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1 Introduction

Unemployment insurance programs insure workers against the risk of losing their jobs

through no fault of their own. Such insurance, however, has many potential incentive prob-

lems. In this paper, we study the incentive problem associated with fraudulent collection

of unemployment benefits. The U.S. Department of Labor finds that more than 60 per-

cent of unemployment insurance fraud overpayments are attributed to concealed earnings

fraud—when a worker collecting unemployment benefits finds a job but continues collect-

ing the benefits. Motivated by this fact, we study optimal unemployment insurance in an

environment where workers can conceal earnings and collect unemployment benefits.

We study an infinitely lived worker in continuous time who has CARA preferences, is

initially unemployed, and faces a stochastic arrival of employment opportunities. Employ-

ment is assumed to be an absorbing state. An employed worker can conceal his employment

status and continue to claim unemployment benefits. The worker’s employment status can

be detected using a costly monitoring technology. In order to focus on the issue of hidden

employment, we abstract from moral hazard issues by assuming that there is no search

effort decision and that the wage offer distribution is degenerate.1

In our model, there are two instruments to deter fraudulent collection of unemploy-

ment benefits: tax/subsidy and monitoring. Both instruments are costly: The first distorts

consumption relative to full insurance, and the second has a direct cost. We deliver a

pre-commitment mechanism that optimally trades off between the two instruments. Our

mechanism allows both instruments to be fully history dependent. As a result, the unem-

ployed worker’s consumption (i.e., the unemployment benefits) and the employed worker’s

consumption vary over time.

Since employment is an absorbing state in our model, the treatment of the worker who

reports transitioning to employment is straightforward: constant consumption forever and

1The literature on the optimal provision of unemployment insurance concentrates on moral hazard

and examines incentives for optimal search effort (e.g., Baily (1978), Shavell and Weiss (1979), and

Hopenhayn and Nicolini (1997)). Hopenhayn and Nicolini (1997) and Wang and Williamson (2002) show

that the search effort margin is quantitatively insignificant: The unemployed worker’s optimal search effort

almost equals what the current U.S. system implies.
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no monitoring. Since employment status is private information, the worker who reports

being unemployed is not fully insured and is monitored.

We consider two monitoring mechanisms: deterministic verification and stochastic ver-

ification. Under deterministic verification, the worker is either verified with probability

one or not verified at all. We focus on this case for most of the paper since it is simpler

and makes the results more transparent. We show later that our results remain the same

under stochastic verification, where the worker is verified with a probability between zero

and one. That is, even though our deterministic mechanism appears restrictive, the gen-

eral mechanism of stochastic verification does not offer any additional economic insights on

unemployment insurance and monitoring.

Under deterministic verification the optimal contract has three key features. First, mon-

itoring occurs at fixed intervals and is independent of history. Second, the unemployment

benefits decrease with the duration of unemployment between monitoring dates and jump

downward at every monitoring date. Third, there is a nonmonotonic tax on employment.

The periodicity of monitoring follows from that fact that with CARA preferences the

worker’s utility flows in a new cycle are proportional to those in the previous cycle. Hence,

his incentive to commit fraud remains the same and he is monitored in the same manner as

in the previous cycle. Unemployment benefits decreasing with duration is a familiar feature

from the previous literature. Unemployment benefits jump downward at the monitoring

date because the unemployed worker’s pre-monitoring consumption is distorted upward. In

our model, increasing the unemployed worker’s pre-monitoring consumption benefits the

truth-teller more than it benefits the liar.2 Within a monitoring cycle, the employment

tax increases with duration of unemployment: the consumption for the worker who tran-

sitions to employment earlier exceeds that of the worker who transitions later. However,

the employment tax decreases after the monitoring date. This is because the unemployed

worker who transitions to employment shortly after the monitoring date can conceal earn-

ings until the next monitoring date, while the worker who transitions to employment at

the monitoring date cannot.

2For the same reason, in Mirrleesian taxation models with hidden ability, the labor supply of a low-ability

worker is distorted downward.
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Our optimal mechanism also deters fraud from quits. This occurs when workers quit

their jobs, become unemployed, and start collecting unemployment benefits. The incentives

in our optimal contract ensure that the employed workers do not engage in such behavior.3

To assess the empirical relevance of our theoretical analysis, we conduct a partial equi-

librium quantitative exercise similar to Hopenhayn and Nicolini (1997). We find that the

optimal monitoring cost is 60 percent of the cost incurred by the U.S. unemployment in-

surance system. Furthermore, using the same resources as the U.S. system, the optimal

contract delivers higher utility to the average worker: 1.55 percent higher consumption at

every date. This gain arises from two sources: (i) improved consumption smoothing be-

tween employed and unemployed states and (ii) reduced monitoring costs (or higher average

consumption). Almost all of the gain in our optimal contract comes from (i). This is similar

to the quantitative finding in Hopenhayn and Nicolini (1997) and Wang and Williamson

(2002). The cost saving in their optimal contracts is due to improved consumption smooth-

ing and not due to faster transitions from unemployment to employment.

The remainder of the paper proceeds as follows. In Section 2, we present the key

facts on unemployment insurance fraud. We also provide evidence that deterring concealed

earnings fraud involves a case-by-case investigation and, thus, a per-case cost, as in our

model. Section 3 describes the model. In Section 4 we establish two properties of the

optimal mechanism: scaling and periodic monitoring. In Section 5 we use these properties

to analyze the optimal unemployment insurance scheme with exogenously given monitoring

dates. Then, we characterize the optimal monitoring dates in Section 6. In Section 7

we show that our mechanism prevents employed workers from quitting. In Section 8 we

examine the stochastic monitoring case. In this section, we also describe the similarities

and differences between the insights from the deterministic mechanism and the insights

from the stochastic mechanism. We conclude in Section 9.

3Hansen and Imrohoroglu (1992) study a model where unemployed workers can reject job offers and an

exogenous fraction of such workers are denied benefits. In our optimal mechanism, the unemployed worker

who receives a job offer has no incentive to refuse the offer.
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2 Unemployment Insurance Fraud Data

In this section, we first briefly describe the program in place for determining the accuracy

of payments in the U.S. unemployment insurance system. Second, we provide details on the

nature of “fraud” overpayments by category for 2007 (Appendix A provides information

for more years). Third, we present data on how these payments were detected. Finally, we

discuss “off-the-books” employment.

Accuracy of Benefit Payments Unemployment insurance benefits in the U.S. are

paid out by the states, with each state deciding its benefit levels and how to finance the

benefits. The U.S. Department of Labor’s BAM (Benefit Accuracy Measurement) program

determines the accuracy of these expenditures by choosing a random sample of weekly

unemployment insurance claims and determining whether there were any overpayments.

The investigators also interview some claimants if necessary. Some overpayments are simple

errors in calculating benefits, while some represent fraud overpayments.

The goal of the program is different from the goal of unemployment insurance fraud

investigators. While the latter look to recapture overpayments, BAM investigators calculate

statistics of the unemployment insurance program (see BAM State Operations Handbook

ET No. 495, 4th edition). We use these statistics throughout the paper.

Overpayments due to Fraud There are several types of unemployment insurance

fraud. Examples include collecting unemployment benefits while being employed, after

quitting a job, or after refusing a suitable job offer. Table 1 categorizes the overpayments

by type of fraud.

“Concealed Earnings” refers to cases where payments are made to individuals who

are simultaneously earning wages and collecting unemployment benefits. “Insufficient Job

Search” refers to cases where individuals did not meet the mandatory work search require-

ment (e.g., a minimum number of job applications must be filed each week). “Refused

Suitable Offer” refers to cases where individuals were offered a job deemed suitable, but

rejected it. “Quits” and “Fired,” respectively, refer to cases where payments are made

to individuals who voluntarily left their jobs or who were fired from their jobs for a valid
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Table 1: Unemployment Insurance Overpayments in the U.S., 2007

Category Percent of Fraud Overpayments

Concealed Earnings 60.06

Insufficient Job Search 4.95

Refused Suitable Offer 0.80

Quits 7.06

Fired 13.29

Unavailable for Work 4.17

Other 9.67

Total 100.00

Source: BAM program, U.S. Department of Labor. Note that these are our calculations. Our definitions

of each type of fraud differ slightly from those used in the BAM reports available online.

reason (e.g., poor performance or missing work). “Unavailable for Work” refers to cases

where payments are made to individuals who cannot work (e.g., disability).

Overpayments due to concealed earnings fraud in 2007 were ten times overpayments due

to unemployed agents not actively searching or refusing suitable work (see Table 1). While

the data indicate that concealed earnings fraud is the dominant source of overpayments, it

does not imply that moral hazard from reduced search effort is unimportant for the design

of unemployment insurance. It might be the case that the current unemployment insurance

system provides adequate incentives to search but does not deter concealed earnings fraud.

Detection Technologies The detection technologies used by BAM are shown in

Table 2. For example, “Verification of search contact” refers to cases when the BAM in-

vestigator verifies the potential job contact reported by the unemployed person; “Claimant

interview” is an interview with the person collecting benefits.

Since 2003, states have used a cross-matching technology, comparing unemployment

insurance records with employment records. One might think concealed earnings fraud

could be automatically detected this way; however, only 7.5 percent of the fraud cases are

detected by cross-matching with the state’s directory of new hires (see Table 2). For in-
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Table 2: Detection Technologies, 2007

Detection Method
Percent of concealed earnings

fraud overpayments detected by method

Verification of search contact 1.31

Verification of wages and/or separation 62.02

Claimant interview 10.41

Verification of eligibility with 3rd parties 1.38

Unemployment insurance records 14.61

Job/employment service records 0.17

Verification with union 0.71

Crossmatch with state directory of new hires 7.52

Crossmatch with state wage record files 1.86

Source: Benefit Accuracy Measurement Program, U.S. Department of Labor

stance, cross-matching technology would not automatically catch a worker who is collecting

unemployment benefits in one state while employed in another state. Furthermore, the di-

rectory of new hires is updated monthly, so even within individual states some workers who

truthfully report unemployment in a specific week may show up in a cross-match of employ-

ment records and be mistakenly flagged for fraud. In most cases when a worker appears

in both unemployment insurance records and employment records, further investigation is

necessary to determine if fraud has actually occurred.

In addition, the worker could commit a more nuanced form of concealed earnings fraud

by truthfully reporting the transition to employment but underreporting the earnings. (The

worker is entitled to collect some unemployment benefits as long as the reported earnings

are sufficiently low.) In 2007, roughly 40 percent of those committing concealed earnings

fraud reported positive earnings. Less than 2 percent of these cases were detected by

cross-matching the unemployment insurance records with wage records (updated quarterly)

in each state (see Table 2). In fact, employees working in a sector not covered by the

unemployment insurance system will never show up in the state wage records (e.g., federal

employees and self-employed).
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These data suggest that more than 90 percent of the overpayments due to concealed

earnings fraud were not detectable under the automatic procedures available to the state

authorities. Instead, detection involves a case-by-case investigation and, thus, a per-case

cost of verification.

Working “Off-the-Books” A worker could collect unemployment benefits while

working “off-the-books” and being paid in cash. In such cases, verifying the true em-

ployment status might be prohibitively expensive. However, the evidence suggests that

concealed earnings fraud is committed by workers in “official” employment. While the

worker is committing concealed earnings fraud, his weekly earnings are similar to the weekly

earnings in the pre-unemployment job (which, by design, has to be official for the worker

to collect unemployment benefits). In 2007, those committing concealed earnings fraud

were earning 82 percent of their previous job’s wages, on average. One-fourth of those

committing this fraud were earning more while collecting benefits than before they be-

came unemployed. Such relatively high earnings while committing fraud suggest official or

“on-the-books” employment rather than “off-the-books” employment.4

3 Model

The Unemployment Insurance authority is a risk-neutral principal with a discount rate

r > 0. She provides insurance to a risk-averse worker, whose preferences are given by

E

[
∫ ∞

0

e−rtrv(c(t))dt

]

,

where c(t) is consumption at time t, v(c) = −e−ρc is a CARA utility function with risk

aversion ρ, r is the discount rate, and E is the expectation operator. Note that the flow

utility is rv(c) and that the agent’s subjective discount rate is the same as the principal’s.

A worker can be either employed with wage w > 0 or unemployed with wage zero. The

worker is unemployed at t = 0 and transitions to employment with Poisson rate π > 0. We

assume that employment is permanent. (For similar assumptions, see the unemployment

4The BAM program detects 10.5 percent of the fraud overpayments by interviewing the claimants (see

Table 2). Such interviews might reveal some cash earnings.
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insurance model of Hopenhayn and Nicolini (1997) and the disability insurance model of

Golosov and Tsyvinski (2006).)

The worker’s employment status is private information, so an employed worker can

claim to be unemployed and continue collecting the unemployment benefits. We refer to

this as fraud. The principal can verify the worker’s unemployment report at a cost of γ

units of the consumption good. Verification reveals the worker’s true employment status.

We study pre-commitment mechanisms that efficiently deliver unemployment benefits

and deter fraud. In addition to the tax/subsidy instrument used by the unemployment

insurance literature, our mechanism uses the monitoring instrument to provide incentives.5

We assume that the principal always collects the wage, so an unemployed worker can

never claim to be employed. Hence, there is no need for verification when the worker

reports a transition to employment. Furthermore, since employment is an absorbing state,

verification is unnecessary forever if the worker reports to be employed just once in the

past. The incentive problem then reduces to ensuring that an employed worker does not

claim to be unemployed.

We focus on deterministic verification mechanisms: in each period the worker is either

verified with probability one or not verified at all. This mechanism is sub-optimal; it is

dominated by a stochastic verification mechanism in our environment. One may then ask

why study the deterministic case? Our goal is to characterize the optimal combination

of the two instruments: tax/subsidy and monitoring. In Section 8, we show that the key

economic insights on these two instruments are nearly identical in both the deterministic

and stochastic cases. In both cases, optimal monitoring and employment tax have the same

pattern. The stochastic monitoring case requires cumbersome notation and provides less

intuition so we start by analyzing the deterministic case.

In our deterministic mechanism, the verification in any period is based on the history of

employment status reports and past verifications outcomes. Since verification is necessary

only for agents who have been reporting unemployment in every period in the past, a

5See Setty (2011) for a model of optimal unemployment insurance where the agent’s search effort is

monitored. Empirically, as noted in Table 1, fraudulent behavior in search effort is not as costly as

concealment of earnings.
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sufficient statistic for past history is the duration of unemployment reports. In other

words, at t = 0 the principal commits to all future verification periods, mapping durations of

unemployment reports to {0, 1}. In a verification period, clearly no worker would misreport.

(Any penalty ǫ > 0 induces truth telling in the verification period.) Thus, the principal

does not have to keep track of the outcomes of past verifications. We represent the set of

verification periods as {mi; i = 1, 2, ...}, where mi is the date of the ith verification.6

The timing is as follows. In the initial period, the worker is unemployed. Then the

stochastic job opportunity arrives. The worker either remains unemployed or transitions

to employment. He then chooses to report either employment or unemployment to the

principal. Conditional on the unemployment report, the principal verifies the true employ-

ment status if the period is a verification period. Then, conditional on the report and

the outcome of the verification, the principal assigns current and future consumptions. In

subsequent periods, if the worker reported employment in the past, he is in an absorbing

state and no further reports are necessary. If the worker reported unemployment in every

period in the past, then the sequence of events is the same as in the initial period.

If an unemployed worker transitions to employment at t, let cE(t, s) denote his con-

sumption at time s ≥ t. Because the principal and the worker have the same discount rate

and employment is an absorbing state, efficiency requires that the worker’s consumption

remain constant after t for all s. We therefore suppress s in cE(t, s) and denote this con-

stant level of consumption as cE(t). The flow utility from this level of consumption then

is rv
(

cE(t)
)

. We denote the discounted sum of utilities to a worker who accepts a job

offer for the first time at t as E(t), i.e., E(t) =
∫∞

t
e−r(s−t)rv(cE(t))ds = v(cE(t)). Since

employment status is private information, E(t) is also the continuation utility to a worker

who accepted an offer before t, but reports employment for the first time at t.

An unemployed worker’s consumption at t is denoted by cU(t) and his flow utility is

rv(cU(t)). His continuation utility,

U(t) ≡

∫ ∞

t

e−r(x−t)e−π(x−t)rv(cU(x))dx+

∫ ∞

t

e−r(x−t)e−π(x−t)πE(x)dx,

6There is no loss of generality in assuming a countable collection of verification periods. Since each

verification costs γ > 0, the principal would not want to verify infinitely many times in any finite time

interval.
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is the sum of expected utilities before and after the transition (e−π(x−t) in the first integral is

the conditional probability of remaining unemployed at date x and e−π(x−t)π in the second

integral is the density function of the transition time). Hence,

U(t) =

∫ ∞

t

e−(r+π)(x−t) (πE(x) + ru(x)) dx

=

∫ s

t

e−(r+π)(x−t) (πE(x) + ru(x)) dx+ e−(r+π)(s−t)U(s), for all t < s, (1)

where u(x) ≡ v(cU(x)). We will refer to (1) as promise-keeping constraints.

The principal commits at t = 0 to verification periods {mi; i = 1, 2, ...} and consump-

tions
{

(cE(t), cU(t)); t ≥ 0
}

. The verification periods and consumptions are history depen-

dent. We denote this pre-commitment contract as σ.

Incentive compatibility requires that a worker who transitioned to employment at t ∈

(mi, mi+1) does not have the incentive to delay the report of the transition to a later time

s ∈ (t,mi+1), i.e., report unemployment and commit fraud from t to s, and then report

employment from s onward:

E(t) ≥

∫ s

t

e−r(x−t)rv(cU(x) + w)dx+ e−r(s−t)E(s), ∀s ∈ (t,mi+1). (2)

Note that the worker cannot delay the report beyond the next verification period mi+1.

We restrict contract allocations to

E(t) ≥ U(t), for all t. (3)

Restriction (3) rules out the fraud due to refusal of offers noted in Table 1 (0.8 percent of

total fraud overpayments). This restriction can be derived by adding a job-refusal option

to our model. For ease of exposition we have imposed the restriction on the mechanism;

Appendix B describes the job-refusal option and derives this restriction.

The expected cost for the principal is

C(σ) =

∫ ∞

0

e−(r+π)t
(

πcE(t) + rcU(t)
)

dt+
∑

i

e−(r+π)miγ.

There should, in fact, be an additional term in C(σ): the discounted income obtained by the

principal, πw
r+π

. However, unlike the unemployment insurance literature that endogenizes
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job-finding probabilities, the discounted income in our model is a constant, so it does not

affect the optimal σ.

The principal’s problem is to find an incentive compatible σ that minimizes C(σ) and

delivers the initial promised utility U(0), i.e.,

min
σ

C(σ) (4)

subject to U(0) =

∫ ∞

0

e−(r+π)t (πE(t) + ru(t))dt,

and constraints (2), (3).

With a slight abuse of notation, denote the principal’s cost function as C(U(0)).7

4 A Simplification of the Optimal Contract

We begin our analysis by presenting two features of the optimal contract. In Section 4.1

we establish a “scaling” property. Then, in Section 4.2 we show that the optimal monitoring

is periodic. These properties simplify our analysis of the optimal contract by narrowing

the search of a solution to problem (4) to a smaller space.

To help us simplify, we rewrite problem (4) in terms of continuation utilities E(·), U(·)

and flow variable u(·), instead of consumptions. The objective becomes

C(σ) =

∫ ∞

0

e−(r+π)t (πc(E(t)) + rc(u(t))) dt+
∑

i

e−(r+π)miγ,

where c : (−∞, 0) → R denotes the inverse of the utility function:

c(v) = − log(−v)/ρ. (5)

The incentive constraint (2) becomes

E(t) ≥

∫ s

t

e−r(x−t)e−ρwru(x)dx+ e−r(s−t)E(s), ∀s ∈ (t,mi+1), (6)

7Ravikumar and Zhang (2012) analyze the problem of tax compliance in a costly state verification

model where the verification technology is imperfect (a low-income agent might be mistakenly labeled as

high income). They solve for the principal’s cost function using the Hamilton-Jacobi-Bellman equation.

In contrast, we study optimal unemployment insurance in an environment with a perfect verification

technology. We characterize the path of unemployment benefits by formulating the optimal control problem

and using the Pontryagin minimum principle.
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since CARA utility implies that v(cU(x) + w) = e−ρwv(cU(x)) = e−ρwu(x).

4.1 Scaling

Our mechanism exhibits a scaling property: if the initial promise U(0) is scaled by

α > 0, then the optimal contract is also scaled by α. More formally,

Lemma 1 If {(U(t), E(t), u(t)) ; t ≥ 0} are optimal utilities for initial promise U(0), then

the optimal utilities for initial promise αU(0) are

{(αU(t), αE(t), αu(t)) ; t ≥ 0} .

Alternatively, Lemma 1 states that the consumption of the worker with initial promise

αU(0) differs from that of the worker with promise U(0) by a constant, − log(α)/ρ, at all

dates and states.

The scaling property in Lemma 1 is related to the fact that CARA utility has no wealth

effect. Although a worker with high promised utility consumes (permanently) more than

a worker with low promised utility, the level of promised utility does not have an effect on

the worker’s incentives to conceal earnings. In other words, the incentive constraint (6)

holds when all of the utilities are scaled by the same factor.

Since the incentives to conceal earnings are the same for workers with different promised

utilities, the optimal sequence of monitoring dates, {mi; i ≥ 1}, is independent of the initial

promised utility. Again, no wealth effect implies that the level of promised utility does not

change how the worker is monitored, even if it does change the worker’s consumption.

4.2 Periodicity

At time 0, the principal knows the true employment status of the agent. After the

verification at m1, the principal again knows the true employment status. Hence, the

continuation problem at m1 is the same as the problem at time 0, except for the “initial”

promised utility. The scaling property implies that, if U(m1) = αU(0), then the optimal

utilities from m1 forward are scaled by α. Thus, starting with a promise U(0), if the

principal finds it optimal to monitor the unemployed agent at m1, then it must be the case

13



that starting with the promise αU(0) the principal would again find it optimal to monitor

at m1. Put differently, having monitored the agent at m1, the next optimal monitoring

period is 2m1. We immediately conclude that

Proposition 1 The optimal monitoring is periodic, i.e., mi = im1 for all i ≥ 1.

To understand the intuition for the periodic monitoring, consider policies where the

interval between verifications is either increasing or decreasing over time. First, it is sub-

optimal for the planner to verify more frequently at the beginning. Since the worker starts

out unemployed, he stays unemployed for some duration initially. Frequent verifications

early on merely incur unnecessary verification cost. Second, one might think that it is opti-

mal to verify more frequently later since the probability of a long duration of unemployment

is small. However, this policy is also suboptimal. The worker’s conditional probability of

transitioning to employment is independent of how long he has been unemployed. More-

over, because the principal knows the true employment status after each verification, the

scaling property implies that from the principal’s perspective the worker who was just ver-

ified to be unemployed is no different from the worker at time zero. Thus the interval

between consecutive monitoring periods is a constant.

While we have established that the optimal monitoring is periodic, finding the optimal

periodicity is difficult. To determine the optimal m1 we must first determine the optimal

utilities in the intervals [0, m1], [m1, 2m1], etc. Toward this end, we break the principal’s

problem into two steps. First, assume that m1 is exogenous and the principal learns the

agent’s employment status at dates m1, 2m1, etc. Given m1, the principal solves for

the endogenous utility paths in [0, m1], [m1, 2m1], etc. Second, the principal chooses m1

optimally. We analyze the first step in the next section and the second step in section 6.

5 Optimal Unemployment Insurance with Exogenous

Monitoring

Given the simplification in Section 4, we now present the features of the optimal unem-

ployment insurance scheme. For a given m1, we first formulate the optimal control problem

14



in Section 5.1. This allows us to analyze the time paths of the variables of interest. We

then describe some features of the continuation utilities E(·) and U(·) in Section 5.2 and

use these features to illustrate the employment tax in Section 5.3 and unemployment ben-

efits in Section 5.4. Finally, in Section 5.5 we use the Pontryagin Minimum Principle to

explicitly characterize E(·) and U(·).

5.1 Optimal Control

Following Zhang (2009), we formulate the principal’s problem for interval [0, m1] as one

of optimal control. Our analysis for [0, m1] applies to other intervals as well.

First, we rewrite the constraints recursively. The promise-keeping constraint (1) is

equivalent to the differential equation:

U ′(t) = r (U(t)− u(t)) + π (U(t)− E(t)) .

On the right side of the differential equation, the first term is the rate of change of U when

there is no uncertainty (i.e., when there is no transition to employment), and the second

term captures the additional rate of change due to uncertainty.

The incentive constraint (6) is equivalent to the following differential inequality:

r(v(cU(t) + w)− v(cE(t))) + E ′(t) ≤ 0. (7)

That is, the short term benefit that the agent gets from fraud, r(v(cU(t) + w)− v(cE(t))),

is offset by lower continuation utility he receives after he delays the employment report.

Note that E(·) could have downward jumps: when E(t) > lims↓tE(s), we interpret the

discontinuity as E ′(t) = −∞, and the differential inequality (7) still holds under this

interpretation. Introducing a slack variable µ(t) ≥ 0, we may rewrite (7) as

E ′(t) = rE(t)− e−ρwru(t)− µ(t).

In Lemma C.1 in Appendix C, we show that the above differential equation and in-

equality are equivalent to (1) and (6).

Second, the scaling property implies that the cost function C(·) satisfies

C(αU) = C(U)− log(α)/ρ.
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Recalling the definition of c(·) in (5), we rewrite C(U) as

C(U) = C (|U |(−1)) = C (−1)− log(−U)/ρ ≡ ψ + c(U), (8)

where ψ ≡ C (−1) is the cost of private information: it is the one-time cost that the

principal is willing to pay to permanently remove private information from the model.

With ψ + c(U(m1)) as the continuation cost at m1, we rewrite the principal’s problem

as one of optimal control with a convex objective and linear constraints.

min
u(t),U(t),E(t),

0≤t≤m1

∫ m1

0

e−(r+π)t (πc(E(t)) + rc(u(t))) dt+ e−(r+π)m1(γ + ψ + c(U(m1))) (9)

subject to U ′(t) = (r + π)U(t)− πE(t)− ru(t), (10)

E ′(t) = rE(t)− e−ρwru(t)− µ(t), (11)

E(t) ≥ U(t), (12)

U(0) is given.

5.2 Continuation Utilities

The continuation utilities E(·) and U(·) help us uncover the consumption paths for the

employed and the unemployed. We focus on the properties of E(·) and U(·) in [0, m1];

those in other monitoring cycles can be obtained by scaling (see Lemma 1).

We demonstrate five properties:

(i) E(t) > E(s) for t < s ≤ m1.

(ii) E(t) > U(t) for all t < m1.

(iii) E(m1) = U(m1).

(iv) E(·) jumps up immediately after m1.

(v) U(·) declines over time.

Property (i) states that the payoff to a worker who reports the transition to employment

earlier is higher than the payoff to one who reports the transition later. The worker who

transitions to employment at t but commits fraud consumes cU(t) + w at t, whereas the
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Figure 1: Lower payoff for late reporters (E(t) > E(s) for t < s)

worker who tells the truth consumes cE(t). It is intuitive that cE(t) < cU(t)+w; otherwise

deterring fraud would not be an issue. In terms of utilities, E(t) < e−ρwu(t). Incentive

compatibility (11) requires that delaying the report yields a lower payoff (see Figure 1).

Thus, E(t) > E(s) within a monitoring cycle.

For property (ii), recall that restriction (12) imposes E(t) must be greater than or

equal to U(t). If the agent who transitions to employment before m1 is offered the same

payoff as the agent who remains unemployed, then the employed agent will claim to be

unemployed and consume more than the unemployed agent. He can continue cheating

until the verification period m1 (see Figure 2). Thus, within a monitoring cycle, E(t) must

be greater than U(t).

To understand (iii), note that the true employment status is revealed at m1, so the

principal does not face an incentive problem at that instant. Hence, there is no reason to

reward the (lucky) agent who transitioned to employment at m1 relative to the (unlucky)

agent who remains unemployed i.e., no reason to set E(m1) > U(m1). Thus, E(m1) =

U(m1). (Again, recall restriction (12): E(t) ≥ U(t) for all t.)

Property (iv) states that U(m1) = E(m1) < E(m1+), where E(m1+) is the utility for a

worker who is unemployed at m1 but transitions to employment immediately after m1, i.e.,
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Figure 2: Continuation utilities E(·) and U(·) in [0, m1].

E(m1+) = limt↓m1 E(t) (see Figure 3). Suppose, to the contrary, that U(m1) = E(m1+).

Then incentive compatibility in [m1, 2m1] would be violated because the worker employed

immediately after m1 can claim to be unemployed and consume more than the employed

until the next verification period, 2m1. Note that if there is no verification at date t, then

an upward jump in E(·) violates the incentive constraint: a worker who transitions to

employment prior to t would benefit from delaying the employment report. At the moment

of verification, however, the worker cannot delay the employment report since the true

employment status is revealed.

To understand why U(·) declines, suppose U(m1) > U(0). Then lowering U(m1) has two

benefits. First, the unemployed agent’s continuation utility path is flatter, which implies

better insurance for the unemployed. Second, lower U(m1) (and E(m1)) reduces E ′(·),

generating stronger incentives to deter fraud. In addition, U(·) can never jump. Because

U(·) is the promised utility to the unemployed agent, any jump in U(·) would violate the

promise-keeping constraint.
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5.3 Employment Tax

Here we examine the consumption allocated to the agent who reports employment earlier

relative to the consumption for the agent who reports it later. Recall that E(t) > E(s)

within a monitoring cycle and the continuation utility E(·) jumps up after verification.

Since employment is an absorbing state, any agent who reports a transition to employment

at t is allocated constant consumption cE(t) forever and is not monitored. Thus, E(t)

maps into cE(t) instant by instant and, hence, cE(t) > cE(s) within a monitoring cycle.

Furthermore, the consumption for the agent who reports the transition to employment

immediately after m1 is higher than that for the employed agent at m1 (see Figure 4).

The nonmonotonicity is closely related to the way incentives are provided in our model.

Within a cycle, the principal does not monitor, and relies exclusively on consumption

distortions to induce truth-telling: cE must fall sufficiently fast for the worker not to

postpone his report of employment. At m1, c
E falls to a level such that the agent is

indifferent between transitioning to employment and remaining unemployed. The principal

can perfectly insure the agent against the unemployment shock at m1 because the true

employment status is revealed. Immediately after m1, the principal treats the worker
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employed right after m1 better than the worker employed at m1. This is because the worker

who transitions to employment afterm1 can commit fraud until the next monitoring period,

while the worker who transitions to employment at m1 cannot commit fraud. Hence, the

principal must offer the former a higher permanent consumption to induce truth-telling.

The difference between wage w and consumption cE can be interpreted as an employ-

ment tax. Our contract implies that within a verification cycle, the employment tax for late

reporters is higher than that for the early reporters. However, unlike the existing unemploy-

ment insurance literature, the employment tax is nonmonotonic: it decreases immediately

following verification.

5.4 Unemployment Benefits

Unlike the case where cE(t) maps into E(t) at every instant, cU(t) is not pinned down at

every instant by U(t), since the unemployed agent is not fully insured. Instead, the path of

cU(·) in [0, m1] requires knowledge of the entire path of U(·) in the interval. We obtain the

entire trajectories of cU(·) and U(·) after solving (9) in Section 5.5. However, monotonicity
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of U(·) in Section 5.2 suggests that cU(·) declines with unemployment duration. As in

Hopenhayn and Nicolini (1997), our contract implies that the unemployment benefit cU

eventually reaches an arbitrarily low level with positive probability.8
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Figure 5: Consumption for the Unemployed

Figure 5 shows that the unemployment benefits jump down at the verification period.

To understand the jump, we argue that it is optimal for the principal to set u(t) above

u(m1) when m1 − t > 0 is small. Doing this relaxes the incentive constraint at time t, as

the following variational argument shows. The promise-keeping constraint at m1 − δ, for a

small positive δ, is

U(m1 − δ) = rδu(m1 − δ) + e−rδ[(πδ)E(m1) + (1− πδ)U(m1)]

= rδu(m1 − δ) + e−rδU(m1),

where the second equality uses the aforementioned property E(m1) = U(m1). The incentive

8In contrast to Hopenhayn and Nicolini (1997) and our paper, Pavoni (2007) imposes an exogenous lower

bound on promised utility and shows that the optimal benefits decrease with the duration of unemployment,

but remain constant after the promised utility reaches the lower bound. Alvarez-Parra and Sanchez (2009)

show a similar result in a model with an endogenous lower bound on promised utility.
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constraint at m1 − δ is

E(m1 − δ) ≥ rδe−ρwu(m1 − δ) + e−rδE(m1).

Suppose u(m1 − δ) = u(m1). Then the principal can maintain the promise-keeping con-

straint but relax the incentive constraint by increasing u(m1 − δ) and decreasing u(m1).

Specifically, consider the variation

ũ(m1 − δ) = u(m1 − δ) + e−rδǫ, ũ(m1) = u(m1)− ǫ, Ẽ(m1) = E(m1)− rδǫ.

Because the unemployed worker’s consumption after m1 remains unchanged, his contin-

uation utility at m1 is Ũ(m1) = U(m1) − rδǫ, which is equal to Ẽ(m1). Therefore, the

promise-keeping constraint U(m1 − δ) = rδũ(m1 − δ) + e−rδŨ(m1) still holds, and the

incentive constraint is relaxed:

rδe−ρwũ(m1 − δ) + e−rδẼ(m1) = rδe−ρwu(m1 − δ) + e−rδE(m1)− (1− e−ρw)rδǫ

< rδe−ρwu(m1 − δ) + e−rδE(m1).

Starting from u(m1 − δ) = u(m1), the additional cost of consumption incurred by this

variation is second order, but the effect on incentive constraint is first order. Hence the

principal always chooses u(t) above u(m1) when t is close to (but below) m1.

We summarize these findings in the following proposition. The proof is in Appendix C.

Proposition 2 The unemployment benefit, cU(·) is monotonically decreasing with unem-

ployment duration, with downward jumps at verification, while cE(·) is nonmonotonic: it

decreases between verifications with upward jumps immediately after verification.

Unemployment insurance systems in many countries feature benefits schemes similar to

the one in Proposition 2. For example in Spain, workers receive a replacement rate of 70

percent for the first 6 months of unemployment, 60 percent for the next 18 months, and a

minimum payment thereafter.

5.5 Pontryagin Minimum Principle

We construct a solution to the optimal control problem (9) in which the incentive

constraint (11) binds (i.e., µ(t) = 0) for all t < m1. The problem faced by the principal
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is to choose an initial state E(0) and a time path u(·) to minimize the cost in (9), given

U(0). The promise-keeping and incentive constraints (10) and (11) then imply a time path

(U(·), E(·)) for continuation utilities. One way to think about this problem is to think of

choosing u(t) at each date, given the values of U(t) and E(t) that have been attained by

that date. The principal faces a tradeoff between the current-period cost and the cost of

delivering continuation utilities. Hence, she needs to set “prices”, Φ and λ, on increments

to the continuation utilities U and E. Because it is costly for the principal to maintain a

low E as a threat, it must be the case that λ ≤ 0. Moreover, we have argued in Section 5.2

that E(t) ≥ U(t) is slack except at m1, so we impose only the constraint E(m1) = U(m1).

A central construct in the optimal control problem is the current value Hamiltonian H

defined by

H = πc(E(t)) + rc(u(t)) + Φ(t)((r + π)U(t)− πE(t)− ru(t)) + λ(t)(rE(t)− e−ρwru(t)),

which is just the sum of current-period cost and the rate of increase in continuation utilities

valued at Φ(t) and λ(t). An optimal allocation must minimize H at each date t.

The first-order condition for minimizing H with respect to u is

c′(u) = Φ + e−ρwλ. (13)

The left-hand side is the marginal cost of today’s utility, while the right-hand side is the

marginal cost of starting with higher continuation utility U tomorrow, offset by the benefit

of a slacker incentive constraint (it is a benefit because λ ≤ 0). The utility u must be

chosen to equalize the costs at each date.

The prices Φ and λ must satisfy

Φ′(t) = (r + π)Φ−
∂H

∂U
= 0, (14)

λ′(t) = (r + π)λ−
∂H

∂E
= π(Φ− c′(E) + λ), (15)

at each date t if (u(·), U(·), E(·)) is an optimal path. Equation (14) implies that Φ(t) is a

constant. Moreover, since multiplier Φ(0) is the marginal cost of U(0), we have

Φ = C ′(U(0)) = −(ρU(0))−1 > 0.
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Since the planner can choose E(0) freely,

λ(0) = 0. (16)

At m1, the shadow prices Φ and λ(m1) must satisfy

Φ = −κ + c′(U(m1)), (17)

λ(m1) = κ, (18)

where e−(r+π)m1κ is the multiplier on the constraint E(m1) = U(m1). Since the principal’s

problem is convex, these conditions (13–18) are both necessary and sufficient for a minimum.

When (11) holds as equality, the states (U,E) and the costate λ satisfy differential

equations:

U ′(t) = (r + π)U − πE − ru, (19)

E ′(t) = rE − re−ρwu, (20)

λ′(t) = π(Φ− c′(E) + λ). (21)

The ODE system contains three variables and would be difficult to analyze in a general

context. However, we can solve (20) and (21) regardless of (19), because neither (20) nor

(21) relies on U . Once (20) and (21) are solved, it is easy to solve (19). Formally,

Lemma 2 If (20) and (21) hold, then (19) holds if and only if

ΦU(t) + λ(t)E(t) + ρ−1 = 0, ∀t ∈ [0, m1]. (22)

To solve the reduced ODE system, (20) and (21), we need two boundary conditions. The

first is (16), λ(0) = 0. The second cannot be a value for E(0), as E(0) is endogenous and

unknown a priori. We obtain the second boundary condition, E(m1) = −ρ−1(Φ+λ(m1))
−1,

from E(m1) = U(m1) and equation (22).

The following lemma shows that these two boundary conditions pin down a unique

solution curve for the system (20) and (21). Figure 6 shows the phase diagram. That

λ < 0 implies that the incentive constraint binds for all t < m1.

Lemma 3 For any m1 > 0, there is a unique initial condition E(0) such that the solution

starting at (λ(0) = 0, E(0)) satisfies E(m1) = −ρ−1(Φ + λ(m1))
−1.
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Figure 6: Phase Diagram for (λ,E).

6 Optimal Monitoring

Until this point, we have taken m1 as exogenous. In this section, we characterize

the optimal choice of m1. The tradeoff in choosing m1 is as follows. Monitoring more

frequently implies higher verification cost, but the principal can provide better insurance:

the consumption path for the unemployed is similar to that for the employed. Monitoring

less frequently implies lower verification cost but worse insurance.

For any m1 > 0, denote the minimized cost in (9) as C (m1); that is,

C (m1) =

∫ m1

0

e−(r+π)t (πc(E(t)) + rc(u(t)))dt+ e−(r+π)m1 (γ + ψ + c(U(m1))) .

Intuitively, delaying monitoring (i.e., a small increase in m1) saves the principal both the

cost of monitoring and the cost of (after-monitoring) consumptions, because the payment

of γ + ψ + c(U(m1)) is postponed. By doing so, however, the principal must maintain the

consumptions c(E(·)) and c(u(·)) for a longer duration. Subtracting the benefit from the

cost (algebraic details in Appendix C) yields

C
′(m1) = e−(r+π)m1

(

rρ−1 log

(

Φ + e−ρwλ(m1)

Φ + λ(m1)

)

− (r + π)(γ + ψ)

)

.
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Thus, the first-order condition for m1 is

rρ−1 log

(

Φ + e−ρwλ(m1)

Φ + λ(m1)

)

= (r + π)(γ + ψ). (23)

Proposition 3 The optimal m1 is the unique solution to (23). That is, (23) is both

necessary and sufficient for the minimum of C (m1).

Remark 1 Although our analysis relies on an undetermined parameter ψ, the parameter

can be uniquely pinned down by a fixed-point condition that the actual cost function at time

zero must equal the conjectured function ψ + c(U(0)). Further details are in Appendix C.

Remark 2 Our analytical results rely on the assumption of CARA preferences. Unlike the

CARA case where the length of the monitoring cycle is independent of history, the cycle

length in the CRRA case depends on the worker’s continuation utility. However, most of the

main features of the optimal contract remain valid even if the worker has CRRA preferences.

We demonstrate this through a numerical example in Fuller, Ravikumar, and Zhang (2013).

7 Quits

Another type of fraud that could arise in our model is quits. An agent in our model

could transition to employment in period t, claim to be unemployed until almost m1, and

then quit to become unemployed at m1. The verification at m1 would not reveal him to be

a cheater. Thus, quitting is possible in our model.

Our mechanism guarantees that the agent does not commit such a fraud. The contin-

uation utilities E(·) and U(·) are such that the agent is indifferent between reporting the

transition immediately and delaying it to the next period. By following the path above

and quitting at m1, he becomes truly unemployed, is subject to the stochastic arrival rate

of employment opportunity, and is worse off.

Hopenhayn and Nicolini (2009) examine a model where quits cannot be distinguished

from layoffs and the only fraudulent behavior is quits. In their model, the employment

status is observable and non-absorbing, and disutility from working is greater than that

from searching for employment. Employed agents might want to opportunistically quit
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their job, enjoy more leisure, and collect unemployment benefits. To discourage quits, the

principal offers (i) higher consumption to the employed workers who stay on the job longer

and (ii) more generous benefits to unemployed workers with longer employment spells, as

quitters have shorter employment spells on average. In our model, the utility functions

for the unemployed worker and the employed worker are the same, and employment status

is private information. Since employment is an absorbing state, quitting as considered in

Hopenhayn and Nicolini (2009) cannot arise in our model. The potential reason for quitting

in our model is to cover up the fraudulent collection of unemployment benefits before the

verification period. Our optimal mechanism provides incentives for the agent not to delay

reporting his transition to employment and not to conceal his earnings.

Overpayment due to quits is small relative to the overpayment due to concealed earnings

(see Table 1). Our mechanism deters fraud due to both concealed earnings and quits.

8 Stochastic Verification

Our monitoring mechanism in the previous sections was restricted to deterministic veri-

fication. Here we consider a more general mechanism where the principal verifies randomly

after receiving the unemployment report. Conditional on the unemployment report at t,

the principal chooses the monitoring Poisson rate p(t) ≥ 0. That is, over a period of length

dt, the principal monitors with probability p(t)dt and she does not monitor with probability

1− p(t)dt. (Since our model is in continuous time, p(t) is not the monitoring probability.)

We assume that if a worker is monitored and caught cheating, he has to pay a finite

penalty forever. With infinite penalty, an arbitrarily small monitoring probability would

deliver the full-information constant consumption. In our model, if the principal can choose

any finite penalty between 0 and φ > 0, he would always choose φ. Henceforth, we assume

that the finite penalty is φ units of the consumption good, forever.

Similar to (10) and (11), the promise-keeping constraint and incentive constraint are

U ′ = r(U − u)− π(E − U)− p(Ũ − U), (24)

E ′ ≤ rE − re−ρwu− p(eρφ − 1)E, (25)
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where Ũ is the unemployed agent’s continuation utility after monitoring. Because the

probability that monitoring does not occur in [0, t) is e−
∫ t

0
p(s)ds, the principal’s objective is

∫ ∞

0

e−(r+π)t−
∫ t

0
p(s)ds

(

πc(E(t)) + rc(u(t)) + p(t)(γ + C(Ũ(t)))
)

dt. (26)

The principal chooses the utilities {U(t), E(t), u(t), Ũ(t); t ≥ 0} and the arrival rates of

monitoring {p(t); t ≥ 0} to minimize (26) subject to (24), (25), and the constraint E(t) ≥

U(t), ∀t ≥ 0.

Since the penalty for a worker with high promised utility is the same as that for a worker

with low promised utility, we obtain a scaling property similar to the one in Section 4.1.

Thus, the incentives to conceal earnings are the same for workers with different promised

utilities. Similar to our model with deterministic verification, we show in Proposition 4

that the optimal stochastic verification mechanism consists of cycles. See Appendix D for

the proof.

Proposition 4 There exists an N > 0 such that the principal monitors the unemployed

with a constant arrival rate p > 0 if and only if t ≥ N . Before N , the time path (U(·), E(·))

converges to the 45-degree line; after N , it moves along the 45-degree line toward (−∞,−∞)

until the agent is randomly drawn to be verified. After the verification, (U,E) jumps to a

new state (Ũ , Ẽ) and a new cycle starts.

The unemployed worker is in one of two states: (i) not monitored (i.e., p(t) = 0) or (ii)

randomly drawn to be monitored (i.e., p(t) ≡ p > 0). Within each cycle, an unemployed

worker is initially in the not-monitored state. He is moved to the random monitoring state if

the duration of his unemployment report exceeds the threshold N . If he is randomly drawn

to be monitored, then he is moved to the not-monitored state after being monitored, and a

new cycle begins. While the date of monitoring is stochastic, the threshold duration is not.

That is, within each cycle, the principal guarantees that the worker will not be monitored

until the threshold duration is reached, similar to the deterministic verification case.

The intuition for why the worker is not monitored before the threshold duration is as

follows. The Unemployment Insurance agency has access to two instruments: tax/subsidy

and monitoring. Recall that at verification the true employment status is revealed, and E
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is reset to a level such that its shadow price is zero, which means that, immediately after

monitoring, the employment tax can be varied at no cost. The cost of the tax/subsidy

instrument is lower than the cost of monitoring, γ > 0, immediately after monitoring, and

remains so until some threshold unemployment duration is reached. Hence, it is optimal to

use only the tax/subsidy instrument for the provision of incentives before the threshold.

Remark 3 The absence of verification until a threshold duration is unlikely to be robust to

other types of penalties. For instance, in Popov (2009) there is an exogenous lower bound

on the worker’s continuation utility and a worker who is caught cheating is pushed to this

lower bound. So the penalty for a worker with high continuation utility is larger than that

for a worker with low continuation utility. With hidden i.i.d. income, he shows that the

verification probability is always positive.

The stochastic monitoring mechanism clearly dominates the deterministic mechanism

characterized in Section 6. To see this, consider a stochastic monitoring scheme in which

the arrival rate of monitoring is higher than p for workers in the random monitoring state.

Denote this higher arrival rate as p̃. Proposition 4 implies that p̃ is suboptimal. By

continuity, the limiting scheme as p̃→ ∞ should also be suboptimal. This limiting scheme

is exactly the deterministic monitoring mechanism.

We argue below that the key insights on the use of tax/subsidy and monitoring instru-

ments in the suboptimal deterministic mechanism are nearly identical to the insights from

the optimal stochastic mechanism. We describe in detail the similarities and differences

between the implications of the two mechanisms.

8.1 Comparison of Monitoring with the Deterministic Case

First, both the stochastic and deterministic mechanisms have the feature that monitor-

ing does not occur before a threshold unemployment duration; m1 in the deterministic case

and N in the stochastic case. These thresholds, however, could be different; i.e., in general

m1 6= N .

Second, both mechanisms feature cycles. In the deterministic case, after m1 a new cycle

begins, with exactly the same length as the previous cycle. Similarly, in the stochastic case,
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after monitoring occurs a new cycle begins and verification does not occur again before the

threshold N is reached. The exact date when the monitoring occurs in the stochastic case

is random. This is because, after N monitoring arrives according to a Poisson process and,

hence, the exact length of each cycle depends on when the worker is actually verified. As

in the deterministic case, however, the value of N is the same in each cycle.

8.2 Comparison of Tax/Subsidy with the Deterministic Case

Consumptions in the stochastic monitoring case are similar to those in the deterministic

case. Within each cycle, before the threshold N , the patterns of consumption are identical

to (cE, cU) in Figures 4 and 5. After N , if a worker is monitored and verified to be truly

unemployed, then the unemployment benefits jump down, as in the deterministic case.

The only difference is that in the deterministic case, continuation utilities and consump-

tions are reset when the threshold m1 is reached. In the stochastic case, after the thresh-

old N and before the monitoring actually arrives, continuation utilities and consumptions

smoothly decline with the duration of unemployment. The decreasing continuation utilities

and the monitoring (and finite punishment) jointly provide incentives for truth telling; the

worker is indifferent between reporting a job offer and committing fraud.

8.3 Quantitative Analysis

To illustrate our optimal contract, we follow Hopenhayn and Nicolini (1997) closely

and perform a quantitative exercise similar to theirs. We let the agents in our model face

a stylized version of the U.S. unemployment insurance system. We calibrate the model

to match the observed rate of concealed earnings fraud. We then compute the gain to

switching to the optimal mechanism in our model.

To perform this exercise, we have to add some heterogeneity to our model; otherwise

everyone would cheat or no one would cheat, and we would not be able to match the ob-

served rate of concealed earnings fraud. We assume that the workers are heterogeneous

in the wages they earn and, hence, the replacement rate for unemployment benefits. Con-

cretely, we assume that the wage distribution is lognormal with parameters µw and σ2
w.
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The BAM data provides earnings information for an individual’s previous employment

(the earnings that determine the unemployment benefits for the individual). In the 2007

sample of BAM data, the mean weekly wage is $692 and the coefficient of variation is 0.79.

Using these data moments, we calibrate µw = 6.296 and σ2
w = 0.488. By construction, the

earnings in the BAM data are only for those who collect unemployment benefits. Instead

of using the BAM data we could use the CPS data on earnings for the entire employed

population to calibrate the wage distribution in the model. However, individuals collecting

unemployment benefits generally earn less (while employed) than the individuals in the

entire employed population.9

We calculate the unemployment benefits as a function of wages, again using the BAM

2007 data: ln(unemployment benefits) = 1.31 + 0.65 ln(wages).

We assume that the model period is 1 week and that the interest rate r = 0.001. Since

the average duration of unemployment in 2007 is 16.85 weeks, we calibrate the job arrival

rate to be π = 1/16.85. The monitoring cost γ is calibrated as follows. On average, the

BAM investigators spend 12.6 hours per case and the average wage of the investigators is

$43 in 2012 (the only year when such data is available). So, adjusting the average wage to

2007 dollars, we calibrate γ to be $501. We calibrate the value of absolute risk aversion

ρ such that the relative risk aversion for the average wage earner is 2. Since the average

wage is $692 in our sample, ρ = 2/692.

We then calibrate the probability of monitoring and the penalty in the U.S. system if

caught cheating to match two targets: fraction of people committing concealed earnings

fraud and fraction of people caught cheating among those committing the fraud.

With CARA preferences, wage heterogeneity is not relevant for matching the two tar-

gets, but it is relevant for computing the distribution of initial promised utility in the

baseline. In the counterfactual, we take these initial promised utilities as given, calculate

the optimal monitoring and benefits, and then compute the cost of delivering the initial

promised utilities. The job arrival rate, wage distribution, and penalty are held fixed at

the same values as the baseline calibration.

9The mean weekly wage among employed workers, in the March 2007 CPS, is $861 and the coefficient

of variation is 1.27.
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The results imply that, measured in present value, the cost of optimal monitoring is 60

percent of the cost in the current U.S. system. In the optimal contract (averaging across

the initial promised utilities), N = 11.64 weeks. That is, the planner guarantees that

monitoring does not occur for roughly the first 12 weeks of the unemployment spell and,

thus, reduces the monitoring cost with an efficient use of the monitoring technology.

To determine the magnitude of the gain from switching to the optimal mechanism, sup-

pose that the planner is restricted to use the same amount of resources as the current U.S.

system. How much additional utility can the planner deliver to the average worker? The

answer is a utility gain equivalent to a 1.55% more consumption at every date, relative to

the U.S. system. This gain arises from two sources: (i) improved consumption smooth-

ing between employed and unemployed states and (ii) reduced monitoring costs or higher

consumption on average. The U.S. system spends only 0.24 percent its resources on mon-

itoring the average worker and spends the rest on unemployment benefits (net of wages),

but the same resources are allocated differently in the optimal contract: 0.17 percent is

spent on monitoring the average worker and the rest is spent on unemployment benefits.

Thus, almost all of the gain in our model comes from improved consumption smoothing.

There are some obvious limitations to this analysis. Most notably, our exercise is a

partial equilibrium analysis, as in Hopenhayn and Nicolini (1997). To fully quantify the

welfare gains from adopting the optimal contract, we have to conduct a general equilibrium

analysis incorporating transition from employment to unemployment and disciplining the

model with aggregate worker flows.

9 Conclusion

The most prevalent incentive problem in the U.S. unemployment insurance system is

that individuals collect unemployment benefits while being gainfully employed. We exam-

ine a model of optimal unemployment insurance where a worker can conceal his employment

status and the Unemployment Insurance authority has a technology to verify his employ-

ment status. We find that the optimal interval between consecutive monitoring periods

is a constant, independent of history. The optimal employment tax is nonmonotonic, in-
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creasing between verifications and decreasing immediately after a verification. The optimal

unemployment benefits decline with unemployment duration with sharp declines after each

verification. Our optimal contract also prevents fraud from quits.

Unemployment insurance in our model is a form of social insurance protecting work-

ers against the risk of job loss. Acemoglu and Shimer (1999, 2000), Shimer and Werning

(2008), and Alvarez-Parra and Sanchez (2009) explore another role of unemployment insur-

ance. They examine environments with heterogeneous jobs, and unemployment insurance

helps the worker wait for the appropriate job. Some jobs have higher productivity than oth-

ers, but such job opportunities arrive less frequently. Unemployment benefits help workers

wait for more productive matches and endure longer unemployment durations. The benefits

in these environments affect the aggregate composition of jobs. An interesting direction

for future research is to extend our environment to multiple jobs and examine optimal

monitoring in the presence of the alternative role of unemployment insurance.

Finally, our model does not include any job retention effort. Incorporating the job

retention effort into our model requires employment to be stochastic. If workers can conceal

earnings, their hidden income could affect their job retention effort. Analyzing interaction

between effort and fraud is another interesting direction for future research.
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Appendix A Data

Fraud and Overpayments Table A.1 details the various types of fraud overpay-
ments from 2005 − 2009, averaged over all U.S. states. Concealed earnings fraud is the
dominant source of overpayments in every year.

Table A.1: Fraud Overpayments
Percent of Total Fraud Overpayments

Cause 2005 2006 2007 2008 2009
Concealed Earnings 62.64 54.40 60.06 67.32 65.89
Insufficient Job Search 4.55 4.15 4.95 3.02 2.75
Refused Suitable Offer 0.63 0.36 0.80 0.36 0.77
Quits 12.78 16.41 7.06 5.04 5.14
Fired 4.27 4.60 13.29 12.69 9.61
Unavailable for Work 4.94 6.95 4.17 4.60 7.38
Other 10.20 13.14 9.67 6.97 8.46
Total 100.00 100.00 100.00 100.00 100.00

Source: Benefit Accuracy Measurement Program, U.S. Department of Labor

The unemployment insurance system might incur another form of overpayment if work-
ers strategically delay the start date of employment. That is, workers might accept
a job offer but agree to start the job after their unemployment benefits have expired.
Gauthier-Loiselle (2011) documents that unemployment insurance expenditures are higher
in Canada because of such cases. In the U.S., this is not considered fraud. Thus, the
BAM data include no information on such cases, so they are not included in the fraud
overpayments statistics.

Overpayments due to Insufficient Search In Table 1 in Section 2, the overpay-
ments due to concealed earnings fraud were almost twelve times the overpayments due to
insufficient search fraud. Do the data understate the incidence of insufficient search? Re-
call that the BAM program measures only the extensive margin — whether the individual
submits the required number of applications. It is possible that the unmeasured inten-
sive margin — effort that turns an application into a job offer — is large enough to make
the overpayments due to insufficient search comparable in magnitude to the overpayments
due to concealed earnings. The following facts, however, suggest that the unmeasured
component is unlikely to be large.

1. Measured overpayments due to insufficient search have been declining: In 1988 they
accounted for 34 percent of the total overpayments due to all fraud, whereas in 2007 they
accounted for less than 5 percent. (The corresponding numbers for concealed earnings
fraud were 41 percent and more than 60 percent.)

2. The job search requirements that make an unemployed person eligible for benefits
have increased over time, so the decline in the measured component is not due to changes
in eligibility criteria. Hence, for the insufficient search overpayments to be the same in 2007
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as those measured in 1988, the unmeasured component has to be almost six times that of
the measured component in 2007.

3. If unmeasured efforts to translate a job application into a job offer were substantially
higher in 2007, then the increase in efforts should imply a substantially higher transition
rate from unemployment to employment. However, the transition rate is roughly constant:
The quarterly rate was 0.31 for the period 1988-1997 and 0.33 for 1998-2007.

From a normative point of view, as noted in Section 1, the prevailing quantitative theory
prescribes an intensive margin search effort that is less than the effort exerted under the
current unemployment insurance program in the U.S. In other words, insufficient search is
not a critical incentive problem in the U.S. (Using evidence from randomized trials in four
U.S. sites, Ashenfelter, Ashmore, and Deschenes (2005) find that insufficient job search is
not a significant source of unemployment insurance overpayments.)

Appendix B Microfoundations for E(t) ≥ U(t)

Suppose that the worker can privately refuse a job offer. The timing in each period is
as follows. The stochastic job opportunity arrives and the worker either receives an offer or
does not. He then chooses to report the offer (if any) to the principal. Conditional on the
report of an offer, the principal recommends the worker to either accept or reject the offer.
The worker then chooses whether to follow the principal’s recommendation. (In contrast,
job acceptance is implicitly imposed in our model in Section 3.) Conditional on the report,
the principal assigns current and future consumptions.

In such a job-refusal model, it is optimal for the principal to always recommend to the
worker who reports an offer to accept the offer. Recommending “accept” minimizes the
cost of delivering the promised utility since the worker’s consumption is constant upon
job acceptance and the principal gets the perpetual wage. Recommending “reject” means
that the continuation contract involves additional uncertainty of job offers, reports, and
incentive constraints. So the consumption cost of delivering the same promised utility
is higher under “reject.” Recall that, unlike Atkeson and Lucas (1995), we do not have
disutility to working so it is optimal to always recommend “accept.”

The incentive compatibility for an agent with a job offer is as follows. If he reports his
offer and receives a recommendation to accept, he strictly prefers “accept” to “reject.” This
is because rejecting the offer would not make him eligible for any unemployment insurance
benefits, but would make him lose his wage income. If the agent does not report his offer,
then either he rejects the offer and obtains U(t), or he accepts the offer and commits fraud
(i.e., he works and collects unemployment benefits at the same time). For the agent to
truthfully report his offer, the utility of reporting and accepting the offer, E(t), must be
higher than both U(t) and the utility he obtains by committing Concealed Earnings fraud.
These incentive compatibility constraints are exactly conditions (2) and (3) in our model
in Section 3.
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Appendix C Proofs

Proof of Lemma 1: Suppose that a contract σ ≡ {
(

U(t), E(t), u(t), cU(t), cE(t), mi

)

; t ≥
0, i ≥ 1} delivers the continuation utility U . Then, a contract

σα ≡
{(

αU(t), αE(t), αu(t), cU(t)− log(α)/ρ, cE(t)− log(α)/ρ,mi

)

; t ≥ 0, i ≥ 1
}

delivers αU . The reverse is also true. Further, σ is incentive compatible if and only if σα
is incentive compatible. Therefore,

{(

U∗(t), E∗(t), u∗(t), cU∗(t), cE∗(t), m∗
i

)

; t ≥ 0, i ≥ 1
}

is
the optimal contract to deliver U if and only if

{(

αU∗(t), αE∗(t), αu∗(t), cU∗(t)− log(α)/ρ, cE∗(t)− log(α)/ρ,m∗
i

)

; t ≥ 0, i ≥ 1
}

is the optimal contract to deliver αU . �

Lemma C.1 The promise-keeping constraint (1) and the incentive constraint (6) hold for
all 0 ≤ t < s ≤ m1 if and only if

U(s)− U(t) =

∫ s

t

((r + π)U(x)− πE(x)− ru(x)) dx, (27)

E(s)−E(t) ≤

∫ s

t

(

rE(x)− re−ρwu(x)
)

dx, (28)

hold for all 0 ≤ t < s ≤ m1. Taking the limit as s goes to t yields the differential equations
(10) and (11).

Proof. We only show the equivalence between (6) and (28), since the equivalence between
(1) and (27) can be obtained similarly by replacing the inequalities below with equalities.

Necessity: If (6) holds for all t < s, then

E(t) +

∫ s

t

(

rE(x)− re−ρwu(x)
)

dx

≥

∫ s

t

e−r(x−t)re−ρwu(x)dx+ e−r(s−t)E(s)

+

∫ s

t

(

r

(
∫ s

x

e−r(η−x)re−ρwu(η)dη + e−r(s−x)E(s)

)

− re−ρwu(x)

)

dx

=

(

e−r(s−t) +

∫ s

t

re−r(s−x)dx

)

E(s) +

∫ s

t

(

e−r(x−t) − 1
)

re−ρwu(x)dx

+

∫ s

t

r

(
∫ s

x

e−r(η−x)re−ρwu(η)dη

)

dx

= E(s) +

∫ s

t

(

e−r(x−t) − 1
)

re−ρwu(x)dx+

∫ s

t

(
∫ η

t

re−r(η−x)dx

)

re−ρwu(η)dη

= E(s) +

∫ s

t

(

e−r(x−t) − 1
)

re−ρwu(x)dx+

∫ s

t

(

1− e−r(η−t)
)

re−ρwu(η)dη

= E(s).
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Hence, inequality (28) is verified.
Sufficiency: Define an absolutely continuous function f(·) as

f(s) ≡

∫ s

t

e−r(x−t)re−ρwu(x)dx+ e−r(s−t)
(

E(t) +

∫ s

t

(

rE(x)− re−ρwu(x)
)

dx

)

.

Because f is absolutely continuous, it is differentiable almost everywhere (a.e.), and

f ′(s) = e−r(s−t)re−ρwu(s)− re−r(s−t)
(

E(t) +

∫ s

t

(

rE(x)− re−ρwu(x)
)

dx

)

+e−r(s−t)
(

rE(s)− re−ρwu(s)
)

= re−r(s−t)
(

E(s)−E(t)−

∫ s

t

(

rE(x)− re−ρwu(x)
)

dx

)

, a.e.

If (28) holds, then f ′(s) ≤ 0 a.e. Then, it follows from Theorem 29.15 in Aliprantis and Burkinshaw
(1990) that

f(s) = f(t) +

∫ s

t

f ′(x)dx ≤ f(t) = E(t).

Therefore,

∫ s

t

e−r(x−t)re−ρwu(x)dx+ e−r(s−t)E(s) ≤ f(s) ≤ E(t),

which verifies inequality (6). �

Proof of Lemma 2: If (19), (20) and (21) all hold, we can substitute them into
(ΦU + λE)′ and obtain

(ΦU + λE)′ = ΦU ′ + λ′E + λE ′

= Φ((r + π)U − πE − ru) + π (Φ− c′(E) + λ)E + λ(rE − re−ρwu)

= (r + π) (ΦU + λE)− πc′(E)E − r(Φ + e−ρwλ)u.

Because −c′(E)E = ρ−1 and −(ρu)−1 = c′(u) = Φ + e−ρwλ, we have

(ΦU + λE)′ = (r + π)
(

ΦU + λE + ρ−1
)

. (29)

Because ΦU(0)+ λ(0)E(0)+ ρ−1 = 0, it follows from (29) that ΦU(t) + λ(t)E(t) + ρ−1 = 0
for all t ∈ [0, m1].

On the other hand, if (20) and (21) hold and

ΦU(t) + λ(t)E(t) + ρ−1 = 0, ∀t ∈ [0, m1],

then (ΦU + λE)′ = 0 for all t ∈ [0, m1]. Then (19) can be derived by reversing the above
steps. �
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(0, 0)

g(0)

g

λ

Φ

Φeρw

line g = Φ + λ

line g = Φeρw + λ

Figure 7: Phase Diagram for (λ, g).

Proof of Lemma 3: First, it is convenient to transform the state variable E, which
may approach −∞, into a bounded one. To do so, we replace E with

g ≡ c′(E) = −(ρE)−1.

Now, the ODE system consists of (21) and

g′ =
E ′

ρE2
=

rg2

Φeρw + λ
− rg, (30)

with boundary condition g(m1) = Φ + λ(m1) (Figure 7 shows the phase diagram). Let
m(g(0)) be the time to hit the straight line g = Φ + λ starting with (λ(0) = 0, g(0)).

Second, we show that limg(0)↓Φm(g(0)) = 0. If λ = 0 and g = Φ, then

(g − λ)′(t) =

(

rg2

Φeρw + λ
− rg + π(g − λ− Φ)

)
∣

∣

∣

∣

(λ,g)=(0,Φ)

=
rΦ2

Φeρw
− rΦ < 0.

Continuity of the ODE system (21), (30) implies that (g−λ)′(t) < 0 in a small neighborhood
of (0,Φ). If λ(0) = 0 and g(0) approaches Φ from above, then g(0)− λ(0)− Φ approaches
zero. Since the solution curve starting with (0, g(0)) will remain in the small neighborhood
of (0,Φ) for a while, it will decrease and hit the line g = Φ + λ quickly if g(0)− λ(0)− Φ
is sufficiently small.

Third, we show thatm(g(0)) is strictly increasing in g(0). Consider two paths that start
with initial conditions (0, g1(0)) and (0, g2(0)), where Φ < g1(0) < g2(0). We will show that
g1(t)− λ1(t) < g2(t)− λ2(t) for all t. By contradiction, suppose (g1 − λ1)(t) = (g2 − λ2)(t)
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for the first time at t = t∗. Because the two paths cannot cross, we cannot have that
g1(t

∗) ≤ g2(t
∗). Then g1(t

∗) > g2(t
∗) and λ1(t

∗) > λ2(t
∗). Hence

(g1 − λ1)
′(t∗) = −

rg1
Φeρw + λ1

(Φeρw + λ1 − g1)− π(Φ + λ1 − g1)

< −
rg2

Φeρw + λ2
(Φeρw + λ2 − g2)− π(Φ + λ2 − g2)

= (g2 − λ2)
′(t∗),

where the inequality follows from g1
Φeρw+λ1

> g2
Φeρw+λ2

. That (g1 − λ1)
′(t∗) < (g2 − λ2)

′(t∗)
contradicts the facts that (g1 − λ1)(t

∗) = (g2 − λ2)(t
∗) and (g1 − λ1)(t) < (g2 − λ2)(t) for

all t < t∗. Thus g1(t) − λ1(t) < g2(t) − λ2(t) for all t, and the path (λ1(t), g1(t)) reaches
g = Φ+ λ sooner.

Finally, we show there exists a unique g(0) to satisfy m(g(0)) = m1 for any m1 > 0.
The second step in this proof shows that limg(0)↓Φm(g(0)) = 0. Part (ii) in Lemma C.2
(page 43) shows that m(g(0)) can be arbitrarily large with high values of g(0). Hence, the
existence of a unique solution tom(g(0)) = m1 follows from the intermediate value theorem
and the monotonicity of m(g(0)) in g(0). �

Proof of Proposition 2: First, we show that E, cU , U , and U
E

all fall on [0, m1]. It
follows from g′(t) < 0 that E ′(t) = ρE2(t)g′(t) < 0. Equation (13) implies that u′(t) =
e−ρwλ′(t)
c′′(u)

< 0, or (cU)′(t) < 0. Equation (22) implies that U ′(t) = −Φ−1(λ(t)E(t))′ < 0.

Equation (22) also implies that U
E
= Φ−1(g−λ). Hence part (i) in Lemma C.2 implies that

(

U
E

)′
(t) < 0.

Second, to see the downward jump in cU(·) at m1, we show that

lim
t↑m1

c′(u(t)) > lim
t↓m1

c′(u(t)).

The left side is Φ + e−ρwλ(m1) according to (13). To obtain the right side, we apply (13)
to the interval [m1, 2m1), and obtain

c′(u(t)) = C ′(U(m1)) + e−ρwλ̃(t), t ≥ m1,

where λ̃ denotes the multiplier λ for the problem on the interval [m1, 2m1). Because
λ̃(m1) = 0, we have limt↓m1 c

′(u(t)) = c′(u(m1)) = C ′(U(m1)) + 0 = Φ+ λ(m1). Therefore,

lim
t↑m1

c′(u(t)) = Φ + e−ρwλ(m1) > Φ + λ(m1) = lim
t↓m1

c′(u(t)).

�

Proof of Proposition 3: First, because Φ+e−ρwλ
Φ+λ

decreases in λ, and λ(m1) decreases
in g(0) and m1, there is a unique value for g(0) (as well as m1) for a given ψ.

Second, to show that (23) is sufficient, we prove that

C
′(m1)

{

< 0, m1 < m∗
1;

> 0, m1 > m∗
1.

This is because Φ+e−ρwλ(m1)
Φ+λ(m1)

strictly increases in m1:
Φ+e−ρwλ(m1)

Φ+λ(m1)
decreases in λ(m1) and

the proof of Lemma 3 shows that λ(m1) decreases in g(0) and m1. �
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Details in the computation of C ′(m1)

Rewrite C (m1) as

∫ m1

0

e−(r+π)t
(

πc(Em1) + rc(um1) + Φ((r + π)Um1 − πEm1 − rum1 − (Um1)′)

+λm1(rEm1 − re−ρwum1 − (Em1)′)
)

dt+ e−(r+π)m1 (γ + ψ + c(Um1(m1)))

+e−(r+π)m1λm1(m1)(E
m1(m1)− Um1(m1)),

where we put a superscript m1 on U(·), E(·), u(·), and λ(·) because these optimal paths
rely on m1. We use the Envelope theorem to simplify the computation of C ′(m1). Since
Um1(t), Em1(t), um1(t) are already optimally chosen at each t, we may view them as fixed
when we vary m1. Further, U

m1(m1) and E
m1(m1) can be viewed as varying only with the

terminal date in the parenthesis.10 Viewed in this light, a small increment of m1 is just an
extrapolation of all time paths over a longer duration of unemployment, while the paths
themselves are fixed. That is, we view all superscripts as being fixed and omit them when
we calculate derivatives. Because E(m1)− U(m1) = 0, we have

C
′(m1) = e−(r+π)m1

(

πc(E(m1)) + rc(u(m1))− (r + π)(γ + ψ + c(U(m1)))

+c′(U(m1))U
′(m1) + λ(m1) (E

′(m1)− U ′(m1))
)

.

It follows from c′(U(m1)) = Φ + λ(m1), λ
′(m1) = 0 and Lemma 2 that

c′(U(m1))U
′(m1) + λ(m1) (E

′(m1)− U ′(m1))

= ΦU ′(m1) + λ(m1)E
′(m1) = (ΦU(m1) + λ(m1)E(m1))

′ = 0.

Therefore,

C
′(m1) = e−(r+π)m1

(

πc(E(m1)) + rc(u(m1))− (r + π)(γ + ψ + c(U(m1)))
)

= e−(r+π)m1

(

rρ−1 log

(

Φ+ e−ρwλ(m1)

Φ + λ(m1)

)

− (r + π)(γ + ψ)

)

.

Fixed-point condition for ψ

The condition for ψ is that ψ is the fixed point of operator T , i.e.,

ψ + c(U(0)) = T (ψ) + c(U(0)) ≡ min
σ
C(σ).

We obtain ψ from the first-order condition (23) for m1,

ψ =
rρ−1

r + π
log

(

Φ+ e−ρwλ(m1)

Φ + λ(m1)

)

− γ.

10This is because U m̃1(m1) and Em̃1(m1) can be viewed as being fixed when we vary m̃1.
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We obtain T (ψ) from the HJB equation for the cost function at time zero

T (ψ) + c(U(0)) =
πc(E(0)) + rc(u(0)) + Φ ((r + π)U(0)− πE(0)− ru(0))

r + π

=
π

r + π

(

Φ

g(0)
− log

(

Φ

g(0)

)

− 1

)

+ c(U(0)).

The fixed-point condition ψ = T (ψ) is rewritten as

(r + π)γ = rρ−1 log

(

Φ+ e−ρwλ(m1)

Φ + λ(m1)

)

− π

(

Φ

g(0)
− log

(

Φ

g(0)

)

− 1

)

. (31)

Proposition 5 The path that satisfies (31) exists and is unique.

Proof. The existence of a path that satisfies (31) follows from the intermediate value
theorem and the fact that right side of (31) is either extremely large or extremely small if
we vary g(0). To see this, note that the proof of Lemma 3 shows that limg(0)↓Φm1 = 0 =
limg(0)↓Φ λ(m1). Therefore,

lim
g(0)↓Φ

rρ−1 log

(

Φ + e−ρwλ(m1)

Φ + λ(m1)

)

− π

(

Φ

g(0)
− log

(

Φ

g(0)

)

− 1

)

= 0.

On the other hand, the proof of part (ii) of Lemma C.2 shows the existence of paths with

λ(m1) approaching −Φ and g(0) ∈ (Φ,Φeρw). For these paths, log
(

Φ+e−ρwλ(m1)
Φ+λ(m1)

)

can be

arbitrarily large, while Φ
g(0)

remains bounded.
The uniqueness can be shown by contradiction. Suppose there are two paths satisfying

(31). Associated with the two paths are two fixed points, ψ < ψ̃. Because the principal
facing ψ̃ may monitor at m1(ψ) > 0 and adopt the optimal consumption paths under ψ,

T (ψ̃) ≤ ψ + e−(r+π)m1(ψ)(ψ̃ − ψ) < ψ̃,

which contradicts the fact that ψ̃ is a fixed point. �

Lemma C.2 Consider the ODE system (21), (30) with time running backwards, that is,

λ′ = π(g − Φ− λ), (32)

g′ = rg −
rg2

Φeρw + λ
. (33)

Suppose the initial condition is (λ(0), g(0) = Φ + λ(0)), −Φ < λ(0) < 0, and m−(λ(0))
denotes the first time to hit the g-axis, i.e., m−(λ(0)) = mint{t > 0 : λ(t) = 0}.

(i) (g − λ)′(t) > 0 for all t ∈ [0, m−(λ(0))].

(ii) m−(λ(0)) is finite, and limλ(0)↓−Φm
−(λ(0)) = ∞.
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Proof.

(i) The path starting with (λ(0), g(0) = Φ + λ(0)) has

λ′(0) = π(g(0)− Φ− λ(0)) = 0,

g′(0) = rg(0)−
rg(0)2

Φeρw + λ(0)
> 0.

Hence it moves beyond g = Φ + λ at time zero and satisfies Φ + λ < g < Φeρw + λ
before reaching the g-axis. If Φ + λ < g < Φeρw + λ, then g′ > 0 and λ′ > 0.

To show that (g − λ)′(t) > 0 for all t ∈ [0, m−(λ(0))], suppose to the contrary that
(g − λ)′(s) ≤ 0 for some s. Let t∗ = mins{s > 0 : (g − λ)′(s) ≤ 0}. It is easily seen

that (g−λ)′(t∗) = 0 and (g−λ)′′(t∗) ≤ 0. Since (g−λ)′ = rg− rg2

Φeρw+λ
−π(g−Φ−λ),

(g − λ)′′(t∗) =

(

r −
2rg(Φeρw + λ)

(Φeρw + λ)2
− π

)

g′(t∗) +

(

rg2

(Φeρw + λ)2
+ π

)

λ′(t∗)

=

(

r +
rg2 − 2rg(Φeρw + λ)

(Φeρw + λ)2

)

g′(t∗)

= r
(Φeρw + λ− g)2

(Φeρw + λ)2
g′(t∗) > 0,

where the second equality follows from g′(t∗) = λ′(t∗). This contradicts that (g −
λ)′′(t∗) ≤ 0.

(ii) First, we show that m−(λ(0)) is finite. We know from part (i) that λ′ > 0. It follows
from (32) and (g − λ)′ > 0 in part (i) that

λ′′ = π(g − λ)′ > 0.

Hence starting from λ(0) < 0, λ(t) accelerates and will reach zero in finite time.

Second, we show that limλ(0)↓−Φm
−(λ(0)) = ∞. If λ(0) = −Φ and g(0) = 0, then

λ′(0) = π(g(0)− Φ− λ(0)) = 0,

g′(0) = rg(0)−
rg(0)2

Φeρw + λ(0)
= 0.

Continuity of the ODE system (32), (33) implies that (λ, g) will stay in a small
neighborhood of (−Φ, 0) for a long duration if λ(0) is sufficiently close to −Φ and
g(0) = Φ + λ(0). Therefore, limλ(0)↓−Φm

−(λ(0)) = ∞.

�
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Appendix D Stochastic Verification

D.1 Construction of a Contract

To prove Proposition 4, we first construct a contract σ∗ in which E(t) > U(t) implies
p(t) = 0, and E(t) = U(t) implies p(t) > 0. This contract has the features described in
Proposition 4, and in the next section we verify it is indeed optimal.

First, since the principal does not monitor in this contract when E > U , we still use
the ODE system (20), (21) to find a solution path in the interval [0, N ], where N satisfies

−

∫ N

0

λ(t)
(

rE − re−ρwu
)

dt− λ(N)(eρφ − 1)E(N) + γ = 0. (34)

The two boundary conditions for the ODE system (20), (21) are still λ(0) = 0 and E(N) =
−ρ−1(Φ + λ(N))−1.

Lemma 4 The N that satisfies (34) exists and is unique.

Proof. For uniqueness, we show that f(N) ≡ −
∫ N

0
λ(t) (rE − re−ρwu) dt − λ(N)(eφ −

1)E(N) decreases with N . Since both λ(N) and E(N) are negative and decreasing with
N , −λ(N)(eφ − 1)E(N) decreases with N . Moreover,

−λ
(

rE − re−ρwu
)

=
r|λ|

g(Φeρw + λ)
(g − λ− Φeρw).

For fixed t, r|λ|
g(Φeρw+λ)

increases with N , while (g − λ− Φeρw) is more negative with higher

N . Therefore, −
∫ N

0
λ (rE − re−ρwu) dt decreases with N too. For existence, note that

limN→0 f(N) = 0. Because limN→∞ λ(N) = −Φ and limN→∞E(N) = −∞, we have
limN→∞ f(N) = −∞. �

Second, choose p > 0 after N so that the state vector stays on the 45-degree line before
the monitoring arrives, i.e., U(t) = E(t) for all t ≥ N . Choosing Ũ(N) = U(0) = − 1

ρΦ
and

solving the equation U ′(N) = E ′(N), we have

p =
r(1− e−ρw)(Φ + e−ρwλ(N))−1

eρφ(Φ + λ(N))−1 − Φ−1
> 0. (35)

Note that p is independent of Φ. This also implies that p > 0 is time invariant after N
because U(t) = E(t) for t ≥ N .

Third, the constructed solution path defines a contract σ∗ as follows. For each t ∈ [0, N ],
the policy u(t) is obtained by the first-order condition (13)

u(t) = −
1

ρ(Φ + e−ρwλ(t))
. (36)

If t ≥ N , then the state vector moves along the 45-degree line, and u(t) is always propor-
tional to (U(t), E(t)). That is, for all t ≥ N ,

u′(t)

u(t)
=
E ′(t)

E(t)
=
U ′(t)

U(t)
= r −

r(Φ + λ(N))

Φ + e−ρwλ(N)
+ p

(

1−
Φ+ λ(N)

Φ

)

> 0. (37)
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The contract σ∗ is defined by (34–37), and the property that the continuation contract
after a monitoring at t ≥ N starts a new cycle, in which the continuation utility is
Ũ(t) = Φ+λ(N)

Φ
U(t) instead of U(0). In this construction, σ∗ has the features mentioned in

Proposition 4.

D.2 Optimality of the Contract

First, using the path obtained in Lemma 4, we construct a cost function C as

(r + π)C(U(t), E(t)) = πc(E(t)) + rc(u(t)) + Φ((r + π)U(t)− πE(t)− ru(t))

+λ(t)(rE(t)− re−ρwu(t)). (38)

Lemma 5 CU(U(t), E(t)) = Φ, and CE(U(t), E(t)) = λ(t).

Proof. Differentiate (38) with respect to t, we have

(r + π)(CUU
′(t) + CEE

′(t)) = πc′(E)E ′(t) + Φ((r + π)U ′(t)− πE ′(t)) + λ(t)rE ′(t) + λ′(t)E ′(t),

which, after substituting λ′(t) = π(Φ− c′(E) + λ), becomes

CUU
′(t) + CEE

′(t) = ΦU ′(t) + λ(t)E ′(t).

Homogeneity of C(·, ·) implies that CUU(t) +CEE(t) + ρ−1 = 0 = ΦU(t) + λ(t)E(t) + ρ−1.
Because the vectors (U ′(t), E ′(t)) and (U(t), E(t)) are linearly independent (we have shown

that
(

U
E

)′
(t) < 0 in the proof of Proposition 2, which is E′(t)

E(t)
> U ′(t)

U(t)
), we have CU = Φ and

CE = λ(t). �

Second, we verify that the cost function C satisfies the HJB equation:

(r + π)C(U,E) = min
u,p,Ũ,Ẽ

{

rc(u) + πc(E) + p
(

C(Ũ , Ẽ) + γ − C(U,E)
)

(39)

+CU

(

r(U − u)− π(E − U)− p(Ũ − U)
)

+CE
(

rE − re−ρwu− p(eρφ − 1)E
)

}

,

where (Ũ , Ẽ) is the new state vector the principal chooses after the next monitoring.

Lemma 6 The C(·, ·) defined in (38) satisfies (39).

Proof. The only differences between (38) and (39) are the terms associated with arrival
rate p, which will be shown to be zero in this proof. Fix a t ∈ [0, N ] and consider the HJB
equation at (U(t), E(t)). The first-order condition for Ũ implies that Ũ = U(0). Then we
have

C(Ũ , Ẽ) + γ − C(U,E)− Φ(Ũ − U)− CE(e
ρφ − 1)E

= −

∫ t

0

λ(s)
(

rE(s)− re−ρwu(s)
)

ds− λ(t)(eφ − 1)E(t) + γ.
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The above is decreasing in t because λ(t) < 0, and E(t) < 0 both decrease in t. Moreover,
the integral −

∫ t

0
λ(s) (rE(s)− re−ρwu(s)) ds decreases in t because

rE(t)− re−ρwu(t) = E ′(t) = ρE2(t)g′(t) < 0.

Therefore, the definition of N in (34) implies that

C(Ũ , Ẽ) + γ − C(U,E)− Φ(Ũ − U)− CE(e
ρφ − 1)E

{

> 0, if t < N,
= 0, if t = N.

This implies that

min
p≥0

p
(

C(Ũ , Ẽ) + γ − C(U,E)− Φ(Ũ − U)− CE(e
ρφ − 1)E

)

= 0,

which finishes the proof. �

Finally, to complete the proof of Proposition 4, we show that the contract σ∗ is optimal.

Proof of Proposition 4: Because the technique of using the HJB equation to verify
optimality is standard, we spare the reader of detailed steps. Given the initial promised
utilities (U,E), we need to verify that

(i) The cost of the contract σ∗ is C(U,E).

(ii) The costs of other I.C. contracts are weakly higher than C(U,E).

We only verify (ii) here, since the proof for (i) can be obtained simply by replacing the
following inequalities with equalities.

To see that the cost of an I.C. contract
{

(c̃E(t), c̃U(t), p̃(t)); t ≥ 0
}

is higher than
C(U,E), define

h(T ) =

∫ T

0

e−(r+π)t−
∫ t

0 p̃(x)dx
(

πc(Ẽ(t)) + rc̃U(t) + p̃(t)
(

C(Ũ(t), Ẽ(t)) + γ
))

dt

+e−(r+π)T−
∫ T

0
p̃(x)dxC(U(T ), E(T )).

The HJB equation implies that f ′(T ) ≥ 0. Therefore, h(T ) increases in T , and

C(U,E) = h(0) ≤ h(T ).

Taking limit T → ∞, we have

C(U,E) ≤

∫ ∞

0

e−(r+π)t−
∫ t

0 p̃(x)dx
(

πc(Ẽ(t)) + rc̃U(t) + p̃(t)
(

C(Ũ(t), Ẽ(t)) + γ
))

dt,

which can be rewritten as

C(U,E) ≤ E

[
∫ τ1

0

e−rt
(

πc(Ẽ(t)) + rc̃U(t)
)

dt

]

+ E
[

e−rτ1γ
]

+E
[

e−rτ1C(Ũ(τ1), Ẽ(τ1))
]

,
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where τ1 is the first monitoring time and (Ũ(τ1), Ẽ(τ1)) is the state vector immediately
after monitoring. Inductively, we obtain

C (U,E) ≤ E

[
∫ τn

0

e−rt
(

πc(Ẽ(t)) + rc̃U(t)
)

dt

]

+ E

[

n
∑

i=1

e−rτiγ

]

+E
[

e−rτnC(Ũ(τn), Ẽ(τn))
]

,

where τn is the nth monitoring time. Without loss of generality, we may assume that
limn→∞ τn = ∞ almost surely (otherwise the principal monitors infinitely many times in
finite time and the monitoring cost is infinity). Taking limit n→ ∞ yields

C (U,E) ≤ E

[
∫ ∞

0

e−rt
(

πc(Ẽ(t)) + rc̃U(t)
)

dt

]

+ E

[

∞
∑

i=1

e−rτiγ

]

.

�

Appendix E Imperfect Detection

This section presents a version of the stochastic verification model where detection is
imperfect. Specifically, there is a positive probability ̟ > 0 of monitoring error. In the
event of monitoring error, an unemployed worker is labeled as employed. If an unemployed
worker is monitored after reporting unemployment, the principal observes either an un-
employed signal U with probability 1 − ̟ or an employed signal E with probability ̟.
On the other hand, there is no monitoring error that labels an employed worker as being
unemployed, i.e., if an employed worker is monitored after reporting unemployment, the
principal observes E with probability one.

The timing of the problem is similar to the stochastic verification case in Section 8.
The planner still chooses the arrival rate of monitoring, p(t), conditional on the report of
unemployment in period t. There are, however, two differences in the case of imperfect
detection. First, the planner assigns continuation utilities based not only on whether or
not monitoring occurs (as above) but also on the signal from monitoring. Let UU(t) and
UE(t) be the continuation utilities of a monitored unemployed worker with signals U and
E at t, respectively. Let EE(t) be the continuation utility of a monitored employed worker
(whose signal can only be E) at t. Finally, EU(t) is the continuation utility of a monitored
unemployed worker with signal U who transited to employment immediately after being
monitored. Second, the penalty is exogenous in the case of perfect detection above, but is
endogenous with imperfect detection.

Similar to (24) and (25), the promise-keeping constraint and incentive constraint are

U ′ = r(U − u)− π(E − U)− p [(1−̟)UU +̟UE − U ] , (40)

E ′ ≤ rE − re−ρwu− p(EE − E). (41)

There are two differences between these two equations and (24) and (25). First, the promise-
keeping constraint (40) incorporates the possibility that an unemployed worker may be
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labeled as employed after monitoring. Second, in (25) the last term on the right-hand side
results from the exogenous and finite penalty, φ, whereas in (41) the last term allows the
penalty EE to be endogenous.

The main results from the perfection detection case and stochastic monitoring still hold
here. That is, the optimal monitoring mechanism consists of cycles. Within each cycle,
there exists some N such that the planner sets p = 0 before N , and then monitors at rate
p thereafter. Formally we state the following proposition.

Proposition 6 There exists an N > 0 such that the principal monitors the unemployed
with a constant arrival rate p > 0 if and only if t ≥ N . Before N , the time path (U(·), E(·))
converges to the 45-degree line; after N , the utility pair (U(t), E(t)) remains stationary
(i.e., U(t) = E(t) = U(N) = E(N) for all t ≥ N) until the worker is randomly drawn
to be monitored. If the observed signal from monitoring is E , the worker is punished,
UE = EE < U(N). If the signal is U , the worker is rewarded, UU > U(N), and the contract
enters a new cycle.
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