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Abstract

We analyze an exchange economy of unsecured credit where borrowers have the option to declare

bankruptcy in which case they are temporarily excluded from financial markets. Endogenous

credit limits are imposed that are just tight enough to prevent default. Economies with tempo-

rary exclusion differ from their permanent exclusion counterparts in two important properties.

If households are extremely patient, then the first–best allocation is an equilibrium in the latter

economies but not necessarily in the former. In addition, temporary exclusion permits multiple

stationary equilibria, with both complete and with incomplete consumption smoothing.

JEL classification: D51; D91; G33

Keywords: Bankruptcy; Endogenous solvency constraints
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1 Introduction

The role of limited contract enforcement in dynamic general equilibrium has been explored

extensively in key papers by Eaton and Gersovitz [11], Kehoe and Levine [14], Kocherlakota

[17], and Kiyotaki and Moore [16], all of which seek to explain why individual consumption,

aggregate output and asset prices fluctuate more than aggregate consumption, productivity or

dividends . Limited commitment has been used to investigate anomalies in asset pricing (Alvarez

and Jermann [1,2], Azariadis and Kaas [6]), international business cycles (Kehoe and Perri [13]),

economic growth (Marcet and Marimon [20]), consumption patterns and social security issues

(Krueger and Perri [18,19], Andolfatto and Gervais [3]). All these models describe environments

in which a shortage of collateral rules out complete risk sharing or consumption smoothing. One

institution that improves the distribution of consumption over households is unsecured credit

backed by limiting defaulters’ subsequent trading in asset markets. The literature typically

assumes that an omnipotent credit authority or auctioneer excludes defaulting agents for the rest

of their lives from any asset trade. Such a penalty is clearly the strongest possible punishment

in the absence of collateral.

This paper explores the consequences of weaker punishment arrangements. For example, Bulow

and Rogoff [8] and Hellwig and Lorenzoni [12] impose one–sided exclusion which permits default-

ers to accumulate assets but banishes them permanently from all borrowing. This paper works

out the consequences of temporary exclusion from both sides of asset markets. To this end, we

consider a stochastic pure–exchange economy in which defaulters are readmitted to asset trad-

ing with positive probability. When the punishment period is over, bankrupt households regain

full access to all markets. We maintain the common assumption in the literature of a complete

market of state–contingent claims supported by default–deterring credit limits. We believe that

temporary exclusion is an important feature since real–world bankruptcy procedures never come

close to perpetual market exclusion.

Under permanent market exclusion, Alvarez and Jermann [1] prove two results: one, autarky is

the unique (and constrained efficient) equilibrium if the autarkic interest rate exceeds the econ-

omy’s growth rate. Two, when the autarky equilibrium is inefficient, there is a better equilibrium

with improved risk sharing. Moreover, Kehoe and Levine [14, Proposition 2] establish a kind

of “folk theorem”: this constrained efficient equilibrium is first best provided that the common

discount factor is sufficiently large. This paper considers a particular equilibrium refinement,

namely, the robustness to small explicit default costs. For our class of pure-exchange economies

we find that permanent market exclusion gives rise to a unique robust equilibrium. In particular,

autarky is not robust to this refinement, unless it is the unique equilibrium.

We show that economies with temporary exclusion differ from their permanent exclusion coun-

terparts in two important ways. First, a higher discount factor does not necessarily help to
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implement the first best allocation. With temporary exclusion of defaulters and no matter how

low the (positive) readmission probability is, the first–best allocation is not self-enforcing, even

when agents are extremely patient, unless they are also sufficiently risk averse. Intuitively, very

patient households care less about temporary exclusion penalties but are more interested in the

expected value of consumption after they are readmitted to asset trade. Default raises both

consumption risk during the punishment phase but also the expected value of consumption in

the long run (i.e. after readmission to financial markets).

Second, temporary exclusion can give rise to the existence of multiple robust equilibria. In

particular, we prove that autarky is always a robust equilibrium if the readmission probability is

sufficiently high (i.e. punishment is sufficiently weak). Besides the robust autarky equilibrium,

additional stationary equilibria can emerge; the first–best allocation may be one of them. To

understand why multiple robust equilibria occur under temporary exclusion although they are

impossible under permanent exclusion, we note that temporary exclusion introduces a dynamic

complementarity between future and current asset prices. Consider the example of a defaulter

who loses the ability to save in the default period but is readmitted to trade in all subsequent

periods. Then an increase in future interest rates reduces the continuation value from default

(because the agent forgoes asset trade in the default period) which relaxes credit constraints

today. In turn, a higher volume of borrowing necessitates a higher current interest rate to clear

the credit market today. This dynamic complementarity can trigger equilibrium multiplicity

provided that the impact of future market prices on the value of default is sufficiently strong.

Note that such a link is absent in economies with infinite market exclusion where default leads

to permanent autarky whose payoff is independent of future prices. We present a more elaborate

discussion of this argument in Section 4.

We are aware of only a few contributions dealing with temporary asset market exclusion of de-

faulting borrowers. Athreya [5] and Chatterjee et al. [9] develop quantitative equilibrium models

with incomplete asset markets, characterizing optimal default behavior and equilibrium loan

price schedules. In the sovereign default literature, temporary market exclusion of defaulting

international borrowers is also a common assumption (Arellano [4], Cuadra, Sanchez and Sapriza

[10]). However, these contributions neither discuss equilibrium multiplicity nor the role of dis-

counting which are the focus of this paper.1 Azariadis and Lambertini [7] consider a determin-

istic overlapping–generations economy with three–period lived individuals, also demonstrating

the existence of multiple equilibria. In their paper endogenous debt constraints are based on

one–period exclusion by construction since individuals die in the period after default. Our paper

shows that similar results can be obtained in stochastic economies with infinitely–lived agents.

The paper is organized as follows. After introducing the economic environment and equilibrium

1We note that the duration of market exclusion is an exogenously given parameter in this literature, as it is

in our work. Endogenizing this parameter is beyond the scope of this paper.
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concepts in Section 2, we discuss first–best allocations and the role of discounting in Section 3.

Section 4 considers equilibria with binding credit constraints and establishes our main result on

equilibrium multiplicity and robustness.

2 The environment

States and agents

We consider a pure exchange economy in discrete time t = 0, 1, . . . with a unit mass of consumers

i ∈ [0, 1] who face idiosyncratic income risk. There is a single non–durable consumption good

in each period. Every consumer’s endowment of this good follows a two–state Markov process

between a high level y(H) = λ > 1 and a low level y(L) < 1. We define transition probabilities

π(H|H) = πH , π(L|H) = 1 − πH , π(L|L) = πL, π(H|L) = 1 − πL, and we normalize mean

income to one, which implies that y(L) = 1− (λ− 1) 1−πL

1−πH
. We write sit ∈ {H,L} for consumer

i’s income state in period t and st,i = (si0, . . . , s
i
t) for the consumer’s income state history in

period t. We let π(st,i) denote the unconditional probability of history st,i. To simplify notation,

we drop index i from all these expressions whenever possible.

Expected utility of consumer i from a consumption plan (ci(st))t≥0 is

∞∑

t=0

∑

st

βtπ(st)u(ci(st)) . (1)

The period utility function u is differentiable, strictly increasing and strictly concave. β < 1 is

the discount factor.

Financial markets and contract enforcement

Each period consumers trade a complete set of state–contingent claims on next period’s con-

sumption good. We write q(st, s) for the date–t price of a claim on the consumption good in

history st+1 = (st, s), and ai(st, s) for consumer i’s trade of this security. Consumer i’s budget

constraint in period t is then

ci(st) + q(st, H)ai(st, H) + q(st, L)ai(st, L) ≤ y(st) + ai(st) , (2)

for any history st ∈ {H,L}t+1. In period t = 0, consumers hold initial claims on the consumption

good (ai(L), ai(H)).

As is standard in the literature on limited commitment, we assume that no part of an agent’s

endowment can be collateralized. In the absence of any contract enforcement, consumers could

not trade securities and would live in autarky. We allow limited enforcement of financial contracts

through the following mechanism. At the beginning of every period, anyone unwilling to redeem

debt may declare bankruptcy. When a consumer does so, he cannot trade securities in the
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default period; in any subsequent period, the consumer regains full access to security trade with

probability µ ∈ [0, 1], where µ is an exogenous parameter. The expected duration of market

exclusion 1/µ reflects the institutional and legal framework of bankruptcy procedures.2 The

permanent–exclusion case µ = 0 has been studied extensively in the literature; cf. Kehoe and

Levine [14,15]. A decentralization with endogenous credit limits has been provided by Alvarez

and Jermann [1], and the following equilibrium definition extends theirs to an arbitrary exclusion

duration 1/µ ≤ ∞.

Definition of equilibrium

An equilibrium with limited commitment and exclusion duration 1/µ is a list of consumption

plans and asset holdings (ci(st), ai(st))(i,st), security prices (q(st))(st), and credit limits (z(st))(st),

such that

(i) For all i ∈ [0, 1], (ci, ai) maximizes (1) subject to (2) and to ai(st) ≥ −z(st), for all (st) ∈

{H,L}t+1, at given prices and credit limits.

(ii) Markets clear, i.e., for all t ≥ 0,

∫
∑

st

π(st)ci(st) di = 1 and

∫
∑

st

π(st)ai(st) di = 0 .

(iii) Short–sale constraints prevent default: for any i ∈ [0, 1] and income history st, t ≥ 1, the

solvency value from t forward is no smaller than the continuation value from default, that

is,

U(ai(st), st) ≥ Ū(st) , (3)

where value functions U and U are recursively defined by

U(a, st) = max
c,a+(H),a+(L)

{

u(c) + β
∑

s=H,L

π(s|st)U(a+(s), (s
t, s))

s.t. c+
∑

s=H,L

q(st, s)a+(s) ≤ y(st) + a, a+(s) ≥ −z(st, s)

}

,

Ū(st) = u(y(st)) + βµ
∑

s=H,L

π(s|st)U(0, (st, s)) + β(1− µ)
∑

s=H,L

π(s|st)Ū(st, s) .

(iv) Short–sale constraints are not too tight, i.e., whenever ai(st) ≥ −z(st) binds in problem

(i), the participation constraint (3) is satisfied with equality.

2Instead of assuming a deterministic exclusion length, this stochastic formulation helps to characterize equilib-

rium recursively. In the sovereign debt literature, Arellano [4] and Cuadra, Sanchez and Sapriza [10] also assume

that defaulting countries regain access to international credit with some exogenous probability.
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Stationary Markov equilibrium

We consider a stationary equilibrium in which, by the law of large numbers, a constant fraction

ϕH ≡ 1−πL

2−πH−πL
of consumers has high income and fraction ϕL ≡ 1 − ϕH has low income.

We further restrict attention to symmetric stationary Markov equilibria where consumption,

security trades and prices depend only on the current income state but are otherwise identical

for all agents. We write qss′ for the price that a consumer in income state s must pay to obtain

a claim on one unit of consumption in next period’s income state s′. Let x be consumption of

high–income consumers. Then market clearing implies that low-income agents consume cL(x) ≡

1− (x− 1) 1−πL

1−πH
.

In any candidate stationary Markov equilibrium, consumption of high-income agents must lie in

the interval x ∈ [1, λ]. x = cL(x) = 1 corresponds to the symmetric first–best equilibrium with

perfect consumption smoothing. At the other extreme, x = λ = y(H) > cL(x) = y(L) describes

the autarkic allocation where all asset trades are zero. Values of x below unity or above λ are

inconsistent with equilibrium.

In an equilibrium with binding constraints, low–income consumers are constrained in their trade

of security aLH < 0, whereas all other security trades are unconstrained, as we will see below.

Then, security prices qHH , qLL and qHL follow from the Euler equations of unconstrained agents.

The price qLH and the corresponding asset trades can be calculated using budget constraints

and market–clearing conditions. Given an allocation x, security prices and asset trades in a

stationary Markov equilibrium are as follows.

Lemma 1: Let x ∈ [1, λ] be the consumption of high–income agents and cL(x) = 1−(x−1) 1−πL

1−πH

be the consumption of low–income agents in a stationary Markov equilibrium. Then security

prices are

qLL = βπL , qHL(x) =
β(1− πH)u

′(cL(x))
u′(x)

,

qHH = βπH , qLH(x) =
β(1− πL)
1− πH

[

πL − πH + (1− πL)
u′(cL(x))
u′(x)

]

,

and security trades are aLH = aHH = −b(x), aHL = aLL = 1−πL

1−πH
b(x) with credit

b(x) ≡
(λ− x)

1− βπH + β(1− πL)
u′(cL(x))
u′(x)

.

Proof: Appendix.

Clearly, better consumption smoothing requires larger income transfers across states: b is de-

creasing in x. At the same time, more credit goes along with higher rates of return (lower security

prices): both qHL and qLH are increasing in x. Further, except at the first–best allocation x = 1,

low–income consumers are credit constrained. Indeed, it is straightforward to verify that

u′(cL(x))qLH(x) > β(1− πL)u
′(x) if x > 1 .
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When x > 1, we also refer to b(x) as the credit constraint.

3 Implementing the first–best allocation

This section identifies conditions under which the symmetric first–best allocation where all agents

consume the same, ciH = ciL = 1, is an equilibrium with limited enforcement.3 In a symmetric

first–best equilibrium, all agents achieve perfect consumption smoothing cH = cL = 1 at security

prices qss = βπs, qss′ = β(1−πs), for s 6= s′ ∈ {H,L}. In the economy with limited commitment,

this allocation is an equilibrium provided that high–income agents have no incentive to deviate

into bankruptcy. If the agent stays solvent, his continuation utility is simply U∗ = u(1)/(1− β).

Conversely, if the agent defaults, he obtains value

UH = u(λ) + β(1− µ)
[

πHUH + (1− πH)UL

]

+ βµ
[

πHU
0
H + (1− πH)U

0
L

]

. (4)

Here the first term is utility in the default period where the agent consumes his income cH = λ.

The second term is expected discounted utility in the event where the agent remains excluded

from security trade, which happens with probability 1−µ. Here UL satisfies a similar recursion:

UL = u(y(L)) + β(1− µ)
[

πLUL + (1− πL)UH

]

+ βµ
[

πLU
0
L + (1− πL)U

0
H

]

. (5)

The third terms in equations (4) and (5) are the continuation utilities when the agent regains

access to security trade, which occurs with probability µ. In this event, the agent either enters

the period with high income, yielding utility value U0
H , or the agent has low income in the

readmission period which yields continuation utility U0
L.

If the agent regains market access with high income, he has no need to borrow ever again and

attains flat consumption

c0H =
λ(1− β) + β(2− πH − πL)

1 + β(1− πL − πH)
> 1

in all subsequent periods.4 Therefore, the continuation utility in this event is

U0
H = 1

1− β
u
(
λ(1− β) + β(2− πH − πL)

1 + β(1− πL − πH)

)

. (6)

If the agent starts trading securities with low income (and zero asset holdings), he can borrow

up to a constraint b = zLH which is the largest debt limit that prevents default in the subsequent

3Clearly, there are many other optimal allocations where agents consume different amounts, depending on their

initial asset holdings. However, whenever an asymmetric first-best allocation with consumption ciH = ciL 6= 1

is an equilibrium with limited commitment, the symmetric first best is also an equilibrium after an appropriate

redistribution of initial wealth. Hence, non–implementability of a symmetric first–best equilibrium precludes

implementability of any asymmetric first–best equilibrium.
4To attain this consumption path, the agent saves aHL = aLL = (λ − y(L))/(1 − qLL + qHL) and does not

trade any other security (aLH = aHH = 0).
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high–income state. This limit is determined endogenously by making the agent indifferent be-

tween default and solvency: On the one hand, if the agent enters the next high–income period

with wealth λ− b and stays solvent, he would attain flat consumption c = c0H − b(1 − β) in all

future periods.5 On the other hand, if the agent decides to default on the debt b, his continuation

utility would be again UH as defined above. Hence b is implicitly defined from

u
(

c0H − b(1− β)
)

= (1− β)UH . (7)

When the returning agent has low income, security trades are aLH = −b and aLL = 0, which

yields consumption c0L = y(L) + qLHb in the current period as well as in all future subsequent

periods with low income.6 Hence the continuation utility satisfies

U0
L = u(c0L) + βπLU

0
L + β(1− πL)UH . (8)

In the Appendix (proof of Proposition 1) we show that the five equations (4), (5), (6), (7) and

(8) have a unique solution (UH , UL, U
0
H , U

0
L, b).

Given this solution, no agent deviates from the first–best allocation if U∗ ≥ UH . In the Appendix

we also prove that this is equivalent to the inequality

u(1) ≥ α1u(λ)+α2u(y(L))+α3u
(
λ(1− β) + β(2− πH − πL)

1 + β(1− πL − πH)

)

+α4u
(

y(L)+
β(1− πL)(λ− 1)

1 + β(1− πL − πH)

)

,

(9)

where the coefficients αi depend on parameters (β, µ, πH, πL) and satisfy
∑4

i=1 αi = 1 (see the

Appendix for definitions). We summarize this result as follows:

Proposition 1: The symmetric first–best allocation is an equilibrium with limited commitment

and exclusion duration 1/µ if, and only if, condition (9) holds.

The implementability condition can be interpreted as a comparison between two lotteries. The

left–hand side is expected utility of the safe lottery which pays one unit of consumption for

sure. The right–hand side is expected utility of a risky lottery over four different consumption

states, two larger than one, and two smaller than one. As can be verified, expected consumption

of the risky lottery is strictly larger than one. Intuitively, a defaulting agent obtains a higher

net present value of consumption than a solvent agent. It follows that the first best cannot be

implemented if risk aversion is sufficiently low; conversely, the first best is an equilibrium if risk

aversion is sufficiently strong.

The role of the discount factor

5Similar to footnote 4, to attain this consumption path, the agent trades aHL = aLL = (λ− y(L))/(1− qLL+

qHL)− b and aLH = aHH = −b.
6The assertion aLL = 0 follows trivially from the Euler equation u′(c0L)qLL = βπLu

′(c0L).
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In the limit of permanent market exclusion (µ = 0), condition (9) simplifies to

u(1) ≥
1− βπL

1 + β(1− πH − πL)
u(λ) +

β(1− πH)
1 + β(1− πH − πL)

u(y(L)) . (10)

This condition is similar to the one in the two–agent, two–state example of Kehoe and Levine [15].

In their economy, as in ours for µ = 0, there is a kind of “folk theorem”: for any strictly concave

utility function, the first–best allocation is implementable if the discount factor is sufficiently

large. Indeed, in the limit β → 1, condition (10) compares utility of a safe lottery to utility of

a risky lottery with the same mean, and hence the condition is fulfilled, regardless of the degree

of risk aversion.

In contrast, if defaulters are readmitted with positive probability, there is no such folk theorem.

With lower discounting, agents care less about temporary punishment and more about consump-

tion in the long run. Because the present value of consumption is larger under default than under

solvency, agents with low enough risk aversion prefer to default on their debt. Formally,7

Proposition 2: For any given µ > 0, there is a class of strictly concave utility functions U (such

as CRRA or CARA with low enough degree of risk aversion) and β0 < 1 such that the first best

allocation is not implementable for any u ∈ U and any β ∈ [β0, 1).

Proof: Appendix.

To illustrate how large risk aversion has to be for the first best to be implementable, we consider

a numerical example with CRRA utility u(c) = c1−σ/(1−σ), πL = πH = 0.9 and λ = 1.15. Table

1 shows the threshold values for σ such that the first best is implementable in the limit β → 1

when risk aversion is above σ and not implementable otherwise. With relative risk aversion

smaller than two, implementability of the first best requires market exclusion to last more than

twenty periods on average.

We also note that implementability of the first best allocation can depend on the discount factor

in a non–monotonic way. Particularly, the first best may not be an equilibrium in the limit β → 1

although it can be implementable for lower values of β. In the numerical example of Table 1 with

µ = 1 and σ = 19, the first best is implementable for β ∈ [0.71, 0.94] but it is not implementable

for higher or for lower values of β. The explanation is that, for intermediate values of β,

the temporary loss from punishment has a stronger weight than the long-run gain in expected

consumption after market reentry. When β is larger, however, the long-run consumption gain is

weighted more heavily, so that default is the more attractive option.

7In the limit β → 1, condition (9) becomes u(1) ≥ u(1), and hence is meaningless. Intuitively, the defaulting

consumer attains consumption c = 1 in the long run when interest rates are zero, and he does not care about

temporary punishment since he is extremely patient. Thus, he is exactly indifferent between solvency and default.

The proof of Proposition 2 therefore relies on a limiting argument: we show that the slope of the right-hand side

at β = 1 is strictly negative so that inequality (9) fails for β sufficiently large.
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4 Binding debt limits

We now consider stationary Markov equilibria with constrained borrowers. Binding debt limits

are equivalent to incomplete consumption smoothing, that is, to x > 1 > cL(x). Security prices,

as well as the credit constraint b(x), are stated in Lemma 1. With low–income agents being

constrained in short–selling security aLH , the equilibrium definition entails that the agent must

be exactly indifferent between honoring the debt aLH = −b(x) and defaulting. An agent who

stays solvent in a high–income period continues to consume x in high–income periods and cL(x)

in low–income periods. Solvency values in high– and low–income periods are then recursively

defined by

U∗
H(x) = u(x) + βπHU

∗
H(x) + β(1− πH)U

∗
L(x) , (11)

U∗
L(x) = u(cL(x)) + βπLU

∗
L(x) + β(1− πL)U

∗
H(x) . (12)

If the agent instead decides to default, continuation values are

UH(x) = u(λ)+β(1−µ)
[

πHUH(x)+(1−πH)UL(x)
]

+βµ
[

πHŨH(0, x)+(1−πH)ŨL(0, x)
]

, (13)

UL(x) = u(y(L))+β(1−µ)
[

πLUL(x)+(1−πL)UH(x)
]

+βµ
[

πLŨL(0, x)+(1−πL)ŨH(0, x)
]

. (14)

These expressions generalize (4) and (5) and they have the same interpretation. The value

functions Ũs(a, x) are expected discounted utilities for an agent in income state s = H,L with

assets a, who trades at security prices qHH = βπ, qLL = β(1 − π), qHL(x) and qLH(x), facing

constraint −b(x) on short–selling securities aLH and aHH . These value functions are recursively

defined by8

Ũs(a, x) = max
asL≥−zL,

asH≥−b(x)

u
(

y(s)+ a− qsH(x)asH − qsL(x)asL

)

+ β
[

πsŨs(ass, x) + (1− πs)Ũs′(ass′, x)
]

,

(15)

for s 6= s′ ∈ {H,L}. In the previous section, we derive the values Ũs(0, x) = U0
s for the case

x = 1. In the Appendix (proof of Proposition 3), we calculate these value functions explicitly

for values of x close to λ (autarky).

It follows from the previous discussion that any symmetric stationary Markov equilibrium allo-

cation x ∈ [1, λ] is a solution to the following complementary slackness condition:

J(x) ≡ U∗
H(x)− UH(x) ≥ 0 , x ≥ 1 . (16)

In words, either consumers are credit constrained (x > 1) which necessitates a binding partic-

ipation constraint, J(x) = 0; or the participation constraint is slack, credit constraints are not

8Formally, the agent also faces a constraint zL on selling securities aLL and aHL, but since the agent saves for

low income realizations, these constraints do not bind.
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binding, so that agents can smooth consumption perfectly (x = 1). Furthermore, as we demon-

strate in the previous section, the implementability condition (9) is equivalent to the requirement

J(1) ≥ 0.

An important insight is that the autarkic solution x = λ is an equilibrium with limited commit-

ment for any given exclusion parameter µ. This follows immediately from U∗
H(λ) = UH(λ) =

ŨH(0, λ) and it extends a result of Alvarez and Jermann [1, Proposition 4.3] for µ = 0 to en-

forcement with finite exclusion 1/µ < ∞. When agents expect asset markets to shut down in

all future periods, there is no gain from market participation and the short–sale constraint on

security aLH must be zero in the current period. At the same time, security prices qHH , qLL and

qHL reflect marginal rates of substitution at the autarkic allocation, so that no agent is willing

to trade any of these securities.

Infinite exclusion

The infinite–exclusion case µ = 0 is well understood. Figure 1 graphs

J(x) =
1

(1− β)(1 + β − β(πH + πL))

{

(1−βπL)
[

u(x)−u(λ)
]

+β(1−πH)
[

u(cL(x))−u(y(L))
]}

for different levels of β corresponding to three generic outcomes. The dotted curve is an example

of a low value of β for which autarky x = λ is the unique equilibrium. For larger values of β,

there is a unique non–autarkic (trading) equilibrium with constrained agents where x ∈ (1, λ)

(dashed curve). When β is even larger, the trading equilibrium is a first–best equilibrium at

x = 1 (solid curve).

When the economy with infinite exclusion has two stationary equilibria, only the trading equi-

librium is robust to the introduction of small bankruptcy costs. To see this, suppose that a

defaulter must pay a small cost ε when declaring bankruptcy, so that utility in the default pe-

riod is u(λ−ε). We say that an equilibrium x with limited commitment in the economy without

bankruptcy cost (ε = 0) is robust if the economy with a small bankruptcy cost ε has an equi-

librium xε which converges to x when ε → 0. Graphically, bankruptcy costs reduce the default

value and hence shift the curve Jε(x) = 0 upwards in Figure 1. Whenever autarky is the unique

equilibrium for ε = 0 (dotted curve), the economy with ε > 0 has a unique stationary equilib-

rium xε < λ near autarky which collapses to autarky as the bankruptcy cost becomes negligible.

In the other two cases, however, J ′(λ) < 0, and hence Jε(x) = 0 has no solution x ≤ λ near

λ. Although there is a solution x > λ, such an allocation is not an equilibrium.9 Therefore,

9Suppose that there is a stationary Markov equilibrium where high–income agents consume x > λ and low–

income agents consume cL < y(L). Then, aHL = aLL < 0 and aHH = aLH > 0. Hence, low–income agents

are unconstrained in trading security aLH which has price qLH = β(1 − πL)u
′(x)/u′(cL(x)). It follows from

budget constraints and market clearing (similar to the proof of Lemma 1) that the price of security aHL is

qHL = β(1−πH)
1−πL

[πH − πL + (1 − πH)u′(x)/u′(cL)] < β(1 − πH). But then, the Euler equation of high–income

agents u′(x)qHL ≥ β(1− πH)u′(cL) implies that u′(x) > u′(cL), which contradicts x > 1 > cL.
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autarky is not a robust equilibrium whenever there exists a trading equilibrium. It follows that

the economy with permanent exclusion has a unique robust stationary Markov equilibrium.

Finite exclusion

The situation is different with shorter exclusion periods. Particularly, we prove that autarky is

always a robust equilibrium (that is, J ′(λ) > 0) if the readmission probability µ is sufficiently

large. Then it follows that the economy can have multiple robust equilibria, which is necessarily

the case if the first-best is implementable (J(1) > 0).

Proposition 3:

(a) If market exclusion is permanent (µ = 0), there exists at most one stationary trading equi-

librium. If such an equilibrium exists, it is the unique robust equilibrium.

(b) If market exclusion is sufficiently short (µ is sufficiently close to 1), autarky is a robust

equilibrium. If, in addition, inequality (9) is strict (for example, with CARA or CRRA

utility functions and sufficiently large risk aversion), there exist at least three stationary

equilibria: (i) a first–best equilibrium with perfect consumption smoothing; (ii) a trading

equilibrium with binding constraints; and (iii) an autarkic equilibrium. All these equilibria

are robust.

Proof: Appendix.

Part (b) says that the economy with short market exclusion can have multiple robust equilibria.

Paralleling Figure 1, Figure 2 shows the same example with larger income fluctuations (λ = 1.3)

and one period exclusion (µ = 1) for changing values of the discount factor (Figure 2(a)) and

risk aversion (Figure 2(b)). When β is low or σ is low, autarky is the unique robust equilibrium

(dotted curves). For higher values of β and σ, autarky remains a robust equilibrium, but two

other equilibria with risk sharing emerge. One of them is the first best at x = 1, the other one

has constrained borrowers at x ∈ (1, λ). The constrained equilibrium has lower risk sharing if

either the discount factor or risk aversion is larger (solid curves).

In these examples, autarky ceases to be a robust equilibrium when the readmission parameter

µ is substantially smaller than one. But even when autarky fails to be a robust equilibrium,

multiple robust equilibria are still possible. For example, if we set µ = 0.85, β = 0.6 and σ = 1.32

(all other parameters as in Figure 2), autarky is not robust, while there are three robust trading

equilibria at x = 1, x ≈ 1.01 and x ≈ 1.04. For many parameter configurations, however,

multiplicity seems to disappear when µ < 0.9. We also remark that there are examples with

more than three equilibria. With λ = 1.8, πH = πL = 0.75, σ = 2.65, β = 0.55 and µ = 1, there

are five (robust) equilibria at x = 1 (first best), x ≈ 1.125, x ≈ 1.33, x ≈ 1.75 and at x = 1.8

(autarky).
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To obtain some intuition for equilibrium multiplicity, consider the special case of this model with

deterministic income fluctuations where πH = πL = 0 so that every agent’s income fluctuates

periodically between λ > 1 and 2 − λ < 1. Each period half the agents have high income

and the other half has low income, so that aggregate income equals one. Let xt ∈ [1, λ] denote

equilibrium consumption of high-income agents in period t, which implies that low-income agents

consume 2 − xt. To simplify further, set µ = 1 which implies that a defaulting agent cannot

save in the default period but starts borrowing in the subsequent low-income period. We also

restrict attention to an equilibrium where credit constraints bind in all periods. Let dt denote

borrowing of low-income agents in period t (which equals savings of high-income agents in the

same period) and write Rt for the gross rate of return between periods t and t+ 1.

If an agent defaults in period t, continuation utility is

u(λ) + βu(2− λ+ dt+1) + β2u(xt+2) + β3u(2− xt+3) + · · · .

In the default period, the agent consumes income λ and cannot save. In period t + 1, the

agent starts to borrow again, up to the same limit dt+1 as any solvent agent. Hence, the agent

consumes 2 − λ + dt+1 in the period after default. Thereafter, the defaulter achieves the same

asset/consumption profile as a solvent agent: consumption is xt+k in periods t + k for k ≥ 2

even, and 2− xt+k for k ≥ 3 odd.

If the agent instead stays solvent in period t, continuation utility is

u(xt) + βu(2− xt+1) + β2u(xt+2) + β3u(2− xt+3) + · · · .

Binding credit constraints mean that borrowers are exactly indifferent between default and sol-

vency. Hence,

u(xt) + βu(2− xt+1)
︸ ︷︷ ︸

solvency payoff

= u(λ) + βu(2− λ+ dt+1) = u(λ) + βu(2− xt+1 − Rtdt)
︸ ︷︷ ︸

default payoff

. (17)

The second equality uses the budget constraint of a solvent agent with high income

xt+1 + dt+1 = λ− Rtdt , (18)

which says that income net of debt redemption on the right-hand side is spent for consumption

and savings on the left-hand side.10 Equation (17) shows the key ingredient of temporary market

exclusion: the payoff from defaulting on the right-hand side depends negatively on the interest

rate Rt since the defaulting agent forgoes the possibility to save between periods t and t + 1.

With higher Rt, default is less attractive, the credit constraint relaxes in period t − 1, so that

10Note our sign convention: dt ≥ 0 and dt+1 ≥ 0 denote borrowing (of a low-income agent) and savings (of a

high-income agent).
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the agent borrows more in t− 1 and consumes less in period t: thus, equation (17) describes a

negative relation between Rt and xt.

In turn, relaxed credit constraints in period t − 1 have a direct impact on the market-clearing

interest rate in period t− 1, which follows from the marginal rate of substitution of high-income

agents:

Rt−1 =
u′(xt−1)

βu′(2− xt)
. (19)

To induce lenders to save more in period t − 1, the equilibrium interest rate must increase:

equation (19) describes a positive relation between 2− xt and Rt−1 (a negative relation between

xt and Rt−1). Taken together, equations (17) and (19) describe the dynamic complementarity

between future and current interest rates (or between future and current credit constraints)

which is the key for equilibrium multiplicity:11 If agents expect high interest rates to prevail in

period t, the cost of default is high, agents are permitted to borrow more in period t− 1 which

then drives up the current equilibrium interest rate. Conversely, if agents expect low interest

rates in the future, default is a more attractive option, credit constraints tighten, so that a lower

current interest rate is required to clear the market.12 Note the difference to the environment

with permanent market exclusion where the binding participation constraint reads as

u(xt) + βu(2− xt+1) = u(λ) + βu(2− λ) .

In this case, the value of defaulting on the right–hand side is independent of market prices, so

that the dynamic complementarity described above is absent.

Although we illustrate these arguments for the deterministic example, a similar intuition is at

work in the stochastic economy: High expected security prices impede risk sharing so that the

immediate (short run) consequences of default become less threatening. This in turn tightens

current constraints and drives up current security prices.

5 Conclusions

We have studied how the sanctions against default on unsecured credit affect the allocation of

consumption in a class of stochastic exchange economies with infinitely–lived agents and limited

commitment. Strong sanctions, modeled as perpetual exclusion from both sides of all asset mar-

kets, are known to deliver “good” results as in Kehoe and Levine [14] and Alvarez and Jermann

11To give a numerical example for equilibrium multiplicity in this deterministic economy, set λ = 1.6, β = 0.95

and CRRA utility with σ = 2. Then, besides the autarkic equilibrium at x = λ, there are two other steady state

equilibria at x1 = 1 (first best) and at x2 = 1.43 (binding constraints).
12This intuition is similar in the three-period life-cycle model of Azariadis and Lambertini [7] who argue that

multiplicity requires a high intertemporal complementarity in consumption which is caused by binding constraints,

amplifying the impact of future interest rates on the default value.
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[1]. Among these is the generic existence of one or two steady states: a constrained efficient out-

come, and an inferior autarkic allocation which vanishes when we introduce an arbitrarily small

bankruptcy cost. If households are sufficiently patient, the cost of exclusion becomes too high

and the constrained efficient outcome coincides with the first best allocation. Strong sanctions

deliver the Arrow–Debreu outcome as a unique equilibrium for patient consumers.

It should be no surprise that weaker sanctions, modeled in this paper as temporary exclusion from

asset markets, cannot accomplish as much as perpetual exclusion. What is surprising is that the

Arrow–Debreu outcome cannot be supported as a competitive equilibrium for arbitrarily patient

households with moderate degrees of risk aversion. This failure occurs because patient consumers

will weigh the short–lived default cost of market exclusion against the long–lived benefit of

permanently higher consumption after they resume asset trading as debt–free households.

Weaker sanctions also mean that default must be deterred by short–lived punishments, that is,

by debt limits that respond strongly to incomes and prices. Short exclusion then results in a

dynamic complementarity between current and future debt limits (equivalently, between current

and future asset prices) which permits multiple steady states to co–exist.

Appendix

Proof of Lemma 1:

In a stationary Markov equilibrium, every agent’s wealth depends only on the current income

state but not on the state history. This necessitates aHH = aLH and aHL = aLL. With aHH =

aLH = −b and market clearing follows that aHL = aLL = (1−πL)b/(1−πH). Security prices qHH

and qLL follow immediately from the Euler equations qHHu
′(x) = βπHu

′(x) and qLLu
′(cL(x)) =

βπLu
′(cL(x)). Furthermore, since high–income agents are unconstrained in their trade of security

aHL, qHL(x) follows from the Euler equation qHLu
′(x) = β(1−πH)u

′(cL(x)). With this notation,

the budget constraint of a consumer in a high–income state is

x− βπHb+ qHL(x)b
1− πL

1 − πH
= λ− b , (20)

and in a low–income state the budget constraint is

cL(x)− qLHb+ βπLb
1− πL

1− πH
= y(L) + b 1− πL

1 − πH
. (21)

Multiplying (20) by ϕH = 1− πL

1− πH − πL
and multiplying (21) by ϕL = 1 − ϕH , adding these

equations up and using the market–clearing condition ϕHx+ ϕLcL(x) = 1 yields

qHL(x)(1 − πL)
2 + β(1− πL)(1− πH)πL = βπH(1− πL)(1− πH) + qLH(1− πH)

2 .

Solving for qLH yields

qLH(x) =
β(1− πL)
1− πH

[

πL − πH + (1− πL)
u′(cL(x))
u′(x)

]

.
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Finally, b = b(x) as stated in the Lemma follows directly from (20). 2

Proof of Proposition 1: Combining (4), (5), (6), (7) and (8) shows that b is implicitly defined

from

u(c(b))
1− β

{

[1−β(1−µ)πH ][1−β(1−µ)πL]−β2(1−µ)2(1−πH)(1−πL)−
β2µ(1− πL)(1− πH)

1− βπL

}

=

[

1− β(1− µ)πL

]

u(λ) +
[

β(1− µ)(1− πH)
]

u(y(L)) (22)

+
β2µ(1− µ)(1− πH − πL) + βµπH

1− β
u(c0H) +

βµ(1− πH)
1− βπL

u
(

y(L) + β(1− πL)b
)

,

with

c(b) =
λ(1− β) + β(2− πH − πL)

1 + β(1− πL − πH)
− b(1− β) .

The RHS is strictly increasing and the LHS is strictly decreasing in b. Moreover, LHS>RHS at

b = 0 and LHS<RHS when b is sufficiently large. Therefore (22) has a unique solution. Then,

utility values UH , UL, U
0
H , U

0
L follow uniquely from the linear equations (4), (5), (6), and (8).

The agent does not deviate from the first–best allocation c = 1 if, and only if, u(1) ≥ UH(1−β) =

u(c(b)), which is the same as b ≥ b(1) = (λ − 1)/(1 + β(1 − πL − πH)). Because of (22) this is

true if LHS≥RHS at b = b(1). But this inequality is the same as condition (9) with coefficients

α1 = γ(1− β)[1− β(1− µ)πL] ,

α2 = γβ(1− β)(1− µ)(1− πH) ,

α3 = γ
[

β2µ(1− µ)(1− πH − πL) + βµπH

]

,

α4 =
γβ(1− β)µ(1− πH)

1− βπL
,

where

γ ≡

{

[1−β(1−µ)πH][1−β(1−µ)πL]−β2(1−µ)2(1−πH)(1−πL)−
β2µ(1− πL)(1− πH)

1− βπL

}−1

.

It is straightforward to verify that
∑4

i=1 αi = 1. This completes the proof of Proposition 1. 2

Proof of Proposition 2: Rewrite the implementability condition (9) as Φ(β) ≥ 0 with Φ

defined by

Φ(β) = u(1)

{

[1−β(1−µ)πH][1−β(1−µ)πL]−β2(1−µ)2(1−πH)(1−πL)−
β2µ(1− πL)(1− πH)

1− βπL

}

−(1− β)
[

1− β(1− µ)πL

]

u(λ)− β(1− β)(1− µ)(1− πH)u(y(L))
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−
[

β2µ(1− µ)(1− πH − πL) + βµπH

]

u
(
λ(1− β) + β(2− πH − πL)

1 + β(1− πL − πH)

)

−
β(1− β)µ(1− πH)

1− βπL
u
(

y(L) +
β(1− πL)(λ− 1)

1 + β(1− πL − πH)

)

.

It is straightforward to verify that Φ(1) = 0 and also to calculate the derivative at β = 1:

Φ′(1) = −
(2 − πL − πH)(1− (1− µ)πL)

1− πL
u(1)

+
[

1− (1− µ)πL

]

u(λ) + (1− µ)(1− πH)u(y(L)) +
µ(1− πH)
1− πL

u
(

y(L) +
(1− πL)(λ− 1)
2− πH − πL

)

+
µ(λ− 1)(1− πL − µ(1− πL − πH))

2− πH − πL
u′(1) .

For a linear utility function, it follows after rearranging that

Φ′(1) =
(λ− 1)µ

[

1 + (1− µ)(1− πH − πL)
]

2− πH − πL
,

which is strictly positive when the readmission probability is µ > 0. Therefore, for all strictly

concave utility functions uniformly close to u(c) = c (such as CRRA or CARA with degree of

risk aversion close to zero), Φ′(1) > 0 remains true. Therefore, with U being a class of utility

functions with low enough degree of risk aversion, Φ(β) < 0 holds (i.e. the first best is not

implementable) for all β < 1 sufficiently close to unity. 2

Proof of Proposition 3:

Part (a): Observe that J(x) = Au(x) +Bu(C −Dx) +E for some constants A > 0, B > 0, C >

0, D > 0 and E. Hence J is strictly concave and it satisfies J(λ) = 0. If J(1) ≥ 0, it follows that

J(x) > 0 for all x ∈ (1, λ) and J ′(λ) < 0. Therefore, the first best x = 1 is the unique trading

equilibrium which is robust, whereas autarky is not robust. If J(1) < 0 and J ′(λ) < 0, there

exists a unique x ∈ (1, λ) such that J(x) = 0 which is the unique (robust) trading equilibrium,

and again autarky is not robust. Lastly, if J(1) < 0 and J ′(λ) ≥ 0, J(x) < 0 for all x ∈ (1, λ).

Then autarky is the unique equilibrium and it is robust.

Part (b): Observe first that function J(.) is continuous: Security prices and the constraint b(x)

as derived in Lemma 1 are all continuous functions. Hence, the continuation value functions

Us(a, x), as defined recursively in (15), are continuous in x, and so is the utility from default,

UH(.). To prove that autarky is a robust equilibrium, we derive J(x) explicitly for x close to λ

and then show that J ′(λ) > 0 if µ is sufficiently large.

A defaulting agent who reenters asset trade with low income and zero assets immediately hits

the credit constraint b(x) and does not trade security aLL (see below); hence consumption is

c0L = y(L) + qLH(x)b(x). The agent’s continuation utility is

ŨL(0, x) = u(c0L) + βπLŨL(0, x) + β(1− πL)U
∗(x) . (23)
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With probability 1−πL, the agent enters the next period with high income and net assets −b(x).

In this event, continuation utility is U∗(x), the same as for any solvent high–income agent with

identical net assets. With probability πL, the agent has low income again in the next period

which he enters with zero assets. Therefore, continuation utility is ŨL(0, x), the same as in the

current period. The agent does not trade security aLL since the price qLL = β(1−π) induces the

agent to enter a subsequent low–income period with the same (zero) asset position (the Euler

equation implies that the agent desires a flat consumption profile in all subsequent low–income

periods).

Next consider the agent who reenters asset trade with high income and zero assets. This agent

buys security aHL to self-insure against a low income realization in the next period. Denote

the agent’s trade of this security by ξ(x) ≥ 0. Note that the agent does not trade security

aHH in the reentry period because he desires a flat consumption profile when qHH = β(1− πH)

and hence wishes to enter the next high–income period with the same (zero) asset position.

Therefore consumption in the reentry period is c0H = λ − qHL(x)ξ(x). When x is sufficiently

close to λ (autarky), qHL(x) converges to the agent’s MRS β(1 − πH)u
′(y(L))/u′(λ), so that

ξ(x) converges to zero. In the next period, if the agent has low income and net assets ξ(x),

the agent sells security aLH = −b(x) (i.e. the credit constraint binds) and he buys aLL = ξ(x)

(once again, the agent desires to enter the next low–income period with the same assets). The

credit constraint on short-selling aLH will only bind provided that ξ(x) is sufficiently small (x

is sufficiently close to λ).13 Therefore, the agent’s consumption in the subsequent low income

period is c1L ≡ y(L)+ξ(x)[1−βπL]+qLH(x)b(x). The agent’s security trade ξ(x) follows uniquely

from the Euler equation

u′

(

λ− qHL(x)ξ
︸ ︷︷ ︸

c0
H

)

qHL(x) = β(1− πH)u
′

(

y(L) + ξ[1− βπL] + qLH(x)b(x)
︸ ︷︷ ︸

c1
L

)

. (24)

Continuation utility in the reentry period is then

ŨH(0, x) = u(c0H) + βπHŨH(0, x) + β(1− πH)ŨL(ξ(x), x) , (25)

and ŨL(ξ(x), x) satisfies

ŨL(ξ(x), x) = u(c1L) + βπLŨL(ξ(x), x) + β(1− πL)U
∗(x) . (26)

Using (13), (14), (23), (25) and (26), we can calculate the default value UH(x) explicitly. Par-

13If x is not close to λ, it can happen that the agent saves so much in the reentry period that the credit constraint

in the subsequent period is slack. If this is the case, the agent will alternate between several high–income and

low–income periods, before the credit constraint starts to bind at some subsequent date. Conversely, in the

“first–best” limit x → 1, the agent remains unconstrained infinitely often and is able to attain flat consumption

at c0H (see Section 3 and footnote 4).

19



ticularly, if µ = 1, we obtain

UH(x) = u(λ) +
βπH

1− βπH

{

u(c0H) +
β(1− πH)
1− βπL

[

u(c1L) + β(1− πL)U
∗
H(x)

]
}

+
β(1− πH)
1− βπL

{

u(c0L) + β(1− πL)U
∗
H(x)

}

. (27)

On the other hand, (11) and (12) imply

U∗
H(x) =

1− βπL

(1− βπL)(1− βπH)− β2(1− πL)(1− πH)

{

u(x) +
β(1− πH)
1− βπL

u(cL(x))
}

. (28)

Substitution of (27) and (28) into J(x) = U∗(x)− UH(x) and some algebra lead to

J(x) = 1
1− βπH

[

u(x) +
β(1− πH)
1− βπL

u(cL(x))
]

− u(λ)−
βπH

1− βπH
u
(

λ− qHL(x)ξ(x)
)

−
β2πH(1− πH)

(1− βπH)(1− βπL)
u
(

y(L)+ ξ(x)[1−βπL]+ qLH(x)b(x)
)

−
β(1− πH)
1− βπL

u
(

y(L)+ qLH(x)b(x)
)

.

When we differentiate J at x = λ, note that all derivatives of qHL(x) and qLH(x) cancel out

because of b(λ) = ξ(λ) = 0. Further, derivatives of ξ(x) also cancel out because of (24) (alterna-

tively, since ξ(x) is a utility–maximizing security trade, the envelope theorem implies that the

derivative of J with respect to ξ is zero). Therefore, we obtain

J ′(λ) = 1
1− βπH

[

u′(λ)−
β(1− πL)
1− βπL

u′(y(L))
]

− qLH(λ)b
′(λ)u′(y(L))

β(1− πH)
(1− βπL)(1− βπH)

.

Using b′(λ) = −[1− βπH + β(1− πL)u
′(y(L))/u′(λ)]−1 and qLH(λ) from Lemma 1 implies that

J ′(λ) = 1
1− βπH

{

u′(λ)−
β(1− πL)

1− βπH + β(1− πL)
u′(y(L))
u′(λ)

u′(y(L))

}

> 0 .

This shows that autarky is a robust equilibrium when µ = 1. Because J (and J ′) depend

continuously on parameter µ, autarky is also robust when µ is sufficiently close to unity. Finally,

if J(1) > 0 holds, continuity of J implies there are at least three equilibria: x = 1, x ∈ (1, λ) and

x = λ. Robustness of all equilibria with respect to small bankruptcy costs ε follows because J

depends continuously on parameter ε. J(1) > 1 is equivalent to the strict inequality (9) which

can be expressed as u(1) >
∑4

i=1 αiu(ci) such that
∑

i αi = 1,
∑

i αici > 1 and c1 < 1. It

follows that this inequality holds for a CARA (CRRA) utility function with absolute (relative)

risk aversion parameter sufficiently large (for any given µ). 2
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Table 1: Threshold values for relative risk aversion σ for varying exclusion duration 1/µ. The

symmetric first best allocation is an equilibrium in the limit β → 1 only when σ is above the

threshold.

1/µ 1 2 3 4 5 10 20 30

σ 19.4 13.2 10.0 8.0 6.7 3.6 1.9 1.3
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J(x)

x

Figure 1: The curve J(x) defining stationary equilibrium when µ = 0, u(c) = c1−σ/(1 − σ),

σ = 1.5, λ = 1.1, πL = 0.25, πH = 0.75 and for three different discount factors. Autarky

(x = 1.1) is always an equilibrium and it is the unique one if β = .5 (dotted curve). For

β = .7 (dashed) there is a trading equilibrium at x ≈ 1.037, and for β = .9 (solid) the trading

equilibrium is at x = 1 (first best).
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Figure 2: The curve J(x) defining stationary equilibrium when µ = 1 for the same economy as

in Figure 1 with λ = 1.3. Figure (a) has σ = 1.5 and β = 0.5 (dotted), β = 0.7 (dashed), β = 0.9

(solid). Figure (b) has β = 0.7 and σ = 1.1 (dotted), σ = 1.5 (dashed), σ = 1.9 (solid).
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