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Abstract 
 
 In this paper we provide analytical and Monte Carlo evidence that Chow and Predictive tests 
can be consistent against alternatives that allow structural change to occur at either end of the 
sample.  Attention is restricted to linear regression models that may have a break in the intercept.  
The results are based on a novel reparameterization of the actual and potential break point 
locations.  Standard methods parameterize both of these locations as fixed fractions of the 
sample size.  We parameterize these locations as more general integer valued functions.  Power 
at the ends of the sample is evaluated by letting both locations, as a percentage of the sample 
size, converge to zero or one.  We find that for a potential break point function, the tests are 
consistent against alternatives that converge to zero or one at sufficiently slow rates and are 
inconsistent against alternatives that converge sufficiently quickly.  Monte Carlo evidence 
supports the theory though large samples are sometimes needed for reasonable power. 
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1. Introduction 

 In this paper we establish the consistency of tests designed to detect structural breaks in the 

intercept of a linear regression at the beginning and end of a sample of observations.  Our results 

constrast with comments made within the structural break literature wherein it seems to be 

common knowledge that these tests are inconsistent against alternatives that allow breaks at the 

ends of the sample (e.g. Dufour, Ghysels and Hall, 1994).  Whether or not structural break tests 

are consistent is a serious issue since as documented by Stock and Watson (1996), a large 

percentage of economic variables exhibit structural breaks across time.  Whether or not tests for 

structural breaks in an intercept are consistent is of particular interest for forecasting agents since 

as noted by Clements and Hendry (1996), structural breaks in the intercept is one of the most 

common reasons for real-time predictive failure.  It is for this reason they recommend the use of 

intercept-corrections when constructing forecasts. 

 In this paper we apply novel asymptotics to standard Chow (1960) and Predictive (Ghysels 

and Hall, 1990) tests for structural change in the intercept of linear regression models.  To derive 

the asymptotic behavior of these tests one has to specify both the location of the actual and the 

potential break.  The standard approach is to define the location of the actual break as TB = [BT] 

and the potential break as R = [T] for fixed fractions 0 < B,  < 1of the sample size T.  

Asymptotics are derived by letting T diverge holding these fractions fixed.  Power at the ends of 

the sample is derived by allowing B to approach either zero or one. 

 The approach we take to detecting structural breaks at the ends of the sample is 

methodologically distinct.  We parameterize the actual and potential break points as more 

general integer valued functions.  As an example, suppose that we parameterize the location of 

the actual break as TB = T  [(1-)Tb], 0 < b < 1 and 0 <  < 1.  By using this parameterization 
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we are able to refine the notion of the “end” of the sample to the notion of “local to the end” of 

the sample.  Note that using this parameterization, the ratio TB/T is allowed to converge to one in 

the same fashion as considered in previous work.  The difference is that we can control the rates 

of convergence more delicately by allowing b to vary.  Similarly, we can parameterize the 

location of the potential break as R = T  [(1-)Ta] 0 < a  1 and 0 <  < 1.  By taking this 

approach we also allow the location of the potential break to be “local to the end” of the sample.  

Note that by letting a = 1 we retain the standard method of selecting the potential break point. 

 Allowing for these more general integer valued functions we first derive the limiting null 

distributions of Chow and Predictive tests of structural change.  We show that these tests are 

both asymptotically chi-square.  As a corollary we are able to derive the limiting distribution of a 

max-Chow test designed to detect structural breaks at either the beginning or end of the sample. 

 We then derive the limiting behavior of these tests under the “local to the end” alternatives 

discussed above.  We are able to show that Chow, max-Chow and Predictive tests can be 

consistent against such alternatives if the choice of potential break is chosen appropriately.  We 

obtain the intuitive result that power increases as the distance between the actual and potential 

break decreases.  Our results make clear that whether or not a test for structural change is 

consistent depends crucially on the particular definition of the “end” of the sample. 

 We conclude by examining the finite sample size and power of the tests using Monte Carlo 

experiments.  As the theory suggests power increases the closer the potential break point is to the 

actual break point.  In accordance with that result, for a fixed choice of the potential break we see 

that power of the test decreases as the actual break gets closer to the ends of the sample. 
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2. Theory 

 In this section we provide analytical results for Chow, max-Chow and Predictive tests for 

structural change.  Throughout we maintain that there are no breaks on the interior of the sample 

and hence if a break occurs it does so at a location TB satisfying limTB/T  {0, 1}.  In this way 

we consider our results as complementary to existing results on testing for structural breaks over 

the interior of the sample by Chow (1960), Kramer, Ploberger and Alt (1988), Ploberger, Kramer 

and Kontrus (1989), Ghysels and Hall (1990), Andrews (1993), Sowell (1996) and Bai (1997). 

 The following notation will be used.  Forecasts and/or predictions of the scalar yt+1, t = 

1,…,T, are generated using a (k1 + 1 = k1) vector of covariates x2,t = ' '
1,t t,R(x ,d )  = ' '

t t,R(1,z ,d ) .  

For the potential break location R the scalar dt,R denotes an indicator function that takes the value 

1 if t > R and zero otherwise.  A dummy variable for the actual break location 
Bt,Td  is defined 

similarly.  The ((k1  1)  1) vector zt denotes the subset of predictors (other than a constant) that 

do not depend upon the sample size T.  Since, under the alternative, we treat the actual break 

location TB as distinct from the potential break location R, it is useful to define the (k1 + 1 = k1) 

vector x3,t = 
B

' '
1,t t,T(x ,d )  = 

B

' '
t t,T(1,z ,d ) . 

 In all results we allow TB, R, P  T  R and PB  T  TB to diverge as the sample size T 

diverges.  By using this asymptotic approximation we distinguish our results from others that 

treat P and PB as finite while still allowing R and TB to diverge.  For example, using this 

approximation Andrews (2002) and Andrews and Kim (2003) establish the asymptotic behavior 

of several Predictive tests for structural change.  Asymptotically valid critical values are 

constructed using parametric subsampling methods.  Since they treat P and PB as finite their tests 

are inconsistent.  Even so, Monte Carlo experiments show the tests can have reasonable power. 
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 We address the Chow and Predictive tests in separate sub-sections.  For each we first show 

that the test can be asymptotically chi-square under the null hypothesis even when the potential 

break point location is allowed to be at the end of the sample in the sense that either limR/T = 0 

or 1.  We then proceed to show that the test can be consistent against alternatives that are at the 

end of the sample in the sense that limTB/T = 0 or 1.  Before doing so we need first provide a set 

of assumptions sufficient for the results. 

 
Assumption 1: (a) The DGP satisfies yt+1 = ' *

3,t 3x   + ut+1 with Ex3,tut+1  Eh3,t+1 = 0 for all t with 

*
3  = *' * '

3,1 3,2( , )  , (b) Under the null hypothesis *
3,1  = *

1  and *
3,2  = 0, (c) Under the alternative 

hypothesis *
3,2   0, (d) The parameters are estimated using OLS. 

 
Assumption 2: Maintain the null hypothesis.  (a) Ut = [ut+1, ut+1zt, zt′]′ is covariance stationary 

with 2
t+1Eu  = 2, (b) E(ut+1| x1,t, ut+1-j j  1) = 0, (c) For some r > 8 Ut is uniformly Lr bounded, (d) 

For some r > d > 2, Ut is strong mixing with coefficients of size rd/(r  d), (e)  

-1 'T T
t=1 t=1T t t t tlim T E( U -EU )( U -EU )    = V <  is p.d.. 

 
Assumption 2′: Maintain the alternative hypothesis and let Ut = [ut+1, ut+1zt, zt′]′. (a) E(ut+1| x1,t, 

ut+1-j j  1) = 0, (b) For some r > 8 Ut is uniformly Lr bounded, (c) For some r > d > 2, Ut is 

strong mixing with coefficients of size rd/(r  d), (d)  -1 'T T
t=1 t=1T t t t tlim T E( U -EU )( U -EU )    = 

V <  is p.d.. 

 
 Assumption 1 is largely notational but is stated explicitly in order to make the relevant 

environment clear.  We restrict attention to breaks in the intercept of OLS estimated linear 

regression models.  As such we can map the alternative into testing whether or not the scalar *
3,2  
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takes the value zero.  Assumptions 2 and 2′ are more substantive but are standard.  The primary 

difference between these is that under the null we require that the subset of predictors zt be 

covariance stationary.  Under the alternative we do not.  We make this distinction explicit 

because we want to handle environments where lagged dependent variables are used as 

predictors and hence, when a break occurs, they will fail to be covariance stationary.  The 

moment and mixing conditions are sufficient for application of weak convergence results in 

Hansen (1992).  The assumption that the population forecast errors are martingale differences 

insures that the asymptotic null distribution is pivotal but is not needed for consistency of the 

test.  Note that we allow for the forecast errors to be conditionally heteroskedastic. 

2.1 Chow Test 

 For the Chow test two linear models, ' *
i,t ix β , i = 1,2, are each estimated using OLS.  We 

denote the residuals associated with models 1 and 2 as 1,t+1v̂  = '
t+1 1,t 1,T

ˆy -x β  and 2,t+1v̂  = 

'
t+1 2,t 2,T

ˆy -x β  respectively.  The actual statistic takes the form 

 

(1)   W = 
1 2 1 2T T

s=1 s=11,s 1 2,s 1

1 2T
s=1 2,s 1

ˆ ˆ(T v ) (T v )
T

ˆ(T v )

 
 




 



. 

 
The following Theorem provides the null limiting distribution of the Chow test allowing the 

potential break location to satisfy limR/T  [0, 1]. 

 
Theorem 2.1: Maintain Assumptions 1 and 2 and let z1 and z2 denote independent standard 

normal variates.  (i) if limR/T =   (0,1) then W d [(1)1/2z1  1/2z2]
2, (ii) if limR/T = 0 then 

W d 
2
1z , (iii) if limR/T = 1 then W d 

2
2z . 
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 Note that in cases (i)-(iii) of Theorem 2.1, the test statistic is asymptotically chi-square(1).  

Case (i) is the standard case in which both z1 and z2 contribute to the limiting distribution but 

since the quadratic form is reduced rank we retain only 1 degree of freedom.  Cases (ii) and (iii) 

differ in that only z1 or z2 contribute to the limiting distribution.  Regardless, asymptotically 

valid critical values are readily obtained. 

 Cases (ii) and (iii) lead to another potentially useful result.  Note that these two cases imply 

that two Chow tests, one constructed at the beginning of the sample and a second constructed at 

the end of the sample, are asymptotically independent of one another.  This allows for the simple 

construction of a max-Chow test for structural breaks at either the beginning or end of the 

sample.  In the following let W1 and W2 denote Chow tests as in (1) with corresponding potential 

break point location R1 and R2 respectively. 

 
Corollary 2.1: Maintain Assumptions 1 and 2 and let z1 and z2 denote independent standard 

normal variates.  If limR1/T = 0 and limR2/T = 1 then Wmax = max[W1, W2] d max[ 2
1z , 2

2z ]. 

 
 As we will see in Theorem 2.2, the ability of these tests to detect alternatives at the ends of 

the sample depends crucially upon the distance between the potential break point and the actual 

break point.  In the notation of Corollary 2.1, W2 has little power to detect alternatives at the 

beginning of the sample while W1 has little power to detect alternatives at the end of the sample.  

Clearly the max-Chow test overcomes the problem of testing for breaks when one is unwilling to 

assume that the hypothesized break is known to have occurred at a particular end of the sample. 

 Choosing asymptotically valid critical values for the max-Chow test is particularly simple 

using standard methods.  Let Fz(.) denote the c.d.f. associated with a chi-square(1) variate and let 

 denote the chosen size of the test.  Algebra reveals that the (1)-percentile associated with 
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Wmax equals 1 1/ 2
zF ((1 ) )   .  These values are easily approximated using chi-square tables for   

{0.10, 0.05, 0.01}.  Constructing asymptotically valid estimates of the p-value associated with 

the test are also readily constructed using the approximation 1.0  Fz(Wmax)
2. 

 We now turn attention to the power of Chow tests.  As previously noted we only consider 

power against alternatives that are local to the ends of the sample.  We derive our results on the 

power of these tests in two steps.  In the first we provide general propositions that show that the 

relationship between the location of the potential break and the actual break determines whether 

or not these tests will detect an alternative that is local to the end of the sample.  In the second we 

specialize these results to a particular parameterization of these locations. 

 
Theorem 2.2: Maintain Assumptions 1 and 2′.  (i) If R  TB then W = Op(R

2
BP /PT), (ii) If R  

TB then W = Op(P
2
BT /RT). 

 
Corollary 2.2: Maintain Assumptions 1 and 2′ and let limR1/T = 0 and limR2/T = 1. (i) If R1  

TB then Wmax = Op(P1
2
BT /R1T), (ii) If R2  TB then Wmax = Op(R2

2
BP /P2T), (iii) If R2  TB and R1 

 TB then Wmax = Op(max[R1
2
BP /P1T, P2

2
BT /R2T]). 

 Theorem 2.2 and its corollary shows that consistency of the tests depend crucially upon the 

relationships among R, P, TB and PB.  The details of these relationships depend however on the 

parameterization of the location of potential and actual breaks R and TB.  Consider the 

parameterization mentioned in the introduction and hence let’s focus attention on detecting 

breaks at the end of the sample.  There we considered using TB = T  [(1-)Tb] and R = T  [(1-

)Ta] for scalars a,b satisfying 0 < a  1, 0 < b < 1 and 0 <  <1.  Note that by choosing this 

parameterization we are imposing the constraint that limR/T is non-zero.  We do so since the 
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power associated with such a potential break point location is uniformly lower than that for all 

other choices of R satisfying limR/T  (0,1] and hence is uninteresting. 

 Using this parameterization suppose that R  TB with a equal to 1.  This corresponds to case 

(i) in Theorem 2.2 with limR/T  (0,1).  To determine consistency note that  

 

  R 2
BP /PT = 

b 2T-[(1-λ)T] [(1-λ)T ]

[(1-λ)T] T
  2b-1(1 )T   

 
and hence the test is consistent against alternatives for which 1/2 < b < 1 but is inconsistent 

against alternatives for which 0 < b  1/2.  This is a somewhat surprising result since the case 

where limR/T  (0,1) is the standard one within the literature but within that literature it is 

‘known’ (see Dufour, Ghysels and Hall (1994) for a discussion) that the test is inconsistent 

against alternatives at the ends of the sample.  Our results show that result depends crucially 

upon the parameterization of the actual break point. 

 Now suppose that we again use the same parameterization but with a  (0,1).  Moreover 

suppose we use a conservative potential break point location so that R  TB and hence 0 < b  a 

< 1.  This also corresponds to case (i) in Theorem 2.2.  Similar arguments to that above reveal 

that R 2
BP /PT  2b-a(1-λ)T  and hence the test is consistent against alternatives for which a/2 < b  

a but is inconsistent against alternatives for which 0 < b  a/2.  This result makes clear that for 

any actual break point characterized by b there exists choices of potential break point parameters 

a such that the test is consistent.  Note however that we also obtain the result that for any 

potential break point location parameter a there exist alternatives that the test will not detect.  

Since we have assumed here that b  a we obtain the intuitive result that the optimal choice of 

potential break point location is to equate it to the actual break point location and hence a = b. 
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 Suppose again that we are using this parameterization and a  (0,1).  Moreover suppose we 

use an aggressive potential break point location so that R  TB and hence 0 < a  b < 1.  This 

corresponds to case (ii) in Theorem 2.2.  Similar arguments to that above reveal that P 2
BT /RT  

a(1-λ)T  and hence the test is consistent against all alternatives for which a  b < 1.  It is 

important to note here that this result essentially requires knowledge of the location of the break 

and hence consistency is not so surprising.  The downside of this result is that the power of the 

test is increasing in a.  That is, as we choose smaller values of a in order to insure consistency we 

are simultaneously lowering the rate at which the test diverges.  Since we have assumed here that 

a  b we once again obtain the intuitive result that the optimal choice of potential break point 

location is to equate it to the actual break point location and hence a = b. 

2.2 Predictive Test 

 Consider the Predictive (Ghysels and Hall, 1990) test for structural change in the intercept of 

a linear regression.  This test is equivalent to a test of zero mean prediction error as discussed in 

the literature on out of-sample testing.1  For that reason we are able to apply many existing 

results from West (1996) and West and McCracken (1998) when discussing the null asymptotics 

of these tests.  Not all results follow from this previous work however.  In particular, new null 

asymptotics are derived here for cases in which limR/T = 0. 

 For the Predictive tests only model 1 is estimated.  We denote the 1-step ahead forecast error 

from this model as 1,t+1û  = '
t+1 1,t 1,t

ˆy -x β  t = R,…,T.  We consider three distinct means of 

constructing the forecasts: the recursive, rolling and fixed schemes.  Under the recursive scheme, 

the regression parameters are reestimated with added data as forecasting moves forward through 

                                                 
1 The Predictive test is more generally equivalent to a test of efficiency in the literature on out-of-sample testing.  
Given our simple model, this simplifies to a test of zero mean prediction error. 
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time and hence for t = R,…,T, 1,t̂  depends upon observations s = 1,..,t.  Under the rolling 

scheme, only a fixed window of the past R observations are used and hence for t = R,…,T, 1,t̂  

depends upon observations s = t  R + 1,..,t.  Under the fixed scheme, forecasts are constructed 

in the same fashion as considered by Ghysels and Hall (1990).  That is, 1,t̂  is estimated only 

once using observations s = 1,..,R so that 1,t̂  = 1,R̂  for t = R,…,T. 

 Below we provide the formulas for the predictive tests.  Following suggestions made in West 

(1996) and West and McCracken (1998) we consider Predictive tests of the form 

 

(2a)   VR = 
-1/2 2T

t=R 1,t+1

-1 2T
t=R 1,t+1

ˆ(P u )

ˆ(P u )




    Recursive, 0  limR/T  1, 

(2b)  VL = 
-1/2 2T

t=R 1,t+1

-1 2T
t=R 1,t+1

ˆ(P u )

ˆ(2R/3P)(P u )




   Rolling with 0  limR/T  1/2 

(2c)  VL = 
-1/2 2T

t=R 1,t+1

2 -1 2T
t=R 1,t+1

ˆ(P u )

ˆ(1-(P/R) /3)(P u )




  Rolling with 1/2  limR/T  1 

(2d)  VF = 
-1/2 2T

t=R 1,t+1

-1 2T
t=R 1,t+1

ˆ(P u )

ˆ(1+P/R)(P u )




    Fixed (Split Sample) 

 West (1996) considers the null asymptotics for the recursive scheme when 0  limR/T  1 

while West and McCracken (1998) consider null asymptotics for the fixed and rolling schemes 

when 0 < limR/T  1.  In Theorem 2.3 we provide new results for the rolling and fixed schemes 

when limR/T = 0.  This is important since the previous results indicate that the power of Chow 

tests to detect breaks at the beginning of the sample is improved if we consider potential break 

points at the beginning of the sample.  The same may hold for Predictive tests. 
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Theorem 2.3: Maintain Assumptions 1 and 2 and let limR/T = 0.  When the rolling scheme is 

used make the additional assumption that limP/R3/2 = 0.  For the rolling and fixed schemes, V d 

chi-square(1). 

 
 Theorem 2.3 fills a gap in the literature on Predictive tests by showing that even if we let the 

potential break point be chosen close to the beginning of the sample we can still obtain an 

asymptotically chi-square test of the null.  Since this is not a surprising result we now turn 

attention to the power of Predictive tests.  As before we only consider power against single break 

alternatives that are local to the ends of the sample.  We first derive general results on the power 

of these tests for arbitrary actual break locations TB and then we specialize these results to a 

particular parameterization of these locations. 

 
Theorem 2.4: Maintain Assumptions 1 and 2′ and consider the recursive scheme. (i) If R  TB 

then VR = Op( B

2 -1 2T
t=TBT ( t ) /P ), (ii) If R  TB then VR = Op(

2 -1 2T
t=RBT ( t ) /P ). 

 
Theorem 2.5: Maintain Assumptions 1 and 2′ and consider the rolling scheme. 

(a) Let 0  limR/T  1/2: (i) If TB  R then VL = Op(max[P/R, 4
BT /R3]), (ii) If TB > max[R, P] 

then VL = Op(max[P/R, 2 2
B BP (2R-P ) /R3]), (iii) If R < TB < P then VL = Op(max[P/R, R]). 

(b) Let 1/2 < limR/T  1: (i) If TB  R then VL = Op(
2 2
B BP (2R-P ) /PR2), (ii) If TB < min[R, P] then 

VL = Op(
4
BT /PR2), (iii) If P < TB < R then VL = Op(

2
BP(2T -P) /R2). 

 
Theorem 2.6: Maintain Assumptions 1 and 2′ and consider the fixed scheme. (i) If R  TB then 

VF = Op(P
2
BT /RT), (ii) If R  TB then VF = Op(R

2
BP /PT). 
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 The results for each forecasting scheme again clearly indicate that the relationships among R, 

P, TB and PB are crucial for determining whether the test will be consistent and at what rate it 

will diverge if it is.  For the fixed scheme the orders of magnitude match those of the Chow test 

and as such are easily interpretable.  Those for the rolling scheme are distinct but straightforward 

to calculate.  This is not the case for the recursive scheme since closed form (asymptotic) 

approximations for terms like 
B

2 -1 2T
t=TBT ( t ) /P  and 2 -1 2T

t=RBT ( t ) /P  are not easily obtained.  

However, one can show that these are at least of the same order as those associated with the 

fixed schemes.  For example, consider case (i) and let limTB/T = 1.  Algebra reveals that 

B

2 -1 2T
t=TBT ( t ) /P   

B

2 -1 2T
t=TBT ( T ) /P  = 2 2 2

B BT P /PT   2b-a(1-λ)T  and hence the test is consistent 

against alternatives for which a/2 < b  a but inconsistent against those for which 0 < b  a/2. 

 
3. Monte Carlo Evidence 

 In this section we provide Monte Carlo evidence on the usefulness of the Chow and 

Predictive tests when breaks occur at the ends of the sample.  For a range of sample sizes and 

break point locations we evaluate the finite sample size and power of the tests.  For brevity we 

restrict attention to results for the Chow, max-Chow and recursive Predictive test.  Unreported 

simulations indicate that the fixed Predictive test behaves similar to the Chow test under the null2 

while its power is usually lower than that using the recursive scheme.  Results for the rolling 

Predictive test are subject to large size distortions (e.g. rejections frequencies near 60% for a 

nominally 5% test!).  That the rolling test for zero mean prediction error is subject to large size 

distortions is also found in West and McCracken (1998). 

 

                                                 
2 In the proof of Theorem 2.3 we are able to establish that the fixed Predictive test and the Chow test are 
asymptotically equivalent in probability under the null. 
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3.1 Monte Carlo Design 

 The data-generating process has the representation 

 

  t

t

y

x

 
 
 

 = 
*
0tβ

0

 
 
 

 + t-1

t-1

y0.3 0.1

x0 0.5

  
  

  
 + y,t

x,t

u

u

 
 
 

 

 
for i.i.d. mutually independent standard normal disturbance uy,t and ux,t.  The intercept *

0tβ  takes 

the value 0 prior to the time of the break and takes the value 1 afterwards – an increase of a little 

less than one standard deviation.  In the size experiments the parameter *
0tβ  takes the value 0 

throughout the entire sample of T  {100, 200, 400, 800, 1600, 3200} observations.  Starting 

values for yt and xt were drawn from the unconditional distribution.  The rejection frequency is 

estimated based upon 5000 replications. 

 Throughout the experiments we consider actual and potential break point locations using the 

parameterization suggested in the text.  That is, when a break occurs at the end of the sample, it 

does so at time TB = T  [(1)Tb] for b  {0.1, 0.2, …, 0.8, 0.9} and  = 0.85.  The choice of 

parameter  = 0.85 is motivated by suggestions in Andrews (1993) while the choice of 

parameters b was made simply to span the unit interval.  For brevity we only provide Monte 

Carlo evidence on breaks that occur at the end of the sample. 

 When the potential break location is at the end of the sample it does so at time R = T  

[(1)Ta] for a  {0.1, 0.2, …, 0.8, 0.9, 1.0} and  = 0.85.  Note that although we allow the 

potential break location to lie on the interior of the sample (i.e. a = 1.0) we do not allow the same 

for the actual break location.  When the potential break location occurs at the beginning of the 

sample it does so at time R = [(1)Ta] for similar values of  and a.  When the max-Chow test 

is constructed we assume that the choice of potential break locations is symmetric in the sense 
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that R1 = T  R2 and hence the same value of b can be associated with each of the two potential 

break points.  Note that as a practical matter, we model the potential breaks as indicating that a 

break occurs between time R and R+1 and hence any dummy variables used in the construction 

of the test take the value zero at time R and take the value 1 at time R+1. 

 Table 1 reports the numerical values for the actual and potential break locations associated 

with the parameterization discussed above.  These locations vary with the sample size T but do 

so more slowly than they would if we were using the standard parameterization [T] for the 

actual and potential break points.  Note that for a fixed value of T, there is no variation in the 

location of the actual and potential break point locations for small values of a and b.  This, along 

with the finite sample sizes, implies that there are instances in which the tests cannot be 

numerically constructed.  For instance to construct the recursive Predictive test we require that P 

is at least equal to two and R is at least equal to 1.  Similarly, for the Chow test we need both R 

and P to be at least equal to one.  As we will see in the tables there are times where the tests 

cannot be constructed and these are denoted “N.A.”. 

 When the tests can be constructed we do so using an OLS estimated linear regression model 

for the variable yt+1.  The linear model always includes an intercept and first lags of both yt+1 and 

xt as predictors.  At times the linear model includes the dummy variable dt,R indicating the 

location of the potential break as necessary for construction of the relevant test statistic. 

3.2 Size Results 

 Table 2 reports the actual size of 5% nominal tests for each of the three test statistics when 

the potential break location is at the end of the sample.  In the first panel we see that for a fixed 

value of a, the recursive Predictive tests tend to have higher size distortions at the smaller sample 

sizes but as the sample size increases the size distortions decrease.  For example when a = 0.6 the 
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size of the test varies across 0.306, 0.187, 0.118, 0.088, 0.074, 0.065 as the sample size T 

increases from 100 to 3200. 

 In the second and third panels of Table 2 we find that the Chow and max-Chow tests are 

more reasonably sized than are the recursive Predictive tests.  These too are subject to some size 

distortions but are much less pronounced than those above.  For example when a = 0.9 the size of 

the max-Chow test varies across 0.076, 0.060, 0.056, 0.047, 0.050, 0.055 as the sample size T 

increases from 100 to 3200. 

 It is important to emphasize that the Chow and max-Chow tests tend to be reasonably well-

sized across all potential break locations for any fixed sample size.  This is not the case for the 

recursive Predictive test.  The Predictive test becomes increasingly oversized as the potential 

break location gets closer to the end of the sample.  For example when T = 1600 the size of the 

test varies across 0.050, 0.053, 0.064, 0.065, 0.074, 0.111, 0.313 as the potential break location 

parameter a decreases from 1.0 to 0.4.  In the same experiment the Chow test remains near 5% 

regardless of the parameter a. 

 Table 3 reports the actual size of 5% nominal tests for each of the three test statistics when 

the potential break location is at the beginning of the sample.  In each of the three panels the 

actual size of the test remains near 5% for all sample sizes and potential break locations.3  This is 

to be expected for the Chow and max-Chow tests since the test is constructed in a symmetric 

fashion to those from Table 2.  Since the recursive test is constructed differently, and we now 

have more out-of-sample observations to construct the test (i.e. P is large), it is not surprising 

that the test is more reasonably sized. 

 

 
                                                 
3 Note that the third panel of Tables 2 and 3 are identical by construction. 
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3.3 Power Results 

 Tables 4 - 6, 7 - 9 and 10 - 12 provide evidence on the power of the three tests when we 

allow the locations of the potential and actual break points to vary while holding the sample sizes 

fixed at T = 200, 800, 3200.  Tables 4, 7, 10 correspond to the recursive Predictive test, Tables 5, 

8, 11 correspond to the Chow test and Tables 6, 9, 12 correspond to the max-Chow test.  For 

each of the Predictive and Chow tests we consider power of the test when the potential break 

point location is correctly chosen at the end of the sample and incorrectly chosen at the 

beginning of the sample.  Below we discuss several of the most important observations. 

Location of Actual Break Relative to Potential Break 

 For each test and for each choice of potential and actual break location, power of the test 

increases with the sample size.  When the potential break location is correctly chosen so that a = 

b = 0.5 the power of the recursive Predictive test varies across 0.511, 0.557, 0.800 as T increases 

from 200 to 3200.  Similarly, the power of the Chow test varies across 0.295, 0.505, 0.805 as T 

increases from 200 to 3200.  To conclude that the power of the recursive Predictive test can 

dominate that of the Chow test is misleading due to the previously discussed size distortions. 

 Recall that the theory from Section 2 suggests that when the actual and potential break points 

are the same, the power of the test should increase as the actual break point approaches the 

interior of the sample.  For example, in the first panel of Table 7 the power of the recursive 

Predictive test varies across 0.498, 0.557, 0.785, 0.972, 0.999, 1.000 as the parameter a (= b) 

varies from 0.4 to 1.0.  In the first panel of Table 8 the power of the Chow test varies across 

0.167, 0.276, 0.505, 0.803, 0.978, 0.999, 1.000 as the parameter a varies from 0.3 to 1.0. 

 Similarly, recall that the theory from Section 2 suggests that the power of the test should 

increase as the potential break point approaches the location of the actual break point.  This holds 
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for all sample sizes and all tests.  This implies that for any given row we often see power 

increase and then decrease in a hump-shaped fashion with the hump occurring when a = b.  For 

example in the first panel of Table 4 when b = 0.8 the power of the recursive Predictive test 

varies across 0.407, 0.649, 0.835, 0.616, 0.439, 0.469 as the parameter a varies from 1.0 to 0.5.  

In the first panel of Table 8 when b = 0.5 the power of the Chow test varies across 0.061, 0.091, 

0.133, 0.233, 0.405, 0.505, 0.276, 0.166 as the parameter a varies from 1.0 to 0.3. 

 Since the actual breaks are at the end of the sample the theory predicts that when the 

potential break is at the beginning of the sample we should observe substantially reduced power.  

In the second panel of Table 10 when b = 0.8 the power of the recursive Predictive test varies 

across 0.418, 0.391, 0.371, 0.365, 0.363, 0.364, 0.352, 0.352 as the parameter a varies from 1.0 

to 0.3.  In the second panel of Table 11 when b = 0.8 the power of the Chow test varies across 

0.082, 0.052, 0.046, 0.041, 0.036, 0.040, 0.043 as the parameter a varies from 1.0 to 0.4.  In each 

of these cases the power of the test is reduced relative to when the potential break was correctly 

chosen at the end of the sample rather than the beginning.  The reduction in power is most severe 

for the Chow test with power essentially equal to the size of the test.  This is of course the exact 

situation for which the max-Chow was designed.  In Table 12 when b = 0.8 the power of the 

max-Chow test varies across 0.955, 1.000, 1.000, 1.000, 0.972, 0.647, 0.258 as the parameter a 

varies from 1.0 to 0.4. 

Comparisons Among the Three Tests 

 There are some clear relationships among the three test statistics in terms of power.  Recall 

that in each of the power simulations the actual break occurs at the end of the sample.  In such an 

environment we expect that the Chow tests, with potential break points chosen at the end of the 

sample, will have greater power than the max-Chow tests.  Since Chow tests constructed at the 
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beginning of the sample have no power to detect breaks at the end of the sample it seems likely 

that the power of max-Chow tests will be reduced regardless of the fact that asymptotically 

appropriate critical values are being used.  This is usually the case when the actual and potential 

break point parameters are large.  For example, in the first panel of Table 5 and when b = 0.9 we 

find that the power of the Chow test varies across 0.827, 0.973, 0.790, 0.526, 0.265, 0.189, 0.110 

as a changes from 1.0 to 0.4 while in a similar experiment the power of the max-Chow test varies 

across 0.742, 0.948, 0.693, 0.420, 0.193, 0.143. 

 Comparing the power of the Chow and the recursive Predictive test is a bit more 

complicated.  For each of the Chow and max-Chow tests the actual size of the test was always 

close to the nominal size of 5%.  That is not the case for the recursive Predictive test.  As the 

potential break point location gets closer to the end of the sample the size distortions become 

quite large.  In such a situation it is not clear how to evaluate whether one test is more powerful 

than the other.  On the other hand, when the break location is not so close to the end of the 

sample (a = 1.0, 0.9, 0.8) the size of the Predictive tests are reasonable.  In these situations the 

power of the Chow test dominates that of the Predictive test so long as the actual break point is 

not too near the end of the sample.  In Table 4 when a = 0.9 the power of the Predictive test 

varies across 0.797, 0.960, 0.766, 0.548, 0.392, 0.436 as b varies from 1.0 to 0.5.  In Table 5 the 

Chow test varies across 0.827, 0.973, 0.790, 0.526, 0.265, 0.189 in the same experiment.  If we 

make the comparison with T = 3200, Tables 10 and 11 indicate that the distinction is moot since 

each rejects the null 100% of the time for large break parameters a and b. 

 When the potential break locations are at the beginning of the sample the recursive Predictive 

test clearly dominates the Chow test so long as the actual break is not too near the end of the 

sample.  That is, in the second panel of Tables 4, 7 and 10 the rows associated with b = 0.8 and 
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0.9 are uniformly larger than those associated with Tables 5, 8 and 11.  Once again the Chow test 

is not as robust as the recursive Predictive test to large deviations of the potential and actual 

break locations.  As soon as we consider the max-Chow results in Tables 6, 9 and 12 however, 

we find that it usually the case that the max-Chow dominates the recursive Predictive test. 

 
4. Conclusion 

 In this paper we provide a set of refined asymptotics for standard Chow and Predictive tests 

for structural change in the intercept from a linear regression.  By treating the locations of the 

actual and potential break point locations as general integer valued functions we are able to 

establish the behavior of these tests under the null of no breaks and under a collection of 

alternatives that allow for breaks to occur “local to the end” of the sample.  In particular we 

establish that the tests are asymptotically chi-square under the null and can be consistent against 

a range of alternatives.  In doing so we also establish the rates at which the tests diverge against 

these alternatives.  Monte Carlo simulations verify the asymptotic results and suggests that the 

tests can be useful in large samples. 
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5. Appendix 

 
Theorem 2.1: Maintain Assumptions 1 and 2 and let z1 and z2 denote independent standard 

normal variates.  (i) if limR/T =   (0,1) then W d [(1)1/2z1  1/2z2]
2, (ii) if limR/T = 0 then 

W d 
2
1z , (iii) if limR/T = 1 then W d 

2
2z . 

Proof of Theorem 2.1: It is straightforward to show that 1 2T
t=1 2,t 1ˆT v

  p 2 and hence we 

proceed immediately to the numerator.  Note that for M(T) = JB1(T)J′ + B2(T) and F1 = 

-1 ' -1 -1 ' -1T T T
t=1 t=1 t=1t t t t(T z z -(T z )(T z ))   , 

 
 2 2T

t=1 1,t+1 2,t+1ˆ ˆ(v -v )  = '
2 2TH (T)M(T)H (T)  

  = -1 -1 ' -1 -1 -1T R-1 T R-1
t=R t=1 t=R t=1t t 1 t t2

PR
[1-( )(P z -R z ) F (P z -R z )]

T
     

    { 1/2 -1 -1 ' -1/2 -1/2 -1T R-1 T T T
t=R t=1 t=1 t=1 t=1t t 1 t+1 t t+1 t2

PR
[( ) (P z -R z ) F ((T u z )-(T u )(T z ))]

T
      

     + 1/2 -1/2 T
t=1 t+1

P
( ) [T u ]

R
   1/2 -1/2 T

t=R t+1

T
( ) [P u ]

R
 }2  

  = -1 -1 ' -1 -1 -1T R-1 T R-1
t=R t=1 t=R t=1t t 1 t t2

PR
[1-( )(P z -R z ) F (P z -R z )]

T
     

    { 1/2 -1 -1 ' -1/2 -1/2 -1T R-1 T T T
t=R t=1 t=1 t=1 t=1t t 1 t+1 t t+1 t2

PR
[( ) (P z -R z ) F ((T u z )-(T u )(T z ))]

T
      

     + [ 1/2 -1/2 R
t=1 t+1

P
( ) [R u ]

T
   1/2 -1/2 T

t=R t+1

R
( ) [P u ]

T
 ]}2. 

 
Assumption 2 suffices for each of F1, 

-1/2 T
t=1 t+1 tT u z , -1/2 T

t=1 t+1T u  and -1 T
t=1 tT z  to be Op(1).  

Moreover we obtain -1 -1T R-1
t=R t=1t tP z -R z   = op(1) since under the null, zs is covariance stationary.  

By continuity we then obtain  



 21

 2 2T
t=1 1,t+1 2,t+1ˆ ˆ(v -v )  = { 1/2 -1/2 R

t=1 t+1

P
( ) [R u ]

T
   1/2 -1/2 T

t=R t+1

R
( ) [P u ]

T
 }2 + op(1). 

 
Given Assumption 2, Theorem 3.2 of Hall and Heyde (1980) implies that each of -1/2 R

t=1 t+1R u  

and -1/2 T
t=R t+1P u  are asymptotically normal with zero mean and variance 2.  Since the forecast 

errors are uncorrelated we also know that these two terms are asymptotically independent.  

Choosing limR/T appropriately we obtain cases (i) - (iii) in the Theorem. 

 
Corollary 2.1: Maintain Assumptions 1 and 2 and let z1 and z2 denote independent standard 

normal variates.  If limR1/T = 0 and limR2/T = 1 then Wmax = max[W1, W2] d max[ 2
1z , 2

2z ]. 

Proof of Corollary 2.1: Proof follows directly from the fact that 1-1/2 R
t=11 t+1R u  and 

2

-1/2 T
t=R2 t+1P u  

are each asymptotically normal and uncorrelated. 

 
Theorem 2.2: Maintain Assumptions 1 and 2′.  (i) If R  TB then W = Op(P

2
BT /RT), (ii) If R  

TB then W = Op(R
2
BP /PT). 

Proof of Theorem 2.2: It is straightforward to show that 1 2T
t=1 2,t 1ˆT v

  p  > 0 and hence we 

proceed immediately to the numerator.  Note that for F1 =
-1 ' -1 -1 ' -1T T T

t=1 t=1 t=1t t t t(T z z -(T z )(T z ))   , 

M(T) = JB1(T)J′ + B2(T) and F2 =
2

-1 -1 ' -1 -1 -1T R-1 T R-1
t=R t=1 t=R t=1t t 1 t t2

T PR
( )[1-( )(P z -R z ) F (P z -R z )]

RP T
    , 

 
 2 2T

t=1 1,t+1 2,t+1ˆ ˆ(v -v )  = '
2 2TH (T)M(T)H (T)  + ' ' 1 *

2 1 3 2 23 32TH (T)( JB (T)J B (T) B (T)D (T))    

   + 
B

*' *
3 31/ 2 1/ 2 1 ' 1 2T TB B

t R t T2 2 1,t 1 B 1,t

0 0
T min(P, P ) P P

0 (( )F ( )( )F (P x )B (T)(P x ))
T T T

 
 

 
  
    
 

. 
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That '
2 2TH (T)M(T)H (T)  = Op(1) follows from Theorem 2.1.  To show that the second term 

' ' 1 *
2 1 3 2 23 32TH (T)( JB (T)J B (T) B (T)D (T))    is of lower order than the third term follows from 

similar arguments to those used to derive the order of the third term.  We therefore proceed to 

deriving the order of the third term. 

 Recall that under the alternative hypothesis *
3,2   0.  If we substitute in the definition of F2 

and compute the term 
B

1 ' 1T T
t R t T1,t 1 B 1,t(P x )B (T)(P x ) 
    the third term above can be rewritten as  

 

 
B

* 2 1/2 1/2 -1 ' -1 2T TB B
t=R t=T3,2 2 2 1,t 1 B 1,t

min(P,P ) P P
T(β ) (( )F -( )( )F (P x )B (T)(P x ))

T T T
   

  = * 2
3,2( )   -1 -1 ' -1 -1 -1T R-1 T R-1

t=R t=1 t=R t=1t t 1 t t2

PR
[1-( )(P z -R z ) F (P z -R z )]

T
       

   B

B

3
-1 -1 ' -1 -1 2T -1T R-1 TB B B B

t=R t=1 t=T t=1t t 1 B t B t2 4

T min(P,P ) PP PP RT
( )[ -( )-( )(P z -R z ) F (P z -T z )]

RP T T T
    . 

 
If we now consider the two cases the above term can be rewritten as 

 

 
B

* 2 1/2 1/2 -1 ' -1 2T TB B
t=R t=T3,2 2 2 1,t 1 B 1,t

min(P,P ) P P
T(β ) (( )F -( )( )F (P x )B (T)(P x ))

T T T
   

  = 

B

B

-1 -1 ' -1 -1 2T -1T R-1 TB
2 t=R t=1 t=T t=1t t 1 B t B t2

* 2B
3,2 B

-1 -1 ' -1 -1T R-1 T R-1
t=R t=1 t=R t=1t t 1 t t2

-1 -1T RB
2 t=R t=1t t2

* 2B
3,2

P R
(1-( )(P z -R z ) F (P z -T z ))PT T( )( ) [ ] P P

PRRT 1-( )(P z -R z ) F (P z -R z )
T

PT
(1-( )(P z -R zP R T( )( ) [

PT

   
 

   




B

B

' -1 -1 2T -1-1 T
t=T t=11 B t B t

B
-1 -1 ' -1 -1T R-1 T R-1

t=R t=1 t=R t=1t t 1 t t2

) F (P z -T z ))
] P P

PR
1-( )(P z -R z ) F (P z -R z )

T







   
 

   

. 

 
Assumption 2′ suffices for each of F1, 

-1 T
t=R tP z , -1 R-1

t=1 tR z , 
B

-1 T
t=TB tP z  and B-1 T 1

t=1B tT z  to be 

Op(1).  By continuity we then know that each of  
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B

B

-1 -1 ' -1 -1 2T -1T R-1 TB
t=R t=1 t=T t=1t t 1 B t B t2

-1 -1 ' -1 -1T R-1 T R-1
t=R t=1 t=R t=1t t 1 t t2

P R
(1-( )(P z -R z ) F (P z -T z ))

T
PR

1-( )(P z -R z ) F (P z -R z )
T

   

   
 

and 

  

B

B

-1 -1 ' -1 -1 2T -1T R-1 TB
t=R t=1 t=T t=1t t 1 B t B t2

-1 -1 ' -1 -1T R-1 T R-1
t=R t=1 t=R t=1t t 1 t t2

PT
(1-( )(P z -R z ) F (P z -T z ))

T
PR

1-( )(P z -R z ) F (P z -R z )
T

   

   
 

 
are Op(1) with strictly positive probability limits.  This implies that the order of magnitude of the 

statistic is determined by the lead terms in the right-hand side of the previous equality and we 

have the desired result. 

 
Corollary 2.2: Maintain Assumptions 1 and 2′ let limR1/T = 0 and limR2/T = 1. (i) If R1  TB 

then Wmax = Op(P1
2
BT /R1T), (ii) If R2  TB then Wmax = Op(R2

2
BP /P2T), (iii) If R2 > TB and R1 < 

TB then Wmax = Op(max[R1
2
BP /P1T, P2

2
BT /R2T]). 

Proof of Corollary 2.2: (i) From Theorem 2.2 we know that W1 = Op(P1
2
BT /R1T) while W2 = 

Op(P2
2
BT /R2T).  The result is immediate since R2 > R1 implies P1/R1 > P2/R2. 

(ii) From Theorem 2.2 w know that W1 = Op(R1
2
BP /P1T) while W2 = Op(R2

2
BP /P2T).  The result 

is immediate since R2 > R1 implies R1/P1 < R2/P2. 

(iii) The result is trivial given continuity of the max[.,.] function. 

 
Theorem 2.3: Maintain Assumptions 1 and 2 and let limR/T = 0.  When the rolling scheme is 

used make the additional assumption that limP/R3/2 = 0.  For the rolling and fixed schemes, V d 

chi-square(1). 
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Proof of Theorem 2.3: Consider the fixed scheme with limR/T = 0.  It is straightforward to 

show that -1 2T
t=R 1,t+1ˆP u  p 2 and hence we proceed immediately to the numerator.  Since 

-1/2 2T
t=R 1,t+1ˆ(P u ) /(1+P/R)  = 1/2 -1/2 2T

t=R 1,t+1ˆ((R/T) P u )  we turn our attention to the limiting 

distribution of 1/2 -1/2 T
t=R 1,t+1ˆ(R/T) P u .  Adding and subtracting appropriate terms we obtain 

 
  1/2 -1/2 T

t=R 1,t+1ˆ(R/T) P u  = 1/2 -1/2 T
t=R t+1(R/T) P u   1/2 -1/2 'T

t=R 1,t 1 1(R/T) P x B (R)H (R)  

   = 1/2 -1/2 T
t=R t+1(R/T) P u   1/2 -1 'T

t=R 1,t 1 1(RP/T) (P x )B (R)H (R)  

   = 1/2 -1/2 T
t=R t+1(R/T) P u   1/2 -1/2 R-1

t=1 t+1(P/T) (R u )  

    + 1/2 -1 -1 ' -1/2 -1 -1/2T R R R R
t=R t=1 t=1 t=1 t=1t t 1,R t+1 t t+1 t(P/T) (P z -R z ) F ((R u )(R z )-(R u z ))      

 
where F1,R = -1 ' -1 -1 ' -1R-1 R-1 R-1

t=1 t=1 t=1t t t t(R z z -(R z )(R z ))   .  Assumption 2 suffices for each of F1,R, 

-1/2 R-1
t=1 t+1 tR u z , -1/2 R-1

t=1 t+1R u  and -1 R-1
t=1 tR z  to be Op(1).  Moreover we obtain -1 T

t=R tP z   

-1 R-1
t=1 tR z  = op(1) since under the null, zt is covariance stationary.  By continuity we then obtain 

 

  ( 1/2 -1/2 T
t=R 1,t+1

R
ˆ( ) P u

T
 )2 = { 1/2 -1/2 R-1

t=1 t+1

P
( ) [R u ]

T
   1/2 -1/2 T

t=R t+1

R
( ) [P u ]

T
 }2 + op(1). 

 
The result then follows from Theorem 2.1 since this expansion is identical to that for the Chow 

test.  We therefore obtain the additional result that the fixed Predictive test and the Chow are 

asymptotically equivalent in probability. 

 Consider the rolling scheme with limR/T = 0.  It is straightforward to show that -1 2T
t=R 1,t+1ˆP u  

p 2 and hence we proceed immediately to the numerator.  Since -1/2 2T
t=R 1,t+1ˆ(P u ) /(2R/3P)  = 



 25

1/2 -1/2 2T
t=R 1,t+1ˆ((3/2) R u )  we turn our attention to the limiting distribution of -1/2 T

t=R 1,t+1ˆR u .  

Adding and subtracting appropriate terms we obtain 

 
  -1/2 T

t=R 1,t+1ˆR u  = -1/2 T
t=R t+1R u   -1/2 'T

t=R 1,t 1 1R x B (t)H (t) .       (1) 

 
 Consider the second right hand side term in (1).  Note that under the null ' -1

1,t 1,t(Ex x )  = B1 

and Ex1,t = F since zt is covariance stationary.  Using the identities B1(t) = [B1(t)  B1] + B1 and 

x1,t = [x1,t  F] + F we obtain 

 
 -1 ' -1/2T t

t=R s=t-R+11,t 1 1,s+1R x B (t)(R h )   

  = 3/ 2 T t
t R s t R 11 1,s 1R FB ( h )
       + -1 ' -1/2T t

t=R s=t-R+11,t 1 1,s+1R (x -F) B (R h )      (2) 

   + -1 ' -1/2T t
t=R s=t-R+11 1 1,s+1R F [B (t)-B ](R h )   + -1 ' -1/2T t

t=R s=t-R+11,t 1 1 1,s+1R (x -F) (B (t)-B )(R h )  . 

 
We will now show that the latter three right-hand side terms in (2) are op(1).  For both the second 

and third terms note that by taking absolute values we obtain 

 
  -1 ' -1/2T t

t=R s=t-R+11 1 1,s+1|R F [B (t)-B ](R h ) |   

     2 1/2 -1/2 t
s=t-R+1t 1 1 t 1,s+13/2

P
( )k (|F|)(sup R |B (t)-B |)(sup |R h |)

R
  

  -1 ' -1/2T t
t=R s=t-R+11,t 1 1,s+1|R (x -F) B (R h )|   

     2 -1 -1/2T t
t=R s=t-R+11,t 1 t 1,s+13/2

P
( )k (P |x -F|)(|B |)(sup |R h |)

R
  . 
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Assumption 2 is sufficient to show that each of -1 T
t=R 1,tP |x -F| , 1/2

t 1 1sup R |B (t)-B |  and 

-1/2 t
s=t-R+1t 1,s+1sup |R h |  are Op(1).  Since k2 is finite, the result follows since P/R3/2 is o(1).  For the 

fourth term in (2) note that 

 
 -1 ' -1/2T t

t=R s=t-R+11,t 1 1 1,s+1R (x -F) (B (t)-B )(R h )   

  = 1/2 -1/2 ' -1/2T t
t=R s=t-R+1 1,s+1 1,t2

P
( ) [ (R h ) (P (x -F))]vec(B)

R
  . 

 
That -1/2 ' -1/2T t

t=R s=t-R+1 1,s+1 1,t(R h ) (P (x -F))   is Op(1) follows from Assumption 2 and Theorem 

3.1 of Hansen (1992).  The result follows since P/R2 is o(1) and B is finite. 

 Now return to the expression in (1).  Note that since x1,t contains 1 in the first element, FB1 = 

(-1, 0, 0, …, 0).  Since this also implies that the first element of h1,s+1 is us+1, we obtain  

 
  -1/2 T

t=R 1,t+1ˆR u = -1/2 T
t=R t+1R u   3/ 2 T t

t R s t R 1 s 1R ( u )
       + op(1). 

 
Now decompose T t

t R s t R 1 s 1( u )       into the terms A1, A2 and A3 as in the technical appendix in 

West (1996) but divide by R3/2: 

 
  R-3/2A1 = R-3/2[u1 + 2u2 + … + RuR], 

  R-3/2A2 = R-1/2[uR+1 + uR+2 + … + uP], 

  R-3/2A3 = R-3/2[(R-1)uP+1 + (R-2)uP+2 + … + uT]. 

 
The term R-3/2A2 is precisely the first (P-R) terms in 1/ 2 T

t R t 1R u
  .  Hence 1/ 2 T

t R t 1R u
    

3/ 2 T t
t R s t R 1 s 1R ( u )
       equals R-3/2A1 + [ 1/ 2 T

t P 1 t 1R u
    R-3/2A3].  Algebra then reveals that 
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  -1/2 T
t=R 1,t+1ˆR u  = 3/ 2 R

j 1 jR ju
   + 3/ 2 R 1

j 1 P jR ju 
   + op(1). 

 
 To show that the limiting variance of the sum is (2/3) first note that each of the two terms is 

uncorrelated with the other.  Taking expectations and rearranging terms we find that 

Var( -3/2 R
j=1 j-R ju ) = 2 -1 2R

s=1σ R (s/R)  = Var( 3/ 2 R 1
j 1 P jR ju 
  ) + o(1).  If we add the two 

components we obtain Var( -3/2 R
j=1 j-R ju  + -3/2 R-1

j=1 P+jR ju ) = 2 2 -1 2R
s=1σ R (s/R)  + o(1).  Using an 

argument akin to that in West (1996) we know that -1 2R
s=1R (s/R)   1 2

0 j dj  = 1/3.  From this we 

obtain the desired result. 

 We must then show that -3/2 R
j=1 j-R ju  + -3/2 R-1

j=1 P+jR ju  is asymptotically normal.  Define the 

sequence Zt,T = tR-3/2ut+1 for 1  t  R, Zt,T = 0 for R+1  t  P and Zt,T = R-3/2(T-t)ut+1 for P+1  

t  T+1.  Define T  Var( T
t 1 t ,TZ ) and XT,t  T

-1/2Zt,T.  Then Theorem 3.1 of Wooldridge and 

White (1998) implies that T
t 1 T,tX  is limiting standard normal.  Since limT =  = (2/3) is p.d. 

we conclude that 1/ 2 T
t R t 1ˆR u
   is limiting normal with asymptotic variance equal to (2/3). 

 
Theorem 2.4: Maintain Assumptions 1 and 2′ and consider the recursive scheme. (i) If R  TB 

then VR = Op( B

2 -1 2T
t=TBT ( t ) /P ), (ii) If R  TB then VR = Op(

2 -1 2T
t=RBT ( t ) /P ). 

Proof of Theorem 2.4:  It is straightforward to show that -1 2T
t=R 1,t+1ˆP u  p  > 0 and hence we 

proceed immediately to the numerator.  Adding and subtracting terms we obtain the expansion 

 
 -1/2 T

t=R 1,t+1ˆP u  = -1/2 T
t=R t+1P u   -1/2 'T

t=R 1,t 1 1P x B (t)H (t)   -1/2 ' ' -1 *T
t=R 3,t 1 3 3P x (JB (t)J B (t)-I)β  

   = -1/2 T
t=R t+1P u   -1/2 'T

t=R 1,t 1 1P x B (t)H (t)   -1/2 ' ' -1 *T
t=R 3,t 3,t 1 3 3P (x -Ex ) (JB (t)J B (t)-I)β  

      -1/2 ' ' -1 *T
t=R 3,t 1 3 3P (Ex ) (JB (t)J B (t)-I)β . 
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That the first three right-hand side terms above are bounded in probability follows from 

arguments like those in Theorem 2.3.  We now show that the fourth term is the appropriate order. 

 Recall that x3,t contains the term 
Bt,Td  in the final position.  This term takes the value one if t 

> TB and zero otherwise.  We must therefore consider separately the cases in which R > TB or R 

 TB.  Doing so we find that 3,tEx  = (Ex1,t′,
Bt,Td )′ while 

 

 ' -1
1 3JB (t)J B (t)-I  = 

B

B

-1 t
s=T1 1,s

B

0 0
T >t

0 -1

0 B (t)(t x )
T t

0 -1

 
 
 

    

. 

 
Algebra then reveals that  

 
 -1/2 ' ' -1 *T

t=R 3,t 1 3 3P (Ex ) (JB (t)J B (t)-I)β   

  = 

B

B B

-1/2 -1 *T
t=TB 3,2

B-1/2 -1 ' -1 -1 *T t t t
t=T s=1 s=1 s=TB s t 1,t s B s 3,2

-1/2 -1 *T
t=RB 3,2

-1/2 -1 ' -1t t
s=1 s=1B s t 1,t s B

(T P t )
R < T

           -P (1-T /t)(t z -Ez ) F (t z -(t-T ) z )

(T P t )

           -P (1-T /t)(t z -Ez ) F (t z -(t-T



   



 
B

B-1 *T t
t=R s=T s 3,2

R T
) z )





   

. 

 
Where F1,t = -1 ' -1 -1 ' -1t t t

s=1 s=1 s=1s s s s(t z z -(t z )(t z ))   .  For each of the possible two right-hand side 

terms the lead term has the highest order.  Cases (i) and (ii) follow from squaring those terms. 

 
Theorem 2.5: Maintain Assumptions 1 and 2′ and consider the rolling scheme.  (a) Let 0  

limR/T  1/2: (i) If TB  R then VL = Op(max[P/R, 4
BT /R3]), (ii) If TB > max[R, P] then VL = 

Op(max[P/R, 2 2
B BP (2R-P ) /R3]), (iii) If R < TB < P then VL = Op(max[P/R, R]).  (b) Let 1/2 < 

limR/T  1: (i) If TB  R then VL = Op(
2 2
B BP (2R-P ) /PR2), (ii) If TB < min[R, P] then VL = 
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Op(
4
BT /PR2), (iii) If P < TB < R then VL = Op(

2
BP(2T -P) /R2). 

Proof of Theorem 2.5: In either case (a) or (b) it is straightforward to show that -1 2T
t=R 1,t+1ˆP u  

p  > 0 and hence we proceed immediately to the numerator. 

(a) It suffices to show that -1/2 2T
t=R 1,t+1ˆ(R u )  satisfies cases (i), (ii) and (iii).  Adding and 

subtracting terms we obtain the expansion 

 
 -1/2 T

t=R 1,t+1ˆR u  = -1/2 T
t=R t+1R u   -1/2 'T

t=R 1,t 1 1R x B (t)H (t)   -1/2 ' ' -1 *T
t=R 3,t 1 3 3R x (JB (t)J B (t)-I)β  

   = 1/ 2 -1/2 T
t=R t+1(P / R) P u   1/ 2 -1/2 'T

t=R 1,t 1 1(P / R) P x B (t)H (t)        (3) 

      1/2 -1/2 ' ' -1 *T
t=R 3,t 3,t 1 3 3(P/R) P (x -Ex ) (JB (t)J B (t)-I)β   

       -1/2 ' ' -1 *T
t=R 3,t 1 3 3R (Ex ) (JB (t)J B (t)-I)β . 

 
Arguments like those in Theorem 2.3 suffice to show that -1/2 ' ' -1 *T

t=R 3,t 3,t 1 3 3P (x -Ex ) (JB (t)J B (t)-I)β , 

-1/2 'T
t=R 1,t 1 1P x B (t)H (t)  and -1/2 T

t=R t+1P u  are Op(1).  It is clear then that the first three right hand 

side terms in (3) are Op(
1/ 2(P / R) ). 

 For the final term note that 

 
   -1/2 ' ' -1 *T

t=R 3,t 1 3 3R (Ex ) (JB (t)J B (t)-I)β   

   =  -1/2 ' -1 *T t
t=R s=t-R+11,t 1 1,s B B 3,2R [Ex B (t)(R x 1(s T )-1(t T )]β    
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 = 

B

B

B

B

-1/2 *R+T B
t=R 3,2

B
-1/2 -1 ' -2 -1 *R+T t t t

t=R s=t-R+1 s=t-R+1 s=Ts t 1,t B s s 3,2

-1/2 *T B
t=T 3,2

-1/2 -1 ' -2t
s=t-R+1 s=t-R+1s t 1,t B s

t-T
-(R ( 1))

R T R
     -R (R z -Ez ) F ((t-T )R z -R z )

t-T
-(R ( 1))

R

     -R (R z -Ez ) F ((t-T )R z

 


   

 


B B

B

B

B

BB

B
-1 *T t t

t=T s=T s 3,2

-1/2 *T R B
t=T 3,2

B
-1/2 -1 ' -2 -1 *T R t t t

s=t-R+1 s=t-R+1 s=Tt=T s t 1,t B s s 3,2

T  > max[R,P]
-R z )

t-T
-(R ( 1))

R R < T P
     -R (R z -Ez ) F ((t-T )R z -R z )












   

   

   

 

 
where F1,t = -1 ' -1 -1 ' -1t t t

s=t-R+1 s=t-R+1 s=t-R+1s s s s(R z z -(R z )(R z ))   .  For each of the three cases the lead 

term has the highest order.  Consider the first for which TB  R.  Carrying through the 

summation we find that B-1/2 R+T B
t=R

t-T
-(R ( 1))

R
  = 2 3/2

B B(T -T )/2R .  For the latter two we find that 

B

-1/2 T B
t=T

t-T
-(R ( 1))

R
  = 3/2

B B B(P (2R-P )-P )/2R  and B

B

-1/2 T R B
t=T

t-T
-(R ( 1))

R
   = 2 3/2(R -R)/2R .  

Squaring these terms and keeping in mind that the square of the first three terms in (3) are 

Op(P/R) provides the desired result. 

(b) Consider the case in which 1/2  limR/T  1.  Since 2/3  2 -1(1-(P/R) /3)   1 it suffices to 

show that -1/2 2T
t=R 1,t+1ˆ(P u )  satisfies cases (i), (ii) and (iii).  Adding and subtracting terms we 

obtain the expansion 

 
 -1/2 T

t=R 1,t+1ˆP u  = -1/2 T
t=R t+1P u   -1/2 'T

t=R 1,t 1 1P x B (t)H (t)   -1/2 ' ' -1 *T
t=R 3,t 1 3 3P x (JB (t)J B (t)-I)β  

   = -1/2 T
t=R t+1P u   -1/2 'T

t=R 1,t 1 1P x B (t)H (t)   -1/2 ' ' -1 *T
t=R 3,t 3,t 1 3 3P (x -Ex ) (JB (t)J B (t)-I)β   

      -1/2 ' ' -1 *T
t=R 3,t 1 3 3P (Ex ) (JB (t)J B (t)-I)β . 

 
Arguments like those in Theorem 2.3 suffice to show that -1/2 ' ' -1 *T

t=R 3,t 3,t 1 3 3P (x -Ex ) (JB (t)J B (t)-I)β , 
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-1/2 'T
t=R 1,t 1 1P x B (t)H (t) , -1/2 T

t=R t+1P u  and are Op(1).  We must then show that the latter term 

satisfies (i), (ii) and (iii). 

 For the final term note that 

 
   -1/2 ' ' -1 *T

t=R 3,t 1 3 3P (Ex ) (JB (t)J B (t)-I)β   

   =  -1/2 ' -1 *T t
t=R s=t-R+11,t 1 1,s B B 33P [Ex B (t)(R x 1(s T )-1(t T )]β    

 = 

B

B B

B

-1/2 *T B
t=T 3,2

B
-1/2 -1 ' -2 -1 *T t t t

t=T s=t-R+1 s=t-R+1 s=Ts t 1,t B s s 3,2

-1/2 *R+T B
t=R 3,2

-1/2 -1 ' -2t t
s=t-R+1 s=t-R+1s t 1,t B s

t-T
-(P ( 1))

R T R
     -P (R z -Ez ) F ((t-T )R z -R z )

t-T
-(P ( 1))

R

     -P (R z -Ez ) F ((t-T )R z

 


   

 

 B

B

B

B
-1 *R+T t

t=R s=T s 3,2

-1/2 *T B
t=R 3,2

B
-1/2 -1 ' -2 -1 *T t t t

t=R s=t-R+1 s=t-R+1 s=Ts t 1,t B s s 3,2

T  < min[R,P]
-R z )

t-T
-(P ( 1))

R P < T R
     -P (R z -Ez ) F ((t-T )R z -R z )








  

   

   

 

 
where F1,t = -1 ' -1 -1 ' -1t t t

s=t-R+1 s=t-R+1 s=t-R+1s s s s(R z z -(R z )(R z ))   .  For each of the three cases the lead 

term has the highest order.  Consider the first for which TB  R.  Carrying through the 

summation we find that 
B

-1/2 T B
t=T

t-T
-(P ( 1))

R
  = 1/2

B B B(P (2R-P )-P )/2RP .  For the latter two we 

find that B-1/2 R+T B
t=R

t-T
-(P ( 1))

R
  = 2 1/2

B B(T -T )/2RP  and -1/2 T B
t=R

t-T
-(P ( 1))

R
  = 

1/2
B(P(2T -P)-P)/2RP .  Squaring these terms provides the desired result. 

 
Theorem 2.6: Maintain Assumptions 1 and 2′ and consider the fixed scheme. (i) If R  TB then 

VF = Op(P
2
BT /RT), (ii) If R  TB then VF = Op(R

2
BP /PT). 

Proof of Theorem 2.6:  It is straightforward to show that -1 2T
t=R 1,t+1ˆP u  p  > 0 and hence we 
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proceed immediately to the numerator.  Adding and subtracting terms we obtain the expansion 

 
 1/2 -1/2 T

t=R 1,t+1ˆ(R/T) P u  = 1/2 -1/2 T
t=R t+1(R/T) P u   1/2 -1/2 'T

t=R 1,t 1 1(R/T) P x B (t)H (t)  

     1/2 -1/2 ' ' -1 *T
t=R 3,t 1 3 3(R/T) P x (JB (t)J B (t)-I)β . 

 
That the first three terms are Op(1) follows arguments like those in Theorem 2.3.  We must 

therefore show that the third term is the appropriate order. 

 Since the fixed scheme is being used the third term can be rewritten as  

 
 1/2 -1/2 ' -1 *T

t=R 3,t 1 3 3(R/T) P x (JB (t)J'B (t)-I)β  = 1/2 -1 ' ' -1 *T
t=R 3,t 1 3 3(RP/T) (P x )(JB (R)J B (R)-I)β . 

 
We must consider separately the cases in which R > TB or R  TB.  Doing so we find that  

 
 1/2 -1 ' ' -1 *T

t=R 3,t 1 3 3(RP/T) (P x )(JB (R)J B (R)-I)β  

  = 

B

1/2
B B

1/2
B

B1/2 -1 -1 ' -1 -1R-1 T R-1 R-1
t=1 t=R t=1 t=TB t t 1 t B t

-(R/PT) P T >R

-(P/RT) T
T R

     +(RP/T) (1-T /R)(R z -P z ) F (R z -(R-T ) z )





    

 

 
where F1 = -1 ' -1 -1 ' -1R R R

s=1 s=1 s=1s s s s(R z z -(R z )(R z ))   .  The lead term in each of the above cases is 

the higher order term.  Cases (i) and (ii) follow from squaring these terms. 
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Table 1: Locations of Actual and Potential Breaks
=0.85

End of Sample

T - [(1-)Tc]
c\T 100 200 400 800 1600 3200
1 85 170 340 680 1360 2720

0.9 91 183 367 739 1486 2986
0.8 95 190 382 769 1546 3105
0.7 97 194 391 784 1574 3158
0.6 98 197 395 792 1588 3181
0.5 99 198 397 796 1594 3192
0.4 100 199 399 798 1598 3197
0.3 100 200 400 799 1599 3199
0.2 100 200 400 800 1600 3200
0.1 100 200 400 800 1600 3200

Beginning of Sample

[(1-)Tc]
c\T 100 200 400 800 1600 3200
1 15 30 60 120 240 480

0.9 9 17 33 61 114 214
0.8 5 10 18 31 54 95
0.7 3 6 9 16 26 42
0.6 2 3 5 8 12 19
0.5 1 2 3 4 6 8
0.4 0 1 1 2 2 3
0.3 0 0 0 1 1 1
0.2 0 0 0 0 0 0
0.1 0 0 0 0 0 0



Table 2: Size of Tests with Potential Break Location at the End
Nominal 5% critical values

Recursive 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100
T=100 0.073 0.095 0.131 0.192 0.306 NA NA NA NA NA
T=200 0.066 0.071 0.092 0.113 0.187 0.304 NA NA NA NA
T=400 0.060 0.062 0.075 0.094 0.118 0.188 NA NA NA NA
T=800 0.050 0.049 0.056 0.064 0.088 0.146 0.295 NA NA NA
T=1600 0.050 0.053 0.064 0.065 0.074 0.111 0.313 NA NA NA
T=3200 0.047 0.056 0.052 0.052 0.065 0.090 0.201 NA NA NA

Chow
T=100 0.069 0.076 0.064 0.067 0.058 0.053 N.A. N.A. N.A. N.A.
T=200 0.062 0.060 0.062 0.055 0.056 0.052 0.052 N.A. N.A. N.A.
T=400 0.058 0.056 0.062 0.059 0.055 0.058 0.049 N.A. N.A. N.A.
T=800 0.049 0.047 0.047 0.047 0.052 0.050 0.050 0.047 N.A. N.A.
T=1600 0.050 0.050 0.060 0.055 0.047 0.051 0.053 0.045 N.A. N.A.
T=3200 0.048 0.055 0.048 0.048 0.047 0.049 0.056 0.050 N.A. N.A.

max-Chow
T=100 0.074 0.076 0.070 0.066 0.062 N.A. N.A. N.A. N.A. N.A.
T=200 0.060 0.061 0.061 0.055 0.054 0.054 N.A. N.A. N.A. N.A.
T=400 0.056 0.055 0.054 0.060 0.053 0.054 N.A. N.A. N.A. N.A.
T=800 0.054 0.049 0.048 0.049 0.056 0.051 0.049 N.A. N.A. N.A.
T=1600 0.051 0.049 0.055 0.052 0.046 0.049 0.050 N.A. N.A. N.A.
T=3200 0.045 0.053 0.049 0.051 0.048 0.053 0.053 N.A. N.A. N.A.



Table 3: Size of Tests with Potential Break Location at the Beginning
Nominal 5% critical values

Recursive 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100
T=100 0.054 0.059 0.056 0.047 0.038 0.032 N.A. N.A. N.A. N.A.
T=200 0.053 0.050 0.054 0.052 0.041 0.036 0.033 N.A. N.A. N.A.
T=400 0.052 0.051 0.051 0.054 0.055 0.044 0.041 N.A. N.A. N.A.
T=800 0.052 0.050 0.051 0.050 0.050 0.049 0.045 0.043 N.A. N.A.
T=1600 0.054 0.051 0.053 0.051 0.052 0.053 0.050 0.049 N.A. N.A.
T=3200 0.050 0.052 0.051 0.052 0.052 0.050 0.049 0.049 N.A. N.A.

Chow
T=100 0.065 0.069 0.062 0.061 0.056 N.A. N.A. N.A. N.A. N.A.
T=200 0.056 0.058 0.058 0.057 0.053 0.052 N.A. N.A. N.A. N.A.
T=400 0.053 0.047 0.054 0.057 0.049 0.052 N.A. N.A. N.A. N.A.
T=800 0.053 0.050 0.051 0.051 0.049 0.046 0.047 N.A. N.A. N.A.
T=1600 0.052 0.055 0.053 0.050 0.049 0.049 0.048 N.A. N.A. N.A.
T=3200 0.045 0.047 0.051 0.051 0.047 0.049 0.049 N.A. N.A. N.A.

max-Chow
T=100 0.074 0.076 0.070 0.066 0.062 N.A. N.A. N.A. N.A. N.A.
T=200 0.060 0.061 0.061 0.055 0.054 0.054 N.A. N.A. N.A. N.A.
T=400 0.056 0.055 0.054 0.060 0.053 0.054 N.A. N.A. N.A. N.A.
T=800 0.054 0.049 0.048 0.049 0.056 0.051 0.049 N.A. N.A. N.A.
T=1600 0.051 0.049 0.055 0.052 0.046 0.049 0.050 N.A. N.A. N.A.
T=3200 0.045 0.053 0.049 0.051 0.048 0.053 0.053 N.A. N.A. N.A.



Table 4: Power of Recursive Test for Break at End
T=200, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.797 0.960 0.766 0.548 0.392 0.436 NA NA NA NA
0.800 0.407 0.649 0.835 0.616 0.439 0.469 NA NA NA NA
0.700 0.208 0.324 0.510 0.667 0.475 0.489 NA NA NA NA
0.600 0.108 0.145 0.217 0.358 0.499 0.505 NA NA NA NA
0.500 0.087 0.112 0.156 0.237 0.504 0.511 NA NA NA NA
0.400 0.073 0.085 0.114 0.160 0.286 0.518 NA NA NA NA
0.300 0.066 0.070 0.088 0.116 0.191 0.301 NA NA NA NA
0.200 0.066 0.070 0.088 0.116 0.191 0.301 NA NA NA NA

Potential Break Incorrectly Specified at Beginning
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.207 0.194 0.191 0.181 0.157 0.150 0.146 NA NA NA
0.800 0.112 0.109 0.106 0.105 0.088 0.082 0.077 NA NA NA
0.700 0.079 0.082 0.077 0.075 0.061 0.058 0.054 NA NA NA
0.600 0.062 0.062 0.064 0.062 0.050 0.045 0.042 NA NA NA
0.500 0.059 0.057 0.058 0.058 0.047 0.043 0.040 NA NA NA
0.400 0.057 0.053 0.055 0.054 0.046 0.042 0.036 NA NA NA
0.300 0.056 0.053 0.053 0.052 0.043 0.039 0.035 NA NA NA
0.200 0.056 0.053 0.053 0.052 0.043 0.039 0.035 NA NA NA



Table 5: Power of Chow Test for Break at End
T=200, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.827 0.973 0.790 0.526 0.265 0.189 0.110 NA NA NA
0.800 0.420 0.706 0.857 0.618 0.329 0.231 0.129 NA NA NA
0.700 0.209 0.360 0.573 0.676 0.370 0.262 0.141 NA NA NA
0.600 0.111 0.159 0.248 0.373 0.404 0.287 0.152 NA NA NA
0.500 0.088 0.118 0.167 0.235 0.412 0.295 0.157 NA NA NA
0.400 0.072 0.086 0.108 0.136 0.211 0.295 0.163 NA NA NA
0.300 0.063 0.066 0.076 0.076 0.095 0.115 0.165 NA NA NA
0.200 0.063 0.066 0.076 0.076 0.095 0.115 0.165 NA NA NA

Potential Break Incorrectly Specified at Beginning
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.047 0.040 0.035 0.032 0.036 0.048 NA NA NA NA
0.800 0.046 0.043 0.041 0.040 0.040 0.049 NA NA NA NA
0.700 0.045 0.049 0.045 0.045 0.043 0.049 NA NA NA NA
0.600 0.050 0.051 0.050 0.051 0.048 0.050 NA NA NA NA
0.500 0.051 0.053 0.053 0.053 0.050 0.051 NA NA NA NA
0.400 0.053 0.055 0.055 0.054 0.051 0.051 NA NA NA NA
0.300 0.054 0.058 0.056 0.056 0.053 0.052 NA NA NA NA
0.200 0.054 0.058 0.056 0.056 0.053 0.052 NA NA NA NA



Table 6: Power of max-Chow Test for Break at End
T=200, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.742 0.948 0.693 0.420 0.193 0.143 NA NA NA NA
0.800 0.323 0.612 0.798 0.514 0.246 0.175 NA NA NA NA
0.700 0.158 0.284 0.483 0.574 0.283 0.199 NA NA NA NA
0.600 0.091 0.127 0.196 0.290 0.319 0.225 NA NA NA NA
0.500 0.077 0.097 0.133 0.184 0.327 0.233 NA NA NA NA
0.400 0.070 0.077 0.094 0.111 0.166 0.237 NA NA NA NA
0.300 0.063 0.064 0.071 0.068 0.082 0.098 NA NA NA NA
0.200 0.063 0.064 0.071 0.068 0.082 0.098 NA NA NA NA



Table 7: Power of Recursive Test for Break at End
T=800, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.999 1.000 0.997 0.922 0.647 0.436 0.425 NA NA NA
0.800 0.753 0.962 0.999 0.960 0.724 0.496 0.460 NA NA NA
0.700 0.275 0.488 0.780 0.972 0.766 0.530 0.477 NA NA NA
0.600 0.105 0.172 0.288 0.515 0.785 0.548 0.488 NA NA NA
0.500 0.060 0.089 0.121 0.198 0.374 0.557 0.496 NA NA NA
0.400 0.053 0.062 0.073 0.103 0.177 0.347 0.498 NA NA NA
0.300 0.051 0.055 0.060 0.079 0.119 0.203 0.498 NA NA NA
0.200 0.049 0.053 0.057 0.067 0.085 0.139 0.285 NA NA NA

Potential Break Incorrectly Specified at Beginning
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.548 0.516 0.497 0.490 0.483 0.456 0.453 0.451 NA NA
0.800 0.207 0.194 0.188 0.182 0.180 0.171 0.166 0.163 NA NA
0.700 0.094 0.092 0.089 0.088 0.086 0.083 0.078 0.076 NA NA
0.600 0.060 0.057 0.059 0.062 0.060 0.056 0.053 0.050 NA NA
0.500 0.054 0.051 0.055 0.052 0.056 0.052 0.047 0.044 NA NA
0.400 0.053 0.049 0.052 0.050 0.052 0.050 0.045 0.042 NA NA
0.300 0.052 0.050 0.050 0.050 0.051 0.050 0.045 0.043 NA NA
0.200 0.051 0.050 0.051 0.049 0.051 0.049 0.046 0.043 NA NA



Table 8: Power of Chow Test for Break at End
T=800, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.999 1.000 0.999 0.930 0.643 0.338 0.180 0.118 NA NA
0.800 0.737 0.973 0.999 0.965 0.736 0.419 0.220 0.138 NA NA
0.700 0.260 0.525 0.838 0.978 0.777 0.466 0.244 0.153 NA NA
0.600 0.096 0.189 0.338 0.591 0.803 0.491 0.263 0.160 NA NA
0.500 0.061 0.091 0.133 0.233 0.405 0.505 0.271 0.164 NA NA
0.400 0.051 0.063 0.076 0.110 0.175 0.315 0.276 0.166 NA NA
0.300 0.049 0.056 0.059 0.078 0.104 0.165 0.279 0.167 NA NA
0.200 0.049 0.049 0.049 0.055 0.064 0.075 0.104 0.169 NA NA

Potential Break Incorrectly Specified at Beginning
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.089 0.051 0.037 0.034 0.034 0.032 0.043 NA NA NA
0.800 0.059 0.043 0.038 0.038 0.041 0.037 0.045 NA NA NA
0.700 0.052 0.043 0.043 0.042 0.044 0.043 0.046 NA NA NA
0.600 0.052 0.046 0.047 0.047 0.046 0.044 0.047 NA NA NA
0.500 0.052 0.048 0.049 0.049 0.048 0.045 0.047 NA NA NA
0.400 0.054 0.048 0.050 0.049 0.048 0.045 0.047 NA NA NA
0.300 0.054 0.049 0.051 0.049 0.048 0.046 0.047 NA NA NA
0.200 0.053 0.050 0.051 0.050 0.049 0.046 0.047 NA NA NA



Table 9: Power of max-Chow Test for Break at End
T=800, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.997 1.000 0.996 0.878 0.524 0.247 0.129 NA NA NA
0.800 0.629 0.947 0.999 0.934 0.638 0.321 0.166 NA NA NA
0.700 0.197 0.419 0.762 0.956 0.692 0.367 0.192 NA NA NA
0.600 0.081 0.138 0.252 0.496 0.723 0.390 0.202 NA NA NA
0.500 0.060 0.073 0.103 0.178 0.325 0.405 0.207 NA NA NA
0.400 0.057 0.054 0.067 0.094 0.138 0.239 0.211 NA NA NA
0.300 0.056 0.052 0.056 0.068 0.089 0.121 0.210 NA NA NA
0.200 0.055 0.050 0.051 0.054 0.064 0.060 0.086 NA NA NA



Table 10: Power of Recursive Test for Break at End
T=3200, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 1.000 1.000 1.000 1.000 0.964 0.666 0.417 NA NA NA
0.800 0.983 1.000 1.000 1.000 0.983 0.743 0.469 NA NA NA
0.700 0.471 0.780 0.984 1.000 0.987 0.777 0.494 NA NA NA
0.600 0.134 0.246 0.466 0.801 0.988 0.793 0.508 NA NA NA
0.500 0.067 0.088 0.138 0.237 0.445 0.800 0.514 NA NA NA
0.400 0.049 0.060 0.064 0.089 0.128 0.250 0.517 NA NA NA
0.300 0.048 0.057 0.053 0.057 0.079 0.116 0.284 NA NA NA
0.200 0.048 0.056 0.051 0.052 0.064 0.091 0.180 NA NA NA

Potential Break Incorrectly Specified at Beginning
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.958 0.945 0.936 0.933 0.930 0.929 0.915 0.916 NA NA
0.800 0.418 0.391 0.371 0.365 0.363 0.364 0.352 0.352 NA NA
0.700 0.119 0.115 0.111 0.109 0.107 0.109 0.107 0.105 NA NA
0.600 0.060 0.059 0.061 0.059 0.061 0.060 0.058 0.058 NA NA
0.500 0.048 0.052 0.052 0.051 0.051 0.050 0.049 0.049 NA NA
0.400 0.047 0.051 0.050 0.050 0.050 0.050 0.049 0.048 NA NA
0.300 0.049 0.051 0.050 0.051 0.052 0.049 0.047 0.049 NA NA
0.200 0.050 0.052 0.051 0.052 0.052 0.050 0.049 0.049 NA NA



Table 11: Power of Chow Test for Break at End
T=3200, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 1.000 1.000 1.000 1.000 0.970 0.653 0.274 0.119 NA NA
0.800 0.975 1.000 1.000 1.000 0.984 0.745 0.336 0.140 NA NA
0.700 0.431 0.795 0.991 1.000 0.989 0.782 0.375 0.151 NA NA
0.600 0.125 0.251 0.514 0.865 0.990 0.797 0.391 0.158 NA NA
0.500 0.065 0.088 0.151 0.267 0.528 0.805 0.399 0.161 NA NA
0.400 0.049 0.059 0.068 0.094 0.152 0.281 0.402 0.162 NA NA
0.300 0.048 0.057 0.052 0.059 0.077 0.102 0.208 0.163 NA NA
0.200 0.049 0.055 0.050 0.051 0.055 0.060 0.091 0.162 NA NA

Potential Break Incorrectly Specified at Beginning
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 0.251 0.115 0.059 0.040 0.028 0.033 0.037 NA NA NA
0.800 0.082 0.052 0.046 0.041 0.036 0.040 0.043 NA NA NA
0.700 0.048 0.044 0.046 0.046 0.041 0.044 0.046 NA NA NA
0.600 0.043 0.046 0.049 0.049 0.044 0.047 0.048 NA NA NA
0.500 0.045 0.047 0.050 0.050 0.045 0.048 0.049 NA NA NA
0.400 0.046 0.047 0.050 0.051 0.047 0.049 0.049 NA NA NA
0.300 0.045 0.047 0.050 0.051 0.047 0.049 0.049 NA NA NA
0.200 0.045 0.047 0.050 0.051 0.047 0.048 0.049 NA NA NA



Table 12: Power of max-Chow Test for Break at End
T=3200, Nominal Size = 5%

Potential Break Correctly Specified at End
Actual Break 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100

0.900 1.000 1.000 1.000 1.000 0.940 0.539 0.196 NA NA NA
0.800 0.955 1.000 1.000 1.000 0.972 0.647 0.258 NA NA NA
0.700 0.338 0.706 0.982 1.000 0.979 0.694 0.291 NA NA NA
0.600 0.095 0.190 0.416 0.793 0.983 0.715 0.307 NA NA NA
0.500 0.055 0.075 0.113 0.216 0.434 0.725 0.314 NA NA NA
0.400 0.047 0.057 0.062 0.078 0.117 0.224 0.319 NA NA NA
0.300 0.045 0.053 0.054 0.057 0.062 0.086 0.159 NA NA NA
0.200 0.046 0.052 0.050 0.054 0.053 0.061 0.076 NA NA NA


