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Abstract

Factor models have become useful tools for studying international business cycles. Block
factor models [e.g., Kose, Otrok, and Whiteman (2003)] can be especially useful as the zero
restrictions on the loadings of some factors may provide some economic interpretation of the
factors. These models, however, require the econometrician to predefine the blocks, leading to
potential misspecification. In Monte Carlo experiments, we show that even small misspecifica-
tion can lead to substantial declines in fit. We propose an alternative model in which the blocks
are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchi-
cal prior, which allows us to incorporate series-level covariates that may influence and explain
how the series are grouped. Using similar international business cycle data as Kose, Otrok,
and Whiteman, we find our country clusters differ in important ways from those identified by
geography alone. In particular, we find that similarities in institutions (e.g., legal systems,
language diversity) may be just as important as physical proximity for analyzing business cycle
comovements.
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1 Introduction

The nature of business cycles is an issue central to macroeconomics. One way to better understand

business cycles is to examine their relationships across countries, which has prompted several studies

to consider common movements in business cycles across countries.1 A related question asks what

determines the countries that share common movements in their business cycles. In particular,

we might ask whether some characteristics (e.g., industrial similarity, proximity, language, trade)

lead some countries’business cycles to be correlated.2 For example, Norrbin and Schlagenhauf

(1996) estimated the role of industrial similarities in international business cycles but find a limited

role for industry-specific shocks in explaining the forecast error variance of output across countries.

Alternatively, coordinated (systematic) policies may be the impetus behind any synchronicity in

business cycles across countries. McKinnon (1982) suggested coordinated monetary policies as a

factor for synchronous cross-country business cycles.3 Finally, correlation between macroeconomic

aggregates across countries could be due to unobservable innovations —e.g., common international

shocks or country-specific shocks having spillover effects. Using structural vector autoregressions,

Ahmed, Ickes, Wang, and Yoo (1993) concludes that spillovers from a country-specific labor supply

shock are more important than common shocks in generating international business cycles.

Empirical models comparing business cycles across countries generally take one of two ap-

proaches: (1) Country cycles are estimated separately and then compared or (2) cycles are esti-

mated jointly with numerous assumptions made on the correlation structure. For the most part,

these approaches are motivated by the need to reduce complexity and potential parameter prolifer-

ation. The former approach leaves the country combinations unrestricted (i.e., any two countries’

cycles can be correlated), whereas the latter explicitly excludes this. The choice of the approach

taken can depend on both the question to be answered and the econometric techniques used to

1The relationship among business cycles across countries is not restricted to simple correlation. For example,
Engle and Kozicki (1993) studied a number of common features across country pairs in the G7 and found common
serial correlation. Clark (1998) and Clark and Shin (2000) find that region-specific shocks are important sources of
comovement.

2See Baxter and Kouparitsas (2005) for a list of other potential determinants of business cycle comovements across
countries.

3This conclusion was reached after finding data consistent with the substitutability of national monies. In
particular, McKinnon found that domestic money demand functions are unstable when no controls are made for
foreign exchange rates. Additionally, in an empirical test of the role of geographic borders in the synchronization of
business cycles between U.S. Census regions and across European countries, Clark and van Wincoop (2001) found
limited roles for both monetary and fiscal policies.

1



compute the cycle. For example, the first approach might define a country’s cycle based on a

Markov-switching or a trend-cycle decomposition, methods typically reserved for smaller systems

of equations.4 The second approach might define a common cycle via a factor model, where the

factor loadings reflect the degree of correlation among country cycles [e.g., Bai (2003); Bai and Ng

(2002); Forni, Hallin, Lippi, and Reichlin (2000, 2005); and Stock and Watson (2002a,b)].

In a series of recent papers, Kose, Otrok, and Whiteman (2003, 2008; henceforth KOW) propose

a factor model with a block structure for the factor loadings.5 This block structure provides a

straightforward interpretation that may be lacking in standard factor models. Countries within a

block have cycles that are correlated through a regional factor, whereas countries in different blocks

are correlated only through a (set of) global factor(s). The standard factor model can emulate

a block factor model if the loadings on the regional factors are close to zero. Even in that case,

however, the factors produce some cross-country correlation for countries outside its block. The

significant advantage of the block factor model is that it allows a larger number of less-pervasive

(regional) factors, only a few of which affect any particular country. Thus, correlations across a

small number of countries may be identified in block factor models but missed in standard factor

models in which the correlation is swamped by the large cross section. The disadvantage of the

block factor structure is that the blocks (or clusters) are predetermined, meaning significant ex ante

assumptions must be made about which countries’cycles are correlated.

In this paper, we take the block factor approach but relax the assumption that the blocks are

known ex ante. By being agnostic about block membership, we allow the data to cluster based on

both their business cycle features and on country-specific characteristics. For example, countries

could form groups based on their proximity, coordinated policies, and/or structural innovations. In

this sense, we are not a priori guided by any one particular theoretical model. However, once the

ex post country groupings are determined, potential commonalities within groups could be useful in

determining important features that any successful model of the international business cycle should

possess. For example, if we find that common language is a better determinant of cross-correlation

than physical distance, models of trade may consider common language rather than geography as

the determinant of iceberg costs.

4Exceptions are Hamilton and Owyang (2009) and Kaufmann (2010), who use approaches similar to ours in this
paper in a Markov-switching environment.

5See also Boivin and Ng (2006); Onatski (2012); and Hallin and Liska (2008).
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The model has the block factor structure with an additional membership indicator determining

to which block a country belongs. We assume block membership is a multinomial choice —i.e., a

country cannot belong to more than one block. This multinomial approach to the block structure

lends itself to estimation with Bayesian methods.6 In the simplest execution of the multinomial

approach, we can assume either a uniform or Dirichlet prior on the membership indicator, giving

the model the appearance of a clustering algorithm. For the uniform prior, cluster membership

depends solely on the business cycle characteristics of the country’s data compared with the other

members of the cluster. For the Dirichlet prior, the size of the cluster determines the ex ante

probability a country is sorted to it. Another approach we explore is the use of a multinomial

logistic prior on cluster membership [see also Frühwirth-Schnatter and Kaufmann (2008); Hamilton

and Owyang (2009)]. The use of the logistic prior allows us to (1) incorporate country-specific

characteristics (e.g., location, industrialization, trade patterns) and (2) test competing hypotheses

about which influences determine the countries that comove.

In Monte Carlo experiments with simulated data, we draw an obvious conclusion: Empirical

results, their economic interpretation, and the degree of confidence we place in them depend greatly

on the specification of the block structure. When the clusters are known (and correct), the standard

block factor model performs well. However, we find that small misspecifications of the block

structure can lead to dramatic deviations from the true model and substantial reductions in fit.

Our empirical application extends KOW’s study of cross-country correlations. Using annual

gross domestic product (GDP) growth rates for 60 countries, we find that although some re-

gional/geographic correlation does exist, there is also evidence against the prevailing belief that

geographic proximity is the major determinant of cross-country comovements. We find evidence

of only three clusters. The first consists of many of the industrialized nations: Japan and most of

Europe, excluding the U.K. and Denmark. A second cluster is composed of the U.K. and its former

British Commonwealth countries: Australia, Canada, India, New Zealand, and the U.S., among

others. A third cluster consists of South American countries, Mexico, and a few other countries.

We find that —as opposed to physical distance —linguistic diversity and legal institutions are among

the country-level determinants of this “regional”clustering. We also find that allowing the data

to determine the clustering leads to substantially higher contribution of the cluster (or regional)

6Our model has a similar flavor to the sparse factor model of Carvalho, Lopes, and Aguilar (2010).
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factor to the overall volatility of output.

The balance of the paper is organized as follows: Section 2 presents the endogenous clustered

factor model. Section 3 outlines the Bayesian techniques we use to estimate the model. In

this section, we focus on estimation of the model with a uniform prior on cluster membership.

Section 3.2 presents some Monte Carlo evidence showing how well our algorithm identifies the

clusters and the consequences of exogenously misidentifying them. Section 4 extends the model

and the sampler with a multinomial logistic prior. Section 5 presents results from the model with

international business cycle data. Section 6 summarizes and concludes.

2 Empirical Model

Suppose that we have a panel of N series, yn = [yn1, ..., ynT ], each of length T . We are interested

in movements common across the series; these movements can be sorted into those that affect all

series and those that affect only a few series. We refer to the former as global factors and to the

latter as cluster factors. Suppose there is but a single global factor and there are M clusters for

which a series yn belongs to a single cluster i.7 That is, at each period, ynt can be expressed as

the sum of the global factor ft; a single cluster factor Fit; an intercept βn0; and an error term, εnt:

ynt = βn0 + βnGft + βniFit + εnt, (1)

i = 1, . . . ,M, t = 1, . . . , T, n = 1, . . . , N and M � N , where βnG and βni are the factor loadings.

The restriction that each series can belong only to one cluster is equivalent to zero restrictions

on the factor loadings in a panel description of (1), giving it a block structure with which the factors

can be “identified”as regions.8 If we believe that some shocks are global — i.e., affect all of the

series of interest —but some remain confined to the region or sector from which they originate, the

model provides a framework with which we can perform regionally- or industrially-differentiated

analysis [see Moench, Ng, and Potter (2009)]. In (1), we have imposed that series n belongs to

cluster i, meaning that it is influenced by the ith cluster factor; in other words, a series’cluster

is predetermined. But what if we are unsure which series should move together? KOW impose

7 Increasing the number of global factors is straightforward. We discuss the choice of M below.
8Exclusivity can be relaxed but would require modifications to the estimation algorithms presented below. These

issues have been explored in other papers [e.g., Frühwirth-Schnatter and Lopes (2009)].
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the restriction that the countries on the same continent comove; Moench, Ng, and Potter impose

that within-sector data comove. While geographic proximity or industrial similarity may be a

reason for the comovement between two countries, other causes (e.g., trade, demographics, level

of industrialization) may also determine comovement. We, therefore, augment (1) to allow the

clusters to be determined endogenously.

In endogenous clustering, the data choose the groupings. We define a cluster indicator, γni =

{0, 1}, that signifies whether series n belongs to cluster i, retaining the restriction that a series can

only belong to a single cluster —i.e.,
∑M

i γni = 1. Then, we have

ynt = βn0 + βnGft +

M∑
i

γniβniFt + εnt. (2)

The model preserves the restrictions on the comovement of the series; series in different clusters

comove only through the global factor, while series belonging to the same cluster can comove apart

from the global factor. However, in contrast to (1), we can now estimate the membership indicator,

γni, thereby allowing the data to determine the composition of the clusters.

We allow the error terms, εnt, to be serially correlated, following an AR(pε) process:

εnt = ψn(L)εnt−1 + εnt,

where εnt ∼ N
(
0, σ2

n

)
and E [εntεmt] = 0 for all m 6= n. The diagonality of the variance-covariance

matrix implies that comovements between series not in the same cluster arise solely from the global

factor. Series within the same cluster, on the other hand, can comove via the global factor or the

cluster factor. We assume that each factor (including the global factor) follows an AR(pF ) process

of the form:

Fit = φi (L)Fit−1 + eit, (3)

where φi (L) is a polynomial in the lag operator and eit ∼ N
(
0, ω2

i

)
, where we normalize ω2

i = 1,

as is common in the literature.
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3 Estimation

The endogenously clustered factor model outlined in the preceding section can be estimated using

Bayesian techniques [see Gelfand and Smith (1990); Casella and George (1992); Carter and Kohn

(1994)]. Bayesian methods allow us to estimate the cluster membership parameter directly using

a single reversible-jump Metropolis-Hastings step in the Gibbs sampler. In principle, one could

estimate each cluster combination model using classical techniques and determine the final cluster

composition via some model selection criteria. However, this would mean estimating and comparing

a very large number of possible models. The optimal number of clusters (and, thus, the number

of factors) is obtained by computing the marginal likelihoods for models with different numbers of

clusters [see also Ghosh and Dunson (2008)].9

3.1 The Sampler

The sampler is an MCMC algorithm that draws from the conditional distributions of each parameter

block conditional on the previous draws from the remaining parameters. The sequence of draws

from the conditional distributions converges to the joint posterior. Let Y represent the data,

Θ represent the full set of model parameters, and F represent the full set of factors. The model

parameters and factors can be drawn in five blocks: (1) the group membership indicators, γ, jointly

with the intercept and the factor loadings, β; (2) the innovation variances, σ2; (3) the innovation

AR parameters, ψ; (4) the factors, F; and (5) the set of factor AR parameters, φ. After initializing

the sampler, the posterior distributions are computed with 10,000 iterations after 30,000 iterations

are discarded for convergence.

3.1.1 The Prior

For each series, the prior for factor loadings is normal, βn = [βn0, βnG, βni]
′ ∼ N (b0,B0), and the

innovation variances are inverse gamma, σ−2
n ∼ Γ (ν0,Υ0). The factor and measurement error AR

parameters also have normal priors, φ ∼ N
(
v0,V

−1
0

)
and ψ ∼ N

(
w0,W

−1
0

)
, respectively. As

a first pass, we assume the cluster membership over all clusters is uniform —that is, a priori, a

series is equally likely to belong to any cluster. In section 4, we modify the sampler to incorporate

9Marginal likelihoods are computed via the subsampling procedures proposed in Chib (1995) and Chib and Jeli-
azkov (2001). For more details, see Appendix A.
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country-specific characteristics into the cluster determination through a logistic heirarchical prior.

The factors are assumed to have unit innovation variances. The hyperparameters for the prior

distributions are given in Table 1. The draws of the variances and both sets of AR parameters are

straightforward and included in Appendix A.

3.1.2 Preliminaries

Before discussing conditional distributions for each block, it is useful to specify a few key quantities.

Let Ωi represent the variance-covariance matrix of the stacked vector of pF lags of the ith factor,

which has elements given by

vec (Ωi) = (I− Φi ⊗ Φi)
−1 vec

(
u′pF upF

)
,

where

Φi =

 φ′i

IpF−1 0pF−1×1


is the companion matrix associated with the ith factor, and upF is a (pF × 1) vector with a 1 as

the first element and zeros as the rest. Define Ci as the Cholesky factor of Ωi,

Λi =



−φipF · · · −φi1 1 0 · · · 0

0 −φipF · · · −φi1 1 0
...

...
. . . . . . . . . . . . . . .

...

0 · · · 0 −φipF · · · −φi1 1


,

and

S−1
i =

 C−1
i 0

Λi


which will be used to quasi-difference the factors. Similar quantities can be used to quasi-difference

the data. For example, we could produce the analogue of S−1
i , call it ζ−1

n , for each series using

the Cholesky factor of Σn = (I−Ψi ⊗Ψi)
−1 vec

(
u′pεupε

)
and the matrix Λn formed with the AR
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parameters for the error terms. Then, we can use S−1
i and ζ−1

n to quasi-difference the data and

the factors.

3.1.3 Generating γ,β|Θ−γ,β,F,Y

For effi ciency reasons, we draw βn and γn jointly for each n. The joint draw of β and γ can be

written as

q (β∗n, γ
∗
n|Θ,F) = q (γ∗n|γn,Θ,Y,F)π (βn|Θ, γ∗n,Y,F) ,

where we draw a candidate γ∗n from q (γ∗n|γn,Θ,Y,F), which may or may not depend on the past

(accepted) value of γn. Then, conditional on the candidate γ
∗
n, we draw a candidate β

∗
n from its

full conditional distribution π (βn|Θ, γ∗n,Y,F). This joint pair is then accepted or rejected.

Formally, let X∗n = [1T , f , F̃γ
∗
n], where 1T is a (T × 1) vector of ones and F̃ = [F1, ...,FM ] is

the collection of cluster factors. Let X
∗
n and Y

∗
n represent the quasi-difference of X∗n and Yn.10

Then, the candidate β∗n is drawn from

βn|Θ−βn,γn , γ
∗
n,F,Y ∼ N (b∗n,B

∗
n) , (4)

where B∗n =
(
B0 + σ−2

n X
∗′
nX
∗
n

)−1
, b∗n = B∗n

(
B−1

0 b0 + σ−2
n X

∗′
nY
∗
n

)
.

Since we are drawing the βn’s from their full conditional densities —i.e., from π (β∗n|γ∗n,Θ−β,γ ,F,Y),

the value of β∗n does not appear in the acceptance probability.
11 In this case, for each n, the ac-

ceptance probability is

An,γ = min

{
1,
|B∗n|

1/2

|Bn|1/2
exp

(
1
2b∗nB

∗−1
n b∗n

)
exp

(
1
2bnB

−1
n bn

) π (γ∗n)

π (γn)

q (γn|γ∗n)

q (γ∗n|γn)

}
, (5)

where b∗n and B∗n are defined as above and bn and Bn are defined for γn, the value held over from

the past draw.

To close this portion of the algorithm, we need to supply a proposal density for γn. We choose

a symmetric density in which we draw a random element of γn and set this equal to 1 (setting

all other elements equal to 0). The choice of the symmetric proposal makes the last term in (5)

10See Chib and Greenberg (1994) for the details concerning the quasi-differencing procedure used here.
11For a formal proof of this assertion, see Appendix 1 in Troughton and Godsill (1997).
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identically 1.12

3.1.4 Generating F|Θ,Y

The factors are drawn recursively from the smoothed Kalman update densities using the techniques

described in Kim and Nelson (1999). However, the sign of the factors are not uniquely identified

from the loadings (e.g., switching the signs on both a factor and its loading produces an observa-

tionally equivalent system). For identification, KOW normalize the sign of the first factor loading

in each group. Unlike KOW, we cannot restrict the sign of the first factor loading in each grouping

as the clusters are not a priori known. We can, however, impose a sign on the first element (period

1) of each factor to resolve the sign identification issue. In some cases, this is not suffi cient to

avoid label switching (i.e., cases in which the sampler alternately draws F and −F ). Thus, we also

impose a normalization that selects either F or −F depending on which is closest to the previous

draw in mean squared distance. The draw of the factors is described in detail in Appendix A.

3.2 The Effect of Misspecification

Allowing the data to determine the clusters rather than setting them in advance highlights a trade-

off between the estimation uncertainty and potential misspecification. One would, therefore, want

to evaluate the potential risks of each before proceeding with the diffi cult task of estimating the

clusters. To this end, we perform a set of Monte Carlo (MC) experiments designed to determine

the extent to which the clusters must be misspecified to outweigh the uncertainty of estimating

them.

We conduct 1000 MC replications by sampling 60 series of T = 500 evenly divided among 5

clusters. We begin by estimating the model with the (exogenous) correct cluster definitions and

gradually increase the level of misspecification. We measure misspecification by the percentage of

series exogenously allocated to the wrong cluster. Thus, a 1.7 percent misspecification refers to

one series allocated to the wrong cluster with all other series correctly specified. We then estimate

12Troughton and Godsill (1997) point out that the γ proposal density must allow some nonzero probability of
revisiting the same model. That is, the probability that the candidate γ∗ is equal to the last iteration’s γ must be
nonzero. If γ∗ = γ, the acceptance probability is 1, but we still redraw β.
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the clusters endogenously and compute an entropy measure,

E =

N∑
n=1

log(σ2
n) +

(
Y
∗
n −X

∗
nβn

)′ (
Y
∗
n −X

∗
nβn

)
σ2
n

 ,
for each case. Higher entropy scores reflect poorer performance with relative entropy related to

the familiar likelihood ratio statistic.13

Table 2 reports the results of the MC experiments. As expected, lower misspecification is

better than more misspecification. Interestingly, knowing the truth (zero misspecification) is

statistically equivalent to estimating the truth (endogenous clustering), with the differences in the

entropy scores likely due to variations in the small sample performances. Thus, we conclude that

in cases in which the truth is known, imposing the cluster composition is first best. However, if

the cluster composition is not certain, allowing the data to determine the clusters reduces the risk

of misspecification. It is important to note that, in these experiments, we give the best chance to

pre-specification of the clusters by correctly setting the true number of clusters —that is, the only

source of potential misspecification is incorrectly assigning a series n to the wrong cluster.

4 Incorporating Prior Beliefs of Cluster Membership

In the previous section, we assumed a flat prior over cluster membership. There are cases, however,

for which prior information could be useful in characterizing the clusters. For example, similar

industrial composition or geographic proximity could lead countries to respond to the same common

factor. In this section, we consider an alternative logistic prior for the cluster membership indicator,

γni. For this multinomial prior, we include additional blocks consisting of the hyperparameters

δ and λ and the latent vector ξ. As in Hamilton and Owyang (2009), we can think of the prior

hyperparameters as population parameters signifying the clusters’relationships.

13The entropy measure is calculated for each Gibbs iteration and the mean over all iterations is reported. Each
MC replication is estimated with 40000 Gibbs iterations, with the first 30000 discarded for convergence.
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4.1 Adding a Prior for Cluster Membership

Suppose there exists a vector, zni, of variables that may influence whether a series n belongs to

cluster i. We assess the probability that series n belongs to cluster i as

Pr [γni = 1|zni] =

 exp
(
z
′
niδi

)
/
[
1 +

∑
exp

(
z
′
niδi

)]
i = 1, ...,M − 1

1/
[
1 +

∑
exp

(
z
′
niδi

)]
i = M

, (6)

for n = 1, ..., N and where we have normalized δM = 0 for identification. In the multinomial

framework, series n cannot be affi liated with more than one idiosyncratic cluster. Note also that

the vector, zni, need not be composed of the same variables for each cluster i. The standard

approach to estimating the multinomial logistic is to augment the system in the spirit of Tanner

and Wong (1987) with a latent vector that has the characteristic that the nonnegative element also

reflects the cluster to which series n belongs. Formally, let ξi = (ξ1i, ..., ξNi)
′ denote a set of latent

vectors such that

ξni ≥ 0 if γni = 1

ξni < 0 otherwise
. (7)

Each ξni can be considered a draw from a truncated logistic distribution. We follow Holmes and

Held (2006) by defining a new latent variable, χni, that allows us to sample the hyperparameters

of the priors along with the latent variables as additional Gibbs steps in the algorithm above.

Suppose that χni has the limiting distribution of the Kolmogorov-Smirnov test statistic:

p (χni) = 8
∞∑
j=1

(−1)j+1 j2χni exp
(
−2j2χ2

ni

)
. (8)

If χni ∼ KS and oni ∼ N (0, 1), then ξni = z
′
niδi + 2χnioni has a logistic distribution with mean

z
′
niδi and unit scale parameter.

14 The cluster probabilities can be rewritten in terms of the new

latent variables as

Pr (ξni > 0) =
exp

(
z
′
niδi

)
1 +

∑M−1
j=1 exp

(
z
′
njδj

) .
The following subsections demonstrate how to draw the hyperparameters governing the cluster

prior probabilities.

14See Devroye (1986).

11



4.2 Augmenting the Sampler

The sampler outlined in Section 3 can be augmented to account for the logistic prior described

above. Conditional on the γnis, draws of most of the model parameters remain unchanged. The

change to the logistic prior does alter the acceptance probability in the joint draw of γni and βni

to the probability defined by (6). The only other modification is in the form of two additional

blocks sampling the three prior parameters: covariate effects, δ; the logistic variances, λ; and the

vector of latent variables, ξ. Each of these blocks is drawn by iterating (jointly) over the M − 1

unnormalized clusters.

4.2.1 Generating δ|Θ, ξ,λ,F,Y

Conditional on ξ and λ, δi are the slope coeffi cients from a standard Normal regression model for

each i of the form:

ξi = Ziδi + vi,

where Zi = [z1i, ..., zNi]
′, vi ∼ N (0, τ i), and τ i = diag [λ1i, ..., λNi]. We assume a normal prior for

the logistic slope parameters, δi ∼ N (di,Di). Thus, the covariate effects can be drawn from the

posterior δi|Y,Θ,F ∼ N (d∗i ,D
∗
i ), where

d∗i =
(
D−1
i + Z

′
iτ
−1
i Zi

)−1 (
D−1
i di + Z′iτ

−1
i ξi

)
and

D∗i =
(
D−1
i + Z′iτ

−1
i Zi

)−1
.

4.3 Generating ξ and λ|Θ, δ,F,Y

If we condition on λni, then ξni would be Normal, ξni|δi, λni ∼ N (mni, λni), for the i = 1, ...,M −1

unnormalized clusters. The mean of the Normal distribution reflects this normalization:

mni = z
′
niδi

Without such conditioning but given γni, ξni is a truncated logistic with meanmni. The truncation

point is at zero, where γni determines the direction of the truncation: ξni ≥ 0 if γni = 1 and ξni < 0

12



if γni = 0.

Then, to sample λni, Holmes and Held (2006) suggest that we can draw a candidate λ̂ni from

a Generalized Inverse Gaussian distribution. The candidate, λ̂ni, is accepted or redrawn based on

the algorithm described by Holmes and Held (2006).

5 Empirical Application

As an empirical application, we reconsider the model proposed in KOW in which geography is

the sole determinant of cross-country comovements. We include in the hierarchical prior sets of

variables that have been suggested as affecting trade between countries. By doing this, we can

assess the sources of business cycle comovements.

5.1 Data

Our measure of business cycle activity is the annual constant-price chain-weighted real GDP growth

rate (computed as the difference in the log of real GDP) from the 6.3 version of the Penn World

Tables (PWT) [Heston, Summers, and Aten (2009)].15 To maintain comparibility, we choose the

same 60 countries located in 7 regional blocks as in KOW.16

In addition to the real GDP data, the use of the logistic prior requires covariate data, Zi. Our

covariate dataset includes domestic and international variables as well as indices of institutional

differences. We focus on the differences in legal and linguistic institutions. We have a total of

seven covariates that inform the logistic prior: (1) the degree of economic openness, defined as the

ratio of imports and exports to GDP; (2) investment share of real GDP; (3) an index of conflict

resolution and sophistication of the legal system as captured by the manner in which lower courts

facilitate landlords’collection of checks (and remedies for bounced checks); (4) an index of language

diversity within each country; (5) an index of production dispersion relative to the rest of the world;

(6) an index of export dispersion from each country’s exporting partners; and (7) a similar index

15KOW’s business cycle data include other series in addition to real GDP, allowing them to estimate country
factors. We focus on the comovements across countries by restricting the model to a single business cycle indicator.
Extension to include country factors is left for future research.
16To increase the number of annual observations, we use a later version of the PWT. Ponomareva and Katayama

(2010) discuss the hazards of comparing empirical studies across versions of the PWT. Table A.1 in the data appendix
shows the 60 countries in the estimation along with the regional groupings imposed in KOW.
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of import dispersion from each country’s importing partners. The covariate data are summarized

in Table 3.

Openness measures the size of trade as a fraction of GDP. This variable proxies the extent of

a country’s dependence on foreign economies and exposure to external shocks, without controls for

the types of goods traded or the identities of trading partners, allowing us to determine whether

countries cluster based on the (relative) extent of their (direct) exposures to international shocks.

The investment share of GDP is meant to capture the degree of industrialization; similar levels of

industrialization may make countries susceptible to similar shocks inducing comovements.

The indices in (3) and (4) are included to test the extent to which institutions matter for cluster-

ing. Our institutional variables are the level of formality of the civil court system and the degree

of linguistic diversity. Djankov, La Porta, Lopez-de-Silanes, and Shleifer (2003) construct the

lower court system’s formalism index in (3) which “measures substantive and procedural statutory

intervention in judicial cases at lower-level civil trial courts”(p. 469). We hypothesize that trade

flow between countries with similar conflict resolution processes in civil courts could be higher as

individuals may prefer to form relationships in countries with familiar legal setups.

The ethnolinguistic index in (4) is from La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1999)

and measures the degree of language diversity, the probability that two randomly selected indi-

viduals in a given country speak different languages, do not speak the offi cial language, or do not

speak the most widely used language.

Finally, Baxter and Kouparitsas (2005) construct the indices in (5)-(7) to analyze how the

composition of a country’s production and trade differ from the rest of the world and its trading

partners. These indices are akin to variance measures with the exception that the export and import

dispersions are weighted by sectoral export and import shares. A look at the trade dispersion

indices, (6) and (7), reveals that they capture both the strengths of trading relations with different

countries and the strength in the diversity of goods traded.17 Baxter and Kouparitsas find that

industrialized nations have dispersions similar to the rest of the world (the average country) for all

three indices, whereas developing countries systematically have higher values of dispersions. On

the trade side, this is consistent with the fact that the bulk of trade of an industrialized nation

is with other industrialized nations, while trade relations for developing nation are spread more

17Appendix B provides more details on the construction of these indices.
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evenly across developed and developing nations. By including these indices, we are allowing for

the possibility that countries form clusters based on the similarities in their production structures

(in terms of types of goods produced) and/or on the compositions of their trade (both in terms of

the types of goods traded and the trading partners).

5.2 Results

We first determine the optimal number of country-level factors which, for simplicity, we compute

with a flat heirarchical prior on cluster membership. This allows us to determine the optimal

number of clusters based solely on the business cycle properties of GDP. With flat model priors,

the Bayes factors are identically the posterior odds. Table 4 presents these results. The model

with the highest probability is the model with three clusters. The moels with two and six clusters

have the next-highest marginal likelihood; however, either alternative requires more than 100 times

higher prior likelihood to be preferred. The model with seven clusters —the specification that nests

the one estimated by KOW —has one of the lowest likelihoods of the alternatives tested.18

We now estimate the model using the logistic prior for the specification with three regional

factors and one global factor. Figure 1 plots the median of the global factor along with its 16th

and 84th percentiles; the shaded areas show NBER-defined recession dates defined as a year in

which any quarter was in recession. While the NBER recessions are defined only for the U.S., they

serve as reference points. The global factor roughly represents a world cycle with factor loadings

for most countries being negative; the global factor spikes around 1975, 1982, 1998, and 2001. With

the exception of 1998, these periods are roughly associated with U.S. NBER recessions.

Figure 2 shows the first cluster factor with its 68 percent probability bands and the NBER

recessions. Figure 3 shows the posterior inclusion probabilities for this cluster. The darkest areas

indicate countries which are very likely to be included in this cluster and yellow indicates countries

that are very likely not associated with the cluster. Countries in white are not included in our

sample. Note, in particular, that cluster 1 does appear to demonstrate some regional/geographic

properties. The cluster includes, with high probability, Japan and many of the countries in

Europe. Other European countries —e.g., Iceland and Ireland —belong with more than 50 percent

18 In this case, the algorithm chooses nearly empty clusters at some Gibbs iterations, suggesting that seven clusters
far exceeds the optimal number.
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probability. Brazil, Thailand, and Pakistan also belong with more than 50 percent probability.

Not all the European countries, however, appear to belong to this cluster. In particular, the U.K.

and Denmark are excluded.

Figure 4 shows the second cluster factor. This factor clearly appears to decline around NBER

recessions. Figure 5 shows why. The U.S. belongs to this cluster with probability 1; the cluster

also includes Australia, Canada, Hong Kong, India, Malaysia New Zealand, and the U.K. with very

high posterior probability. Also included in this cluster are Denmark and many of the sub-Saharan

African countries including South Africa.

Figure 6 shows the final factor and Figure 7 shows the composition of its cluster. Again,

the cluster displays some regional/geographic characteristics with some notable exceptions. The

cluster includes with high probability most of the countries in South America, with the exception

of Brazil. Mexico, the Philippines, and a few African countries also belong to this cluster with

high probability.

In contrast to a purely continental approach such as that used in KOW, our results suggest that

a country such as Mexico is much more likely to have cycles similar to its shared-language South

American neighbors than its more geographically proximate neighbor, the U.S. These results

suggest that common culture — either through linguistic or legal similarities —matter more for

cyclical commonality than iceberg costs usually associated with geographic proximity. Table 5

shows the posterior means for the logistic covariates along with the 16th and 84th percentiles of

the posterior distributions. The level of industrialization (proxied by a country’s investment share

of GDP) is also important in determining the clusters. Similarities in countries’legal systems and

their linguistic diversity also appear relevant. This view is consistent with the notion that trade

flows —and, therefore, business cycle comovements —are more likely across countries with similar

institutions.

One measure that can jointly capture the importance of both the factor and its loading can be

obtained through a variance decomposition. Table 6 shows the percentage of each country’s output

volatility attributable to the global and regional factors and the idiosyncratic shock. Again, the

results are not directly comparable with those of KOW, but a number of qualitative similarities and

differences highlight the effect of estimating the clusters. KOW find that, in general, the global

factor explains a greater portion of the volatility in more industrialized countries. Moreover, they
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conclude that the regional factors explain only a very small portion of macroeconomic fluctuations

(about 3.6 percent, on average, of the output fluctuations of the 60 countries). Our results

suggest a much larger role for the “regional” factor if a region is estimated by the countries’

cyclical commonality. In fact, our cluster factors explain an average of 22.8 percent of the output

fluctuations among the sample countries.

There are a few reasons this difference may not be surprising. First, KOW’s sample differs

from ours. In a recent paper, Hirato, Kose, and Otrok (2011) find that the importance of regional

factors has increased over time. Because our sample includes more recent data than KOW, the

regional factors have more explanatory power. Second, KOW’s regional factors are defined as

the common component for three series for each country. The inclusion of the additional two

macroeconomic series could potentially contaminate the ability of their regional factor to explain

output fluctuations. Third, imposing (rather than estimating) the regions may lead to the same

misspecification discussed in the previous MC experiments above. When countries are included in

a region with countries with which they do not actually share a common factor, the factor —and

the associated loadings —may be biased.

Indeed, when the model is estimated with only output, the difference between the average

variances explained by the regional factors in the two models is not as large: about 1.2 percentage

points. The variance explained by the global factor in the exogenous model is about 4 percentage

points lower. The largest difference, however, comes from the countries in the former British

Commonwealth. In the purely geographic model that would place these countries in three separate

regions, the regional factor would explain 36 percent of the variation in output for these countries

(Australia, Canada, New Zealand, the U.K., and the U.S.). In the endogenous model that groups

them together, the regional factor explains 57 percent of their output variation. This increase

in explanatory power is important, especially given that these countries account for a substantial

share of the total output of the 60 countries in the sample.

6 Conclusions

Much research has been done on measuring the comovement of business cycle variables across coun-

tries. Limited by the potential proliferation of the estimated parameters, these empirical models
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typically (1) compare business cycles which are estimated country-by-country; (2) use models of rel-

atively few countries (e.g., bilateral analyses); and/or (3) impose the structure of the correlations ex

ante. One application of the the third approach (that of KOW) estimates a factor model in which

the correlation structure across countries is assumed to be determined by geographic proximity —

that is, countries that share a continent also share a common unobserved factor.

In this paper, we allow the data to determine which countries share common factors. Our model

allows for a number of possible alternative country characteristics that can affect how countries are

grouped. In MC experiments, we show that misspecifying the regions can affect the fit of the

model. In the data, we find evidence that sharing a common geographic region is one component

but not the only determinant of country groupings. These results, therefore, verify some of the

underlying rationale behind KOW’s selection of using a shared continent as the basis of defining a

region. However, while there do appear to be some localized comovements (e.g., South America

and Europe), these comovements stretch beyond what would be narrowly considered geographic

regions and exclude some countries that would ordinarily be associated by continent. In particular,

continental Europe appears to share a common cyclical component with Japan but not with the

U.K., and the majority of South American countries appear to share a cycle with Mexico but less so

with Brazil. One cluster consisting of the U.S., U.K., and some other former British Commonwealth

countries belies geography or proximity as the driving force behind the cyclical commonality and

suggests other fundamental forces linking the countries.
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Priors for Estimation
Parameter Prior Distribution Hyperparameters

βn N (b0,B0) b0 = 0× I3 ; B0 = I3 ∀n
σ−2
n Γ

(
ν0
2 ,

Υ0
2

)
ν0 = 6 ; Υ0 = 0.1 ∀n

γn U (κ0) or Logistic κ0 = 1
M ∀n

φ N (v0,V0) v0 = 0pF ,V0 = 1
2IpF ∀i

ψ N (w0,W0) w0 = 0pε ,W0 = 1
2I
pε

∀n
δi N (d0,D0) d0 = 0× I7 ; D0 = 2× I7

Table 1: Priors. Notes: n denotes the series, where N is the total number of series; i indicates the
cluster, where M is the total number of cluster factors; and the p’s denote the maximum number
of lags in the error and factor lag polynomials.

Degree of Cluster Misspecification
60% 40% 20% 6.7% 5% 3.4% 1.7% None Endogenous

Entropy 3372.2 3339.4 3302.7 3299.76 3295.30 3291.49 3289.98 3288.80 3287.45

Table 2: Monte Carlo Results. Notes: The table reports the median entropy for 1000 Monte Carlo
replications with sample size of 50 periods. Each sample contains 60 series, 5 cluster factors, and
1 global factor. The column headings indicate the percent of the series in the exogenous clusters
that is misallocated. ’None’indicates the exogenously clustered model with no misspecification. 1
misallocated series (of 60) equates to 1.66 percent misspecification, and so on. The last column
shows the median entropy for the model estimated with clusters determined endogenously.

Covariate Data
Purpose Variable Mnemonic
Trade Openness OPEN
Industrialization Investment Share of GDP KI
Formalism Index Collection of Bounced Checks CHECK
Linguistic Diversity within a Country Ethnolinguistic Fraction LIN
Production Dispersion Production Dispersion versus World ProDisp

Export Dispersion versus Export Partners ExDisp
Import Dispersion versus Import Partners ImDisp

Table 3: Covariate Data.
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Bayes Factors
ln f (Y|Θ∗) lnπ (Θ∗) ln π̂ (Θ∗|Y) ln m̂ (Y) Odds

M = 2 -6772 -2173 211 -9157 -58
M = 3 -6746 -2193 159 -9099 0
M = 4 -6893 -2206 114 -9214 -115
M = 5 -6999 -2221 91 -9312 -213
M = 6 -6879 -2229 12 -9121 -22
M = 7 -7008 -2236 55 -9301 -202

Table 4: Model Choice. Notes: The table shows the log marginal likelihood for model with various
numbers of clusters estimated with the empirical data. The third column shows the difference in
the log marginal likelihoods between the best model and each other model. The last column shows
how much more likely the best model is compared with each other model. The cluster number in
bold indicates the model with the highest posterior likelihood.

Logistic Coeffi cients
Variable Cluster 2 Cluster 3

OPEN -0.19 0.46
(-0.77 0.39) (-0.11 1.01)

KI -0.49 -1.21
(-1.12 0.14) (-1.82 -0.54)

CHECK -1.86 2.47
(-2.47 -1.24) (1.82 3.09)

LIN 0.99 -0.89
(0.29 1.71) (-1.48 -0.31)

ProDisp -1.61 -1.24
(-2.89 -0.34) (-2.48 -0.03)

ExDisp -1.47 -0.93
(-2.82 -0.16) (-2.26 0.41)

ImDisp -1.90 -1.42
(-3.21 -0.61) (-2.76 -0.07)

Table 5: Posterior means for each covariate in clusters 2 and 3. Notes: The first cluster (Cluster
1) covariate coeffi ents are normalized to zero. Values in bold indicate coeffi cients for which zero
is not within the 68 percent coverage interval. The numbers in parentheses indicate the 16th and
84th percentiles of the posterior distributions.
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Variance Decompositions: Posterior Means (%)
Global Cluster Idio. Global Cluster Idio.

Argentina 0.1 21.7 78.2 Japan 22 8.9 69.1
Australia 6.5 49.7 43.8 Kenya 0 4.4 95.6
Austria 21.4 49.2 29.3 Korea 60.3 0.9 38.7

Bangladesh 0.6 0.1 99.3 Luxembourg 7.9 36.9 55.2
Belgium 21.6 66.2 12.2 Malaysia 72.3 0.7 27
Bolivia 3.1 19.5 77.4 Mexico 7.1 19 73.8
Brazil 5 24.8 70.3 Morocco 0 0.2 99.8

Cameroon 7.4 3.7 88.9 Netherlands 12.4 44.3 43.3
Canada 6.5 77.9 15.6 New Zealand 0.9 25.2 73.9
Chile 20.6 11.8 67.6 Norway 3.9 21.8 74.2

Colombia 22.2 27.3 50.5 Pakistan 0.2 11.6 88.2
Costa Rica 0.9 28 71.2 Panama 3.9 9.3 86.8
Ivory Coast 0.7 2.5 96.8 Paraguay 0 7.8 92.2
Denmark 9.6 33.4 57 Peru 0.6 16.5 82.9

Dom. Republic 4.7 10.2 85.1 Philippines 11.9 15 73.1
Ecuador 1.1 25.5 73.5 Portugal 23.8 34.3 42
El Salvador 0.6 23.1 76.3 Senegal 15.7 0.1 84.2
Finland 5.5 40.8 53.7 Singapore 55.1 0.3 44.5
France 12.5 73.2 14.3 South Africa 1 0.1 98.9
Germany 31.9 16.7 51.4 Spain 0.7 22.1 77.2
Greece 14 18.5 67.5 Sri Lanka 5.2 16.9 77.9

Guatemala 30.9 18.1 51 Sweden 8.6 59.6 31.8
Honduras 0.5 19.3 80.2 Switzerland 4.8 69.9 25.3
Hong Kong 36.4 7 56.5 Thailand 57 3.9 39.2
Iceland 0 14.1 85.9 Trinidad & Tobago 10.2 5.7 84.1
India 1.5 7.1 91.4 United Kingdom 14.5 52.5 32.9

Indonesia 58.8 0.3 40.9 United States 24.6 64.3 11.1
Ireland 21.8 14.6 63.6 Uruguay 2.3 18.6 79.1
Italy 22.6 53.4 24 Venezuela 0.4 21 78.5

Jamaica 2.5 0 97.5 Zimbabwe 0 0.6 99.4

Table 6: Variance Decompositions. Notes: Each row shows the variation in GDP growth that is
attributable to the global, cluster and idiosyncratic factors. In calculation of the variance share
of clusters, members are assumed to belong to a cluster if they pick the said cluster majority of
the Gibbs run. In other words, the modal values for the indicator function are used to determine
the cluster to which a country belongs, then the variance attributable to that specified cluster is
calculated.
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Figure 1: Cluster 1 Composition. The map shows the posterior probabilities of countries included in
Cluster 1. Countries in white are omitted from the sample.
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Figure 2: Cluster 2 Composition. The map shows the posterior probabilities of countries included in
Cluster 2. Countries in white are omitted from the sample.
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Figure 3: Cluster 3 Composition. The map shows the posterior probabilities of countries included in
Cluster 3. Countries in white are omitted from the sample.
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