive compatibility. A more general concept of Bayesian implementation can
shown to be equivalent in this particular dynamic environment. See Espino (2005).

13Our approach to define the objective of the partnership as maximizing the weighted sum of the partners
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θ1 + θ2 = 1}.14

It is more convenient to write this problem recursively. Our recursive representation of the

problem adapts the method developed by Spear and Srivastava (1987) and Abreu, Pearce, and

Stacchetti (1990). We characterize the constrained efficient frontier by giving a Pareto weight

to each agent.15 These weights, together with capital, become endogenous state variables that

summarize the history. In a nutshell, our approach can be interpreted as a combination of

Abreu, Pearce, and Stacchetti (1990) and Marcet and Marimon (1994)’s Lagrangean method.16

In Appendix A we provide an algorithm capable of finding the value function h∗ (and its

corresponding policy functions) and argue that h∗ satisfies

h∗(k, θ) = max
(c,w′,k′)

2∑
i=1

θi

{∑
s

π(s) [si u(ci(s)) + β w′i(s)]

}
, (4)

subject to

k′(s) +
2∑
i=1

ci(s) = f (k) + (1− δ)k (5)

∑
s−i

π(s−i) (siu(ci(si, s−i)) + β w′i(si, s−i)) (6)

≥
∑
s−i

π(s−i) (siu(ci(s̃i, s−i)) + β w′i(s̃i, s−i))

for all (si, s̃i) and

ci(s) ≥ 0, w′i(s) ≥ 0 for all s and all i, (7)

min
θ′∈∆

[
h∗(k′(s), θ′)−

2∑
i=1

θ′i(s) w
′
i(s)

]
≥ 0 for all s. (8)

Note that the optimization problem takes as given (k, θ) to distribute output between cur-

rent consumption to the agents and investment, and assigns continuation utility levels. The

optimization problem defined in condition (8) characterizes the set of continuation utility levels

attainable at (k′, θ′).17 The values of θ′ that attain the minimum in (8) at (k, θ) for state s,

utility is in the spirit of Magill and Quinzii (1996), Chapter 6, Section 31.
14This restriction is innocuous because solutions are homogeneous of degree 0 with respect to (θ1, θ2).
15The idea of substituting utility levels with Pareto weights is borrowed from Lucas and Stokey (1984).
16As Marcet and Marimon (1994), we sidestep the requirement that future utilities must lie in the utility

correspondence next period by mapping utility levels into Pareto weights. See also Mele (2014), Messner,
Pavoni, and Sleet (2012), and Beker and Espino (2013).

17The same condition was used for the same purpose by Lucas and Stokey (1984), equation (5.7), and more
recently by Beker and Espino (2011), equation (15).
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denoted by θ′(k, θ; s), are the next-period weights that are consistent with the entitlement of

continuation utilities.18

In what follows, we say that a sequential plan (C,K ′) is generated by the set of policy

functions (ĉi(k, θ; s), k̂
′(k, θ; s), θ̂′(k, θ; s)) solving (4)-(8) as

Ci(s
t) = ĉi(K(st−1), θ(st−1); st), (9)

θ(st−1, st) = θ̂′(K(st−1), θ(st−1); st),

K(st−1, st) = k̂′(K(st−1), θ(st−1); st),

for all t and all st ∈ St, given θ0 and K0.

3 Characterization

In this section we characterize the solution of the model. First, we briefly describe the optimal

allocation in an economy with full information (i.e., preference shocks are observable). Next,

we characterize the constrained efficient allocation under private information.

3.1 Insurance under Full Information

Consider the case of the economy with full information (i.e. liquidity shocks are perfectly

observable). Since θ1 = 1 − θ2 and the model is symmetric between both agents, hereafter we

refer to agent 1’s weight directly as θ. The proofs of the results in this section are provided in

Appendix B.

There are two sources to finance the extra consumption that an agent receives after reporting

high liquidity needs—namely, redistribution and disinvestment. Consider the increment of agent

1’s consumption as he reports high liquidity needs compared with the case in which he reports

low needs. His consumption is still conditional on agent 2’s report, s2. Define the share of this

increment that is financed by means of disinvestment as

DInv(k, θ, s2) =
k′(k, θ; sL, s2)− k′(k, θ; sH , s2)

c1(k, θ; sH , s2)− c1(k, θ; sL, s2)
; (10)

that is, the fraction of the higher consumption financed by investing less.

Figure 1a describes the disinvestment share and shows that it is increasing in the agent’s

18It is well-known that there is an issue regarding renegotiation-proofness in dynamic contracts, even in
simpler settings (see Wang, 2000). However, in our setting with investment, capital can be manipulated to
make sure that constrained efficient plans are always renegotiation-proof. Details are available upon request.
We thank an anonymous referee about the need to mention this property.

9



weight.19 As partner 1’s weight increases, the marginal cost of financing higher needs of con-

sumption through redistribution increases because partner 2’s consumption decreases. Hence,

the share financed with disinvestment increases. Moreover, the lower the shock reported by

partner 2, the higher the disinvestment. The intuition is that when partner 2 reports sL, his

current consumption is less desirable than future consumption. Hence, investment (and so next

period capital) is higher and therefore it is efficient to increase partner 1’s consumption with

more disinvestment.

Lemma 1 characterizes the main features of partners’ consumption and investment. First,

efficiency dictates that welfare weights are kept constant. This result is especially interesting

because it will contrast with the behavior of welfare weights under private information. To

grasp the intuition of this result, think about a fictitious planner who wants to distribute utility

across agents optimally. The valuations of delivering one more unit of utility to agents 1 and

2 are θ1 and θ2, respectively. On the other hand, the valuations of delivering one more unit of

continuation utility to agents 1 and 2 at s are βπ(s)θ1 and βπ(s)θ2, respectively. Consequently,

the relative valuation remains unchanged at θ1/θ2 and this implies that the normalized weights

must satisfy θ′(s) = θ. This reasoning makes evident the difference with the case under private

information. There, continuation utilities are additionally manipulated to provide incentives

and so their valuations can differ.

Lemma 1 also describes how consumption depends on welfare weights and liquidity needs

shocks. Part of the increase in a agent’s payout after reporting high liquidity needs is financed

by means of disinvestment; i.e., next period capital is smaller when an agent reports high

liquidity needs than when he reports low liquidity needs.

Lemma 1 (Full Information). Under full information:

1. Welfare weights do not change; i.e. θ′(k, θ; s) = θ for all s, all k and all θ.

2. If u(c) = c1−σ/(1 − σ), the optimal investment and distribution policy of consumption

under full information satisfy:

(a) The fraction of total consumption that is paid to agent i is increasing in his liquidity

needs, decreasing in the other agent’s liquidity needs, and increasing in his weight.

19For all figures we use numerical results derived with the following assumptions. The utility function is
c(1−σ)

1−σ , the profit function is f(K) = Kα with 0 < α < 1, and the shocks are s(L) = 1− ε and s(H) = 1+ ε. The
parameter σ = 0.5, as in other studies of private information such as those by Hopenhayn and Nicolini (1997)
and Pavoni (2007). The parameter α = 0.7 is in the range of estimations of Cooper and Ejarque (2003). We
set δ = 0.07 and β = 0.97 as is standard in the literature. We consider ε = 0.6 just for illustrative proposes.
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(b) The level of investment is decreasing in the agents’ needs of liquidity; i.e.

k′(k, θ; sL, s2) > k′(k, θ; sH , s2),

k′(k, θ; s1, sL) > k′(k, θ; s1, sH).

3.2 Incentives to Cheat and the Size of the Pareto weight

The remainder of this section studies insurance with privately observed liquidity socks. First,

we describe the key difference with previous results. We show that when welfare weights

are relatively large the corresponding incentive compatibility constraints become slack. Since

incentive to cheat disappears when the weights are big enough, we call this result “too big to

cheat.” Next, we discuss the intuition for the driving mechanism. Appendix C contains all the

proofs in this section.

Proposition 1 (Too big to cheat). Given k, there exists some value of the agent 1’s welfare

weight θ(k) ∈ (0, 1) such that the agent 1’s incentive compatibility constraint does not bind for

all (k, θ) with θ ∈
[
θ(k), 1

]
.

Similarly, the agent 2’s incentive compatibility constraint does not bind for all (k, θ) with θ ∈[
0, 1− θ(k)

]
.

The underlying intuition for this result can be grasped as follows. Cheating implies that

the agent misrepresenting high liquidity needs will receive higher consumption. The resources

for that extra consumption are obtained from two sources: (i) decreasing consumption of the

other agent and (ii) reducing investment. Note that this higher consumption is not necessarily

beneficial for this agent. It would be beneficial if it is financed with a reduction in the other

agent consumption, but it may not be beneficial if it is financed with a reduction in investment,

because it implies that future output will be lower. The magnitude of the second force depends

(and is increasing) in the value of the Pareto weight which represents how much of future output

will be consumed by this agent.

If one agent’s weight is equal to one, all the extra funds he receives after cheating are only

financed by disinvestment because the consumption of the other agent is already zero. He also

fully internalizes the effect of the investment distortion, because given that the Pareto weight

is one, he will own all future output. Therefore, when the agent’s Pareto weight is equal to one,

he would be strictly worse off misrepresenting his liquidity needs. Now, since small changes in

the Pareto weight change consumption and investment only slightly (continuity), cheating will

not be desirable even if the Pareto weight were slightly smaller than 1. Of course, as the Pareto

weight decreases further, at some point the gains of cheating are larger than the costs and the

full information allocation is no longer incentive compatible.
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Although this result demonstrates that at some point the incentives to cheat vanish com-

pletely (the multiplier of the incentive compatibility constraint is zero), the main takeaway

should be different. It should be that (i) as long as the agent’s weight is greater than zero, the

distortion in investment creates a force that helps in providing incentives for truthful revelation

and (ii) that force is increasing in the value of the agent’s Pareto weight.

When the Pareto weight is smaller than the threshold described above, the constrained

efficient allocation changes with respect to the full information allocation to provide incentives

for truthful revelation. In particular, it changes in three dimensions: consumption, continuation

weights, and investment. The distortions in consumption are standard in the literature; i.e., the

constraint efficient allocation provides less consumption insurance in order to provide incentives.

We now study how continuation weights and investment are distorted in the constrained efficient

allocation.

Continuation weights are manipulated to provide incentives for truthful revelation of the

shock. Lemma 2 characterizes the evolution of Pareto weights under private information. In

general, to provide incentives to report low preference shocks, the constraint efficient allocation

punishes the report of a high preference shock by decreasing his future weight. When agent

1’s incentive compatibility constraint does not bind, there is no need to provide incentives

for agent 1, and as a consequence future weights are independent of his report. But weights

could still depend (and, in general, will) on the other partner’s report. By symmetry, if agent

2 reports a high shock, his weight decreases, and the weight of agent 1 increases. Finally,

note that when both incentive compatibility constraints are slack and there is no need to

provide incentives, future weights are equal to current weights and independent of reports

about preference shocks.20

Lemma 2 (Dynamics of weights). Partner 1 weight evolves as follows:

1. θ′1 (k, θ; sL, s2) ≥ θ′1 (k, θ; sH , s2) for s2 ∈ {sL, sH}.

2. Moreover, if the incentive compatibility constraint of partner 1 does not bind, then

θ′1 (k, θ; sL, s2) = θ′1 (k, θ; sH , s2) for s2 ∈ {sL, sH}.

3. Moreover, if no incentive compatibility constraint bind, then θ′1 (k, θ; s1, s2) = θ

for (s1, s2) ∈ {sL, sH} × {sL, sH}.

Finally, capital accumulation is also distorted and disinvestment is stronger under private

information than under full information. This is shown in Figure 1b, which displays the dis-

20There is a subtle difference here between future utility and future Pareto weight. Imagine the case in
which both incentives constraints are slack. As we mentioned, in that case the future Pareto weights will
be independent of the report. However, promised utilities will not be independent of the report, as capital
accumulation does depend on the report even in the full information allocation.
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investment share for private information relative to that of full information (i.e., the ratio of

equation 10 in private information to full information). Note that this ratio is above one for

low values of θ, when partner 1 incentive constraint is binding. To understand this, recall that

the reduction in investment following a report of a high preference shock is the cost of cheating.

Thus, to prevent cheating, it is natural that the optimal contract prescribes more disinvestment.

The fact that investment is distorted under private information is the key difference with the

work of Marcet and Marimon (1992). As we discuss below, this occurs because agents are risk

averse in our setup.

Figure 1: Disinvestment
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(b) Distortions under private information

.

3.3 Existence of the Too-Big-To-Cheat

In the general setting in which both partners face liquidity shocks, we show a sufficient condition

such that private information does not matter in the long-run. This condition is that the full

information plan is a strictly incentive compatible plan (i.e., a plan that satisfies both incentive

compatibility constraints with strict inequality) at θ = 1/2 for all k. This feature of the plan

relies on the characteristics of the partnership and so we next check that this set is non-empty.

The following proposition analyzes the role of one of the parameters that describes the

characteristics of the model. In particular, it characterizes the size of the liquidity needs shocks

that make it possible to attain the full information plan with an equally shared ownership

structure. In order to do that, we parameterize liquidity shocks so that sL = 1 − ε and

sH = 1 + ε for both partners.
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Proposition 2 (Existence of “too big to cheat” region). For any partnership, there exists some

ε∗ ∈ (0, 1) such that for all ε ∈ (ε∗, 1) the full information plan is strictly incentive compatible

for both agents at θ = 1/2 for all k.

The proposition above states both partners have no incentive to cheat with θ = 1/2 if the

low value of the preference shock is sufficiently low, relatively to the high value of the shock. To

understand the result, consider the case of ε = 1. This implies that consumption is not valued

if the low preference shock is realized; i.e. sL = 0. In this case, agents with the low value of

the preference shock would be strictly worse off misrepresenting their shock; they would obtain

extra consumption today, when it is not valued, at the expense of lower consumption tomorrow

(because investment decreases), when it is valued. If ε is close to 1 and each agent weight is

sufficiently high, the same forces are present and there are no incentives to cheat. Thus, for

θ = 1/2, there exists an ε∗ < 1 such that for all ε ∈ (ε∗, 1) the full information plan is incentive

compatible for both agents.

While this result is shown with the difference between the high and the low value of the shock,

similar forces are at work when other parameters are changed. For instance, while increasing ε

helps to provide incentives because the agent assigns a very low value for consumption today,

increasing β would be similar because it increases the weight that the agents assigns to the

distortion on investment.

In the remainder of this section we study the case in which the full information plan is

strictly incentive compatible at θ = 1/2 for all k.

3.4 Long-run Convergence

The following result establishes that private information does not matter in the long run.

Proposition 3 (In the long run, sole proprietorship or equally owned partnership). Suppose

that the full information plan is strictly incentive compatible at θ = 1/2 for all k. Then, there

exists θ∗ ∈ (0, 1/2) such that

1. If (kt, θt) ∈ [kmin(θt), kmax(θt)] × [θ∗, 1 − θ∗] at some t, then the partnership’s size and

ownership structure, (kt, θt), stay in a region in which the constrained efficient plan and

the full information plan coincide and θt+n = θt for all n ≥ 0.

2. If (kt, θt) ∈ [kmin(θt), kmax(θt)] × [0, θ∗] at some t, the partnership’s size and ownership

structure, (kt, θt), reach a region in which the constrained efficient plan and the full in-

formation plan coincide with probability 1; i.e. θt → {0, [θ∗, 1− θ∗]} a.s.
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3. If (kt, θt) ∈ [kmin(θt), kmax(θt)] × [1 − θ∗, 1] at some t, the partnership’s size and owner-

ship structure, (kt, θt), reach a region in which the constrained efficient plan and the full

information plan coincide with probability 1; i.e. θt → {[θ∗, 1− θ∗], 1} a.s.

As long as the full information plan is strictly incentive compatible at θ = 1/2 for all k,

Proposition 3 states that in the long run private information becomes irrelevant and the Pareto

weights remains unchanged. This may happen because (i) one of the agents’ Pareto weight is

equal to one, or (ii) both Pareto weights are approximately equal to 1/2. Notice that the too-

big-to-cheat region defined in Proposition 2 can be reached either immediately (as the initial

weights and the initial capital stock starts there) or in the long run (as the weights and the

capital stock converge as time and uncertainty unfold).21

The fact that in the long run private information does not matter resembles previous re-

sults.22 What is new in our setup is that this may happen in a region in which both agents

have positive weights. As we mentioned before, this is possible due to the inclusion of capital

accumulation.

Proposition 3 hinges on the existence of a region in the space of capital and Pareto weights

such that both incentive compatibility constraints are not binding (Proposition 2 shows this

case exists for some configuration of the preference shock). This result is important because

it implies that the immiseration result, which has been widely studied in private information

problems, does not hold. More generally, when the condition in Proposition 2 is not satisfied,

for instance because the preference shock is less coarse, the takeaway should be that due to

the incentives provided by capital accumulation, the economy will spend more time in the

surroundings of equal weights than in an endowment economy.

4 The Role of Investment

What role do investment and capital accumulation play in our results? In this section we argue

that capital accumulation is crucial for our results.

We study the same problem as above but assume that the resources available cannot be

affected by investment and thus are given every period. Thus, this framework resembles that

of Atkeson and Lucas (1992), but with only two agents.23

21Note that Proposition 3 assumes that kt starts in the ergodic set for capital under full information,
[kmin(θt), kmax(θt)]. We performed numerical exercises with very small or very large kt and found that un-
der private information capital converges to this interval in about 65 periods.

22As in Thomas and Worral (1990), the simplified argument is the following: imagine Pareto weights con-
verged and private information still matters. Then future Pareto weights must be spread to provide incentives,
contradicting the initial statement that Pareto weights converged.

23To facilitate the comparison in the examples below, the level of resources in the economy without capital
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In the endowment economy the full information plan violates the incentive compatibility

constraints for both agents for all θ ∈ (0, 1). To understand this result, consider the incen-

tive compatibility constraint under the full information allocation in the endowment economy.

Continuation utilities are independent of the reports about preference shocks, and therefore

the incentive compatibility constraint only depends on consumption. Consumption is strictly

increasing in the preference shock for all θ ∈ (0, 1). As a result, the incentive compatibility

constraint is always violated. At θ = 0 and θ = 1 the agent is indifferent between cheating or

not because future utility and consumption are independent of the report. In contrast, in the

production economy the full information allocation dictates that investment, and as a conse-

quence, continuation utilities depend on the reports. Hence, at θ = 0 and θ = 1, the agent

would be strictly worse off by cheating.24

Figure 2 illustrates this point further. The dashed line represents the welfare gains of moving

from private to full information in an endowment economy. There are two main results: (i)

the maximum welfare gains are about 0.1 percent in terms of consumption equivalent units25

and (ii) the maximum value of welfare gains occurs when the partners have equal weights.

The solid blue line displays the results of performing the same exercise but for our benchmark

economy with capital accumulation. In sharp contrast, in the production economy we find

that (i) welfare gains are one order of magnitude smaller; and (ii) these gains are actually zero

when both partners have the same weight. In general, the last result means that equal weights

minimize the cost of private information in a production economy.

Up to this point, we consider the case in which the conditions of Proposition 2 are satisfied

and the full information plan is strictly incentive compatible at θ = 1/2 for all k. However,

capital accumulation still mitigates incentives to cheat even if this condition does not hold. To

show this, we simulate both the production and the endowment economy 1,000 times for 100

periods starting at θ = 0.5 for the case in which ε < ε∗ and the full information plan is not

incentive compatible at θ = 1/2. Recall that under full information weights do not change, so θ

would be constant at 0.5 forever. Figure 3 shows the resulting distribution of θ over those 100

periods for both the endowment and the production economy under private information. The

production economy (solid blue line) spends more time close to θ = 0.5 than the endowment

economy (red dashed line). This result confirms that the main mechanism highlighted in this

paper—that capital accumulation mitigates the role of private information—is at work even

accumulation are set at the output produced with the mean of the steady-state level of capital in the economy
with capital accumulation.

24Technically, this explains why a continuity argument can be used in the production economy to show
Proposition 1 but not in the endowment economy.

25Note that this number is slightly more than 10 times higher than the gains from eliminating business cycles
estimated by Lucas (1987) and similar to those found by Krusell and Smith (1999) in an economy with large
heterogeneity.
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Figure 2: Welfare gains of moving from private to full information

 Pareto weight, agent 1

0 0.2 0.4 0.6 0.8 1

C
o
n
s
u
m

p
ti
o
n
 e

q
u
iv

a
le

n
t 
u
n
it
s

0

0.02

0.04

0.06

0.08

0.1
Production

Endowment

Note: Consumption equivalent units is defined as 100
(

(H∗(k, θ)/H∗∗(k, θ))
1

1−σ − 1
)

. For the production econ-

omy, we show the cost for the value of capital such that F (k) is equal to the endowment of the economy without

capital accumulation.

when the technical condition imposed in Proposition 2 is not satisfied.

5 Discussion of Key Assumptions

In this section we discuss the role played by internal financing, the coarseness of state space for

the liquidity need shocks, and present some numerical simulations to study the long run when

the condition needed for Proposition 2 does not hold.

5.1 External Financing

To study the role of external financing, we consider an extreme case in which the partners have

perfect access to capital market. To operationalize this, we contemplate an environment similar

to Marcet and Marimon (1992), in which agent 2 is risk neutral, faces no shocks, and has deep

pockets.26

In this setup, for all θ ∈ (0, 1), the first-order condition that characterizes optimal investment

of the private information plan implies

1 = β (f ′(k∗) + (1− δ)) .
26The assumption that agent 2 does not face shocks is made only for simplicity.
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Figure 3: Evolution of Pareto weights
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Note: We simulate 1000 economies for 100 starting at θ0 = 0.5 and look at the distribution of θ under both the

production and the endowment economy.

This finding is analogous to the result in Marcet and Marimon (1992), who find that private in-

formation does not distort optimal investment. This result is a direct consequence of evaluating

the investment decision with the intertemporal marginal rate of substitution of the risk-neutral

agent.

Note that the capital stock in this setup will jump directly from k0 to k∗ and remain

constant forever (in particular, the reports of the agent with private information do not change

investment). Therefore, under full information, future utility is independent of the reports, and

as we explained in the case of the endowment economy, this implies that the full information

plan violates the incentive compatibility constraints for all θ ∈ (0, 1).

5.2 Continuous State Space for the Liquidity Need Shocks

We have assumed that the liquidity shock can take only two values but it is useful to briefly

discuss the case with continuous state space for the liquidity need shocks. We argue that there

is less incentive to misrepresent the shock once we allow for capital accumulation even if the

shock is continuous. For this purpose, we assume the agent is offered the full information plan

and compare the reported liquidity need shock both in the endowment economy and in the

economy with capital accumulation.

First, with no investment possibilities, if the partners are offered the full information plan,

any partner would always have incentive to report the highest liquidity shock as consumption
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is increasing in the report, independently of his share of ownership in the partnership. At

the individual level, there are no incentives to report something smaller since the increment in

payout would always come from a reduction in consumption of the other agents. Importantly,

this result holds, with both discrete and continuous state space for the liquidity needs shocks.

In contrast, in the economy with investment, the size of the optimal misrepresentation

(reported θ - actual θ) under the full information plan depends on the Pareto weight. As

the partner’s Pareto weight increases, his desired report approaches his realized shock because

the part of his increment in consumption that is financed with disinvestment is increasing in

his size. In the limit, for θ = 1 the full information plan is actually incentive compatible.

In particular, the further the reported shock from the truth, the larger the loss of cheating

(because investment is more distorted). Now, for a Pareto weight close to 1, by continuity of

the allocation on the Pareto weight, the only misreport that can be desirable is a marginal one,

which is available only if the shock is continuous (if the shock is discrete, this means cheating is

undesirable). This is the key difference with the model without capital accumulation, in which,

as we argued above, the desired misreport would be the largest irrespective of the coarseness

of the shock.

5.3 Long-run Convergence when the Too-Big-To-Cheat Region Does

Not Exist

Consider the alternative case in which the full information plan is not strictly incentive com-

patible at θ = 1/2 for all k.27 As in this case the incentive compatibility constraint of at least

one partner is always binding, it follows by the same arguments as in Proposition 3 that part-

nerships do not exist in the long run since, if it converges, only one of the partners will own

100 percent of the partnership.

We provide some numerical examples to highlight that both the initial Pareto weights and

the assumption of strict incentive compatibility are key to determining the long run outcome.

Table 1 shows the results of simulating 1,000 partnerships until the ownership structure con-

verged. We start partnerships with different initial Pareto weights, θ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
Under full information the ownership structure in the long run coincides with the initial

distribution. In contrast, there are two possibilities under private information, depending upon

whether the full information plan is strictly incentive compatible at θ = 1/2 for all k or not.

The first case under private information is illustrated for ε > ε∗ while columns TBTC, IM1

and IM2 refer to convergence to θ∗, θ = 0 and θ = 1, respectively. In line with the results of

Proposition 3, as long as θ0 < θ∗ the partnership converges to either θ = 0 (i.e. immiseration

27Suppose, for instance, that ε < ε∗.
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Table 1: Long-run convergence

ε > ε? ε < ε?

θ0 TBTC IM1 IM2 TBTC IM1 IM2

0.1
E(θ) 0.47 0.00 0.00 1.00

% convergence 12 88 0 0 95 5

0.2
E(θ) 0.47 0.00 0.00 1.00

% convergence 30 70 0 0 86 14

0.3
E(θ) 0.47 0.00 0.00 1.00

% convergence 50 50 0 0 75 25

0.4
E(θ) 0.47 0.00 0.00 1.00

% convergence 79 21 0 0 62 38

0.5
E(θ) 0.50 0.00 1.00

% convergence 100 0 0 0 48 52
Note: We simulate N=1000 economies of length T = 1,000,000, and keep the last t=1,000 periods. TBTC is
defined as E[θ] ∈ [0.45, 0.55], IM1 is defined as E[θ] ≤ 0.1 and IM2 is defined as E[θ] ≥ 0.9.

of partner 1) or θ∗. The closer is θ0 to θ∗, the more frequently the partnership converges to the

TBTC region with more equally distributed ownership structure. If θ0 ∈ [θ∗, 1/2], then θt = θ0

for all t because the full information plan can be attained immediately. The second case under

private information is illustrated for ε < ε∗. As noted above, only sole proprietorship can be

reached with positive probability in the long run. The closer is θ0 to 0, the more frequently the

partnership converges to θ = 0 (i.e. immiseration of partner 1) and vice versa.

5.4 Symmetry

Although throughout the paper we assume that the partnership is symmetric (the agents are

ex-ante identical), our theory is certainly more general. This assumption is important for the

result that the too-big-to-cheat region is around 50-50. If partners were asymmetric we would

find two thresholds, θ1 and θ2, such that this region would be [θ1, θ2]. Note that if the asymmetry

is sufficiently large this region might not include θ = 1/2. For instance, if only agent 1 faces

preference shocks, then the too-big-to-cheat region is [θ1, 1]. As we will show below, studying

the symmetric case is appealing for the application we consider.28

28As the model’s prediction is that the ownership structure would spend more time (or in the cross section,
is more likely) around the too-big-to-cheat region, we can potentially test the validity of this assumption. For
our application, we argue this assumption has empirical support.
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6 Application: Small-business Partnerships

The framework presented above has several features that resembles the organization of small-

business partnerships. Small-business are recognized to be an important driver of the economy.

For example, firms with fewer than 20 employees in the US represent about 87 percent of all

firms, and 19 percent of total employment in 2005 (See Hurst and Pugsley (2011)). They also

show that most small businesses intend to provide an existing service to an existing market,

have little desire to grow big, and non-pecuniary benefits (being one’s own boss, having flexi-

bility of hours, etc.) play a first-order role in the business formation decision. These businesses

are concentrated among skilled craftsmen, lawyers, real estate agents, doctors, small shopkeep-

ers, and restaurateurs, among others. Notice that we refer to these firms as small-business

partnerships to differentiate them from large public companies.29 We do not mean partnership

as in the legal status.30

This paper contributes to the study of the internal organization of small-business partner-

ships and shows how private information can distort the investment policies of those firms. We

first argue that the model captures the main features of small-business partnerships. Then, we

discuss empirical evidence in line with some predictions of our theory.

6.1 Why This Is a Good Model of Small-business Partnerships?

There are five characteristics of small-business partnerships that are well captured by our frame-

work.

1. Small number of owners: According to the Kauffman Firm Survey, most of the starting

businesses have very few partners: 60 percent have only one owner, almost 30 percent

have two owners, and about 6 percent have three owners. This fact is robust across

different data sources and countries. In the Survey of Small Business Finances, about 50

percent of the firms have one owner, slightly more than 30 percent have two owners, and

7.5 percent have three owners. In the CAF Survey, which covers different countries in

Latin America, 60 percent of the small businesses have one owner, 27 percent have two

owners, and 7 percent have three owners.31 Hence, our assumption of two agents seems

adequate to understand the behavior of small business partnerships.

2. Production technology: We model the resources of the partnerships as derived from

production, instead of endowment, and allow for investment to accumulate capital. It

29According to Magill and Quinzii (1996) (1996, p. 331), partnerships (in contrast to corporations) are
characterized by not having access to the stock market and limited access to loans.

30The legal status and tax treatment differences are ignored in this analysis.
31See Espino, Kowloski, and Sanchez (forthcoming) for more details.
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is important to take into account investment because in reality the share of investment

to output is about 20 percent across all firms, and this share is even larger for smaller

businesses.32 The modeling of production follows, for instance, Lucas (1978). As we show

in Section 4, allowing for capital accumulation is not only a reasonable assumption for a

firm’s production but also key for our results.

3. Liquidity shocks: A preference shock is introduced in our theory to capture, as in

Diamond and Dybvig (1983) and in all the literature that followed, the existence of a

random need for liquidity on the part of individuals. As in Diamond and Dybvig (1983),

the realization of the shock is unobservable. In our model, and in reality—as highlighted in

Wasserman (2012)—a partner’s personal life may affect his commitment and contributions

to the business. For example, extreme and unexpected health problems can catch all

parties by surprise.33 Given the uncertainty about liquidity needs, the partnership may

be useful as an insurance mechanism. Although direct evidence on the relevance of this

mechanism is hard to obtain, Hurst and Pugsley (2011) provide evidence that some non

pecuniary benefits play a first-order role in the business formation decision. One of such

a benefit could certainly be the insurance provided by the ownership of the business.34

Moreover, Berk and DeMarzo (2014) argue that the small business owner is forced to

hold a large fraction of his or her wealth in a single asset—the company—and therefore is

likely to be undiversified and value the insurance provided from this asset (the company).

4. Internal Financing: Classical references and recent papers have found that access to

external financing is limited and small businesses rely heavily on internal resources. But-

ters and Lintner (1945) provide some of the earliest research to support this theory. They

examine the early histories of several industries and conclude that many small companies,

even companies with promising growth opportunities, find it extremely difficult or impos-

sible to raise outside capital on reasonably favorable terms, and the majority of small

firms finance their growth almost exclusively through retained earnings. More recently,

Hubbard (1998) and Carpenter and Petersen (2002) show that growth of most small firms

32See, for example, Evans (1987a) and Evans (1987b).
33Interesting, anecdotal evidence of this type of shock is available. While Microsoft was still a private company,

co-founder Paul Allen was diagnosed with Hodgkin’s lymphoma, which caused him to quit the company, leaving
Bill Gates as the sole active founder during the crucial three years before it became a public company. We
thank an anonymous referee for the references. See https://en.wikipedia.org/wiki/Paul_Allen.

34The predictions of the model are the same if the shock is reinterpreted as a shock to the cost of effort, under
some assumptions. For example, assume that preferences depend on consumption and leisure and each partner
must do work in a fixed amount, L, measured in efficiency units. Every period, the productivity varies, and the
individuals must adjust the effort to compensate for changes in productivity. If leisure and consumption are
substitutes, when the agent reports low productivity (e.g., back pain), she is reporting that effort was high, so
that is equivalent to reporting a high marginal utility of consumption (a high preference shock) as in our model.
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is constrained by the availability of internal finance. Similarly, Berk and DeMarzo (2014)

argue that one limitation of small businesses is that they do not have access to outside

equity capital, so they have relatively little capacity for growth. Finally, note that out-

side the US, where in general financial systems are less developed, this argument is even

stronger.

Although we assume that all the resources for investment must be raised internally, that

assumption is made only to simplify the analysis and sharpen the results. As far as

outside financing is limited, and firms must adjust investment to respond to liquidity

needs, the new mechanism, which we want to highlight, will be in place. In contrast, if

we assume perfect access to capital markets, investment is not distorted and the problem

is equivalent to a model without investment (endowment economy).35

In addition to no access to capital markets, we assume that the partners do not set

resources aside (precautionary savings) to use in case of liquidity needs. This assumption,

which greatly simplifies the analysis, is also supported by empirical evidence. Gentry and

Hubbard (2000) show that the portfolios of entrepreneurial households, even wealthy ones,

are very undiversified, with the bulk of assets held within active businesses. Similarly,

Kaplan, Violante, and Weidner (2014) document that many households are wealthy hand-

to-mouth: they hold little or no liquid wealth despite owning sizable quantities of illiquid

assets. Hence, many of these entrepreneurial households choose to tap into business

earnings after a negative shock.

5. Shared ownership: We interpret Pareto weights, θi, as ownership shares of the business.

These firms are privately-owned and these shares should not be interpreted as equity

shares that can be traded in the capital market. We propose that partners directly solve

problem (4)-(8) and how much they own of the business is mapped into how much their

utility is weighted in the problem. Even though we do not study the initial determination

of shares (we take them as given), those weights could be determined by Nash bargaining

between partners that make different contributions to the formation of the firm (the initial

contribution could be the business idea or financial resources). These initial weights would

be increasing in the initial contribution of each individual to the partnerships.

6.2 Testable Implications

Some features of our theory are common to existing models of partnerships while others are

particular to this paper. In terms of the more general implications, there are two characteristics

35See Section 5.1.
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that are highlighted in several studies: (i) small businesses usually have ownership shares equally

distributed among partners, and (ii) most small businesses have 2 or 3 owners. These facts

are well described using representative data for the US by Vereshchagina (2015) and Espino,

Kowloski, and Sanchez (forthcoming) and using information on medical practices alone by

Encinosa III, Gaynor, and Rebitzer (2007).

First, our theory can account for the fact that most of partnerships have equal shares of

ownership because we have argued that such structure facilitates the provision of incentives

under private information. Second, although we considered a setup with only two partners,

our theory can be used to think about the effect of adding more partners. If the number of

partners is n > 2, each member would have a smaller share even if the ownership structure is

equally distributed (just because 1/n may be too small). This implies that private information

problems would be exacerbated. Thus, our theory can also be used to understand why most

small businesses have 2 or 3 owners.

Since the previous facts can also be accounted for other theories (e.g. Fehr, Kremhelmer, and

Schmidt, 2008), we now focus on other, more distinct, predictions of our theory. In particular,

our theory has testable predictions about the dynamics of ownership shares that are, a priori,

harder to rationalize with other existing theories. Under private information, our theory implies

that: (i) ownership shares change more frequently when firm ownership is unequally distributed,

and (ii) the distribution of ownership shares moves over time towards either equal distribution

of ownership or sole-proprietorship.

With regard to the first testable implication, Espino, Kowloski, and Sanchez (forthcoming)

find that partnerships with equally distributed shares, which according to the theory would

be less affected by private information, changed their ownership structure less frequently than

those with unequally distributed shares. Although one possibility is that there are observable

differences between equal and unequal partnerships that may account for the dissimilarity in the

dynamics of the ownership structure, Espino, Kowloski, and Sanchez (forthcoming) show that

this finding is robust to adding controls for age, number of owners, legal status, profitability,

and number of employees.

To evaluate the second testable implication, Espino, Kowloski, and Sanchez (forthcoming)

compare family firms and private firms. This comparison is useful because in family firms

private information problems are less severe than in private firms. The results show that,

conditional on other observable features of the firms, private firms are more likely to converge

over time to an ownership structure with equal distribution of ownership. Related results

are obtained comparing small firms in different countries, with different values in an index of

corporate transparency.

Finally, Ivashina and Lerner (2016) analyze the evolution of ownership shares in private
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equity funds which are other types of partnerships. They find evidence consistent with the last

two predictions of the theory. Specifically, when ownership shares are unequally distributed,

they tend to move towards more equally distributed. Moreover, partners with lower shares are

significantly more likely to leave the partnership.

Overall, the findings suggest that private information may be important to shape the orga-

nization of small business and partnerships.

7 Conclusion

Previous studies showed that private information is important for determining the extent to

which agents can pool idiosyncratic risk in partnerships. The analysis in this paper suggests

that insurance capabilities of partnerships improve as a consequence of the introduction capital

accumulation. Under certain conditions, we show that (i) when a partner’s Pareto weight is

sufficiently large, her incentives to cheat under the full information allocation disappear, (ii) the

full information allocation may be incentive compatible when both agents have equal Pareto

weights, and (iii) in the long run, either one of the partners is driven to immiseration, or both

partners’ lifetime utilities are approximately equal.

Our theory has several features that resemble small-business partnerships: small number

of owners, shared ownership, production possibilities, liquidity shocks, and internal financing.

Therefore, we use our theory to derive predictions for the organization of these businesses: (i)

increasing the number of partners worsens incentives problems, (ii) equal shares of ownership

facilitates the provision of incentives, (iii) ownership shares change more frequently when firm

ownership is unequally distributed, and (iv) the distribution of ownership shares moves over

time towards either equal distribution of ownership or sole-proprietorship. We argue these

findings can be found in the data.

Although our application focused on small-business partnerships, our theory can also be

applied to different settings. For instance, a partnership could be reinterpreted as an economic

union among several countries. Then, the size of the countries (in terms of how much wealth they

have relative to the union) would be important for determining the extent to which misreporting

must be prevented by the union’s structure and regulations. In an economic union between

a large and a small country, our results suggest that the small country would have incentives

to misreport if the union regulations are not carefully designed. Moreover, our theory predicts

that adding more countries to the union—and thereby reducing each member’s share—would

exacerbate information problems.
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Appendices

A Recursive formulation

In this Appendix we show how to write the partnership problem recursively. Our analysis here gen-

eralizes to I partners with privately observed shocks to liquidity needs since our alternative recursive

approach does not depend on our 2-partner assumption. Abusing our notation, we denote s ∈ {sL, sH}I

and (si, s−i) ∈ {sL, sH} × {sL, sH}I−1.

Let ∆I ≡ {θ ∈ RI+ :
∑I

i=1 θi = 1} and ‖h‖ = sup(k,θ)

{
| h(k, θ) |: θ ∈ ∆I

}
and define

F ≡ {h : X × RI+ → R+ : h is continuous and ‖h‖ <∞},

as the set of continuous and bounded functions mapping X × RI+ into R+, and denote

F ≡ {h ∈ F : h is HOD 1 and concave in k}.

as the subset of functions that are homogeneous of degree 1 and concave.

Given the metric induced by ‖.‖, observe that
(
F , ‖.‖

)
is a closed subset of the Banach space

(F, ‖.‖) and thus a Banach space itself. Define the operator T defined on F as follows

(Th) (k, θ) = sup
(c,w′,k′)

I∑
i=1

θi

{∑
s

π(s)
[
si u(ci(s)) + β w′i(s)

]}
, (11)

subject to

k′(s) +

I∑
i=1

ci(s) = f (k) + (1− δ)k (12)

∑
s−i

π(s−i)
(
siu(ci(si, s−i)) + β w′i(si, s−i)

)
(13)

≥
∑
s−i

π(s−i)
(
siu(ci(s̃i, s−i)) + β w′i(s̃i, s−i)

)
for all (si, s̃i) and

ci(s) ≥ 0, w′i(s) ≥ 0 for all s and all i, (14)

h(k′(s), θ′) ≥
I∑
i=1

θ′i(s) w
′
i(s) for all θ′and s. (15)

Now define

Ψ(k)(h) ≡
{
w ∈ RI

+ : ∃(c, k′, w′) such that (12)-(15) are satisfied
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and wi =
∑
s

π(s)[siu(ci(s)) + βw′i(s)]
}
.

Given h ∈ F , let W(k)(h) denote the constraint correspondence defined by (12)-(15) at k ∈ X.

Any (c, w′, k′) ∈ W(k)(h) will be referred to as a feasible, incentive-compatible recursive plan with

respect to h. We say that h ∈ F is preserved under T if h(k, θ) ≤ (Th) (k, θ) for all (k, θ). Importantly,

notice that it is straightforward to check that

(Th) (k, θ) = sup
w∈Ψ(k)(h)

I∑
i=1

θiwi

The following result establishes that the correspondence Ψ(.)(h) is well behaved.36

Lemma 3. Ψ(.)(h) is a continuous compact-valued correspondence for all h ∈ F .

It follows that the sup in the operator T is attained. In the next lemma, we establish the convexity

of Ψ(k)(h), a property that is key to our approach.

Lemma 4. Ψ(k)(h) is convex for all k ∈ X and all h ∈ F .

Proof. Let w and w̃ ∈ Ψ(k)(h) as (c, w′, k′) , (c̃, w̃′, k̃′) ∈ W(k)(h) are the corresponding feasible,

incentive-compatible recursive plans with respect to h.

We need to show that wλ = λw + (1 − λ)w̃ ∈ Ψ(K)(h) for any λ ∈ [0, 1]. In order to do that,

define for each i and all s

u(cλi (s)) = λu(ci(s)) + (1− λ)u(c̃i(s)),

k′λ(s) = λk′(s) + (1− λ)k̃′(s))

w′λ(s) = λw′(s) + (1− λ)w̃′(s))

Notice that the strict concavity of u implies that cλi (s) ≤ λci(s) + (1− λ)c̃i(s) for all i, all s.

Step 1. Notice that by construction, it follows that

wλi = λw + (1− λ)w̃ =
∑
s

π(s)[siu(cλi (s)) + β w′λi (s)]

for all i.

Step 2. Feasibility. As (c, w′, k′) and (c̃, w̃′, k̃′) are both feasible and cλi (s) ≤ λci(s)+(1−λ)c̃i(s)

for all i, all s as mentioned, it follows immediately that

k′λ(s) +
I∑
i=1

cλi (s) ≤ f (k) + (1− δ)k

for all s and so (cλ, w′λ, k′λ) is also feasible.

36The proof is omitted as it follows by standard arguments. Details are available upon request.
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Step 3. Incentive Compatibility. As the liquidity shocks are multiplicative, it follows by the

linear construction that (cλ(s), w′λ(s), k′λ(s)) satisfy (13).

Step 4. Take any θ′ ∈ ∆I and notice that since h ∈ F is concave in k, it follows that

h(k′λ, θ′) ≥ λh(k′, θ′) + (1− λ)h(k̃′, θ′)

≥ λ
I∑
i=1

θ′i(s) w
′
i(s) + (1− λ)

I∑
i=1

θ′i(s) w̃
′
i(s) =

I∑
i=1

θ′i(s) w
′λ
i (s).

Since θ′ ∈ ∆I is arbitrary, condition (15) is satisfied. Therefore, we can conclude that (cλ, w′λ, k′λ) is

a feasible incentive-compatible recursive plan with respect to h.

The next result is useful to characterize convex set and used to make our alternative approach

computationally simpler (see also Lucas and Stokey (1984) ).

Lemma 5. For any h ∈ F , w ∈ Ψ(k)(h) if and only if w ≥ 0

Th(k, θ) ≥
I∑
i=1

θi wi for all θ ∈ ∆I . (16)

Proof. See Rockafellar (1970), Theorem 13.1.

Remark. For computational purposes, it is convenient to recall that Condition (16) holds if and

only if

min
θ̃∈∆I

[
Th
(
K, θ̃

)
−

I∑
i=1

θ̃iwi

]
≥ 0.

Our method complements the traditional APS approach as it identifies attainable levels of next-

period utility by iterating directly on the utility possibility frontier with no need to know the utility

possibility correspondence that describe the utility possibility set a priori. Our alternative approach

can be summarized as follows. Following the methods developed by Abreu, Pearce, and Stacchetti

(1990), one would need to construct an operator defined on correspondences and iterate on that space.

Taking advantage of the convexity of our problem, we instead iterate on the (convex) frontier similar

in spirit to Marcet and Marimon (1994)’s Lagrangean method.

The next result below is similar in spirit to APS’s celebrated self-generation ( Abreu, Pearce, and

Stacchetti (1990).).

Lemma 6 (Self-generating). If h ∈ F is preserved under T , then

(Th) (k, θ) ≤ h∗(k, θ)

for all (k, θ).
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Proof. Take any arbitrary
(
ĉ0(s0), ŵ′0(s0), k̂′1(s0)

)
s0∈S

∈ W(k0)(h) and notice that this implies, in

particular, that
I∑
i=1

θ′i w
′
i,0(s0) ≤ h(k̂′1(s0), θ′) (17)

for all θ′ ∈ ∆I . On the other hand, as h is preserved under T , this last condition implies that given

k̂′1(s0)

h(k̂′1(s0), θ′) ≤ (Th)(k̂′1(s0), θ′) (18)

for all θ′ ∈ ∆I . Hence, as we couple conditions (17) and (18), we conclude that

θ′ŵ′0(s0) ≤ (Th)(k̂′1(s0), θ′)

for all θ′ ∈ ∆I and therefore ŵ′0(s0) ∈ Ψ(k′(s0))(h) as a direct implication of Lemma 5. Importantly,

this implies that there exists some
(
ĉ1(s0, s1), ŵ′1(s0, s1), k̂′2(s0, s1)

)
s1∈S
∈ W(k̂′1(s0))(h) such that

ŵ′0(s0) =
∑
s1

π(s1)
[
si u(ĉi,1(s0, s1)) + β ŵ′i,1(s0, s1)

]
for each s0 ∈ S.

As we repeat this strategy T times, we can conclude that for any arbitrary θ0 ∈ ∆I

I∑
i=1

θi,0

{∑
s0

π(s0)
[
si u(ĉi,0(s0)) + β ŵ′i,0(s0)

]}

=
I∑
i=1

θi,0

{∑
s0

π(s0)si u(ĉi,0(s0))

+β
∑
s0

π(s0)
∑
s1

π(s1)
[
si u(ĉi,1(s0, s1)) + β ŵ′i,1(s0, s1)

]}

=

I∑
i=1

θi,0 E

(
T∑
t=0

βt si,tu(ĉi,t)

)
+ βT+1

I∑
i=1

θi,0 E
(
ŵ′i,T+1

)
Condition (15) implies that

sup

I∑
i=1

θi,0 E
(
ŵ′i,T+1

)
≤ ‖h‖ ,

and so taking limits on both sides as T → ∞, it follows from the Dominated Convergence Theorem

that

I∑
i=1

θi,0

{∑
s0

π(s0)
[
si u(ĉi,0(s0)) + β ŵ′i,0(s0)

]}
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≤
I∑
i=1

θi,0 E

( ∞∑
t=0

βt si,tu(ĉi,t)

)
(19)

as β ∈ (0, 1).

Consider the sequential plan (ĉ, k̂′) stemming from above. It is immediate that this plan is se-

quentially feasible by construction. Now we argue that it is incentive compatible as well. To see this,

denote recursively Wi,t(s
t) = ŵ′i,t(s0, ..., st) and observe that by construction∣∣∣Ui,t(ĉ, k̂′; st)−Wi,t(s

t)
∣∣∣

= β

∣∣∣∣∣∣
∑
st+1

π(st+1)
(
Ui,t(ĉ, k̂

′; st, st+1)−Wi,t+1(st, st+1)
)∣∣∣∣∣∣

≤ βsup
st+1

∣∣∣Ui,t(ĉ, k̂′; st, st+1)−Wi,t+1(st, st+1)
∣∣∣

≤ βk sup
(st+1,...st+k)

∣∣∣Ui,t(ĉ, k̂′; st, st+1, ..., st+k)−Wi,t+k(s
t, st+1, ..., st+k)

∣∣∣ .
Observe that 0 ≤ Wi,t(s

t) ≤ ‖h‖ < ∞ for all i and all st while ĉ is uniformly bounded by con-

struction. Taking the lim sup as k →∞ for this last expression, we can conclude that Ui,t(ĉ, k̂
′)(st) =

Wi,t(s
t) for all i and all st and so sequential incentive compatibility follows immediately.

Since both
(
ĉ0(s0), ŵ′0(s0), k̂′1(s0)

)
s0
∈ W(k0)(h) and the corresponding sequential plan (ĉ, k̂) are

arbitrary, we take the sup on both sides of (19) to conclude that

Th(k, θ) = sup
(ĉ,ŵ′,k̂′)∈W(k0)(h)

I∑
i=1

θi,0

{∑
s0

π(s0)
[
si u(ĉi) + β ŵ′i

]}

≤ sup

I∑
i=1

θi E

( ∞∑
t=0

βt si,tu(ĉi,t)

)
= h∗(k, θ).

and this completes the proof.

Now we are prepared to prove our two main results of this section.

Proposition 4. h∗ is a fixed point of T .

Proof. Given (K, θ), take any w ∈ Ψ∗(K) for which (C,K ′) denotes the corresponding feasible

incentive-compatible plan. Observe that

I∑
i=1

θi Ui(C,K
′) =

I∑
i=1

θi
∑
s0∈S0

π(s0) [si,0 u(Ci(s0)) + β Ui,1(C,K ′‖(s0))]
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Notice that (Ui,1(C,K ′‖(s0)))Ii=1 ∈ Ψ∗(K(s0)) for all s0. It follows by definition of h∗ (see (3))

that

h∗(K ′(s0), θ′) ≥
I∑
i=1

θ′i Ui,1(C,K ′‖(s0))

for all θ′ ∈ ∆I and all s0. Therefore, (Ci, Ui,1(C,K ′),K ′)Ii=1 ∈ W(K0)(h∗) and then

I∑
i=1

θi Ui(C,K
′) ≤ (Th∗) (K, θ)

Since weak inequalities are preserved in the limit, we can conclude that

h∗(K, θ) = sup
(C,K′)

I∑
i=1

θiUi(C,K
′) ≤ (Th∗) (K, θ),

for all (K, θ) (i.e. h∗ is preserved under T ). Thus, Lemma 6 implies that h∗(K, θ) = (Th∗) (K, θ) for

all (K, θ).

Importantly, it can be shown that the following version of the Principle of Optimality holds.37

Remark 1. A plan (C∗,K ′∗) is constrained efficient at K0 if and only if it is generated by the set of

policy functions

Ĉi(s
t) = ĉi(K̂(st−1), θ(st−1); st), (20)

θ(st−1, st) = θ̂′(K̂(st−1), θ(st−1); st),

K̂(st−1, st) = k̂′(K̂(st−1), θ(st−1); st),

Thus, the value of any plan that can be attained with an incentive-compatible, feasible sequential

plan (C,K ′) can also be attained by splitting output between total current payouts and investment

and then delivering current payouts and contingent future ownership shares to each partner.

Now we provide an algorithm capable of finding the value function h∗ and its corresponding policy

functions.

Let T̂ be the operator solving the recursive problem for the full information case, discussed in

Section 3.1 (i.e. the incentive compatibility constraints (13) are ignored), and h∗∗ is the corresponding

value function such that h∗∗ = T̂ h∗∗. Evidently, Tf ≤ T̂ f for all f ∈ F and h∗(k, θ) ≤ h∗∗(k, θ) for all

(k, θ).

Proposition 5. Let h0 = h∗∗ and denote hn = Tn (h∗∗) . Then, {hn} is a monotone decreasing

sequence of continuous functions and limn→∞ hn = h∗ uniformly.

Proof. It is a routine exercise to show that T is a monotone operator (i.e. if f ≥ g, then Tf ≥ Tg).

This property and Proposition 4 imply that h∗ = Th∗ ≤ Th∗∗ ≤ T̂ h∗∗ = h∗∗.

37Proof available upon request.

35



Step 1. Since hn = Tnh∗∗, then monotonicity implies that hn ≥ hn+1 ≥ h∗ for all n.

Step 2. T preserves concavity with respect to k. In addition, Proposition 3 makes possible to

apply the Theorem of the Maximum to conclude that T : F → F ; i.e. hn is continuous for all n.

Step 3. As {hn} is a monotone decreasing sequence of uniformly bounded continuous functions on

a compact set (S,X), Dini’s theorem implies that there exists a continuous function h∞ ≥ h∗ such

that hn → h∞ uniformly.38

Step 4. h∞ is preserved under T .

Given (k, θ), h∞(k, θ) ≤ hn(k, θ) implies that there exists (cn, w′n, k′n) ∈ W(k)(hn) such that for

all n

h∞(k, θ) ≤ hn+1(k, θ) =
I∑
i=1

θi
∑
s

π(s)
[
u(cni (s)) + β w′ni (s)

]
(21)

and

hn(k′n(s), θ′) ≥
I∑
i=1

θ′i w
′n
i (s), for all s and all θ′. (22)

Since (cn, w′n, k′n) lies in a compact set and, thus, it has a convergent subsequence with limit point(
ĉ, ŵ′, k̂′

)
. Suppose for notational simplicity that the convergent subsequence is the sequence itself

and notice that both feasibility and incentive compatibility are preserved in the limit. In addition, as

h∞ is (uniformly) continuous, condition (22) implies that in the limit

h∞(k̂′(s), θ′) ≥
I∑
i=1

θ′i ŵ
′
i(s), for all s and all θ′.

Therefore,
(
ĉ, ŵ′, k̂′

)
∈ W(k)(h∞) and condition (21) implies that in the limit

h∞(k, θ) ≤
I∑
i=1

θi
∑
s

π(s)
[
u(ĉi(s)) + β ŵ′i(s)

]
Finally, since the recursive allocation plan

(
ĉ, ŵ′, k̂′

)
∈ W(k)(h∞) is arbitrary, we can conclude

that for all (k, θ)

(Th∞) (k, θ) ≥
I∑
i=1

θi
∑
s

π(s)
[
u(ĉi(s)) + β ŵ′i(s)

]
≥ h∞(k, θ),

and thus h∞ is preserved under T by definition.

Step 5. This implies that h∞ ≤ h∗ due to Lemma 6) and therefore h∞ = h∗.

38Rudin, Walter R. (1976) Principles of Mathematical Analysis, Third Edition, McGraw-Hill. See Theorem
7.13 on page 150 for the monotone decreasing case.
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Our method complements the traditional APS approach in terms of tractability as it greatly

simplifies the computational burden. Of course, the APS approach outperforms ours if the utility

possibility correspondence is not convex valued.

B Full Information - Proofs

This Appendix provides the proof of Lemma 1.

Proof of Lemma 1. 1. To show this result, we use the first order condition with respect to w′. To

save space, this conditions can be found in equations (36)-(39) below by setting the multipliers

of the incentive compatibility constraint, φ, equal to zero. As shown there, since θ2 = 1 − θ1,

we can derive equations 41-44, which, given that all φs are equal to zero, imply that θ′(s) = θ.

2. In addition:

(a) The necessary and sufficient first order conditions of the full information problem imply

c1(s) =
(θs1)1/σ

(θs1)1/σ + ((1− θ) s2)1/σ

(
f(k) + (1− δ)k − k′(s

)
, (23)

c2(s) =
((1− θ) s2)1/σ

(θs1)1/σ + ((1− θ) s2)1/σ

(
f(k) + (1− δ)k − k′(s

)
. (24)

Hence the payout of partner i is increasing in his liquidity needs, decreasing in the other

partner’s liquidity needs, and increasing in his ownership shares.

(b) Under Full information the problem reduces to choosing total payouts and investment in

a sole proprietorship with an “aggregate” investor with preferences

S(θ, s)
C1−σ

1− σ
,

where C = c1 + c2 denotes total payouts and

S(θ, s) =
(

(θs1)1/σ + ((1− θ) s2)1/σ
)σ

is an “aggregate” liquidity shock. The problem reduces to

h∗∗ (k, θ) = max
c,k′

{∑
s

π (s)
[
S (θ, s)u (C (s)) + βh∗∗

(
k′ (s) , θ

)]}

subject to

k′ (s) + C (s) = f (k) + (1− δ) k .
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The Euler equation is

S (θ, s)C (s)−σ = β
(
f ′
(
k′ (s)

)
+ 1− δ

)∑
s′

S
(
θ, s′

)
C
(
s′
)−σ

We can write the Euler equation as

S (θ, s) = β
(f ′ (k′ (s)) + 1− δ)

(f (k) + (1− δ) k − k′ (s))−σ
∑
s′

S
(
θ, s′

)
C
(
k′ (s) s′

)−σ
(25)

and note that the right hand side is decreasing in k′. Hence, as S (θ, s) increases, k′ (s)

decreases. Moreover, note that the ratio of aggregate shocks

S(θ, sH , s2)

S(θ, sL, s2)
=

(
(θsH)1/σ + ((1− θ) s2)1/σ

)σ(
(θsL)1/σ + ((1− θ) s2)1/σ

)σ (26)

is greater than one and increasing in θ which concludes the proof.

C Private Information - Proofs

In this Appendix we prove Propositions 1, 2, 3, and Lemma 2. In order to do that, we write down the

problem and the system of equations that characterizes the solution. The problem can be written as

follows

h∗ (k, θ) = max
c,w′,k′

 ∑
s1∈{L,H}

∑
s2∈{L,H}

2∑
i=1

θiπ (s1)π (s2)
[
siu (ci (s1, s2)) + βw′i (s1, s2)

] (27)

subject to

k′ (s1, s2) +
2∑
i=1

ci (s1, s2) = f (k) + (1− δ) k (28)

π (sL)
(
sLu (c1 (sL, sL)) + βw′1 (sL, sL)

)
+ π (sH)

(
sLu (c1 (sL, sH)) + βw′1 (sL, sH)

)
(29)

≥ π (sL)
(
sLu (c1 (sH , sL)) + βw′1 (sH , sL)

)
+ π (sH)

(
sLu (c1 (sH , sH)) + βw′1 (sH , sH)

)

π (sL)
(
sLu (c2 (sL, sL)) + βw′2 (sL, sL)

)
+ π (sH)

(
sLu (c2 (sH , sL)) + βw′2 (sH , sL)

)
(30)

≥ π (sL)
(
sLu (c2 (sL, sH)) + βw′2 (sL, sH)

)
+ π (sH)

(
sLu (c2 (sH , sH)) + βw′2 (sH , sH)

)
min
θ′∈∆

[
h
(
k′ (s1, s2) , θ′ (s1, s2)

)
−

2∑
i=1

θ′i (s1, s2)w′i (s1, s2)

]
≥ 0 (31)
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Let λ (s1, s2), φ1, φ2 and µ (s1, s2) be the Lagrange multipliers of (28),(29),(30) and (31) respec-

tively. The necessary and sufficient first order conditions are as follows.

First, the first order conditions with respect to consumption for agent 1 and 2, respectively, imply

that for all s1 and s2

(θπ (sL) sL + φ1sL)π (s2)u′ (c1 (sL, s2)) = λ (sL, s2) (32)

(θπ (sH) sH − φ1sL)π (s2)u′ (c1 (sH , s2)) = λ (sH , s2) (33)

((1− θ)π (sL) sL + φ2sL)π (s1)u′ (c2 (s1, sL)) = λ (s1, sL) (34)

((1− θ)π (sH) sH − φ2sL)π (s1)u′ (c2 (s1, sH)) = λ (s1, sH) (35)

Second, the first order conditions with respect to continuation utilities for agent 1 and 2, respec-

tively, imply that for all s1 and s2

(θπ (sL) + φ1)π (s2)β = µ (sL, s2) θ′1 (sL, s2) (36)

(θπ (sH)− φ1)π (s2)β = µ (sH , s2) θ′1 (sH , s2) (37)

((1− θ)π (sL) + φ2)π (s1)β = µ (s1, sL) θ
′
2 (s1, sL) (38)

((1− θ)π (sH)− φ2)π (s1)β = µ (s1, sH) θ
′
2 (s1, sH) (39)

Finally, the first order conditions with respect to capital for an interior solution and making use

of the corresponding envelope condition deliver the Euler equation

λ (k, θ) (s1, s2) = µ (k, θ) (s1, s2)
(
f ′
(
k′ (k, θ) (s1, s2)

)
+ (1− δ)

)
(40)

×
∑

(s′1,s
′
2)

λ
(
k′ (k, θ) (s1, s2) , θ′ (k, θ) (s1, s2)

)
(s′1, s

′
2).

As θ2 = 1− θ1, we get from (36)-(39) that

θ
′
1 (sL, sL) =

(
θ + φ1

π(sL)

)
(

1 + φ1
π(sL) + φ2

π(sL)

) (41)

θ
′
1 (sL, sH) =

(
θ + φ1

π(sL)

)
(

1 + φ1
π(sL) −

φ2
π(sH)

) (42)

θ
′
1 (sH , sL) =

(
θ − φ1

π(sH)

)
(

1− φ1
π(sH) + φ2

π(sL)

) (43)

θ
′
1 (sH , sH) =

(
θ − φ1

π(sH)

)
(

1− φ1
π(sH) −

φ2
π(sH)

) (44)
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C.1 Proof of Proposition 1

Proof of Proposition 1. First, we show that the full information plan satisfies the partner 1’s incentive

compatibility constraints at θ = 1.

Consider the recursive problem (27)-(31) for the case in which the incentive compatibility con-

straints are absent and let (c(k, θ; s), c2(k, θ; s), k′(k, θ; s), θ′(k, θ; s), w′1(k, θ; s), w′2(k, θ; s)) be the set

of continuous policy functions such that φi = 0 for i = 1, 2.

Notice that in this case Lemma 1 implies that θ′(k, θ; s) = θ for all s and all (k, θ).

Since θ′(k, θ; s) = θ = 1, then h(k′(s), 1) = w′1(s) for all (s, θ, k) and the value function reduces to

h(k, 1) = π(sL)
[
sLu(c1(k, 1; sL, s2)) + βw′1(k, 1; sL,s2)

]
+π(sH)

[
sHu(c1(k, 1; sH , s2)) + βw′1(k, 1; sH , s2)

]
for all s2. Notice that as θ′(k, θ; s) = θ = 1, then s2 plays no allocative role. Therefore, consumption,

future promised utilities, and capital accumulation are independent of s2.

Suppose that the corresponding full information plan is not incentive compatible; i.e.

sL u(c1(k, 1; sL, s2)) + β h(k′(k, 1; sL, s2), 1) < sL u(c1(k, 1); sH , s2) + β h(k′(k, 1; sH , s2), 1)

while

c1(k, 1; sL, s2) + k′(k, 1; sL, s2) = f (k) + (1− δ)k

c1(k, 1; sH , s2) + k′(k, 1; sH , s2) = f (k) + (1− δ)k

This implies that (c1(k, 1; sH , s2), k′(k, 1; sH , s2)) is feasible at s1 = sL and

w′1(k, 1; sH , s2) = h(k′(k, 1; sH , s2)).

This contradicts that (c1(k, 1; sL, s2), k′(k, 1; sL, s2), w′1(k, 1; sL, s2)) is the unique solution at (k, 1).

To complete the proof we need to argue that, conditional upon k, we can find some θ(k) < 1 such

that the private information plan satisfies the partner 1’s incentive compatibility constraint. As the

private information plan coincides with the full information plan at θ = 1, the partner 1’s incentive

compatibility constraint must hold with strict inequality when θ = 1. Since the policy functions in

the private information case are continuous, it must be the case that there exists some θ(k) < 1 such

that the partner 1’s incentive compatibility constraint does not bind for θ ∈ [θ(k), 1].

It follows by symmetry that the partner 2’s incentive compatibility constraint does not bind for

all (θ, k) with (1− θ) ∈
[
0, 1− θ(k)

]
.

C.2 Proof of Proposition 2

Proof of Proposition 2. Consider the solution to the full information problem evaluated at θ = 1/2

and let sL = 1− ε and sH = 1 + ε. Given ε, consider the incentive compatibility constraint of partner
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1 that needs to be satisfied to complete the proof

∑
s2
π(s2) ((1− ε)u(c1(k, 1/2)(1− ε, s2)) + β w′1(k, 1/2)(1− ε, s2)) (45)

≥
∑

s2
π(s2) ((1− ε)u(c1(k, 1/2)(1 + ε, s2)) + β w′1(k, 1/2)(1 + ε, s2)) .

As we consider the full information plan, Lemma 1 implies that θ′(k, 1/2; s1, s2) = 1/2 for all (s1, s2)

and all k. This implies that w′1(k, 1/2; s1, s2) = w′2(k, 1/2; s1, s2) for all (s1, s2) and all k. Hence

h(k′(k, 1/2; s1, s2), 1/2) = w′1(k, 1/2; s1, s2). (46)

As h is strictly increasing in k and investment is decreasing in the liquidity shocks (Lemma 1), it

follows by (46) that w′1(1− ε, s2) > w′1(1 + ε, s2) for all s2. By the Theorem of the Maximum, policy

functions can be parameterized continuously with respect to ε. For each k, since (45) holds with strict

inequality as ε goes to 1, we can conclude that there exists some ε∗(k) ∈ (0, 1) such that the full

information plan is strictly incentive compatible for partner 1 for all ε ∈ (ε∗(k), 1) at k.

Finally, standard arguments prove that ε∗(k) varies continuously

ε∗ ≡ max {ε∗(k) : k ∈ [kmin(1/2), kmax(1/2)]} ∈ (0, 1)

and ε∗ is well-defined. Therefore, the full information plan is strictly incentive compatible for partner

1 for all ε ∈ (ε∗, 1) for all k.

It follows by symmetry it is also strictly incentive compatible for partner 2.

C.3 Proof of Lemma 2

Proof of Lemma 2. Note that:

1. Equations (41)-(44) imply that if φ1 = φ2 = 0, then θ′(k, θ, s1, s2) = θ for (s1, s2) ∈ {sL, sH} ×
{sL, sH}.

2. Equations (41)-(44) imply that

θ
′
1 (sL, sL)− θ′1 (sH , sL) =

(
φ1

π (sH)π (sL)

) (1− θ) + φ2
π(sL)(

1 + φ1
π(sL) + φ2

π(sL)

)(
1− φ1

π(sH) + φ2
π(sL)

) (47)

θ
′
1 (sL, sH)− θ′1 (sH , sH) =

φ1

π (sH)

(1−θ)
π(sL) − 2 φ2

π(sH)(
1 + φ1

π(sL) −
φ2

π(sH)

)(
1− φ1

π(sH) −
φ2

π(sH)

) (48)

Hence, if φ1 = 0, then θ′(k, θ, sL, s2) = θ′(k, θ, sH , s2) for all s2 ∈ {sL, sH}.

3. Note that if s2 = sL, then (47) implies that θ′(k, θ, sL, sL) ≥ θ′(k, θ, sH , sL).
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4. If s2 = sH , then (42) and (44) implies that θ′(k,θ,sL,sH)
θ′(k,θ,sH ,sH) ≥ 1 if φ2 ≤ (1 − θ)π(sH) and this

condition is satisfied due to (39).

C.4 Proof of Proposition 3

To prove Proposition 3, the following result is key. Let {θt}∞t=0 be the stochastic process for ownership

shares generated by the set of policy functions as in (20). That is, θt : S∞ → [0, 1], where θt(s
∞)

denotes a particular realization at date t.

Lemma 7. Suppose that the full information plan is strictly incentive compatible at θ = 1/2 for all k.

Suppose that θ0 ∈ [0, 1/2]. The ratio of ownership shares satisfies the following properties:

1. It is a nonnegative martingale; i.e., for all t and all st,

E

[
θt+1

(1− θt+1)
‖ st
]

=
θt(s

∞)

(1− θt(s∞))
∈ [0, 1] s∞ − a.s.

2. There exists a random variable θ̂ on (S∞,B(S∞)). such that

θt(s
∞)

(1− θt(s∞))
→ θ̂(s∞)(

1− θ̂(s∞)
) s∞ − a.s.

Proof of Lemma 7. Consider first the case in which θ ∈ [0, 1/2]. As the full information plan is strictly

incentive compatible at θ = 1/2 for all k, conditions (36)-(39) for both partners and the fact that φ2 = 0

for θ ≤ 1/2 imply that39

θ′(k, θ, 1− θ; sL, s2)

(1− θ′(k, θ, 1− θ; sL, s2))
=
θ + φ1(k, θ, 1− θ)/π(sL)

(1− θ)
=

θ

(1− θ)
+
φ1(k, θ, 1− θ)
(1− θ) π(L)

,

θ′(k, θ, 1− θ; sH , s2)

(1− θ′(k, θ, 1− θ; sH , s2))
=
θ − φ1(k, θ, 1− θ)/π(sH)

(1− θ)
=

θ

(1− θ)
− φ1(k, θ, 1− θ)

(1− θ) π(H)
,

for all s2. This implies that

E

[
θ′(k, θ, 1− θ; s1, s2)

(1− θ′(k, θ, 1− θ; s1, s2))

]
=

θ

(1− θ)
. (49)

We argue now that this expectation (49) is bounded by 1.

39In the paper, the state variables were denoted by (k, θ). Here we abuse notation and make the state
(k, θ1, θ2).
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Note first that for all θ ∈ [θ∗, 1/2] no incentive compatibility constraint binds and so

θ′(k, θ, 1− θ; s1, s2)

(1− θ′(k, θ, 1− θ; s1, s2))
=

θ

(1− θ)
≤ 1 (50)

for all k, all (s1, s2).

Note that θ′(k,θ,1−θ;s1,s2)
(1−θ′(k,θ,1−θ;s1,s2)) is homogeneous of degree 0 with respect to (θ, 1− θ). In addition, it

is an standard exercise to show that
θ′
(
k, θ

(1−θ) ,1;s1,s2
)

(
1−θ′

(
k, θ

(1−θ) ,1;s1,s2
)) is increasing in θ

(1−θ) . This implies that for

all θ ≤ θ∗

0 ≤ θ′ (k, θ, 1− θ; s)
(1− θ′ (k, θ, 1− θ; s))

≤
θ′
(
k, θ

(1−θ) , 1; s
)

(
1− θ′

(
k, θ

(1−θ) , 1; s
)) ≤ θ′

(
k, θ∗

(1−θ∗) , 1; s
)

(
1− θ′

(
k, θ∗

(1−θ∗) , 1; s
)) =

θ∗

(1− θ∗)
≤ 1.

(51)

for all k and all s.

Conditions (50) and (51) imply that θt(s∞)
(1−θt(s∞)) ∈ [0, 1] as θ0 ∈ [0, 1/2] and (49) reads

E

[
θt+1

(1− θt+1)
‖ st
]

=
θt(s

∞)

(1− θt(s∞))
s∞ − a.s.

Hence, { θt(s∞)
(1−θt(s∞))}

∞
t=0 follows a bounded martingale and so it follows by the martingale convergence

theorem that
θt(s

∞)

(1− θt(s∞))
→ θ̂(s∞)(

1− θ̂(s∞)
) s∞ − a.s.

for some random variable θ̂ on (S∞,B(S∞)).

Proof of Proposition 3. Suppose that the full information plan is strictly incentive compatible at θ =

1/2 for all k. Using the same arguments developed in the proof of Proposition 1, it follows by

continuity of the full information policy functions that there exists θ∗ ∈ (0, 1/2) such that if (θ, k) ∈
[θ∗, 1− θ∗]× [kmin(θ), kmax(θ)], both partners’ incentive compatibility constraints do not bind.

1. Suppose that (θt, kt) ∈ [θ∗, 1 − θ∗] × [kmin(θt), kmax(θt)] at some t. It follows by definition

of θ∗ that no partner incentive compatibility constraint binds in this case. Consequently, the private

information plan and the full information plan coincide and that implies by Lemma 1 that θ′(s)(θ, k) =

θ for all (s, θ, k) and k′ ∈ [kmin(θ), kmax(θ)] = [kmin(θ′), kmax(θ′)]. and so θt+n = θt for all n ≥ 0.

2. Suppose that (θt, kt) ∈ [0, θ∗) × [kmin(θt), kmax(θt)] at some t. Notice that, by definition of θ∗,

the partner 2’s incentive compatibility constraint does not bind. It follows by Lemma 7 that the ratio

of ownership shares is a non-negative martingale.

Using the notation of Lemma 7, take any arbitrary s∞ ∈ Ω = {s∞ ∈ S∞ : θt(s
∞) → θ̂(s∞) ∈

[0, 1/2]}.
If θ̂(s∞) = 0 , then the limiting plan reaches a full information plan as it is a sole-proprietorship.
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If θ̂(s∞) ∈ [θ∗, 1/2], it follows by part 1. above that the limiting plan coincides with a full infor-

mation plan as no incentive compatibility constraint binds.

We need to show that θ̂(s∞) /∈ (0, θ∗); i.e., the limiting plan can converge to a plan where some

ICC is binding only for zero-probability sequences.

Step 2.1. θ̂(s∞) < θ(k) ≤ θ∗ for all k.

It follows by definition that the partner 1’s incentive compatibility constraint binds for all k. Sup-

pose that the state (sH , sL) occurs infinitely often and consider that infinite subsequence {(s1,tn , s2,tn)}∞n=0

in which (s1,tn , s2,tn) = (sH , sL) for all n. Since {ktn}∞n=0 is a sequence in a compact set, it must have a

convergent subsequence with limit k̂(s∞) ∈ ×
[
kmin(θ̂(s∞)), kmax(θ̂(s∞))

]
. To simplify notation, sup-

pose that it is the sequence {ktn}∞n=0 itself. Since θtn+1 = θ′(θtn , ktn ; sH , sL), it follows by continuity

that taking the limit

θ̂(s∞) = θ′(θ̂(s∞), k̂(s∞); sH , sL);

i.e. the the partner 1’s incentive compatibility constraint does not bind. But this contradicts that

θ̂(s∞) /∈ (0, θ∗) and consequently, as in Thomas and Worral (1990), {θt}∞t=0 can converge to some

number in the interval (0, θ∗) only for sequences where (sH , sL) occurs only finitely often. Those

events occur with zero probability.

Step 2.2: θ̂(s∞) < θ(k) ≤ θ∗ for some k ∈ (kmin(θ̂(s∞)), kmax(θ̂(s∞))).

Let k̂(s∞) be defined such that θ̂(s∞) = θ(k̂(s∞)) and notice that k̂(s∞) ∈ (kmin(θ̂(s∞)), kmax(θ̂(s∞))).

As long as θ̂(s∞) ≥ θ(kt(s
∞)), then it follows that θ′

(
θ̂(s∞), kt(s

∞)
)

(s1,t, s2,t) = θ̂(s∞) for all

(s1,t, s2,t) (i.e. no incentive compatibility constraint binds). Since s∞ belongs to a set with positive

probability and under the assumption that θ̂(s∞) < θ(k) for some k ∈ (kmin(θ̂(s∞)), kmax(θ̂(s∞))),

there exists some finite T such that θ̂(s∞) < θ(kT (s∞)). But then the full information plan does

not satisfy the partner 1’s incentive compatibility constraint at (θ̂(s∞), kT (s∞)) and so the argument

follows as in Step 2.1.

3. Notice that symmetry implies that

c1(k, θ, 1− θ; s) = c2(k, 1− θ, θ; s),

k′(k, θ, 1− θ)(s) = k′(k, 1− θ, θ; s)

for all s, for all k and for all θ ∈ [0, 1].

Therefore, the analysis for the case in which If (θt, kt) ∈ [1− θ∗, 1]× [kmin(θt), kmax(θt)] at some t,

is analogous to 2. above.
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