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Abstract

The Malthusian theory of evolution disregards a pervasive fact about human
societies: they expand through con�ict. When this is taken account of the long-run
favors not a large population at the level of subsistence, nor yet institutions that
maximize welfare or per capita output, but rather institutions that maximize free
resources. These free resources are the output available to society after deducting
the payments necessary for subsistence and for the incentives needed to induce pro-
duction, and the other claims to production such as transfer payments and resources
absorbed by elites. We develop the evolutionary underpinnings of this model, and
examine the implications of free resource maximization for the evolution of soci-
eties in several applications. Since free resources are increasing both in per capita
income and population, evolution will favor large rich societies. We will show how
technological improvement is likely to increase per capita output as well as increase
population, and how economically ine�cient institutions such as bureaucracy arise.
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1. Introduction

no possible form of society [can] prevent the almost constant action of
misery upon a great part of mankind

There are some men, even in the highest rank, who are prevented from
marrying by the idea of the expenses that they must retrench

Malthus [51]

The overall goal of this paper is to establish a theoretical setting of interacting soci-

eties in which it is con�ict that determines long run success or failure. We identify

assumptions under which �the strongest society wins� in the long-run, and examine

the limitations and subtle implications of these assumptions. What will matter is

willingness to expand and total resources which can be devoted to expansion - hence

size matters. We attempt to build the theoretical setting in a way that can easily be

applied to study practical problems of particular societies both contemporary and

historical in order to understand which institutions are likely to be persistent. To

illustrate this we examine several simple applications.

A key idea of the paper is that con�ict resolution depends not only on the ability

of players to in�uence their neighbors, but also on their desire to do so. Our main

conclusion that with a single dimensional measure of strength the strongest society

will be observed most of the time over the long run is rather intuitive. However,

as those familiar with the evolutionary literature will appreciate, to actually estab-

lish such a result in a clean form is not trivial. Moreover, not all implications of

our assumptions are so obvious as the fact that the strongest society wins. Indeed,

strictly speaking, the strongest society does not win. Rather it is the strongest in-

centive compatible arrangement that matters - non-Nash equilibria stand no chance

in the long run, no matter how strong they might be. Second, it is not the strongest

Nash equilibrium that wins. Societies can di�er in their attitudes towards in�u-

encing neighbors. Societies, no matter how strong, that do not attempt to expand

aggressively also will not survive in the long run. Rather it is the strongest incentive

compatible and expansionary society that wins. Another point that is subtle is that

expansionary attitudes are not important from the perspective of imposing partic-

ular institutions on neighbors - in fact the actual work of disrupting societies in the

theory as well as in reality are by barbarian hordes - aggressive, powerful groups that

however do not have especially durable institutions. Alexander the Great comes to

mind in this context. Rather the importance of an aggressive expansionary posture
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is that when invaders achieve some success by conquering land the outward look-

ing society aggressively attempt to recover the lost land, thus preventing gradual

�whittling away� of territory.

The other key notion of the paper is the scalar measure of the ability of a

society to disrupt neighbors or avoid disruption. We refer to this as �free resources�

meaning resources that are not being used for purposes that make them unavailable

for attack or defense. The idea is best illustrated through a simple example. We are

all familiar with the caricature of the Malthusian theory of population: population

grows until it is checked by disease and starvation. In the long-run we are all at

the boundary of subsistence, on the margin between life and death. And while

we may seem to have escaped for a time, perhaps ultimately the rapidly growing

developing countries will overwhelm the gradually shrinking rich developed world

and sink us all back into misery. Malthus was more subtle in his thinking than

this caricature: while he wrote of positive checks on population such as disease and

starvation, he also wrote of preventative checks such as delayed marriage. Now let

us take into account that societies do interact, and imagine two societies side by side.

One is a society of unchecked breeders, of subsistence farmers living on the edge of

starvation, their population limited only by the lack of any additional food to feed

extra hungry mouths. Next door is a society with high property requirements for

marriage and strong penalties for out-of-wedlock birth - a social arrangement quite

common in history. This non-Malthusian society naturally has output well in excess

of subsistence. Both social arrangements are is incentive compatible. Who will

dominate in the long-run? What happens when a disciplined and rich society turns

its covetous eye towards the land of their more numerous but poorer neighbors?

How indeed are the wretched poor - for whom to take even an hour away from

toil in the �elds is to starve - to be able to defend themselves from well-fed and

well-armed intruders? The question answers itself. In this view free resources are

the output available to society after the payments necessary for subsistence and for

the incentives needed to induce production are made and after other claims such as

transfer payments and resources absorbed by elites are paid.

We explore the consequences of free resource maximization in a series of ex-

amples. In the Malthusian model the theory gives a positive theory of population

size: as long as there are incentive compatible institutions that control population

growth, the equilibrium population is the one that maximizes total free resources.

This is inconsistent with growing so large as to reach subsistence, as such a society
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generates no free resources. It is equally inconsistent with maximizing per capita

output, since this requires a very tiny society that generates many free resources

per person, but very few in total.3 Rather the long-run population is at an inter-

mediate level, greater than that which maximizes per capita income, but less than

subsistence.

We then examine the impact of technological change in a population setting and

uncover very non-Malthusian results. Malthus predicts that the bene�ts of tech-

nological change will in the long-run be dissipated entirely in increased population

with no increase in per capita output, which remains at subsistence. When there

is relatively strong diminishing returns on plots of land, maximization of free re-

sources implies that improved technology results primarily in increased per capita

output. However, depending on the underlying returns to population size, techno-

logical change can also result in diminished per capita output in some parameter

range. The Malthusian case of per capita output independent of technology will

only occur as a non-generic accident. For simple and plausible cases, continued

technological improvement �rst lowers then raises per capita output. This theory is

very much more in accord with the evidence than Malthusian theory.4

Maximization of free resources leads more broadly to a positive theory of the

State: it has implications for institutions other than those that govern population

size. It does not imply, as does, for example, the theory of Ely, economic e�ciency.5

Ely [34] shows that if institutions spread through voluntary migration people will

move to the more e�cient locations and that in the long run this favors e�cient

institutions over ine�cient ones. But we do not believe that historically people have

generally moved from one location to another through a kind of voluntary immi-

gration into the arms of welcoming neighbors. Rather people and institutions have

more often spread through invasion - most often in the form of physical conquest,

but also through means such as proselytizers and missionaries, or just exploration

3Maximizing free resources is clearly not the same as maximizing per capita output. Anticipating
some notation, if total output is a function Y (z) of population size z and B is subsistence level of
per capita output, free resources in a simple population model are Y (z)− zB = z[Y (z)/z −B].

4This theory of population size of a given geographical extent should be compared to the theory
of Alesina and Spolaore [6] who examine the optimal geographical extent of a nation.

5Ely uses a model similar to the one used here, but similar results using more biologically oriented
models have been around for some time. For example Aoki [1] uses a migration model to study
e�ciency, while more recently Rogers, Deshpande and Feldman [57] use a migration model to show
how unequal resources can lead to long-run inequality.
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of new territory. In a setting of moral hazard, we show how maximization of free

resources can indeed lead to ine�ciently low levels of output (Section 6).6 We also

use the example to explore in greater detail how individual choices can result in free

resources or not.

Our �nal example examines a simple model of a bureaucratic State in a setting of

hidden endowments. (Section 7) Here bureaucrats serve as specialists in converting

resources that individuals might prefer to consume into free resources. We �nd

that when bureaucrats are relatively ine�ective free resource maximization leads

to a non-bureaucratic and e�cient state. As bureaucrats become more e�ective

their number jumps up, and then with further increases in e�ectiveness it declines.

Hence a free resource maximizing highly ine�ective or e�ective bureaucracy leads to

relative e�ciency, while intermediate degrees of bureaucracy e�ectiveness lead to a

higher degree of ine�ciency.

The technical approach we take is the evolutionary one pioneered by Kandori,

Mailath and Rob [46] and Young [61]. Like the earlier literature we suppose that

people adjust relatively rapidly to new circumstances. In that literature this was

represented by what is often called the �deterministic� dynamics which is generally a

variation on the best-response or replicator dynamic. Those deterministic dynamics

suppose an adjustment process towards individually optimal strategies, and if they

converge generally speaking the incentive constraints are satis�ed and the point of

convergence is a Nash equilibrium. However, as a reader of that literature might be

aware, these dynamics are badly behaved in many games, and the earlier evolution-

ary literature focused on particular limited classes of games such as coordination

games in which the deterministic dynamic is particularly well behaved. We do not

think the misbehavior of the deterministic dynamic is especially interesting as peo-

ple seem in fact to rapidly reach Nash equilibrium, and, as pointed out, for example,

in Fudenberg and Levine [37], the behavior of these dynamics when they do not

converge is not especially plausible. As underlying model of �rational� individual

behavior we take not these deterministic dynamics, but rather a simpli�ed version

of the stochastic dynamics developed more recently by [Foster and Young]. This

gives global convergence, at least in the stochastic sense, and enables us to give

6There are many other channels through which evolution can lead to ine�ciency. For examples
Bowles [19] discusses how ine�ciency can arise in a Kandori, Mailath and Rob [46] and Young [61]
type of setting with groups when they are of di�erent sizes or have di�erent memory lengths.
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clean theorems without limiting attention to particular classes of games.

While the earlier literature supposed that the deterministic dynamic was per-

turbed by random mutations, we take the view that these small random changes

- disruptions to existing arrangements if you like - are in�uenced instead by the

relative strength of societies. Our strongest assumption is that this strength is mea-

sured by a single scalar quantity. We also assume that initially a tiny �invading�

society has a negligible chance of disrupting existing social arrangement, but that

once it becomes comparable in size to the pre-existing society the chances it is able

to further disrupt the status quo becomes appreciable. Our approach is a variation

on the con�ict resolution function introduced by Hirshleifer [43] and subsequently

studied in the economic literature on con�ict.7

The idea that evolution can lead to both cooperation and ine�ciency is scarcely

new, nor is the idea that evolutionary pressure may be driven by con�ict. There is

a long literature on group selection in evolution: there may be positive assortative

matching as discussed by Bergstrom [10]. Or there can be noise that leads to a

trade-o� between incentive constraints and group welfare as in the work of Price

[54, 55]. Yet another approach is through di�erential extinction as in Boorman and

Levitt [17]. Con�ict, as opposed to migration, as a source of evolutionary pressure

is examined in Bowles [20], who shows how intergroup competition can lead to the

evolution of altruism. Bowles, Choi and Hopfensitz [24] and ? ] study in group

altruism versus out group hostility in a model driven by con�ict . Rowthorn and

Seabright [58] explain a drop in welfare during the neolithic transition as arising

from the greater di�culty of defending agricultural resources.

More broadly, there is a great deal of work on the evolution of preferences as

well as of institutions: for example Blume and Easley [13], Dekel, Ely and Yilankaya

[29], Alger and Weibull [7], Levine et al [48] or Bottazzi and Dindo [18]. Some of

this work is focused more on biological evolution than social evolution. As Bisin

[11] and Bisin and Topa [12] point out the two are not the same.

This paper is driven by somewhat di�erent goals than earlier work. We are inter-

ested in an environment that can encompass relatively general games and strategy

spaces; in an environment where individual incentives matter a great deal; and in

7See, for example, Gar�nkel and Skaperdas [40] or Hausken [42]. An important focus of this
literature has been in �guring out how shares [which shares?] are determined by con�ict resolution
function.
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an environment where the selection between the resulting equilibria are driven by

con�ict over resources (�land�). By employing the stochastic tools of by Kandori,

Mailath and Rob [46] and Young [61] we are able with relatively weak assumptions

to characterize stochastically stable states - the �typical� states of the system - as

those among the incentive compatible states that feature large societies maximizing

free resources.

2. The Economic Environment

Time lasts forever t = 1, . . . . There are J identical plots of land j = 1, . . . J . On

each plot of land there are N players i = 1, . . . N . In each period t each player i

on each plot of land j chooses one of a �nite number of actions aijt ∈ Ai. Actions

describe production, consumption, reproduction and political decisions. We use

ajt ∈ A and a−ijt ∈ A−i for pro�les of actions on a particular plot of land j in period

t.

Players care only about the actions taken by players living in the current period

- they are myopic, which is to say we assume that periods are long enough to

encompass the horizon of the players - and they care only about actions taken on

the same plot of land on which they reside. Preferences of player i are described by

a utility function ui(ajt ). We refer to the game on a particular plot of land induced

by these utility functions during a particular period as the stage game.

Of particular interest on each plot are the (pure) Nash equilibria of the stage

game. These are the pro�les ajt such that aijt is a best-response to a−ijt for all

j. There is of course no guarantee that pure strategy equilibria exist. However,

as is standard, we may introduce a �nite grid of mixed strategies and by doing

so guarantee the existence of approximate equilibria. We can then weaken the

behavioral assumption below so that approximate equilibria are absorbing or we

may perturb payo�s a small amount to get exact equilibria. In this sense existence

is not an important conceptual problem, and indeed we are interested not in the

case where existence may be problematic, but the case, such as in repeated or social

norm games, where there are many, many equilibria. To avoid any technical issue,

we will subsequently assume existence.

Plots of land do interact with each other, but only through con�ict. Interactions

between plots, as well as behavior, are probabilistic and some consequences have

negligible and other appreciable probability. To formalize this we introduce a a noise

parameter ε ≥ 0. Subsequently we will be considering limits as ε → 0. Following
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the standard terminology of evolutionary theory, such as Young [61], suppose that

Q[ε] is a function of ε. We say that Q is regular if r[Q] ≡ limε→0 logQ[ε]/ log ε exists

and r[Q] = 0 implies limε→0Q[ε] > 0. For a regular Q we call r[Q] the resistance

of Q. Notice that a �lower probability� in the sense of a more rapid decrease as

ε→ 0 means a higher resistance; by an appreciable probability we mean a resistance

of zero. Otherwise we say that the probability is negligible.

Con�ict is resolved through a con�ict resolution function. Formally, depending

on players play on the various plots, there is a possibility each period t that a sin-

gle plot of land k is disrupted to an action pro�le ajt+1 ∈ A the following period.

This disruption may have the form of conquest, that is the new pro�le that k is

forced to play may be the same as that of a �conqueror� j, but it is a more general

concept: for example, the result of conquest may not be that the conquered adopt

the customs of the conquerors, but rather than the conquered fall into anarchy. Let

at = (ajt )
j=1,...J denote the pro�le of actions over players and plots. The probabil-

ity that plot k is disrupted to action ajt+1 (which it will play at t + 1) is given by

the con�ict resolution function πk(ajt+1, at)[ε] ≥ 0 where since at most one plot can

be disrupted
∑J

k=1

∑
ajt+1 6=a

j
t
πk(ajt+1, at)[ε] ≤ 1. We assume that this inequality is

strict, so that there is a strictly positive probability that no disruption occurs, and

that πk(ajt+1, at)[ε] > 0 for all j when ε > 0. Notice in particular that the con-

�ict resolution function depends on the noise parameter ε and in particular admits

negligible probabilities.

2.1. Histories and Player Behavior

The behavior of players depends on the history of past events as well as their

incentives. Let H denote the set of L-length sequences of action pro�les in all plots.

At the beginning of a period the state is st ∈ S ≡ H1× . . . HJ ×{0, 1, 2, . . . J}×A,
that is a list of what has happened on each plot for the previous L ≥ 2 periods

τ = t − L + 1, t − L + 2, . . . t, plus an indicator of which plot has been disrupted

and the action to which it was disrupted. So an element st of the state space S

has J + 2 coordinates: the �rst J are histories of the actions, sjt = hjt , j = 1, . . . J

where hjt = (ajτ )tτ=t−L+1; coordinate s
J+1
t ∈ {0, 1, 2, . . . J} denotes the disrupted

plot, where sJ+1
t = 0 is used to mean that no plot has been disrupted; and the last

coordinate indicates the new action (if any), so sJ+2
t ∈ A. The stochastic process

on which the paper is focused will be de�ned to be Markov on this state space, and

we assume that there is a given initial condition s1.
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We now describe how the action pro�le on each plot j is determined at time t. If

a plot was disrupted, that is j = sJ+1
t−1 > 0, then players on that plot play ajt = sJ+2

t .

Otherwise play is stochastic, each player plays independently, and play depends only

on the history at that plot: we denote by Bi(sjt−1) the probability distribution over

Ai played by player i at time t on plot j.

For each player we distinguish two types of states:

De�nition 1. A quiet state st for player i on plot j is a state in which the action
pro�les have not changed on that plot, ajt−L+1 = ajt−L+2 = · · · = ajt , and for which

aijt is a best response to a−i,jt . We call aijt the status quo response. Any state state
for player i on plot j other than a quiet state is a noisy state.

In other words, in a quiet state, nothing has changed and player i has been doing

the �right thing� for at least L periods. In this case, we assume that if not disrupted,

the player continues to play the same way; otherwise there is some chance of picking

any other action:

Assumption 1. If st−1 is a quiet state where aijt is the status quo response, then
Bi(sjt−1)(aijt ) = 1. If st−1 is a noisy state for player i on plot j then Bi(sjt−1)(aijt ) > 0

for all aijt ∈ Ai.

Notice that in a noisy state the probability of change is appreciable because it

is positive and does not depend upon ε. This means that in a noisy state change

is quite rapid until a quiet state is reached again. This will have the implication

that Nash equilibrium is reached relatively rapidly following a disruption. This

assumption captures the idea that even in changing times, while society as a whole

may be disrupted, people manage to accommodate themselves to new circumstances

and achieve incentive compatibility relatively quickly. For example, refugees during

time of war may be quite miserable, but never-the-less generally seem to adjust

in a sensible way to their new constraints. Similarly in prisoner of war camps,

people seem to quickly adjust develop new stable institutions with a well organized

hierarchy and trade - for example using cigarettes as currency.

De�nition 2. A state st is a Nash state if every plot of land is in a Nash equilibrium
and it is quiet for every player in every plot.

Notice that if a state is Nash then all plots are quiet, and hence unless there is a

disruption, the next state will be the same as the current state. On the other hand a

disrupted plot begins a possibly long epoch of turmoil which however, with positive
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probability, will end with the plot entering an existing society, which will then be

strengthened. The process of evolution of societies is thus viewed as more �exible

and general than a military conquest followed by submission of a loser. Societies

are introduced formally in the next section.

Remark 1. This dynamic is a simpli�ed version of Foster and Young [35] - it is a
simple and relatively plausible model. It has the implication that in the absence of
con�ict each plot will be absorbed in some Nash equilibrium, and that all of these
equilibria have some chance of occurring.

3. Societies and Con�ict

We now wish to examine the con�ict resolution function in greater detail. The

central idea of the paper is that con�ict resolution depends in an important way on

two things: the ability of players to expand and their desire to do so.

The ability to expand depends on size: a prospective invader would �nd it much

easier to conquer, say, Singapore, than, for example, Shanghai. The reason is that

China, while per capita a poorer society than Singapore, has a much larger and more

capable military. In other words, plots of land are organized into larger societies,

and the ability of a society to defend itself - or to conquer other societies - depends

at least in part on the aggregate resources of that society, not merely the resources

of individual plots of land. To capture this idea we must specify how plots of land

aggregate into larger societies. Since we require that behavior on a plot of land

be governed by individual choices on the plot we want to assume that aggregation

choice depends on the chosen pro�le. The question arises as how the desires of

di�erent plots are reconciled.

There are many complicated possibilities for plots to form alliances: one plot

playing ajt = A may be willing to ally only with plots playing B, while a plot playing

B may be willing to ally with either A or C. As our goal is not to understand

the details of coalition formation we simply assume that pro�les are partitioned

into societies, with the members of an element of the partition agreeing that they

are willing to ally themselves with any other pro�le in the same subset. Formally

we assign each action pro�le ajt an integer value χ(ajt ) indicating which society

that pro�le wishes to belong to, with the convention that χ(ajt ) = 0 indicates an

unwillingness to belong to any larger society. All plots j with a common non-zero

value x of χ(ajt ) then belong to the corresponding society, which will then represented

by that integer x.
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Notice that implicitly this requires that if a plot is willing to ally itself, it is

willing to ally itself with plots using an identical action pro�le. Moreover, a plot

that changes its pro�le may by doing so change societies. In the context of anony-

mous plots that are di�erentiated only by the action pro�les of the individuals on

those plots this seems a sensible simplifying assumption. Moreover, from the broad

perspective of social behavior it makes sense the alliances are associated with sim-

ilarity of culture: for example is it widely thought that the EU intervened in the

Yugoslavian civil war because �Yugoslavia is a Western country� while not interven-

ing in various African civil wars because of a lack of a�nity with those countries.

Similarly Islamic countries will generally support one another in con�icts with non-

Islamic nations such as the con�ict between Israel and Palestine. However, we do

not rule out �multiculturalism�, that is, a plot may agree to be allied in a single

society with other plots that use di�erent pro�le - the European Union springs to

mind as an example of such a society. We discuss aggregation map χ in more detail

in section 5.

Societies not only vary in size, but are also di�erentiated also by their inclination

to export their ideas and social norms. Regardless of the form of expansion, expan-

sionary institutions are not universal - an insular society is not likely to expand.8

Religions such as Christianity and Islam have historically been expansionary trying

actively to convert nonbelievers. By contrast since the diaspora Judaism has been

relatively insular in this respect, and the same has been true of other groups such as

the Old Believers in Czarist Russia. We have already denoted by χ(ajt ) = 0 isolated

plots of land that are unwilling or unable to agree on belonging to a larger collec-

tivity. We classify the remaining societies into two types: expansionary for those

that actively attempt to spread themselves or non-expansionary for those that do

not, and as a formal matter, since we require that the attitude of a plot of land

re�ect the underling individual actions taken there, we use positive values of χ(ajt )

for those societies that are expansionary, and negative values for those that are not.

Since we are interested in settings with many Nash equilibria, we assume that

at least one Nash equilibrium is in fact expansionary:

Assumption 2. There is at least one stage game Nash equilibrium which is expan-
sionary, that is has χ(ajt ) > 0.9

8Our notion of expansionism is connected to Aoki, Lehmann and Feldman [2011]'s theory of the
transmission of innovations.

9Note that whether or not a society is expansionary plays no role in the determination of Nash
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3.1. Con�ict Resolution and Free Resources

We now come back to the �ability to expand� aspect mentioned above and in-

troduce the notion of free resources as a measure of ability to expand. We begin

by describing how the organization of plots into societies and the actions taken on

those plots results in the disruption of plots of land through con�ict between di�er-

ent societies. This was represented formally by the con�ict resolution function, now

described in greater detail.

First we de�ne the probability of society x being disrupted, denoted by Π(x, at)[ε],

as the probability that one of its plots is disrupted to an alternative action. Note

the ε parameter. In the case x 6= 0 this is given by

Π(x, at)[ε] =
∑

k|χ(akt )=x

∑
ajt+1 6=akt

πk(ajt+1, at)[ε],

and for an isolated society playing akt by

Π(akt , at)[ε] =
∑

ajt+1 6=akt

πk(ajt+1, at)[ε].

We make the technical assumption that the disruption function Π(x, at)[ε] is

regular and that resistance is bounded above. Without loss of generality we may

take the upper bound on resistance to be one so that r[Π(x, at)] ≤ 1.

As we said, the ability to expand depends not only on the desire to do so, but

also on the resources available. Speci�cally we assume that the action pro�le in a

plot generates a strictly positive value f(ajt ) > 0 called free resources. This has

for the moment no economic content, but we ask the reader to interpret it as a

scalar measure of the ability to disrupt neighbors and avoid disruption; concrete

speci�cations of this function in terms of free resources is deferred to sections 5-

7. What matters, however, in resolving con�ict are not merely free resources on a

particular plot of land but rather the aggregate free resources available to a society.

For a non-isolated society x 6= 0 this is the sum of free resources belonging to the

plots of that society

F (x, at) =
∑

χ(ajt )=x

f(ajt ).

equilibrium.
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10 Note that if a society x is not present in at then the corresponding aggregate

free resources F are zero. Notice also that due to multiculturalism, a society's free

resources depend non-trivially on at because the admitted pro�les will have di�erent

free resources, and the total depends on how many of each kind there are.

3.2. Disruption, Expansionism and Free Resources

We are now in a position to state our three assumptions relating the disruption

probability Π to free resources. The basic idea is that the more free resources a

society has the more disruptive it is to its neighbors and the less likely it is to be

disrupted by its neighbors. Moreover, non-expansionary societies are not disruptive

to their neighbors. We capture these ideas through a number of speci�c assumptions.

The �rst assumption is that comparing two societies, resistance to disruption is

lower for the one with fewer free resources, and indeed resistance to disruption when

there is an expansionary society with at least as many free resources is zero. Let

E(x) denote whether x is expansionary or not, that is, E = 1 if x > 0, and E = 0

otherwise.

Assumption 3. [Monotonicity] If F (x, at) ≤ F (x′, at) then r[Π(x, at)] ≤ r[Π(x′, at)],
and r[Π(x, at)] = 0 if E(x′) = 1. Moreover, if at+1 di�ers from at solely in that
society x has lost a single plot of land, then r[Π(x, at+1)] ≤ r[Π(x, at)].

The �rst part says that if two societies coexist in the sense that they are part of

the same at then the one with more free resources has at least the same resistance

as the one with fewer free resources. The second part strengthens this to say that

an expansionary society with at least as many free resources as a rival in fact has an

appreciable chance of disrupting it. This rules out the possibility of there simulta-

neously being multiple expansionary societies for a substantial length of time, and

enables us to use an analysis akin to Ellison [33]'s method of the radius. Without it,

the analysis is more akin to his method of the co-radius, and we have neither been

able to establish the result nor provide a counter-example in that case. The third

part says that losing land does not increase resistance.

10It may be that aggregate free resources grow less than linearly with the number of plots. For
example two plots each with a unit of free resources may be weaker than a single plot with two
units of free resources if not all the units can be mobilized for joint operations or there are other
coordination problems between the plots. <insert ref to old version> showed that the results here
remain unchanged if linear aggregation is replaced with a non-linear aggregation provided that
aggregate free resources for a society are strictly increasing in the free resources on individual plots.
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Our next assumption on Π speci�es that resistance depends only on the ratio of

free resources when there are only two societies. Say that at is binary if there are

only two societies, which we denote as x and x′.

Assumption 4. [Ratio] If at is binary then

r[Π(x, at)] = q(F (x′, at)/F (x, at), E(x′)),

where q is non-increasing and left continuous in the �rst argument, q(0, E) =
q(φ, 0) = 1 and there exists φ > 0 such that q(φ, 1) > 0.

In other words, resistance in the binary case depends monotonically on free re-

sources and whether or not the rival society is expansionary. Moreover q(0, E) = 1

says that when the opponent has zero free resources resistance is at the highest

possible level - recall that we have assumed that resistance is always bounded above

by one. In addition q(φ, 0) = 1 asserts that a plot that is not expansionary always

generates the same maximal resistance regardless of how many free resources it has

available. Notice that the assumption q(0, E) = 1 applies to mutations - actions

that are not currently being used. In this setup the chance of a mutation entering

the population is the same (in resistance terms) for all mutations - the free resources

associated with the mutant action pro�le become available for initiating or defend-

ing against disruption only after it enters the population - that is, the period after

the mutation takes place. This follows from our assumption that the societies cor-

responding to action pro�les that are not currently in use have zero free resources.

The idea is that mutants need a period to get organized.

Observe that Assumption 3 implies that φ̄ = inf{φ|q(φ, 1) = 0} ≤ 1, since

eventually if an expansionary society has enough free resources, it has an appreciable

chance of disrupting a rival plot of land. Note that because r[q(φ, 1)] is left rather

than right continuous we must use the inf here, and because we have assumed

explicitly that there is some value of φ > 0 for which the resistance is strictly

positive, we know that φ̄ > 0. Looking at what this means in terms of probability,

we see that this zero up to φ̄ after which it becomes strictly positive. That is, in

the limiting case a su�ciently small society has no chance at all of disrupting a plot

from a larger one.

The last assumption on Π states that disruption is not more likely when oppo-

nents are divided. Let Υ(at) denote all the societies in at, that is the values of x 6= 0

in the range of χ plus the di�erent values of ajt that correspond to isolated societies,

that is with χ(ajt ) = 0.
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Assumption 5. [Divided Opponents] If at is binary, ãt has F (x, at) = F (x, ãt) and∑
x′∈Υ(at)\x F (x′, at) ≥

∑
x′∈Υ(ãt)\x F (x′, ãt) then r[Π(x, at)] ≤ r[Π(x, ãt)].

4. Dynamics and Stochastically Stable States

The dynamics of the stage game and of disruption together with the behavioral

rules of the players induce a Markov process M(ε, J) on the state space S de�ned

in section 2.1. We are interested in this process, but primarily in the limit of this

process as ε→ 0.

Theorem 1. For ε > 0 the process M [ε, J ] is aperiodic and irreducible and hence
has a unique invariant distribution µ[ε, J ].

Proof. This follows from the fact that every combination of actions on every plot
has positive probability.

We denote by S[0, J ] the ergodic classes of M [0, J ].

Proposition 1. σ ∈ S[0, J ] if and only if: (i)σ is a singleton, that is, σ = {st},
(ii) st is a Nash state, and (iii) st has either no expansionary society, or a single
expansionary society such that all other societies (if any) have positive resistance to
disruption.

Proof. Follows directly from the de�nitions. See Appendix I.

Hereafter we simply write st ∈ S[0, J ]. Recall that Nash states are quiet on

every plot, that is on each plot there is a Nash equilibrium which has been played

for at least L periods; in particular a Nash state assigns a single Nash equilibrium

pro�le to each plot.

By Proposition 1 there are three types of Nash states in S[0, J ]. There are

monolithic expansionary states consisting of a single expansionary society; there

are mixed states consisting of a single expansionary society and at least one non-

expansionary society, and there are non-expansionary states in which there is no

expansionary society.

We use the following Theorem from Young [61]:

Theorem 2. m = limε→0 µ[ε, J ] exists and m(st, J) > 0 implies st ∈ S[0, J ].

Let S[m,J ] ⊆ S[0, J ] to be the set of states that have positive probability in

the limit (that is st ∈ S[m,J ] i� m(st, J) > 0). These are called the stochastically

stable states. Our main result characterizes these states. To do so we must consider

monolithic expansionary states in more detail.
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Recall that societies are integers, in particular expansionary societies are positive

integers. Since there are �nitely many pro�les not all integers are in the image of

the χ map. For positive x in the image of χ consider the set χ−1(x) of pro�les ajt
which map to x. Then x can contain any combination of these pro�les. So for any

expansionary society x there will be some collection - empty if χ−1(x) is empty - of

corresponding monolithic expansionary states S(x) ⊂ S[0, J ], which correspond to

di�erent combinations of Nash states with pro�les χ−1(x) allowed by that society. As

already mentioned, these di�erent pro�les may have di�erent levels of free resources.

Let f(x) denote the least average per plot free resources in any of these states (or

zero if S(x) is empty). It is obvious but useful to point out for later reference

that this minimum is achieved when all plots play pro�les generating the least free

resources. We say that x is a strongest expansionary society if f(x) = maxx′>0 f(x′).

Note by Assumption 2 and the assumption that free resources are strictly positive

there is indeed at least one strongest expansionary society.

We can also extend the notion of a stochastically stable state to that of a stochas-

tically stable society. This is a society for which all the corresponding monolithic

states S(x) are stochastically stable. The central result of the paper is

Theorem 3. [Main Theorem] If x is a strongest expansionary society then it is
stochastically stable. As to the converse: For J large enough every stochastically
stable state st ∈ S(x) for some strongest expansionary society x.

Proof. Follows from least resistance tree arguments detailed in Theorem 5 and Corol-
lary 3 in Appendix I.

Remark 2. Notice that in order to prove the converse we require a large number J of
plots. The reason for this is simple: what matters is how the resistance of di�erent
states compare with each other. When J is small there may be ties. For example,
with just two plots, any state is destabilized by a single mutation, regardless of
the presence of free resources or expansionism. Similarly, with a modest number
of plots, while two di�erent states with di�erent levels of free resources will have
di�erent thresholds that an invader will have to overcome in order to destabilize that
state, the actual number of plots that the invader has to conquer may be exactly
the same. However, no matter how small the di�erence in free resources between
two di�erent states, once there are su�ciently many plots the di�erent thresholds
imply that the invader must disrupt strictly more plots to destabilize the stronger
of the two states. Roughly, what a large number of plots insures is that di�erences
between societies are not lost in the coarseness of the grid.

Remark 3. There are several important features of the Theorem for large J . First
only monolithic expansionary societies are stochastically stable. Second the strength
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of a monolithic expansionary society is measured by the Nash equilibrium consistent
with belonging to that society which has the fewest free resources - the strength of a
society is measured by its weakest member. Finally, among these incentive compat-
ible expansionary arrangements it is having a weakest member with the most free
resources that counts. Notice also that there may be non-expansionary societies
with many more free resources than any expansionary society, or expansionary so-
cieties with incentive compatible arrangements with many more free resources than
maxx′>0 f(x′). Never-the-less these societies are not stochastically stable and in the
long-run will not be much observed.

It is worth indicating how the stochastically stable states relate to the dynamics
of the Markov process for ε > 0. It is important to understand that the system
does not in any sense converge asymptotically to the stochastically stable state.
Rather the expected length of time the system spends at that state is roughly
proportional to 1/ε raised to the power of the least resistance of leaving the state.11

The system is genuinely random: disruptions can and do occur. Suppose the system
is currently in a stochastically stable state. Sooner or later there will be enough
unlucky coincidences to disrupt it and the system will �uctuate randomly for some
period of time as there is an appreciable probability that individuals will change
their behavior. Eventually the system will settle down to some other steady state,
not necessarily the stochastically stable one. However that steady state will also
eventually be disrupted, more �uctuations will occur, then another steady state will
be reached. At some point another stochastically stable state will be reached. The
key point is that the amount of time spent at steady states is high relative to the
amount of time the system spends �uctuating randomly, and the amount of time
spent at the stochastically stable states is high relative to the amount of time spent
during �uctuations and at steady states that are not stochastically stable.

Dynamic considerations also explain why we can use a very weak notion of ex-
pansionism. We do not assume that a disrupted plot is �conquered� and absorbed by
the disrupting society as an immediate consequence of disruption. Rather disrup-
tion itself is enough to result in conquest in the longer run. Once a plot is disrupted
it �nds itself in a non-quiet state and goes through a period of change until it is
absorbed in a Nash state. But if when it does so it fails to join with its stronger
expansionary neighbor, it will be disrupted again. This process will repeat until it is
eventually absorbed by this neighbor. This is all that is required in the proof of the
theorem. Consequently an important message from the theory is that in the long
run it is not conquering power that counts, but stability in the sense of resistance
to disruption.

Remark 4. (Relation to Literature on Group Evolution) The novelty of our approach
lies in the fact that we study group evolution as evolution of Nash equilibria. Ex-

11This is shown by Ellison [33] who refers to this least resistance as the radius of the state.

17



isting literature in the area mainly focuses on the interplay between individual and
group evolutionary selection: individual behavior which increases �tness of a group,
typically some form of �generosity�, may be harmful for individual �tness. This is
the case both in the Haystack Model as in Maynard Smith [52] or Richerson and
Boyd [56] and in Bowles' model of con�ict and evolution (Bowles [21]). The equilib-
rium dimension in the group selection literature is generally missing. One exception
is 25 who consider a setting with multiple Evolutionary Stable Strategies and show
that group selection can be operative at the level of the equilibrium.

In relation to this trade-o� our result may be interpreted as saying that evolution,
favoring expansionism, favors generosity, which may be seen as a necessary condition
for expansionism; but also that given generosity, it favors large groups maximizing
free resources, which are needed to survive competition between groups.

5. Social Norm Games and Free Resources

In institutional design settings - such as repeated games - there are typically a

plethora of incentive compatible outcomes. The evolutionary theory here is a theory

in which the incentive compatible outcome that is the strongest expansionary one

is most likely to be observed in the long-run. We now wish to examine concretely

what that means. From a game theoretic point of view, modeling the fact that there

are many social norms is no longer an open problem. The folk theorem points to the

existence of many social norms. Although the basic theorem involves an in�nitely

repeated game with discounting there are folk theorems for games with overlapping

generations of players as in Kandori [45], for �nite horizon games where the stage

game has multiple Nash equilibria as in Benoit and Krishna [32], and for one-shot

self-referential games as in Levine and Pesendorfer [49]. As this literature is well

developed we will adopt a simple two stage approach to get at the issues of the

formation of societies and free resources.

We are given an arbitrary �nite base game with strategy spaces Ãi and utility

functions ũi(ãjt ) ≥ 0, where the non-negativity of payo�s is a convenient normaliza-

tion. These actions represent ordinary economic actions: production, consumption,

reproduction decisions and so forth. We are also given a �nite list O of integers rep-

resenting di�erent types of societies. We will detail the connection between these

types of societies and the map χ(ajt ) after we describe the game itself.

We now de�ne a two stage game. In the �rst stage each player chooses a base

action ãijt and casts a vote oijt ∈ O for participation in a particular society. Players

have preferences ˜̃ui(ojt ) ≥ 0. We assume preferences are additively separable between

payo�s in the base game and preferences over votes. While this is a useful simplifying
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assumption separating as it does economic decisions and decisions over what sort of

broader society to belong to, situations in which it does not hold can be of interest.

Consider for example the case of Switzerland. Here there is a substantial expenditure

on defense including a requirement of universal military service and enrollment in

the military reserves. One reason people are willing to participate is because of an

implicit promise that Switzerland is non-expansionary: military forces will be used

only to defend Switzerland and not sent abroad. It is easy to imagine a connection

here between the utility from the economic decision - to provide substantial free

resources in the form of military expenditures - and the social decision - to be non-

expansionary. A vote for an expansionary society might well be more attractive when

combined with an all-volunteer military such as that in the United States. Similarly

economic decisions over careers might well in�uence preferences over which type

of society to belong to: a career soldier might as a consequence have a preference

against being expansionary as he will have to bear the cost of the overseas �ghting.

We turn now to the second stage of the game. As a consequence of �rst stage

decisions there is a publicly observed state variable θjt in a �nite set of signals Θ.

The probabilities of these signals are given by ρ(θjt |ã
j
t , o

j
t ).

In the second stage of the game players have an option to punish other players

by �shunning them.� These choices may be based (only) on the public signal from

the �rst stage. In particular in the second stage each player chooses an N − 1

vector of 0's and 1's where 0 is interpreted as �do not shun� the corresponding

opponent and 1 is interpreted as �shun� the corresponding opponent. We are also

given a threshold N − 1 ≥ N1 > 0. Any player who is shunned by N1 or more

opponents receives a utility penalty of −Πi. There is no cost of shunning. As is

the case with social voting, the utility penalty is additively separable with economic

decisions: the penalty is simply subtracted from other payo�s. As in the case of

social voting there may be situations in which there is an interaction between �rst

stage interactive decisions and shunning or a cost of shunning. For example if you

or I were to marry a child we had adopted we would probably be shunned. However

to shun Woody Allen for this behavior is costly because he is an immensely talented

�lm-maker and because he has made the economic decision to devote a great deal

of time and e�ort to �lm-making. If he chose not to make �lms it would be much

less costly to shun him.

Notice that the second stage game is constructed to be a coordination game: in

particular for any subset of players it is a Nash equilibrium for all players to shun
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exactly the players in that subset. These equilibria are not terribly robust - for

example to the introduction of costs of shunning - but there are many more robust -

albeit more complicated models - such as having an in�nite sequence of punishment

rounds or or the self-referential model of Levine and Pesendorfer [49]. Since the

robustness plays no role here for expositional simplicity we use the simple model of

costless punishment.

Stage game strategies now consist of a triple of ãijt , o
ij
t and a map m : Θ →

{0, 1}N−1. Following our previous notation, the space of these strategies is denoted

by Ai. Payo�s are the expected value of the sum of ũi(ãjt ) + ˜̃ui(ojt ) and the cost

of being shunned. We assume that after the game is complete - that is, after the

shunning decisions are made - that these strategies become publicly known.

We now need to describe the relation between the social decisions oijt and the

map χ(ajt ), that is, how do these votes translate into concrete decisions concerning

societies and alliances? First we describe O in greater detail. The integer 0 repre-

sents an isolated society. The integer +1 is interpreted as being expansionary and

willing to a�liate with any plot that uses exactly the same action pro�le ajt (action,

punishment and voting). The integer −1 means non-expansionary and a�liate with

any plot that uses exactly the same action pro�le ajt .
12 The remaining integers k

are described by subsets Ak ⊂ A representing di�erent pro�les that are acceptable

to that society, with positive integers representing expansionary and negative inte-

gers representing non-expansionary. Note that some of these may be vacuous: for

example some may be like Groucho Marx and accept as members of the society only

plots that voted against joining. Obviously such vacuous society types do not mat-

ter. More interesting possibilities are subsets of the form ajt ∈ Ak if and only if the

corresponding ãjt has a speci�ed value. Such a society admits members based only

on the �rst period base game pro�le: behavior with respect to voting and shunning

disregarded.

Notice that corresponding to the choices +1,−1 are many societies: those choices

mean �exactly those plots identical to me belong to my society� so each action pro�le

ajt represents a potentially di�erent society. We wish to assign numerical indices to

these di�erent �exclusive� societies. To avoid con�ict with societies k ∈ O we do so

12The reason for this slightly convoluted approach to a�liation with a plot that uses the same
pro�le including voting is that the size of the action space Ai depends on the size of O hence trying
to put a list of elements of Ai in O is circular.
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by assigning each pro�le ajt ∈ A a unique positive integer χ̃(ajt ) larger in absolute

value than the greatest absolute element of O.

The voting procedure presupposes a threshold N2 > N/2. The χ(ajt ) map is

then de�ned as follows. If in ajt no element of O receives N2 or more votes then the

society is isolated and χ(ajt ) = 0. If +1 (the �exclusive� society corresponding to the

action pro�le ajt ) receives N2 or more votes then χ(ajt ) = χ̃(ajt ), that is the society

is expansionary and admits as members exactly plots that play ajt . If −1 receives

N2 or more votes then χ(ajt ) = −χ̃(ajt ), these being �exclusive� non-expansionary

societies. Finally if k /∈ {−1, 0, 1} receives N2 or more votes and aj ∈ Ak then

χ(ajt ) = k. Otherwise the society is isolated - for example because it voted to join a

society that will not admit it.

The idea of voting over what society to belong to may seem strange. In fact gen-

uine voting decisions do take place, as for example, referendums on independence in

such places as Quebec, Scotland and the South Sudan. However, voting here should

be understood in the broader sense of �willingness to participate in the broader so-

ciety.� So when Poland surrendered to Germany at the beginning of World War II

implicitly the people of Poland - directed by the leaders who surrendered - agreed

to belong to the German collective. Here also this was associated with practical

decisions as well as �voting� - the e�ective agreement was to stop �ghting with the

Germans and follow German law, obey German police and so forth.

5.1. Perfect Observability

We begin with the simplest case to study, that of perfect observability where θjt
perfectly reveals the �rst stage choices; we consider private information in section 6.

We assume that for all ãjt , o
j
t , i we have ũ

i(ãjt )+
˜̃ui(ojt )−Πi < 0 so that the punishment

from being shunned overrides any possible gain from �rst period misbehavior. We

then have the following folk theorem:

Proposition 2. For any ãjt , o
j
t there exists a mj

t such that ãjt , o
j
t ,m

j
t is a Nash

equilibrium.

Proof. Take the map mj
t so that any player i who fails to play ãijt , o

ij
t is shunned

by all opponents in the second stage, any any player who does play ãijt , o
ij
t is not

shunned by any opponents. The payo� assumption shows then that playing ãijt , o
ij
t

is incentive compatible.

Next we wish to examine the role of free resources in greater detail. We assume

that free resources depend only on the base game pro�le ãjt and not on either voting

or shunning.
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Corollary 1. If +1 ∈ O then for large J stochastically stable states have per plot
free resources max

ãjt
f(ãjt ).

Proof. Pick an element âjt of arg max
ãjt
f(ãjt ), let o

j
t be a unanimous vote for +1 and

let atj be some corresponding Nash equilibrium strategy from Proposition 2. Then

by Theorem 5 the society x̃(ajt ) has the greatest possible free resources and so is
stochastically stable. This implies also that for large enough J any stochastically
stable society must have this same amount of free resources.

5.2. Free Resources in a Malthusian Game

We now want to investigate free resources more closely. Expansion - and the

free resources with which to expand - may have many forms and motivations: two

examples are conquest through warfare or conversion, but others are the desire to

explore new territory, contact other societies and mix with them, propose values and

possibly learn from outside communities. The Roman empire is a strong example

of the �rst type of expansion; more modern expansions have often involved religious

conversion - for example, the sending of religious missionaries, although this has

often occurred in the context of warfare, for example the conversion of the South

and Central American Indian populations to Christianity through a combination of

conquest and missionary activity. Equally relevant is in�uence through exchange of

goods spurred by explorations (think of Marco Polo), or the more modern culture

spreading through the sale of goods ranging from Coca-Cola to television sets. Or

going to the other extreme, we may think of the �curiosity�, that is the expansionism,

of the primitive hunters-gatherers.

While their can be many forms of strength as measured by free resources, in

general in order to disrupt neighbors or defend against disruption it is generally

important to have resources that are not being use for other purposes, hence �free�

resources. We make this concrete �rst through a simple Malthusian type of example

in which players are families who choose the size of their families; we will elaborate

on the example in the next subsection. Here we will contrast the Malthusian case

where population size is chosen so that income per capita is at subsistence level with

the case where it maximizes free resources, and explore how population and income

per capita vary as technology improves.

We will model these economies as social norm games of perfect information, so

there will be many Nash equilibrium population sizes: some large in which everyone

is at the Malthusian level of subsistence, and others smaller in which output per
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capita exceeds that needed to survive and reproduce. Notice that Malthus recog-

nized that there can be incentive compatible social arrangements that stabilize the

population at a low level. In real societies, long before the advent of birth control,

population was controlled - largely, of course, by abstinence from intercourse. It is

easy to imagine a stable social norm - a Nash equilibrium - that achieves this result:

women are limited to a certain number of children, and anyone who attempts to

violate the norm is put to death along with her children. In practice societies often

used methods not so di�erent than this. Marriage was limited and delayed through

requirements of substantial accumulation of capital or side-payments as a prereq-

uisite to get married, and unwed mothers were severely punished, in many cases

through capital punishment. This seems to be understood by demographic histori-

ans such as Bacci [9], and as well as by Malthus himself - he simply thought that

in some long-run evolutionary sense these low population equilibria were unstable.

We will argue the opposite. Speci�cally, our intuition about free resources can be

captured by the following conceptual experiment. Imagine a �Malthusian� society

with farmers living at the edge of subsistence. Next door live their less numerous

but richer neighbors who control their population. What happens when the few but

rich neighbors invade the nearly starving farmers? For the farmers to spend time

�ghting is to take time from farming - that is, to starve. The outcome of this con�ict

is easy to see.

What this suggests is that what counts for free resources should be aggregate

output in excess of subsistence. Speci�cally if z denotes the total population on a

plot of land (which to ease calculations we allow to take on real as well as integer

values) we let the function αY (z) be the aggregate output produced on that plot

of land where α is a scalar technology parameter. We denote by B the per capita

output needed for subsistence. There is, of course, a big debate about what consti-

tutes subsistence.13 This debate is primarily an e�ort to �prove� that prior to the

industrial revolution everyone was at subsistence - the more elastic is the notion of

subsistence this is easier to �prove� true.14 Here we have in mind a more traditional

13Historically, the subsistence level meant �the physical requirements to survive and reproduce.�
In the hands of modern economic historians such as Clark [28] �subsistence� has become an elastic
concept meaning the �some socially determined level of per capita income above which population
decreases and below which it increases.� [revise - how and why revise??] This is somewhat awkward
as the cross-sectional evidence is clear that rich countries reproduce as much lower rates than poor
ones.

14A close reading of the literature reveals serious problems. The most central problem is that at
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notion of subsistence as requirements for survival and reproduction.

In the Malthusian Game the N players are families who choose family size, so

that Ãi = {1, 2, . . . ,M} for some M . Families are Malthusian in the sense that

their utility comes from having children: ũi(ãijt ) = ãijt . Total population is given

by zjt =
∑N

i=1 ã
ij
t , and free resources f(ãjt ) = αY (zjt ) − Bzjt . We assume that

αY (NM)−BNM > 0 so that it is not feasible to choose a population so large that

it starves.

From our earlier result on perfect information social norm games, we see that

stochastic stability requires maximization of free resources. For simplicity suppose

that aggregate output Y (z) is a di�erentiable, strictly concave and strictly increasing

function of population z. We will explore how the (unique since Y (z) is strictly

concave) real value of z that maximizes free resources varies with the technological

parameter α, and how income per capita goes; since the problem is concave, the

optimal integer valued solution must be one of the adjoining grid points.

Recall for comparison the usual Malthusian case where population is so large that

income per capita is at subsistence level, that is where the value of z that satis�es

αY (z)/z = B. This value is strictly increasing in α and gives the usual Malthusian

result: technological change in the long-run leaves per capita income unchanged

and leads merely to an increase in population. In the case of maximization of free

resources the situation is as follows:

Proposition 3. The value of z∗ that maximizes free resources is strictly increasing
in α. Per capita output increases with α if and only if

−zY
′′(z∗)

Y ′(z∗)
> 1− zY ′(z∗)

Y (z∗)
.

Proof. The value z∗ is de�ned implicitly by the equation αY ′(z) = B as a function
of α. We want to compute the derivative of this function z and of αY (z)/z with
respect to α. From the condition αY ′(z) = B we get 0 = Y ′dα + αY ′′dz, whence
dz/dα = −Y ′/AαY ′′ > 0. Computing d(αY (z)/z)/dα results in the last condition

best what is computed is median per capita income - that is, the typical income of a poor person.
Of course the upper classes consume considerably more than subsistence so the mean must also be
above subsistence. A typical example of this problem is in the classical and much cited Ladurie
[47] study of Languedoc peasants in France. Ignored in this study are the facts that the nobles live
above subsistence; that the entire area made substantial payments to the King - and indeed the
ability of France to conduct continual wars throughout this period indicates that substantial free
resources were available. More serious students of historical per capita GDP such as Maddison [50]
point out the Malthusian bias implicit in conclusions of this type.
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in the statement.

Corollary 2. Let again z∗ be free resource maximizing, as a function of α. In the
Cobb-Douglas case Y (z) = zβ per capita output is independent of α. In the loga-
rithmic case Y (z) = log(b+ z), b > 0 per capita output is increasing for su�ciently
large α, while for large enough b it is decreasing for small α and increasing for large
α.

Proof. In the Cobb-Douglas case we have

−zY
′′(z)

Y ′(z)
= 1− zY ′(z)

Y (z)
= 1− β,

so this case is completely neutral, just as in the Malthus case.
In the logarithmic case Y ′(z) = 1/(b+ z), Y ′′(z) = −1/(b+ z)2. The condition

in Proposition 3 can be simpli�ed to

z

b+ z
> 1− z

(b+ z) log(b+ z)

which is equivalent to log(b+ z) < z/b because z ≥ 1. Now log(b+ z) < log b+ z/b
for all z > 0, so the above inequality is satis�ed for all z ≥ 1 if b ≤ 1. For b > 1 it
is true for z large enough (the RHS goes to ∞ as z → ∞), so it is satis�ed for big
enough α. Looking at z = 1 we get

b log(1 + b) < 1

which clearly fails for big enough b. Hence for large b per-capita income �rst goes
down then up.

It is sometimes claimed that farming societies were worse o� than hunter gather-

ers, while of course industrial societies are much better o�. The case of logarithmic

output for large b provides one possible theory of why this might be. Concerning dif-

ferential e�ects of technological progress on population size and income per capita,

Ashraf and Galor [8] elaborate evidence of increase in both population and income

per capita in the last two thousand years, and estimate that technological progress

in this period has had more impact on population size than on income per capita.

Of course there remains the question of whether we should imagine that tech-

nology is more like that of Cobb-Douglas or of the logarithmic form in population

size. It seems compelling that only so many people can �t on a particular plot of

land before production becomes impossible due to overcrowding. In this case it is

easy to see why per capita output must increase with technological improvement:

once the upper bound on population is reached there is no point in adding more
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people regardless of the state of technology. The only way to take advantage of im-

proved technology to get more free resources is through increased per capita output.

In other words, we expect that returns to population drops to zero as population

grows. While we have not yet reached the unfortunate state of a�airs in which pro-

duction is impossible due to overcrowding, this argument does indicate some reason

to think that returns to population diminish rather quickly as population on a plot

of land grows. It suggests that the more rapidly decreasing returns of the logarith-

mic model may make more sense than the rather slowly decreasing returns of the

Cobb-Douglas model.15

5.3. Jewelry versus Swords

In the Malthusian example all resources that were not used for subsistence were

available as free resources. In general, however, whether resources are �free� is

endogenous. We can see this by adding to the Malthus example a decision about

what to do with output above subsistence.

Speci�cally, in addition to determining how many children to have, we assume

that each family also chooses whether to take their share of �excess� output as jewelry

or as swords. We take Ãi = {1, 2, . . . ,M} × {0, 1} where 1 means consume jewelry

and 0 means consume swords. We write the components ãijt = (ãij1t, ã
ij
2t) with the

�rst component being family size and the second jewelry consumption. Utility is

ũi(ãijt ) = ãij1t + γãij2t for some positive γ, so that families like to consume jewelry but

not swords.

On the other hand, jewelry is not of much use in con�ict - a society armed with

swords will quickly prevail over one armed with jewelry. Hence we take free resources

to be f(ãjt ) =
[∑N

i=1(1− ãij2t)/N
] [
αY (zjt )−Bz

j
t

]
, that is swords only.

Technically there is not much to be learned from this formulation: free resources

are maximized by choosing swords over jewelry and the population size as in the

original Malthus example. Conceptually the point is this: the society that will

be stochastically stable and most observed in the long-run will be the society that

chooses swords over jewelry. This may appear to an observer to be dysfunctional

in the sense that people like jewelry but not swords, and the choice of swords is

enforced as a social norm through threat of shunning: do this stupid thing (choose

15The mechanism here is not dissimilar to that discussed in Hansen and Prescott [41]: there it is
the exhaustion of land that forces a change to a capital based technology that increases per capita
income.
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swords) or be shunned. Naturally the folk theorem allows many ine�cient equilibria

of this type, and we generally as economists do not pay much attention to them.

But here the swords protect society from outside threats, so while ine�cient this

equilibrium is very functional indeed.16

In general we think of free resources as a residual after necessary payments are

made - this is the case in the original Malthus example and in our subsequent ex-

amples. In this sense free resource maximization is a lot like pro�t maximization

and indeed our formal models have a strong similarity with models of pro�t maxi-

mization. Moreover, from an empirical standpoint, this connection may explain the

historical importance of monarchies that can only be described as pro�t maximizing.

But as the jewelry and swords example makes clear, this connection is not perfect:

the residual - pro�ts if you will - may be turned to many uses and only some of

these uses - swords not jewelry - constitute free resources. Hence a pro�t maximiz-

ing monarchy that through social norms is bound to use its pro�t for �ghting and

con�ict is the type we expect to survive: a pro�t maximizing monarchy that spends

its pro�ts and large and beautiful palaces has less of a future.

6. Private Information and Ine�ciency

Free resources are in a sense viewed here as a residual - what is left over after

for use in con�ict. Subsistence needed to survive and reproduce cannot be diverted

to con�ict. The same may also be said of incentive payments: if it is necessary to

provide incentive payments to get output produced, these payments cannot be di-

verted to con�ict without also losing the output. In general the situation is complex:

an example similar to incentive payments is that documented by Weightman [60]

who reports how British workers in the 19th century consumed roast beef. It was

a luxury, but it made them stronger, better workers than on the continent where

diet was poorer; so presumably it made them better soldiers as well. In general a

diet above subsistence may increase free resources because it increases the ability of

workers to produce output. However, like incentive payments, the payments that

enable this improved diets are not part of free resources.

To get an idea how this works with incentive payments, we retain the setting

of a social norm game, but now drop the assumption of perfect observability and

16If jewelry that are consumed during peacetime may easily be given up and converted to swords
in time of war then jewelry would be part of free resources.
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examine settings of private information where the folk theorem does not apply.

In this section we consider a hidden e�ort game which is a simple and relatively

standard principal-agent type of model of e�ort provision.

The players in the hidden e�ort game are identical agents. Each agent chooses

an e�ort level eijt ∈ {0, 1} and as a consequence of this e�ort either observable output
Y or no output is generated. The probability of output Y is πe. Privately observed

e�ort increases the chance of output, that is π1 > π0.

The plot of land as a whole must decide how to tax producers, or equivalently

determine the amount W j
t ≤ Y paid to each successful agent with the remaining

output becoming free resources. This is done by a voting scheme: each agent votes

for a wage rate W ij
t ∈ Ω. Here Ω is a �nite set, although as before to simplify

computations we will later treat it as continuous - or at least assume that the grid

includes the relevant values. We assume that there is a threshold N > N3 > N/2

such that if this many or more agents agree on a wage rate the actual wage rate W j
t

is that rate, while the default if no agreement is reached is W j
t = Y , that is, if there

is no agreement on taxes there are no taxes.17

We assume that votes cast for participation in a particular society and votes

on the payment scheme are perfectly observed. In summary, ãijt = (eijt ,W
ij
t ) and

θjt = (θijt )i=1,...,N where θijt = (W ij
t , o

ij
t ) with probability one.

Agents are risk neutral, so their utility is given by ũi(ãijt ) = −eijt + π
eijt
W ij
t . For

simplicity we take the subsistence level B = 0 so that we may ignore the subsistence

constraint.

Players can be shunned in the second stage as a consequence of the output

they produce in the �rst stage and it will generally be desirable to do so even on

the equilibrium path. Potentially this can interact with the use of shunning as a

social sanction for perfectly observed voting behavior since it reduces the amount of

�additional� shunning that can can be used as punishment. For this reason we now

assume that ũi(õijt ) = 0 so that there is no cost or bene�t of voting on a particular

aggregation, so no need to provide incentives. In the case of voting on tax rates, we

note that any tax rate is an equilibrium: if the vote is unanimous by the assumption

17This is similar to the approach sometimes taken in the repeated game literature such as Fu-
denberg Levine and Maskin [38]. There a mechanism design problem is mapped into a game by
adding a stage in which people vote for the preferred mechanism. Either everyone gets some very
low level of utility because they disagree, or if they all agree, then the agreed upon mechanism is
implemented. In such a game every incentive compatible mechanism is a Nash equilibrium.
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that the threshold N3 < N no single agent is decisive, so again no need to provide

incentives.

With respect to the cost imposed by shunning we now make the symmetry

assumption that Πi = Π. We continue to assume that shunning has no impact on

free resources. Hence the the expected value of free resources generated by agent i

is f(ãijt ) = π
eijt

(Y −W j
t ). Notice that free resources here are essentially pro�t, so a

free resource maximizing society will behave like a pro�t maximizing principal.

As we have noted any choice of societies and incentive scheme choices are equi-

librium choices, so what matters is the incentive constraint that characterizes Nash

equilibrium high e�ort. Letpijt and P ijt denote the shunning probabilities if output

is zero or Y respectively. Then the incentive constraint for high e�ort is

(1− π1)[−pijt Π] + π1[W j
t − P

ij
t Π]− 1 ≥ (1− π0)[−pijt Π] + π0[W j

t − P
ij
t Π],

which setting ∆ ≡ (π1 − π0)−1 may be written as

[W j
t + (pijt − P

ij
t )Π] ≥ ∆.

Our primary result compares the maximization of utility and free resources, with

a view to e�ciency and shunning.

Proposition 4. (i) There is a �rst best (utility maximizing) Nash equilibrium. In
any such equilibrium W j

t = Y so that there are no free resources; shunning never
occurs and e�ort is provided if and only (π1 − π0)Y ≥ 1, that is the expected output
gain is no smaller that e�ort cost. (ii) The free resource maximizing Nash equilib-
rium requires shunning (only) agents who provide zero output with probability one.
The wage rate is W j

t = max{0,∆ − Π} and e�ort is provided if and only if either
∆ ≤ Π or ∆ > Π and (π1 − π0)Y ≥ π1(∆−Π).

Proof. To maximize expected utility −eijt +π
eijt
W j
t −Π[(1−π

eijt
)pijt +π

eijt
P ijt ] it must

clearly be W j = Y and pijt = P ijt = 0, so the problem becomes maxe∈{0.1}−e+πeY
which gives e = 1 i� (π1−π0)Y ≥ 1 . Statement (i) follows. Turning to free resources:
without e�ort they are just π0Y . To induce e�ort one must solve maxπ1(Y −W j

t )
subject to W j

t + (pijt − P
ij
t )Π ≥ ∆; here we want W j as low as possible so we set

pijt = 1, P ijt = 0 to ease the incentive constraint, which then becomesW j
t ≥ ∆−Π; so

to induce e�ort optimal choice is W j
t = max{0,∆−Π}, giving the wage rate. From

this it follows that if ∆ ≤ Π we have W j
t = 0 and free resources are π1Y > π0Y

so that e�ort is always induced. If on the other hand ∆ > Π the wage rate is
W j
t = ∆ − Π, so free resources are π1(Y − ∆ + Π), hence e�ort is induced i�

π1(Y −∆ + Π) ≥ π0Y that is i� (π1 − π0)Y ≥ π1(∆−Π).
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In the case of free resource maximization, if ∆ ≤ Π then shunning alone is enough

to provide incentives. This means e�ort should be induced even if it is ine�cient,

that is even if (π1 − π0)Y < 1, or equivalently Y < ∆. This can be interpreted as a

kind of slavery where punishments (�whips�) are used to keep people in line. When

detection is easy (low ∆) and whips are nasty (Π is large) this gives the most free

resources.

The opposite case where output Y > ∆ is large and detection is hard (∆ > Π)

is characteristic of innovative activity. Notice that that π1∆ > 1. If output is not

too large, Y < π1∆(∆− Π), then free resources are maximized by having no e�ort

provision. The point is that in the innovative environment punishment alone is not

enough, we have to provide incentive payments resulting in informational rents to

innovators, and these may be su�ciently high, that the increase in output is o�set by

the increased informational rents and it is better (from a free resource perspective)

not to bother.

7. Theory of a Bureaucratic State

The maximization of free resources gives rise to a positive theory of government.

There are two widely used theories of government: one is the theory of the klep-

tocratic state widely prevalent in libertarian thought. In this view the government

is a thief that has succeeded in establishing a monopoly over thievery. The more

widespread view is that of a benevolent government that serves to provide public

goods that are subject to severe free rider problems, and perhaps to provide greater

allocational fairness. The maximization of free resources is an alternative to both of

these views: here government provides a public good in the form of free resources,

but the theory provides a de�nite objective for the government, with the provision

of public goods other than free resources only occurring either because it increases

free resources or because it is an unavoidable product of freeing resources. In some

respects this theory is closest in spirit to Thompson and Hickson [59]'s theory of

the vital organs of the state. In this section we examine a simple model of the

bureaucratic state designed to explore these ideas.

We start by observing that bureaucracy is not present only in the public sector,

but also among pro�t maximizing �rms. IBM, a successful and 100 year old �rm is

renowned for its bureaucracy, for example. At the level of the government, we must

remark on the enormous success of the Chinese bureaucratic system that persisted

over 2 millennia from roughly the end of the warring states period in 221 BC to the
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communist take-over in 1949 AD. This system was widely imitated: even today in

the United Kingdom senior civil servants are referred to as �mandarins.�

Our view is that bureaucracy is functional because it provides monitoring, en-

abling informational rents to be converted to pro�ts (in the case of �rms) or free

resources (in the case of governments). So we examine a simple economy in which

production (or endowments) are individually produced - but are private information

to that individual.

In the mandarin game players choose an occupation cijt ∈ {0, 1} where 1 corre-

sponds to the choice of being a commissar and 0 corresponds to the choice of being

a producer. A producer has a production technology that produces output Y > 0

with probability π and zero otherwise. If the producer has produced output he must

choose whether or not to reveal that he produced output; we denote this choice by

rijt ∈ {0, 1}, where 1 corresponds to revealing the presence of output. A commissar

audits κ ≥ 0 randomly chosen producers who have not revealed positive output and

observes their production. Commissars also are enforcement specialists in the sense

that they can physically seize any output that they �nd. Let φ be the fraction of

producers who have positive unrevealed output. If there are Kj
t commissars then for

each producer the probability Rjt that he is audited is equal to the (min between 1

and) the ratio of realized audits κKj
t over those who report no output either because

they have no output or because they have output and choose not to reveal it. Hence

the probability Rjt that a producer who does not reveal output is audited is

Rjt =
κKj

t

(1− π + φπ)(N −Kj
t )
.

As in the hidden e�ort game we simplify by assuming that the subsistence level

B = 0, that the shunning penalty is symmetric Πi = Π and that ũi(õijt ) = 0. The

case Y ≤ Π is uninteresting for it would then be possible to get everything as free

resources by shunning anyone who refuses to admit output and taking everything

from someone who does; hence we assume Y > Π in the sequel.

The socially determined variables here, besides the number of commissars, are

the wage rate of the commissars wjt , the amount W j
t retained by a producer who

admits to having output, and the amount Xj
t retained by a producer whose positive

output is discovered by a commissar. This is done as in the hidden e�ort game

through a voting scheme (wijt ,W
ij
t , X

ij
t ) ∈ Ω. The default if there is no agreement

is wjt = 0,W j
t = Y,Xj

t = Y . As in the previous cases we assume a threshold so that
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with a unanimous agreement no player is decisive, so that any scheme is part of a

Nash equilibrium.

Utility in the base game is ũ(cijt , r
ij
t , ω

ij
t ) and is independent of ωijt . If cijt = 1

so the individual chooses to be a commissar utility is ũ(1, rijt , ω
ij
t ) = wjt . If c

ij
t = 0

so the individual choose to be a producer, utility when output is kept hidden is

ũ(0, 0, ωijt ) = π(RjtX
j
t + (1 − Rjt )Y ) while if output is revealed ũ(0, 1, ωijt ) = πW j

t .

When all producers hide output free resources are f(ãjt ) = πRjt (N −K
j
t )(Y −X

j
t )−

Kj
tw

j
t while if all producers reveal output free resources are f(ãjt ) = π(N −Kj

t )(Y −
W j
t )−Kj

tw
j
t .

Social sanctions - shunning with penalty value Π to be subtracted from utility

- can be used for two purposes. First a producer who claims no output and is not

audited can be sanctioned - we denote the probability of such a sanction as pijt .

Second an individual who is designated to be a commissar and refuses to be such

can be sanctioned. We denote the probability of such a sanction as qijt .

To analyze equilibrium we �rst observe that there is a kind of revelation principle:

to maximize free resources we can always do at least as well by getting producers

to reveal. Conditional on having output, if the producer does not reveal he gets

RjtX
j
t +(1−Rjt )(Y −p

j
tΠ) and generates free resources Rjt (Y −X

j
t ). IfW

j
t = RjtX

j
t +

(1−Rjt )(Y − p
j
tΠ) then the producer is indi�erent to revealing while free resources

are Y −W j
t = Rjt (Y −X

j
t )+(1−Rjt )p

j
tΠ. Hence the most free resources are generated

subject to the true revelation constraint when Xj
t = 0 and W j

t = (1−Rjt )(Y −p
j
tΠ),

generating free resources RjtY + (1 − Rjt )p
j
tΠ. Moreover, by getting producers to

reveal one obtains φ = 0 thereby increasing Rjt and enhancing the e�ectiveness of

auditing.

We conclude that only revelation equilibria are interesting, that φ = 0 in such

an equilibrium, and that the plot's free resources are

f(ãjt ) = π(N −Kj
t )[R

j
tY + (1−Rjt )ptjΠ]−Kj

tw
j
t .

Next, to get the right number of commissars we must have indi�erence between

being a commissar and being a producer who refuses to be a commissar. The latter

gets π(1−Rjt )(Y − p
j
tΠ)− (1− π)(1−Rjt )p

j
tΠ− q

j
tΠ = (1−Rjt )(πY − p

j
tΠ)− qjtΠ.

Therefore it must be

wjt = (1−Rjt )(πY − p
j
tΠ)− qjtΠ.
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Since wjt ≥ 0 and free resources decrease in the commissars' wage the above equality

implies either pjt = 1, qjt = 1 or wit = 0. We thus get

wjt = max{0, (1−Rjt )(πY −Π)−Π}.

Lemma 1. De�ne R̂ =

{
πY−2Π
πY−Π πY − 2Π > 0

0 πY − 2Π ≤ 0
. Then

wit =

{
(1−Rjt )(πY −Π)−Π Rjt < R̂

0 Rjt ≥ R̂
.

This means that if there are enough commissars (Rjt ≥ R̂) they can be paid

zero, where �enough� is actually zero if the sanction Π is large enough compared to

e�ective output (πY − 2Π ≤ 0).

Proof of Lemma. The condition wjt ≥ 0 is (1−Rjt )(πY −Π) ≥ Π. if πY −Π < 0 or
(1−Rjt )(πY −Π) < Π then wit = 0, otherwise wjt = (1−Rjt )(πY −Π)−Π. Condition
(1 − Rjt )(πY − Π) < Π may be written as Rjt > 1 − Π

πY−Π = πY−2Π
πY−Π . So in fact if

πY − 2Π ≤ 0 then wit = 0 for all Rjt , while otherwise it is zero above the threshold
πY − 2Π/πY −Π. .

We are now ready to characterize equilibrium.

Proposition 5. Free resource maximizing equilibrium has optimal Rjt given by

Rjt =

{
0 κ

1−π ≤
Π

Y−Π

1 κ
1−π >

Π
Y−Π

.

The fraction of commissars as a function of κ is given by

Kj
t

N
=

{
0 κ

1−π ≤
Π

Y−Π
1−π

κ+1−π
κ

1−π >
Π

Y−Π

.

Note that κ measures e�ciency of bureaucracy, so the equilibrium calls for no

bureaucracy if that is not e�cient enough, then enough to have auditing probability

equal to one. The κ threshold depends on π: the larger this is, that is the larger

expected output, the lower the e�ciency threshold for using bureaucrats to audit

producers. If π is very large so that most people produce output, then the number

of �innocent non-producers� who must be audited in equilibrium is small so few

commissars are needed. If π is very large so that very few people produce output,

then many commissars are needed to hunt amongst the many innocent in an e�ort

to �nd someone guilty.
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The fact that the per capital number of commissars is non-monotone in κ̃ =

κ/(1 − π) deserves note. When κ̃ is small there are no commissars - they are so

ine�cient they subtract rather than add free resources. After the threshold Π/(Y −
Π) is reached, the fraction of commissars jumps up to a maximum of (Y −Π)/Y , then

gradually declines as fewer commissars are needed due to their increased e�ciency.

Proof. We work with Rjt and determine Kj
t using φ = 0 from the formula Rjt =

κKj
t /(1−π)(N −Kj

t ). We let κ̃ = κ/(1−π), so Rjt = κ̃Kj
t /(N −K

j
t ) and N −K

j
t =

Nκ̃/(κ̃+Rjt ). Free resources as a function of Rjt are then

f(ãjt ) = π
Nκ̃

κ̃+Rjt
[RjtY + (1−Rjt )ptjΠ]−Kj

tw
j
t ≡ Z

j
t −K

j
tw

j
t

where Kj
t = NRjt/(κ̃ + Rjt ) and Zjt denote gross free resources before netting out

the wage bill for commissars. A little algebra gives

∂Zjt

∂Rjt
=

Nπκ̃

(κ̃+Rjt )
2
[κ̃(Y −Π)−Π]

so if κ̃Y − (κ̃ + 1)Π > 0 that is κ > (1 − π)Π/(Y − Π) then for Rjt < 1 it is
Zjt (1) > Zjt (R

j
t ). But R̃jt = 1 implies R̃jt > R̂ so f(1) = Zjt (1) > Zjt (R

j
t ) ≥

Zjt (R
j
t ) −K

j
tw

j
t = f(Rjt ); hence R

j
t = 1 is the optimum in this case. Analogously,

if κ̃Y − (κ̃ + 1)Π ≤ 0 then for Rjt > 0 Zjt (0) > Zjt (R
j
t ); but R̃

j
t = 0 implies Kj

t = 0
so f(0) = Zjt (0) > Zjt (R

j
t ) ≥ Zjt (R

j
t ) − K

j
tw

j
t = f(Rjt ); so in this case Rjt = 0 is

the optimum. The assertion on Kj
t /N follows elementarily from the fact that for

Rjt = 1 we have 1 = κKj
t /(1− π)(N −Kj

t ).

Remark 5. Modern societies are extremely e�cient at monitoring. In historical
times it was di�cult to collect much tax revenue, and often monarchies fell back
on grants of monopoly rights as alternatives to taxes. Now even 50% or more of
GDP can be collected. Even as individual incomes have increased enormously due
to informational rents, the fraction available as free resources has gone up because
the same technological change makes transactions easier to monitor.

This model leaves open a key question: if commissars are so powerful that they
can seize resources, why to they convert them to free resources, rather than, for
example, converting them to jewelry for their own use? In a sense this is easy to
understand: commissars who seize resources and attempt to keep them will in turn -
since their actions are visible to other commissars - have their own resources seized.
But this begs the deeper question: why do not commissars as a group deviate? As a
special interest group within the broader society, why do they not collude and refuse
to take actions against other commissars who �corruptly� appropriate resources for
their own use? Corrupt bureaucracies are endemic - if not also legendary - so obvi-
ously present an important practical problem in the design of institutions whether

34



for the purposes of maximizing free resources or for any other goal. In our view,
while free resource maximization provides a strong and useful tool for the study of
the evolution of state institutions, a key missing ingredient - an adequate theory of
collusion - is needed to have a proper theory of the state.

The issue of collusion is also relevant to another aspect of the example here. In
this rather stylized world with constant returns to commissars there is a bang-bang
feature: everyone is monitored or nobody. Of course if there is diminishing returns
to commissars, for example because the most e�cient bureaucrats are the �rst to
be appointed, then it may maximize free resources to have an intermediate level of
monitoring. But the possibility of collusion may also be important here. As there
are more commissars the size of the pie they control grows, and the temptation for
someone to organize a collusive agreement in exchange for a fraction of the pie grows
correspondingly.

8. Conclusion

Readers of grand theories of history such as those of McNeil [53], Cipolla [27],

Diamond [30] or Acemoglu and Robinson [5]will not �nd surprising the idea that

ideas are spread by the conquest of the less advanced by the more advanced - indeed

it seems almost ubiquitous in their anecdotes and discussions. Missing from these

accounts, however, is the notion that it is free resources above and beyond sub-

sistence and incentive payments that matter for the long-term success of societies.

In essence, the conclusion of our theory is that evolution favors large expansionary

societies made strong by availability of free resources. This is also what histori-

cal evidence shows, from old China to the Romans, to modern England and the

contemporary United States.

It would be amazing indeed if a simple theory with single scalar variable �free

resources� could explain all of history. Missing is any account of the geographical

barriers that in practice have prevented a single monolithic society from covering

the entire globe. Indeed, England, fast behind her water barrier, continually favored

the weaker side in continental Europe to prevent a monolithic society from arising

there. Perhaps the history of Asia would have been very di�erent if Japan had

been geographically capable of playing a similar role in China. Geography may

also be intertwined with strategical considerations: the small Kingdom of Sardinia

was located between the great powers of Austria and France who could have easily

conquered it, but they never did because a small bu�er at their borders made attack
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by one another harder.18

Indeed, geography plays a role in a variety of ways: technology matters of course

- water barriers matter much less to societies that have boats - and even less if

they have airplanes. The libertarian success stories favored by Milton Friedman in

Singapore and Hong Kong were also protected - in the case of Hong Kong by the

British military, and in the case of Singapore by a water barrier. One aspect of the

theory worthy of future exploration is the idea that small geographically protected

areas are likely to have a broader range of social arrangements - both e�cient and

ine�cient - being protected from conquest and disruption by neighbors.19

Missing is also a explicit analysis of the role of institutions and their evolution

with extraction of free resources in view. For example, Ho�man and Rosenthal

[44] argue that the transition from absolute to constitutional monarchy in Europe

was determined by the higher tax revenue to be employed for military purposes

which a parliament could generate. Shaping of internal legislation also is linked

to what we have called resistance: It is assumed in the paper that resistance to

barbarian hordes is �xed at 1, but in reality steps are often taken to minimize or

prevent internal upheavals, see for example the case of electoral franchise discussed

in Acemoglu and Robinson [4].

On the other hand, there are a variety of historical episodes that may be inter-

esting to explore through the lens of free resources. For example, at the beginning

of the cold war, technology favored assembly line manufacturing which is relatively

amenable to central planning, and so the Soviet Union, a system that excelled at

appropriating a high fraction of resources as free, was able to compete successfully

with the United States. By contrast as technology changed to favor greater de-

centralization, it is likely that the enormous growth of GDP in the United States

relative to the Soviet Union made it impossible for the Soviet Union to continue to

compete, despite its ability to appropriate a very high fraction of total resources.

In a similar way, the development of �rearms at the end of the medieval period

favored moderately skilled mass armies over small highly trained armies of special-

ists. Hence to generate large free resources, higher per capita income was needed.

The ultimate failure of poorly trained peasants to resist moderately trained lower

18A recent empirical paper on the relation between warfare and institutions in the Italian Risorg-
imento is Dincecco, Federico and Vindigni [31].

19The wide range of (admittedly very primitive) social arrangements in New Guinea may be a
case in point.
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middle class soldiers was seen in the early 20th Century in the defeat of Russia �rst

by Japan, and eventually by Germany which e�ectively ended the Russian Empire

at the battle of Tannenberg.

We should acknowledge also that while con�ict is an important force in the spread

(and disruption) of institutions and ideas, voluntary movement of the type discuss

by Ely [34] exists as well and provides a force away from free resource maximization

and towards e�ciency. This suggests a more re�ned theory in which both free

resources and e�ciency matter, with the relative strengths of the two depending

on the relative importance of ideas spreading through conquest versus voluntary

movement.

In summary, the notion of evolution through contacts and con�icts between soci-

eties leads to a simple and in our view plausible model of stochastically stable states

that maximize free resources. Implications of the theory range from determining

the level of population to the type of technologies and institutions we may expect

to �nd.

Appendix I

Proposition. [Proposition 1 in text] σ ∈ S[0, J ] if and only if: (i) σ is a singleton,
that is, σ = {st}, (ii) st is a Nash state, and (iii) st has either no expansionary
society, or a single expansionary society such that all other societies (if any) have
positive resistance to disruption.

Proof. First we observe that the st as described are absorbing states of the Markov
chain, hence certainly in S[0, J ]. This is trivial, since by assumption no disruption
is possible at these states. To prove the theorem it is su�cient to show that from
any other initial condition there is a positive probability of reaching one of these
absorbing states. This rules out existence of other ergodic classes.

We show that one of these absorbing states has positive probability of being
reached from any initial condition. First notice that there is a positive probability
that for T + L + 1 periods no plot is disrupted. During such a period a quiet
plot remains quiet. In a plot j in which some player is not quiet there is a positive
probability that all players on that plot will not be quiet the following period. There
is then a positive probability that for the next T + L periods all players will play a
steady state Nash equilibrium pro�le and the plot will become quiet. Since this is
true of all plots and there are �nitely many of them, there is a positive probability
that after T + L+ 1 periods the state will be a Nash state.

Suppose we begin in a Nash state which is not one of the described absorbing
states. Then there is some expansionary society x that has the most free resources
among all expansionary societies that are present in that state (there may be more
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than one such). If there is more than one expansionary society, one of them has
free resources relative to some other of at least 1, and hence by Assumption 3 it
has positive probability of becoming the sole expansionary society. Hence multiple
expansionary societies are transitory.

If there is no other expansionary society, by assumption one of them has pos-
itive probability of being disrupted. Subsequently the disrupted plot has positive
probability of joining society x and so there is positive probability of moving to a
steady state Nash equilibrium where x has one more plot. By the second part of
Assumption 3 we can repeat the process (still with positive probability) until the
absorbing state in which J(x) = J is reached.

To prove the main theorem we will now apply a method of Friedlin and Wentzell

[36] described in Young [61] to analyze the case ε > 0 and the limit as ε→ 0. We

use the characterization of stochastically stable states given by Young [61]. Let T be

a tree whose nodes are the set S[0, J ] with any set of edges. We denote by D(s) the

unique node from s in the direction of the root. An s-tree is a tree whose root is s,

denoted T (s). For any two points s0, st ∈ S[0, J ] we de�ne the resistance as follows.

First, a path from s0 to st is a sequence of points s0, . . . , st ∈ S, where the transition
from sτ to sτ+1 has positive probability for ε > 0. The resistance of the path is

the sum of resistances between points in the path
∑t−1

τ=0 r(sτ , sτ+1). The resistance

r(s0, st) is the least resistance of any path from s0 to st. The resistance r(T (st))

of the st-tree T (st) is the sum over non-root nodes sτ of r(sτ , D(sτ )): r(T (st)) =∑
sτ∈S[0,J ]\st r(sτ , D(sτ )). Finally, the resistance r(st) is the least resistance of all

the st-trees. The following Theorem is proved in Young [61].

Theorem 4. st is a stochastically stable state if and only if st ∈ S[0, J ] and r(st) =
minsτ∈S[0,J ] r(sτ ).

We can provide a lower bound on the resistance of the trees on S[0, J ]. For

any state st ∈ S[0, J ] and any subset S̃ ⊂ S[0, J ] de�ne the least resistance states

LR(st, S̃) ⊆ S̃ to be the collection of states sτ ∈ S[0, J ]\st such that r(st, sτ ) ≤
r(st, s̃τ ) for all s̃τ ∈ S̃. Let lr(st, S̃) be the corresponding least resistance. When

S̃ = S[0, J ] this is equivalent to Ellison [33]'s notion of the radius of a state.

For each expansionary society x for which the corresponding set of monolithic

states S(x) is nonempty pick an st ∈ S(x) and de�ne l(st) ≡ mins̃t∈S(x) lr(s̃t, S[0, J ]\S(x))

- the minimum least resistance to pass from a state in S(x) to one outside of it; for

the remaining states (if any) st ∈ S(x) de�ne l(st) ≡ mins̃t∈S(x) lr(s̃t, S[0, J ]) - the

minimum least resistance to go from a state in S(x) to any state in S[0, J ], which in

fact is always 1. For states st which belong to no S(x) de�ne l(st) ≡ lr(st, S[0, J ]).

38



De�ne ml ≡
∑

sτ∈S[0,J ] l(sτ ) − maxsτ∈S[0,J ] l(sτ ), that is the sum of all the l(sτ )'s

except the highest.

Lemma 2. Any st-tree T (st) satis�es r(T (st)) ≥ ml.

For the sake of clarity we observe that if no state belonged to an S(x) the

lemma would be trivial, because r(T (st)) =
∑

sτ∈S[0,J ]\st r(sτ , D(sτ )) and by con-

struction r(sτ , D(sτ )) ≥ mins∈S[0,J ] r(sτ , s) = lr(st, S[0, J ]) = l(sτ ) so r(T (st)) ≥∑
sτ∈S[0,J ]\st l(sτ ), which is the sum of all the l(sτ )'s except l(st); so either l(st) is

highest and then the sum isml by de�nition, or l(st) is not highest and then the sum

is larger than ml (because it has the highest term in and leaves out a smaller one).

A slight complication arises because for the selected element st in the non-empty

S(x) we have de�ned l(st) to be a number possibly larger than mins∈S[0,J ] r(st, s)

(for reasons which will be clear in the proof of the main result). To this we turn in

the proof of the lemma.

Proof of Lemma. For any st-tree T (st) we have r(T (st)) =
∑

sτ∈S[0,J ]\st r(sτ , D(sτ )).
By construction it is r(sτ , D(sτ )) ≥ l(sτ ) for all sτ except possibly for the desig-
nated states in the non-empty S(x)'s in case the transition (sτ , D(sτ )) on the tree
takes place inside their S(x). Consider then such a designated state s∗. If its
S(x) contains also the root st then it must be r(s∗, D(s∗)) ≥ l(st) and then we
get r(T (st)) ≥

∑
sτ∈S[0,J ]\s∗ l(sτ ) which is no smaller than ml because the latter

leaves out the highest term. If on the other hand the S(x) containing s∗ does not
contain the root st then for some sτ ∈ S(x) the transition (sτ , D(sτ )) must take
sτ out of S(x); then from r(sτ , D(sτ )) ≥ l(s∗) and r(s∗, D(s∗)) ≥ l(sτ ) we get
r(sτ , D(sτ )) + r(s∗, D(s∗)) ≥ l(sτ ) + l(s∗), which again implies the inequality in the
statement.

The bound established in the Lemma is not generally a useful one, but in the

current setting we shall show that there is a tree that achieves this bound. Such a

tree is necessarily a least resistance tree.

The central theorem of the paper, Theorem 3 in text, itself has two parts, which

we cover in the next result and the corollary which follows. We recall that a stochas-

tically stable society is one for which all the corresponding monolithic states S(x)

are stochastically stable; and that a strongest expansionary society is one whose

minimum free resources among the admitted pro�les (�weakest link of chain�) is

highest.

Theorem 5. If x is a strongest expansionary society then it is stochastically stable.
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Proof. Recall that in the least (average per plot) free resource states in a society,
in particular in a strongest expansionary society x, the pro�les played in all plots
must have the same free resources. In some such states the pro�les may be di�erent
from one another in the society's plots, but in others all plots play the same least
free resource pro�le. Such states we consider �rst: we show that for some such
st(x) ∈ S(x) it is possible to build a tree T (st(x)) such that r(T (st(x))) = ml. This
achieves the lower bound by Lemma 2, so must be a least resistance tree. Then
we show how to rearrange this tree without increasing the cost so that any state
st ∈ S(x) is the root.

To build T (st(x)) we show how to connect every node sτ ∈ S[0, J ]\st(x) into
the tree. The aim is to obtain∑

sτ∈S[0,J ]\st(x)

r(sτ , D(sτ )) =
∑

sτ∈S[0,J ]

l(sτ )− max
sτ∈S[0,J ]

l(sτ ).

We start with the non-expansionary states. For such an sτ the least cost l(sτ ) is
established by a single plot of land being disrupted to any Nash state for that plot:
this has a resistance of 1, the least possible resistance of any transition from a non-
expansionary state. In particular, we may connect the non-expansionary state to
the state in which the lowest numbered plot of land is disrupted to an expansionary
pro�le X. Hence, since X is by construction expansionary, each non-expansionary
state is connected at least cost to a mixed state.

For mixed states, a least cost transition is for a non-expansionary society to
have a single plot disrupted - to any particular target. The transition has resistance
no greater than 1. Among the plots in non-expansionary societies that have the
greatest chance of disruption suppose that the lowest numbered plot is disrupted to
the pro�le of the highest numbered plot of the expansionary society. Notice that this
process cannot result in a cycle, since the number of plots owned by the expansionary
society increases by one at each step. In this way, each mixed state is connected by
a sequence of least cost transitions to a state in a monolithic expansionary state.

This reduces the problem to sub-trees on the states corresponding to the expan-
sionary societies y.

For each expansionary society y �x a least resistance pro�le Y ∈ χ−1(y). First
we deal with st ∈ S(y) where not all plots are playing the given least resistance
pro�le Y . For these states disrupting the lowest numbered plot of land in which
the state is not Y to the state Y has a cost of 1 which is the least possible, since
societies to not have con�ict within themselves.

Finally we consider, for any y, the unique state st(y) ∈ S(y) where all plots
play Y . We will show that there is a path from st(y) to any st(z) where z 6= y
that achieves mins̃t∈S(y) lr(s̃t, S[0, J ]\S(y)). We designate st(x) as the root of our
proposed tree, and for y 6= x we take z = x, that is these other minimal free resource
monolithic expansionary states should go directly to the root.

It is convenient to illustrate the least cost path from st(y) to st(z) by means of
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a diagram. We may write st(y) = Y Y Y Y...Y . Let A be a pro�le on a single plot
that maximizes free resources among all possible pro�les, incentive compatible or
not. We refer to this as the barbarian horde. Then the transitions are

Y Y Y Y...Y

AY Y Y...Y

ZZY Y...Y

AAY Y...Y

ZZZY...Y
...

ZZZZ...Z
...

ZZZZ...Z

Notice that when a Y is replaced by a Z the most possible free resources of an
opponent A face the least possible free resources of any society of the given size in
S(y). Notice second that going down a column, until the �nal stage we alternate
AZAZ.... Since L ≥ 2 this assures that the plot is never quiet, and so all transitions
on that plot have 0 resistance: the only costly resistance is when a plot Y is converted
to Z, which has resistance 1. In the �nal stage, we hold what happens �xed with
all plots playing Z which is by assumption a Nash equilibrium, and the transitions
have no cost, so there should be L �nal transitions after which all the plots become
quiet and the state st(z) is achieved. Thus we have shown that for any S(y) we have∑

st∈S(y) r(sτ , D(sτ )) =
∑

st∈S(y) l(sτ ) on the tree.
The construction also shows that st(x) achieves maxsτ∈S[0,J ] l(sτ ) which since it

is the root is discarded; hence for the tree just described we have r(T (st)) = ml
which is what was to be shown.

Finally, we show how to rearrange the tree so that any st ∈ S(x) is at the root,
without increasing resistance. This is relatively trivial, since if we put st at the root,
and connect the remaining sτ ∈ S(x) to the root sequentially by replacing the pro�le
on each plot by the corresponding element of st the cost of all these transitions is 1
exactly as in the tree T (st(x)).

Corollary 3. For J large enough every stochastically stable state st ∈ S(x) for
some strongest expansionary society x.

Proof. It follows from the proof of Theorem 5 that if st is the root of a least
resistance tree, the lower bound must be achieved, and this is possible only if
l(st) = maxst∈S[0,J ] l(st). We �rst show that for large J monolithic states have
l(st) > 1, hence (since the other states have have l(st) ≤ 1) only they can be
stochastically stable. The claim l(st) > 1 amounts to asserting that for large J
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resistance of a monolithic state x to disruption by a barbarian horde x′ is positive
for at least the �rst two plots; but as J grows large 2/J → 0, so (using the last limit
in Assumption 4) the ratio of free resources φ = F (x′, at, ωt)/F (x, at, ωt) → 0, and
for small φ resistance is positive by assumption.

Finally observe that the possibility that a society x with f(x) < maxx′>0 f(x′)
can have l(st) = maxst∈S[0,J ] l(st) only because of the round-o� error caused by the
discrete size of the plots (which makes the barbarian horde jump above the threshold
φ̄ in a certain number of steps); but as J grows large this error goes to zero because
each conquered plot makes φ move less. From this the result follows.
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