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Multi-Step Ahead Forecasting of Vector Time Series

Tucker McElroy1 and Michael W. McCracken2

U.S. Census Bureau and Federal Reserve Bank of St. Louis

Abstract

This paper develops the theory of multi-step ahead forecasting for vector time series that exhibit

temporal nonstationarity and co-integration. We treat the case of a semi-infinite past by devel-

oping the forecast filters and the forecast error filters explicitly. We also provide formulas for

forecasting from a finite data sample. This latter application can be accomplished by using large

matrices, which remains practicable when the total sample size is moderate. Expressions for the

mean square error of forecasts are also derived and can be implemented readily. The flexibility

and generality of these formulas are illustrated by four diverse applications: forecasting euro

area macroeconomic aggregates; backcasting fertility rates by racial category; forecasting long

memory inflation data; and forecasting regional housing starts using a seasonally co-integrated

model.
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System, or the Federal Reserve Board of Governors.

1 Introduction

This paper develops the theory of multi-step ahead forecasting for vector time series that exhibit

temporal nonstationarity and may possibly be co-integrated. We begin by treating the case of an

infinite past (i.e., all past observations of a time series are available) by developing the forecast

filters and the forecast error filters explicitly. These filters are principally of theoretical interest,

since they require an infinite span of data to be applied. They represent the long-term aspect of
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forecasting when the dataset is quite large and can be examined in the frequency domain. By

considering the gain and phase delay of various components of the forecast filters, one can learn

how various components are attenuated or advanced corresponding to the spectral structure of the

vector process.

A secondary objective is to provide formulas for forecasting from a finite data sample. This can

be accomplished by using large matrices, which remains practicable when the total sample size is

moderate. Expressions for the mean square error (MSE) of forecasts are also derived and can be

implemented readily. These expressions hold quite generally and are valid when finite-dimensional

State Space (SS) approaches cannot be used (e.g., with long-memory processes, such as VARFIMA;

see Sela and Hurvich, 2009).

Our formulation allows for fairly general temporal differencing, which is allowed to differ for each

series. In particular, we suppose (i) a vector autoregressive (VAR) operator exists that reduces the

unstable data vector process to stationarity and (ii) that some of the VAR roots are unit and others

are outside the unit circle. This formulation includes the possibility of co-integrated components.

Furthermore, we assume that the VAR-differenced process has a Wold decomposition, which should

be invertible when forecasting from an infinite past. This includes co-integrated VAR and VARMA

processes but is also more general. When working with a finite sample, we can allow the differenced

process to be non-invertible at a finite number of frequencies, which makes our methods applicable

to structural VARMA processes that may be collinear (e.g., the case of common trends).

Given the importance of forecasting for econometric applications, a considerable literature on

the topic already exists. The VARMA case is treated in Chapter 11 of Brockwell and Davis (1991),

and Lütkepohl (2006) provides an overview of the (co-integrated) VAR and VARIMA cases. An

older literature includes works by Whittle (1984) and Lütkepohl (1986, 1987), all of which focus

on VARMA processes. Athanosopoulos and Vahid (2008) make a recent contribution. Our results

generalize this prior literature in three ways: (i) For an infinite past, only an invertible Wold form

is assumed for the differenced data, (ii) For a finite sample of data, only the autocovariances and

the differencing operator need to be known, (iii) For finite samples, we allow for missing values

and more general prediction problems. For instance, the forecasting of VARFIMA (see Pai and

Ravishanker, 2010) is not covered by the previous literature. (Sela and Hurvich, 2009, do handle

the stationary case; our treatment is more general.)

Therefore, the stated formulas in this paper are novel and useful at the level of generality

needed for a multivariate time series analysis. Although vector time series are frequently modeled

and forecasted using a SS formulation, there are cases not amenable to this approach such as vector

long-memory models and vector cepstral models (Holan, McElroy, and Wu, 2014); moreover, the

formulas in this paper are very easy to encode, circumventing the need to purchase SS software.

Section 2 considers the case of a semi-infinite past, while Section 3 describes the case of a finite

sample of data. Section 4 provides applications and discussion. Section 5 concludes. Proofs are in
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the Appendix.

2 Multi-Step Ahead Forecasting from a Semi-Infinite Past

Consider an n-dimensional nonstationary time series {Xt}. We use bold notation for vector objects.

In this section, we derive and state formulas for MSE optimal prediction of the time series h steps

ahead, given a semi-infinite past and the assumption that {Xt} is difference stationary. Here MSE

optimality means that the estimators have the best MSE among all linear functions of the data

(from the semi-infinite past). If the data are Gaussian, they have the best MSE among all functions

of the data. The semi-infinite past is useful for investigating the long-term impact of forecasting

since the frequency response function (FRF) of the forecast filter can be calculated and studied.

In addition, in some cases the semi-infinite predictors are easier to calculate than the finite-sample

predictors and hence might be used for long samples. (Recall that the FRF is the discrete Fourier

transform of the filter coefficients, expressed as a function of frequency λ ∈ [−π, π].)

We consider difference stationary processes and generally follow the treatments of vector time

series in Brockwell and Davis (1991), Taniguchi and Kakizawa (2000), and Lütkepohl (2006). In-

cluded in our framework are the popular co-integated VAR and VARIMA models used by econo-

metricians, as well as structural VARIMA models. The formulas also cover more unconventional

processes with long-range dependence. For notation an underscore is used for every matrix, which

generally are n× n. The identity matrix is denoted by In. In general, capital letters refer to com-

posite objects and lowercase letters refer to components (such as coefficients). Latin letters refer

to random variables/vectors, and Greek letters refer to deterministic quantities (e.g., parameters).

Matrix polynomial and power series functions are defined as A(x) =
∑p

k=0 ajx
j with p < ∞ or

p =∞ as the case may be. We use B for the backshift operator, which sends a time series back in

time: BXt = Xt−1, working on all components of the vector at once. Then the action of A(B) on

Xt is understood by linear extension.

The difference stationarity assumption means there exists a differencing polynomial whose ap-

plication to the observed time series {Xt} yields a covariance stationary time series {Wt}. In

particular, suppose that ∆(B) of order p exists such that

∆(B)Xt = Wt, (1)

and there exist complex variables z such that |z| = 1 and det ∆(z) = 0. The operator ∆(B) =∑p
k=0 δjB

j is referred to as the VAR-differencing operator, which in general contains both stable

and unstable elements that are not easily separated. We assume that δ0 = In. As discussed in

Lütkepohl (2006), the zeroes of det ∆(z) include some on the unit circle of the complex plane,

and the rest outside. Suppose that the number of unit roots is d. Then there exists an order d

polynomial (in terms of the backshift operator) with only unit roots such that its application to
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each series individually produces stationarity. However, the net effect may produce singularities

in the resulting spectral density matrix when co-integration is present. In fact, cointegration is

present whenever ∆(B) cannot be neatly decomposed into a pure unit root matrix polynomial

times a purely stable VAR matrix polynomial. At any unit root z of det ∆(z), the matrix ∆(z)

has rank less than n. For further background, see Granger (1981), Engle and Granger (1987), and

Stock and Watson (1988).

The inverse of ∆(B) exists only in a formal sense as Ξ(B) =
∑

k≥0 ξkB
k, a formal power

series. This expression is not well defined on the unit circle, but is mathematically convenient and

is used later. The series {Wt} is then stationary with mean vector m, and we suppose that it

is purely non-deterministic and invertible (i.e., the spectrum is always non-singular). Note that

in the co-integration formulation of Engle and Granger (1987) and Stock and Watson (1988), all

variables have been fully differenced to stationarity, so the resulting stationary component processes

have a singular spectral density. In contrast (as in Lütkepohl, 2006), we avoid this potential over-

differencing, such that the resulting stationary vector process is invertible. Then by the Wold

decomposition (Brockwell and Davis, 1991, or Reinsel, 1997) for multivariate time series we can

write

Wt = m + Ψ(B)At, (2)

where the series At is mean zero and uncorrelated (but possibly dependent) over time with covari-

ance matrix σ. Here Ψ(B) is a causal power series with coefficient matrices ψ
k
. By the invertibility

assumption, det Ψ(z) 6= 0 on the unit circle, so that Ψ−1(z) is well defined for |z| ≤ 1. More prop-

erly we should write [Ψ(z)]−1 for the inverse, since it is different for each value of z, but we use

the first expression by abuse of notation (as is common). Note that allowing {At} to be dependent

allows our results to be applied to nonlinear difference stationary processes (see Mainassara and

Francq, 2011, for a complete discussion).

We are interested in the following problem: how to compute the h-step ahead forecast of Xt+h

from data {Xs; s ≤ t}. This is an important problem and has been studied in more limited

forms by other authors.1 The solution can be obtained using projections, given that our criterion

function is the best linear MSE estimator. Denote this estimator as X̂t+h|t, which is the conditional

expectation of Xt+h given the semi-infinite past when the series is Gaussian. As a first step, we

consider the problem of determining Ŵt+h|t, the best estimate of Wt+h given the semi-infinite past

{Ws; s ≤ t}. We introduce the following convenient notation for any matrix power series A(x):

1Chapter 9 of Whittle (1984) provides formulas for one-step ahead forecasting of a stationary process, given

its Wold decomposition, but does not treat difference-stationary processes explicitly. Lütkepohl (1986, 1987) and

Schorfheide (2005) focus on VAR or VARMA models, as does the treatment in Brockwell and Davis (1991). No

published work to date handles the general case of a difference-stationary process; our Propositions 1 and 2 provide

forecast formulas generally, allowing for vector long memory (e.g., VARFIMA processes). Another possible application

is the multivariate extension of exponential (or cepstral) models as described in Bloomfield (1973).
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[A]j0(x) =
∑j

k=0 akx
k. The optimal forecast and forecast filter are given below, and are quite

similar to the univariate case discussed in McElroy and Findley (2010).

Proposition 1 Suppose that {Wt} is strictly stationary with mean m, finite variance, and is purely

non-deterministic and invertible. The best linear MSE estimator of Wt+h given the semi-infinite

past {Ws; s ≤ t} is

Ŵt+h|t = m +
∑
k≥0

ψ
k+h

Ψ−1(B) (Wt−k −m) . (3)

With the forecast filter Φ(B) defined via

Ŵt+h|t = m + Φ(B) (Wt −m) = (In − Φ(1))m + Φ(B)Wt,

its FRF has the formula

Φ(z) = z−h[Ψ]∞h (z)Ψ−1(z) (4)

for z = e−iλ. The corresponding h-step ahead forecast error is

Et+h = −[Ψ]h−10 (B)Ψ−1(B) (Wt+h −m) . (5)

Remark 1 The forecast MSE is defined as the covariance matrix of Et+h; equation (5) can be

written as

Et+h = −[Ψ]h−10 (B) At+h,

and hence the MSE is
∑h−1

j=0 ψj σ ψ
′
j
. The diagonal entries correspond to mean square forecast

errors for each individual series.

The forecasting problem occurs when h ≥ 1. However, it is convenient to extend the above

formulas to the case h ≤ 0, in which case Φ(B) should equal B−h. Since [Ψ]∞h = Ψ when h ≤ 0,

the stated formula (4) for the forecast FRF immediately reduces to the appropriate quantity when

h ≤ 0. Also, in this case the forecast error Et+h = 0, since [Ψ]h−10 = 0.

Now consider the calculation of X̂t+h|t. First, we need an elementary description for the

difference-stationary time series (1) that differs slightly from the treatment in Bell (1984). It

is immediate from (1) that

Xt = Wt −
p∑
j=1

δjXt−j

for all times t. Let Q(B) = In − ∆(B), and note that it is a matrix polynomial in B such that

B occurs to a power k ≥ 1. Moreover, B−1Q(B) is a matrix polynomial in B. Then the above

equation is expressed as Xt = Wt +Q(B)Xt, which upon iteration h times in Xt yields

Xt+h =
(
In +Q(B) + · · · [Q(B)]h−1

)
Wt+h + [B−1Q(B)]

h
Xt. (6)
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Equation (6) provides a decomposition in terms of linear combinations of various Ws for s ≤ t+ h

and various Xs for s ≤ t. This latter aspect is emphasized here: [B−1Q(B)]
h

is a polynomial in

B, and so the latter term on the right-hand side of (6) depends only on present and past values

of the data. The matrix operating on Wt+h in (6) will be denoted P (h)(B) =
∑

j≥0 pjB
j and has

maximum order p(h − 1). Recall that Ŵs|t is given by (3) with h = s − t if s > t, but just Ws if

s ≤ t. With this representation of the data process, we can state our forecasting result.

Proposition 2 Suppose that {Wt} is strictly stationary with mean m, finite variance, and is purely

non-deterministic and invertible. Also assume that the future innovations At+j are uncorrelated

with all past values of the process Xt, for any j ≥ 1. Then the best linear MSE estimator of Xt+h

given the semi-infinite past {Xs; s ≤ t} is

X̂t+h|t = P (h)(B)Ŵt+h|t + [B−1Q(B)]
h
Xt, (7)

where P (h)(B)Ŵt+h|t means
∑

j≥0 pjŴt+h−j|t. Also (7) can be rewritten as

X̂t+h|t = P (h)(1) (In − Φ(1))m + Φ(B)Xt,

with the forecast filter Φ(B) defined via the FRF as

Φ(z) = P (h)(z)z−h[Ψ]∞h (z)Ψ−1(z)∆(z) + [z−1Q(z)]
h

(8)

for z = e−iλ. The corresponding h-step ahead forecast error is

Et+h = −
h−1∑
j=0

ξ
j
[Ψ]h−1−j0 (B)Ψ−1(B) (Wt+h−j −m) = −[∆−1(B)Ψ(B)]

h−1
0 Ψ−1(B) (Wt −m) .

(9)

3 Projection from a Finite Past

Now consider the data process at times t = 1, 2, · · · , T . When working with a finite sample, we do

not require full knowledge of the Wold filter Ψ(B), but rather the autocovariances of the process.

We write γ(h) = E[WtW
′
t−h] for the hth covariance matrix, which has individual entries γ

jk
(h).

We first consider general projection formulas, discuss computational issues, and then work through

the examples of forecasting and imputation.

Although finite-sample results are currently available for VAR and VARMA models (see Lütkepohl,

2006), more general formulas for vector long-memory, vector cepstral, or vector structural processes

(see Harvey, 1989, or Section 4 below for elaboration) have not been published. Our Theorem 1

below provides the general solution, allowing for missing values (of an arbitrary pattern). While

forecasting and imputation for VARMA models can be done using SS methods, long-memory and

cepstral processes cannot be embedded in a finite-dimensional SS formulation. Chan and Palma
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(1998) discuss an infinite-dimensional SS representation for long-memory proceesses, with a finite-

dimensional approximation. However, as discussed in McElroy and Holan (2012), a severe degree of

distortion to the autocovariance structure can result from such truncations when the long-memory

exponent is quite high. Vector long-memory models are discussed in Sela and Hurvich (2009), while

vector cepstral processes are formulated in Holan, McElroy, and Wu (2014).

3.1 The General Treatment

As in Section 2, we allow the differencing matrix ∆(B) to have both stable and unstable elements,

such that the resulting {Wt} is stationary, although we can now allow this differenced process to

be non-invertible. An equation involving matrices and random vectors can be obtained from the

basic relation (1) simply by stacking over values of t as follows:

In 0 0 0 0 · · · 0

0 · · · 0 0 0 · · · 0

0 0 In 0 0 · · · 0

δp · · · δ1 δ0 0 · · · 0

0 δp
. . . δ1

. . .
. . . 0

0 · · · · · · δp · · · δ1 δ0





X1

...

Xp

Xp+1

...

XT


=



X1

...

Xp

Wp+1

...

WT


.

This relation can be expressed compactly by writing ∆X = [X′∗,W
′]′, where X∗ = vec[X1,X2, · · · ,Xp]

and these are called the initial values of the process. Also W = vec[Xp+1,Xp+2, · · · ,XT ]. In time-

series analysis, the initial values are typically assumed to be independent of the differenced series

{Wt}, though it is sufficient for our purposes that the initial values be uncorrelated with W. The

covariance matrix of the random vector W is the n(T − p)-dimensional matrix Γ, which is block

Toeplitz with the jkth block given by γ(j − k). The mean vector of W is written as ι⊗m, where

ι is a column vector of ones of length T − p.
We can relax the invertibility assumption on the {Wt} process used in Section 2, provided

the spectral density is only singular on a set of frequencies of Lebesgue measure zero. In this case

(discussed in McElroy and Trimbur, 2012), any covariance matrix obtained by sampling from {Wt}
will be positive definite. For instance, for any block vector a′ = [a′1, · · · , a′T−p],

a′ Γ a =
1

2π

∫ π

−π
a′(λ)FW(λ)a(λ) dλ

holds for any vector a, and with a(λ) =
∑T−p

t=1 ate
−iλt and FW the Hermitian spectral density matrix

of {Wt}. At worst (assuming a is not the zero vector), there is a set of frequencies of Lebesgue

measure zero such that the integrand is zero, but otherwise the integrand is positive; hence the

entire expression is positive. This shows that Γ is positive definite, and a similar argument applies

to the covariance matrix of any subvector of W. It is necessary that such covariance matrices be
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invertible – not only for our forecasting and projection results below – but also so that the Gaussian

likelihood function is well defined and we can obtain model parameter estimates in the first place.

The case where FW is singular on a set of frequencies of Lebesgue measure zero can arise in

the following way. We might consider potentially over-differencing in (1), such that in the resulting

Wold form Ψ(z) has less than full rank at some frequencies; these frequencies would correspond

to the co-integrating frequencies, typically just λ = 0 for most econometric applications. Then it

follows that FW is singular at those same frequencies but is invertible at all other values. See Stock

and Watson (1988) or the discussion in McElroy and Trimbur (2012).

A different case arises when the observed process {Xt} is a sum of unobserved signal and noise

processes, as described in McElroy and Trimbur (2012). Then when the signal process has collinear

innovations (i.e., the innovations that drive its Wold representation have a singular covariance

matrix), the resulting FW can be singular at a finite number of co-integrating frequencies. In fact,

as discussed in McElroy and Trimbur (2012), such a latent signal, together with an invertible latent

noise, gives rise to a co-integrated process, where the co-integrating frequencies correspond to the

roots of the signal processes’ differencing operator. For example, if the signal is a common trend

process (see Stock and Watson, 1988, and Nyblom and Harvey, 2000) and the noise is white, then

the differenced data process has a spectrum that is singular only at λ = 0, corresponding to the

signal unit root.

The forecasting problem is now a special case of a more general prediction problem. As in

the previous section, optimality refers to the minimum MSE linear predictor, which is also the

conditional expectation in the case of a Gaussian process. Suppose that the observed data are

actually given by JX, where J has a number of rows less than or equal to its number of columns

nT . If J consists of ones and zeroes, we can allow for any type of missing data, backcasting,

or forecasting problem. The target quantities of interest are given by KX, where K is another

selection matrix. For forecasting and imputation problems, row permutations of the juxtaposition

of J and K typically equals the identity matrix.

Apart from trivial applications (such as one-step ahead forecasting), careful thought must be

given to the construction of X, J , and K. We must (i) consider all times t of the process {Xt}
that enter into the observed data, as well as the target quantities, and (ii) extend this index set if

necessary to be a contiguous subset of the integers. Label this contiguous set as {1, 2, · · · , T}, and

define X accordingly. At this point, the definition of J and K such that JX is our observed data

and KX is our target becomes immediate. Examples are given below.

The general solution for optimal prediction of KX given data JX is

K E[X] +K Cov(X,X) J ′
[
JCov(X,X)J ′

]−1
J (X− EX) .

Computing these covariances in terms of Γ and ∆ requires some additional analysis. Observe that

∆ is block lower triangular and invertible, and JX = J∆−1[X′∗,W
′]′. Suppose that we can find an
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invertible matrix R such that

RJ∆−1 =

[
Inp 0

0 B

]
, (10)

where B has fewer rows than columns. Such factorizations often exist and are easy to demonstrate

in cases of forecasting and backcasting. In addition, condition (10) can be checked by calculating

J∆−1 and then attempting to row reduce it to an upper triangular (but potentially rectangular)

matrix; in this case, R is the composition of all row operations. We provide specific examples of

the factorization (10) in the next section; a detailed treatment of the factorization problem for

mixed-frequency univariate series is given in McElroy and Monsell (2012). The general formula for

the projection is given below.

Theorem 1 Suppose that {Wt} is covariance stationary with mean m, and has finite variance

with spectral density FW that is singular only at a set of frequencies of Lebesgue measure zero.

Also suppose that an invertible matrix R exists such that the factorization (10) holds for some B,

and suppose that X∗ is uncorrelated with {Wt}. Then the optimal estimate of KX given JX is

K ∆−1

[
Inp 0

0 ΓB′ (BΓB′)
−1

]
RJX +K ∆−1

 0(
In(T−p) − ΓB′ (BΓB′)

−1
B
)

[ι⊗m]

 .
The covariance of the error process is

K ∆−1

[
0 0

0 Γ− ΓB′(BΓB′)
−1
BΓ

]
∆′
−1

K ′.

This general projection formulation is useful for a range of applications. For example, the series

are allowed to have different lengths (some series go further into the past) or perhaps to have

missing values. Regardless, these situations can be handled by adapting J and K appropriately. If

back-casting is desired, it is sometimes easier to time reverse all the data and then apply Theorem

1. We discuss additional aspects of the result in the following subsections.

3.2 Computation

In the special case when there are no missing values, forecasts of XT+h could be easily computed

using only recursions and forecasts of the {Wt} process. For example, if δ(B) = In − B · In is

the differencing operator, then X̂T+1 = XT + ŴT+1, and ŴT+1 = [γ(T ), · · · , γ(1)] Γ−1 ∆X. But

if some of the components of XT are missing, these must first be estimated, and the value of a

recursive scheme is diminished. For general and complicated patterns of omission (e.g., values

missing from different constituent series at different times), the formula in Theorem 1 should be

directly computed instead. Here we discuss how these quantities can be obtained.

Given J and ∆, we first compute ∆−1, which is discussed below. Then we calculate J∆−1 and

use row operations to reduce it to the form given in (10) if possible; R is then the composition of

9



these row operations (and hence is invertible). Now that R and B are available, we only need to

compute the autocovariances and generate Γ and Γ−1. (There are numerically stable methods for

inverting block Toeplitz matrices, such as the Durbin-Levinson algorithm, discussed in Brockwell

and Davis, 1991.)

When a time-series model is fitted, we typically are able to compute the Wold coefficients, and

from these we can obtain the autocovariances:

γ(h) =
∑
j≥0

ψ
j+h

σ ψ′
j
. (11)

For a long-memory model, we might use (11) directly to compute autocovariances (this requires

truncation of the summation) or perhaps use a direct formula (see Brockwell and Davis, 1991, and

Sela and Hurvich, 2009). For VAR and VARMA models, the autocovariances can be computed

from the parameters directly, and the Wold coefficients are not needed (see discussion in Mittnik,

1987, 1990, 1993).

For a structural model, autocovariances must be computed for each component, and then the

result is summed. Suppose that Xt = St + Nt, where {St} and {Nt} are two latent processes that

are stationary and uncorrelated with one another. Hence, the respective autocovariance functions

{γ
S

(h)} and {γ
N

(h)} satisfy

γ
X

(h) = γ
S

(h) + γ
N

(h)

for all integers h. The formulas of Theorem 1 are given in terms of {γ
X

(h)}, but when unob-

served components models are fitted (Harvey, 1989), we typically obtain fitted models for both

{St} and {Nt} (the discussion generalizes to more than two latent components). If these latent

processes follow VARMA models, we can compute the individual autocovariance functions {γ
S

(h)}
and {γ

N
(h)}, which we then sum to get {γ

X
(h)}. This only allows us to forecast the aggregate

process; forecasting a latent component itself requires signal extraction formulas, as discussed in

McElroy and Trimbur (2012).

Next we discuss speedy computation of differencing matrices. Let LT denote a T×T -dimensional

lag matrix, which takes the value 1 on the first subdiagonal but is zero elsewhere. Matrix powers

of this lag matrix shift the unit subdiagonal further down, whereas the zeroth power is the identity

matrix. We then define the matrix polynomial A(LT ) analogously to the univariate construction.

If A(x) is a degree p polynomial as described in Section 2, then

A(LT ) =

p∑
k=0

LkT ⊗ ak,

which is nT × nT dimensional. The rule for multiplying two such expressions is

A(LT ) · C(LT ) = (A ∗ C)(LT ), (12)

10



where ∗ denotes the convolution of functions. In other words, we compute the product of polyno-

mials A(x) and C(x) and evaluate at x = LT (this is derived in the appendix). As a corollary, one

can show that

[A(LT )]−1 = A−1(LT ),

where A−1(x) is the inverse of the matrix polynomial a(x). Such an inverse need not always exist,

but if a0 is invertible, then the coefficients bk of A−1(x) can be recursively computed via

bk = − a−10

k∑
j=1

ajbk−j .

This treatment can be applied to the case of the differencing matrix polynomial ∆(x), which has

inverse matrix power series Ξ(x), with coefficients ξ
k

given by the above type of recursion. This

works because δ0 is invertible, being the identity matrix. Hence, we can quickly compute Ξ(x) and

set

[∆(LT )]−1 = Ξ(LT ).

Now it is easy to see that

∆ =

 Inp 0[
0 In(T−p)

]
∆(LT )

 =

[
D−1 0

0 In(T−p)

]
∆(LT ),

where D is the upper-left np× np block of ∆(LT ). Thus

∆−1 = Ξ(LT )

[
D 0

0 In(T−p)

]
(13)

gives a fast method for computing the inverse of ∆.

3.3 Forecasting

Suppose that the data go up to time N and we want to forecast over the subsequent T −N periods.

Then J = [InN 0] and K = [0 In(T−N)] and hence stacking J on top of K yields InT . Also, it

is elementary that J∆−1 = [∆−1N 0] due to the block lower triangular shape of ∆−1, where ∆N is

the upper nN rows and columns of ∆. Then we can take R = ∆N in our projection results, and

RJ∆−1 = [InN 0], implying that B = [In(N−p) 0], a matrix with n(T − p) columns. Then the

forecast formula is

K∆−1

 X∗

Γ [In(N−p) 0]′
{

[In(N−p) 0] Γ [In(N−p) 0]′
}−1

W


+K ∆−1

 0(
In(T−p) − Γ [In(N−p) 0]′

{
[In(N−p) 0] Γ [In(N−p) 0]′

}−1)
[ι⊗m]


11



where ι is a column vector of ones of length T − p. This type of formula is trivial to encode,

and the matrix inversions are fast even when nT is as large as 1, 000, which is sufficient for many

macroeconomic applications of interest.

Two examples of the application of this forecasting formula are given in the next section,

although we also provide an application of informed backcasting. But we should also point out

that the above formulas are simple extensions of familiar ordinary least squares (OLS) forecasting

formulas. In the special case of a VAR(p), the model can be easily fit using OLS (Lütkepohl,

2006) and forecast by taking linear combinations of the past p observations. If the data are also

differenced, the differencing operator can be merged with the VAR polynomial. Alternatively, an

unstable VAR may be fitted to the data; in this case, no differencing is done beforehand, but unit

roots are found in the estimated polynomial. Our formulas include all these scenarios as special

cases. Suppose that forecasts from a stable VAR(p) are desired H steps ahead. Writing

Yt = [X′t−N+1, · · · ,X′t−1,X′t]
′

the VAR(p) becomes a VAR(1) in terms of {Yt}, with transition matrix

A =


0 In 0 · · · · · · · · ·
...

. . .
. . .

. . .
. . . 0

0 · · · 0 −ap · · · −a1

 .
The full VAR(p) polynomial is A(x) =

∑p
j=0 ajx

j ; note that our sign convention differs from that

of Lütkepohl (2006) here. Ignoring mean effects for simplicity and omitting K, the forecast formula

above can be written as

Γ [In(N−p) 0]′
{

[In(N−p) 0] Γ [In(N−p) 0]′
}−1

X =


Cov(YN ,YN )

P Cov(YN+1,YN )
...

P Cov(YN+H ,YN )

 [Cov(YN ,YN )]−1 X,

where P = [0 0 · · · In]. Since Cov(YN+h,YN ) = Ah Cov(YN ,YN ), the above simplifies to
InN

P A
...

P AH

 X; (14)

this is the familiar formula given in Lütkepohl (2006). If instead we have an unstable VAR(p),

we can apply the formulas with ∆(B) equal to the full VAR polynomial A(B) and {Wt} given as

multivariate white noise. Then our forecasting formula becomes (again, omitting K and the mean

12



m for simplicity)

∆−1


X∗

W

0

 = Ξ(LT )

[
∆(LN )

0

]
X, (15)

using (13). Here the zero matrix above has nH rows and nN columns. The appendix shows that

(15) reduces to the familiar (14) formula.

Our general formulas clearly encompass those associated with stable/unstable VAR(p) repre-

sentations. The next section provides an illustration for forecasting a co-integrated process that

does not have a VAR(p) representation and hence requires us to use the general formulas.

4 Application and Discussion

The formulas of the previous section are quite general and allow for a diverse set of applications. We

begin with a somewhat common forecasting application. We then discuss three more interesting

cases: backcasting disaggregated data, forecasting when long-memory is present, and forecasting

series that are co-integrated, where the co-integration is formulated in terms of reduced rank latent

processes (such as trends and seasonals). Except for the long-memory example, each of these

applications could be handled via SS methods. The chief advantage of matrix formulas in such

cases lies in the ease of implementation of the formulas of Theorem 1.

4.1 Forecasting Euro Area Series

Our first application uses a VAR to model quarterly euro area real gross domestic product (RGDP),

the Harmonised Index of Consumer Prices (HICP), and the unemployment rate (UR), from 1995:Q1

through 2011:Q4. Whereas the first two series exhibit strong trend growth and plausibly are I(1),

the UR should be stationary (in the long term). Hence, we use a single differencing for RGDP and

the HICP (after a log transform for both), but no differencing for the UR. These specifications were

carefully checked by exploratory analysis (regression of the HICP onto a line was not sufficient to

remove all nonstationarity). The resulting stationary series were modeled as a VAR(4) based on

using AIC to choose the lag length with a maximum lag set to 5.

We considered fitting the models via both OLS and the Yule-Walker (YW) methods, with fairly

similar results for both methods. Since the mean parameter is a drift for the first two series, it has

a tremendous impact on long-term forecasts. For the YW method, we compute the sample mean

(Lütkepohl, 2006), whereas for OLS we include regression onto a constant to estimate the mean, as

is commonly done. Because we feel confident that the differenced series are stationary, we choose

the YW method as it guarantees a stable fitted VAR(k) (Lütkepohl, 2006). The estimated YW

means were 0.00397, 0.00522, and 9.31493 for RDGP (in differences), the HICP (in differences),

and UR, respectively.
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The data length was 68, and the forecast horizon was set to 50. To compute the autocovari-

ances needed in the forecasting formulas, the VAR(4) is imbedded as a 12-dimensional VAR(1) as

described in Lütkepohl (2006), and the YW recursions are used to compute exact expressions. The

R code for the forecasts (along with their MSEs) finished in less than a second (in less time than it

took to fit the models), so for series this short, computation time is not an issue. All 50 forecasts

are generated at once, along with the full error covariance matrix, whose diagonal entries are the

forecast MSEs. Taking the ± twice the square root of these MSEs forms an envelope (pointwise

confidence intervals) around the forecasts, depicted in shaded colors in the following plots. Black

denotes the original series with forecasts appended (where the colored lines begin denotes the start

of the forecast period; see Figure 1).

To contrast with purely univariate techniques, we also fitted high-order AR models to the

differenced series and then applied the same forecast formulas. More lags seemed necessary to

explain the series when the cross-series information was not used. We arrived at an AR(10) model

for each series (a lower-order AR model would also be satisfactory, but for illustrative purposes

we keep the same order for all three series). The univariate forecasts in Figure 1 are shown as

dashed lines with a slightly lighter shade to depict the pointwise confidence intervals. While there

is no discernible difference for the HICP, there is very different behavior for the RGDP and UR

series. Also, for RGDP the univariate confidence intervals happen to be wider. Note that while the

RGDP and HICP series exhibit fairly typical forecasts for I(1) series – with expanding confidence

intervals – the UR forecasts are interesting in their initial curvature and stabilization (due to being

I(0)), with confidence intervals that have essentially converged to their asymptotic value by the

50th forecast.

4.2 Backcasting Fertility Series

The second application involves fertility rate data (total births divided by population, by year)

from the U.S. Census Bureau stratified into different racial categories. From 1980 to 2003 the racial

categories were Hispanic (H), Non-Hispanic Black (NHB), and Non-Hispanic Non-Black (NHNB).

Starting in 1989, birth data were collected based on five categories and emanate from a slightly

different source. For 1989 through 2009, the categories are Non-Hispanic White (NHW), NHB,

Hispanic (H), Non-Hispanic American Indian or Alaskan Native (NHI), and Non-Hispanic Asian or

Pacific Islander (NHA). Intuitively it seems that the old NHNB category should include the new

categories of NHW, NHI, and NHA. However, for the 1989-2003 overlap period the sum of the

latter three race categories does not sum to the NHNB category because the data consist of rates.

Because the NHI and NHA categories are not available for the 1980-1988 span, our objective is to

backcast these series to this time period.

It seems sensible to use older-vintage fertility series if they have a clear correlation with the
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NHI and NHA data. After some initial exploratory analysis, it is apparent that the NHB series

in its older (1980-2003) and newer (1989-2009) vintages shares some coherence with the NHI and

NHA series; see the top left panel of Figure 2. Note the imperfect matchup of the older and newer

vintages of NHB in their overlap period (1989-2003), which is due to differences in data collection.

As previously, we used AIC to choose the lag length with a maximum of 5 lags. The final model

for forecasting was a trivariate VAR(1), with mean parameters 2.2106, 2.2349, and 1.8487.

We use the NHI, NHA, and old NHB categories for the projection calculations. Although the

model was fitted with the new NHB category, we backcast using the old NHB. (We also could have

fitted the model using the NHI, NHA, and old NHB categories by constructing a likelihood with

missing values. Given the short length of the series, we avoided this approach.) For the series {Xt}
with its components defined in this order, and with t = 1980 through t = 2009, the observation

matrix J has the following structure:

J =


I9 ⊗ [1 0 0] 0 0

0 I15 ⊗ I3 0

0 0 I6 ⊗

[
1 0 0

0 1 0

]
 .

In other words, the first nine rows feature only old NHB data, followed by 15 groups of three rows

of all series (the common period), and completed by 6 pairs of two rows for just the NHI and NHA

series. Our interest focuses on the early period, so

K =

[
I9 ⊗

[
1 0 0

0 1 0

]]
.

However, we also produce forecasts of the old NHB in the top right panel of Figure 2 for comparison

with the new NHB data for that period; the K for this objective is just I6 ⊗ [0 0 1]. Because there

is no nonstationarity, the formulas for backcasting simplify dramatically. The projection is given

by

K Γ J ′
(
J Γ J ′

)−1
JX +K

[
I90 − Γ J ′

(
J Γ J ′

)−1
J
]

[ι⊗m],

and the covariance of the error process is

K
[
Γ− Γ J ′

(
J Γ J ′

)−1
JΓ
]
K ′.

In the bottom panels of Figure 2 we plot the backcasts (dashed lines) of NHI (left) and NHA (right),

along with error bands derived from using ±2 standard errors (the square root of the diagonals

of the error covariance matrix). Both backcasts have an initial increase that tapers in the more

distant past, which is due to the downward effect of the past NHB data. However, the forecasts

for these two series do not closely track the NHB shape in the early 1980s because the coherence

between the three series is not close to full. We also fitted univariate AR(1) models to the series; the
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resulting forecasts are plotted in Figure 2 as dotted lines. The discrepancy between the univariate

and trivariate forecasts is quite dramatic in this case.

4.3 Forecasting Vector Long-Memory Inflation Data

We now discuss a bivariate data analysis of long-memory inflation series studied by Sela and Hurvich

(2009). In their paper, using data from February 1956-January 2008, inflation rates associated with

Goods and Services were fitted with both a FIVAR and VARFI model (see below). In the FIVAR

model (of order one) for demeaned growth rate data {Xt}, (In−a1B)D(B)Xt is vector white noise

with covariance σ, where D(B) is a diagonal matrix power series consisting of the scalar power series

(1−B)dj for j = 1, 2. The parameters d1 and d2 are the long-memory fractional exponents for each

series (although their effects become commingled in the autocovariance functions, as described by

Sela and Hurvich, 2009). Algebraic expressions for the power series coefficients are available (see

Brockwell and Davis, 1991). The matrix polynomial A(B) = In − a1B corresponds to the VAR(1)

portion of the model. For the VARFI model, in contrast, D(B) (In − a1B)Xt is vector white noise

with covariance σ. The only difference is the order of the long-memory and VAR operators. We

use the maximum likelihood estimates in Sela and Hurvich (2009), which yield 0.228, 0.477 for the

long-memory FIVAR parameters and 0, 0.484 for the VARFI parameters.

Here we derive the semi-infinite forecast filters given by (4) explicitly. One advantage of these

formulas is fast computation since we only need to determine the Wold coefficients ψ
j

rather than

the autocovariances (as would be needed for finite-sample predictors), which require considerably

more programming and computation time (Sela and Hurvich, 2009). Because the sample is long, we

compute the prediction filter coefficients up to a large index, at which point they become negligible

(about index 200 in this case). Write D(B) =
∑

j≥0 bj(d)Bj with bj(d) a diagonal matrix with

entries Γ(j − dk)/[Γ(j + 1)Γ(−dk)] for the kth diagonal, where Γ is the gamma function. Also

we have (1− a1B)−1 =
∑

j≥0 a
j
1B

j . Then for the FIVAR model, Ψ(B) = D−1(B)A−1(B) has

coefficients ψ
k

=
∑k

j=0 bj(−d) ak−j1 . Moreover, the jth coefficient of Ψ−1(B) is bj(d) − a1 bj−1(d),

with the convention that b−1(d) is set equal to the zero matrix. Finally, the h-step ahead forecast

filter for the FIVAR has the `th coefficient

∑̀
k=0

ψ
k+h

(b`−k(d)− a1 b`−1−k).

For computation of the coefficients ψ
k+h

, we can use the special structure of the VAR(1) to

obtain the recursion ψ
k+h

= bk+h(−d) + ψ
k+h−1 a1. For any h ≥ 1, this would be initialized

with ψ
h

=
∑h

j=0 bj(−d)ah−j1 . For the VARFI model Ψ(B) = A−1(B)D−1(B) has coefficients

ψ
k

=
∑k

j=0 a
k−j
1 bj(−d). Moreover, the jth coefficient of Ψ−1(B) is bj(d) − bj−1(d) a1, and the
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h-step ahead forecast filter has the `th coefficient

∑̀
k=0

ψ
k+h

(b`−k(d)− b`−1−k a1).

The recursion ψ
k+h

= bk+h(−d) + a1 ψk+h−1 can be used.

In this manner, we computed the predictors for leads h = 1, 2, · · · , 76; these leads correspond

to data, obtained from the FRED database, that have become available since publication of Sela

and Hurvich (2009). The data have also been revised, which slightly modifies some values in the

pre-2008 period. We apply the forecasts to the original data (and the parameter estimates are

from the original, unrevised data) and check performance against the available figures starting in

February 2008. This out-of-sample exercise replicates a practical scenario closely (i.e., we pretend

only data at the time of January 2008 are available). The resulting forecasts (adding the estimated

mean) are plotted against the observed values, with confidence intervals constructed using two

standard errors (Figure 3). The forecast MSE matrix is computed using Remark 1 immediately

after Proposition 1.

We display results for only the recent portion of the series for better visualization of the forecast

paths. The dip in services-based inflation, as a result of the Great Recession was not anticipated by

the forecasts, which gradually converge to the sample mean. The high uncertainty in the forecasts

seems appropriate given the subsequent shifts in the series after 2008.

4.4 Forecasting Seasonally Co-Integrated Housing Starts

In this section, we discuss forecasting regional housing starts using a seasonally cointegrated model.

Classically, the concept of co-integration can be formulated as follows: The spectral density matrix

of the differenced (stationary) process is singular at frequency zero. Stock and Watson (1988)

showed how this can arise when the data process is viewed as the sum of a latent integrated

process with collinear innovations, plus an independent stationary component. More generally,

co-integration at nonzero frequencies can arise from latent nonstationary processes with collinear

innovations. We propose to investigate seasonal and non-seasonal co-integration in housing series

stratified by geographical region. The aggregate process will have a non-invertible Wold decom-

position, so we cannot apply the forecasting techniques of Section 2 but we are free to apply the

finite-sample methods of Section 3. In this case, the requisite autocovariance matrices for the

aggregate data process are obtained from the component model (described in Section 3.2). The

novelty here is in demonstrating forecasting from seasonally co-integrated models. (This can also

be done in SS, but here we use exact formulas.)

Our data consists of monthly housing starts for both the South and West regions of the United

States from 1992 through 2006 (with fixed effect removed by prior analysis in X-12-ARIMA). The

housing slump of the Great Recession is avoided (although some downturn is already evident in
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2006). Initial exploratory analysis of the data shows that similar seasonal and trend patterns

exist in both series, so we consider unobserved component model specifications that allow for

cross-correlation. To capture a slow-moving trend we specify the smooth trend model for the

unobserved trend component {τ t}, and a basic structural seasonal model for the seasonal {ξt},
plus a white noise irregular {ιt}. The monthly seasonal latent process has differencing operator

U(B) = 1+B+ · · ·+B11, and the trend latent process has differencing operator (1−B)2. (There is

some evidence from the data that 1−B suffices as well, but we adopt the I(2) specification to make

the resulting forecasts more visually apparent, purely for illustrative purposes.) The innovations

for trend and seasonal are denoted {ηt} and {νt} respectively. We do not explicitly include a cycle

component. Our model for the differenced series is

(1−B)2U(B)Xt = U(B)ηt + (1−B)2νt + (1−B)2U(B)ιt,

where {ηt,νt, ιt} are each bivariate white noise sequences uncorrelated with each other, but with lag

zero covariance matrices Ση, Σν , and Σι. Generalizing the approach of Stock and Watson (1988),

we obtain a related component (either of trend, seasonal, or irregular) when both eigenvalues of Σ

are positive. However, if one eigenvalue is zero, then collinearity of the corresponding disturbances

exists and the component is called common. In such a case, the covariance matrix can be rewritten

as the outer product [1, ϑ]′[1, ϑ]σ2, and only the two parameters ϑ, σ2 need to be estimated. We

say a component is unrelated if its disturbance covariance matrix Σ is diagonal.

Because there are distinct unit roots (at trend and seasonal frequencies), the topic of co-

integration becomes more complex. Any common component (i.e., a component with collinear

innovations represented as a dynamic factor model) has a nontrivial left null space, so there ex-

ist row vectors such that multiplication on the left yields zero for that component. Although we

would prefer to call such row vectors co-integrating relations (corresponding to appropriate unit

root frequencies), they only serve to reduce the order of nonstationarity by a degree. For example,

a trend co-integrating row vector β has the property that βτ t = 0 for all t. But since βξt 6= 0 with

probability 1, seasonal nonstationarity remains: Application of the trend co-integrating removes

the trend nonstationarity, but seasonality remains. (Moreover, only stochastic trend behavior is

removed by β; deterministic trends will still remain.) When the left null space for trend and sea-

sonal components have nontrivial intersection, we can find co-integrating vectors that remove both

trend and seasonal nonstationarity.

Our data analysis began with the most general model, where all three components are allowed

to be related (so the two components of each of the three disturbances can have any correlation

between −1 and 1). The log likelihood times −2 was 700.4995 in this case, and the trend and

seasonal disturbance correlations were 0.981 and 0.987. As these values are fairly close to unity,

it was plausible to obtain a better fit using a common trend or common seasonal model. The

former yielded 777.9362 for scaled likelihood, and the latter yielded 675.8092. With the superior
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common seasonal model, the trend disturbance correlation was now only 0.899. The unrelated

components model (which corresponds to using univariate fits of each series) yielded a scaled

likelihood of 752.0634. For the common seasonal, the estimated parameters were ϑ = −0.0168

and σ2 = 0.0717. The trend disturbance variances were 0.4669 and 0.1672 (for the South and

West regions, respectively), while the irregular disturbance variances were 1.0874 and 0.6821 with

a correlation of 0.1527. The estimated means were 0.16698 and 0.01357.

Application of the forecasting formulas is then straightforward, having identified the differencing

operator and constructed the covariance matrix directly from the parameter estimates (forecasts

of components could be obtained by applying signal extraction formulas to the forecast-extended

data). As an in-sample exercise, we withhold the last 30 observations of both series and use

the parameters fitted to the entire data span to forecast these values (dashed lines in Figure 4).

The same exercise is repeated by withholding 60 observations. MSEs were also calculated, and

the resulting confidence intervals are quite wide due to the nonstationarity. For comparison, the

forecasts resulting from the univariate models are presented in Figure 4 as dotted lines. The

bivariate forecasts appear to be more conservative, while the univariate forecasts are more extreme

(and less accurate) in their projections.

5 Summary

These four diverse applications demonstrate the flexibility of the theoretical results to different

forecasting and projection problems. While three of the applications can also be embedded and

handled in a SS formulation, our approach uses explicit formulas and easily generates the full error

covariance matrix. Because all the algorithms are transparent and easily encoded, the applied

statistician need not be encumbered with the costs and limitations of the SS approach. All of our

work was encoded in R and runs quite quickly. For other types of problems (e.g., the long-memory

inflation example) it is more important to use the formulas herein, as SS approaches become less

appealing.

When time-series practitioners use models similar to those described in our examples – partic-

ularly the VAR and structural VARMA models – for small samples there is no appreciable loss in

computation speed compared with SS methods when the direct formulas of Theorem 1 are used.

One limitation of this work is that we do not assess the impact of model selection on forecast-

ing. This paper is concerned primarily with the derivations of general forecast formulas and their

calculations. Modeling has a tremendous impact on forecasting results but is not the focus of our

research here. Future studies could examine a particular set of models using the formulas in this

paper to study the impact of model misspecification on performance.
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Appendix

Proof of Proposition 1. The inverse of Ψ(z) exists by assumption. First, note that

Ŵt+h −Wt+h =
∑
k≥h

ψ
k
Bk−hΨ−1(B) (Wt −m)−

∑
k≥0

ψ
k
Bk−hΨ−1(B)Wt

= −
h−1∑
k=0

ψ
k
Bk−hΨ−1(B) (Wt −m) = Et+h,

which proves (5). We only need to check that this error is uncorrelated with Ws for all s ≤ t. But

the errors can be further written as

Et+h = −
h−1∑
k=0

ψ
k
BkAt+h,

which is a linear combination of variables At+1, · · · ,At+h. By the causal representation of Ws, it

must be uncorrelated with each of these At+j for 1 ≤ j ≤ h, since s ≤ t. Expression (4) for the

forecast filter FRF is immediate from (3). 2

Proof of Proposition 2. Consider the formula (7) and subtract Xt+h given by (6), which yields

the forecast errors as follows:

Et+h = P (h)(B)
(
Ŵt+h|t −Wt+h

)
.

The right-hand side is of the form
∑

j≥0 pj

(
Ŵt+h−j|t −Wt+h−j

)
. So, whenever j is such that

t + h − j ≤ t, the corresponding term in the sum is identically zero; therefore, we only need to

consider coefficient matrices such that 0 ≤ j < h. Note that

P (h) = Ξ(B)−
∑
j≥h

[P (B)]j (A.1)

is a formal expression, since the geometric series for P (B) must formally equal the inverse of

In−P (B) = ∆(B) = Ξ−1(B). Outside the unit circle this is actually valid. Now in (A.1), consider

taking only coefficient matrices such that the corresponding power of B is between 0 and h, this

operation annihilates the right-hand term of (A.1), since the smallest power of B would be h. This

leaves the definition of [Ξ]h−10 (B). This proves that the forecast error is

Et+h =
h−1∑
j=0

ξ
j

(
Ŵt+h−j|t −Wt+h−j

)
.

Now plugging in (5) yields the first equality in (9). Logically, the stated formula for the forecast (7)

is MSE optimal if this error process is uncorrelated with the available data. But this is now trivial:

We see from (9) and the fact that the stationary error process (5) depends only on innovations At+1
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through At+h, that the same holds for the nonstationary case (i.e., (9) is a linear function in the

innovations At+1 through At+h). Each observation Xs for s ≤ t can be written in the form of (6)

with t+ h replaced by s. The Ws term is then a direct function of innovations Aj with j ≤ s ≤ t,
and hence is uncorrelated with Et+h. Likewise only values of Xj with j ≤ s ≤ t occur, which are

uncorrelated with the innovations by assumption. The second equality in (9) follows from algebra:

h−1∑
j=0

ξ
j
Bj [Ψ]h−1−j0 (B) =

h−1∑
j=0

ξ
j

h−1−j∑
k=0

ψ
k
Bk+j =

h−1∑
j=0

(
j∑

k=0

ξ
k
ψ
j−k

)
Bj = [∆−1(B)Ψ(B)]

h−1
0 .

The expression (8) for the forecast filter FRF is immediate from (7). 2

Proof of Theorem 1. To compute the optimal estimate, we proceed to calculate the Gaussian

conditional expectation. First, let A = Cov(X∗,X∗) and observe that

JX = R−1

[
X∗

BW

]
.

Because R is invertible, the information in JX is the same as the information in X∗ and BW.

Therefore

E[KX|JX] = E[KX|X∗, BW] = K∆−1E

{[
X∗

W

]
|X∗, BW

}

= K∆−1


[

EX∗
EW

]
+

[
A 0

0 ΓB′

] [
A 0

0 BΓB′

]−1 [
X∗ − EX∗
BW−BEW

]
= K∆−1

[
Inp 0

0 ΓB′[BΓB′]
−1

] [
X∗

BW

]
+K∆−1

 0(
In(T−p) − ΓB′[BΓB′]

−1
B
)

[ι⊗m]

 ,
which yields the stated formula. With C = In(T−p) − ΓB′[BΓB′]

−1
B, the error process is

K̂X−KX = K∆−1

[
0 0

0 −C

] [
X∗

BW

]
+K∆−1

[
0

C [ι⊗m]

]
,

which has the stated covariance matrix. 2

Derivation of (12). The product expands as

p∑
k=0

q∑
`=0

(LkT ⊗ ak)(L`T ⊗ b`) =

p∑
k=0

q∑
`=0

(Lk+`T ⊗ akb`) =

p+q∑
j=0

LjT ⊗ [
∑
i

aibj−i] 2.
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Equivalency of (15) and (14). First, decompose Ξ(LT ) so (15) is
Ξ(LN ) 0
ξ
N

· · · ξ
1

ξ
N+1

· · · ξ
2

... · · ·
...

 Ξ(LH)


[

∆(LN )

0

]
X =


InN
ξ
N

· · · ξ
1

ξ
N+1

· · · ξ
2

... · · ·
...

 ∆(LN )

 X.

The lower-left block matrix has nH rows and nN columns, and its hth block row is given by

[ξ
N−1+h, · · · , ξh] ∆(LN ). We claim that Ah Ξ(LN ) is a matrix with jkth block entry ξ

j−k+h, from

which it follows that

[ξ
N−1+h, · · · , ξh] ∆(LN ) = P Ah,

which will then match up with (14). To prove the claim, first consider h = 1:

AΞ(LN ) =



ξ
1

ξ
0

0 · · · 0

ξ
2

ξ
1

ξ
0

0 · · ·
...

...
...

...
...

ξ
N−1 ξ

N−2 · · · · · · ξ
0

ξ
N

ξ
N−1 · · · · · · ξ

1


,

where the last block row is given by

N∑
`=1

(−δN−`+1) ξ`−k = −[δ ∗ ξ]
N−k+1

+ δ0 ξN+1−k = ξ
N+1−k

for the kth column because δ(B)ξ(B) is the identity matrix polynomial. This handles the base

case h = 1, and the rest of the claim follows from induction by repeated application of A to the

left-hand side along with the following calculation: If the claim holds for h, then the bottom row

of Ah+1 Ξ(LN ) is

N∑
`=1

(−δN−`+1) ξ`−k+h = −[δ ∗ ξ]
N−k+h+1

+ δ0 ξN+h+1−k = ξ
N+h+1−k.

This concludes the derivation.
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Figure 1: Euro area series RGDP (left), HICP (middle), and UR (right). Series values are in black
and forecasts are colored (blue, red, green), with confidence intervals shaded. Dashed lines depict
forecasts from a univariate AR(10) model, while the solid colored lines depict forecasts from the
fitted VAR(4).
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Figure 2: Fertility rates backcasted by racial group. Top left panel has NHB, NHI, and NHA series,
with both an older and newer vintage for the NHB overlaid. Top right panel contains forecasts
of the older NHB vintage, with error bands. Bottom panels have backcasts of NHI (left) and
NHA (right) with error intervals. Dashed lines are trivariate forecasts, dotted lines are univariate
forecasts.
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Figure 3: Forecast of inflation growth rates, 76 steps ahead. Upper panels correspond to the FIVAR
model, lower panels correspond to the VARFI model. Left panels correspond to Goods, and right
panels correspond to Services.
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Figure 4: Housing starts series for the South (top) and West (bottom). Forecasts based on withhold-
ing the last 30 observations are on the left, and withholding 60 observations on the right. Series
values are in black and forecasts are in colored (blue or red), with confidence intervals shaded.
Dashed lines are bivariate forecasts, dotted lines are univariate forecasts.
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