
      Research Division 
          Federal Reserve Bank of St. Louis 
                   Working Paper Series 
 

 
 
 

Forecasting National Recessions Using State Level Data 
 
 
 
 

Michael T. Owyang 
Jeremy M. Piger 

and 
Howard J. Wall 

 
 
 

Working Paper 2012-013B 
http://research.stlouisfed.org/wp/2012/2012-013.pdf 

 
 
 

April 2012 
Revised November 2013 

 
 
 
 

FEDERAL RESERVE BANK OF ST. LOUIS 
Research Division 

P.O. Box 442  
St. Louis, MO 63166 

 
______________________________________________________________________________________ 

The views expressed are those of the individual authors and do not necessarily reflect official positions of 
the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors. 

Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate 
discussion and critical comment. References in publications to Federal Reserve Bank of St. Louis Working 
Papers (other than an acknowledgment that the writer has had access to unpublished material) should be 
cleared with the author or authors. 



Forecasting National Recessions Using State Level Data∗

Michael T. Owyang† Jeremy Piger‡ Howard J. Wall §

This draft: November 8, 2013

Abstract: A large literature studies the information contained in national-level economic
indicators, such as financial and aggregate economic activity variables, for forecasting and
nowcasting U.S. business cycle phases (expansions and recessions.) In this paper, we in-
vestigate whether there is additional information useful for identifying business cycle phases
contained in subnational measures of economic activity. Using a probit model to forecast the
NBER expansion and recession classification, we assess the incremental information content
of state-level employment growth over a commonly used set of national-level predictors. As
state-level data adds a large number of predictors to the model, we employ a Bayesian model
averaging procedure to construct forecasts. Based on a variety of forecast evaluation metrics,
we find that including state-level employment growth substantially improves nowcasts and
very short-horizon forecasts of the business cycle phase. The gains in forecast accuracy are
concentrated during months of national recession.

Keywords: turning points, probit, covariate selection

JEL Classification Numbers: C52, C53, E32, E37

∗We thank the editor, two anonymous referees, and seminar participants at the University of Houston,
Federal Reserve Bank of St. Louis, and University of Texas, El Paso for helpful comments. This paper
also benefited from conversations with Graham Elliott and Oscar Jordá. Kristie M. Engemann and Kate
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1 Introduction

A traditional view of the U.S. business cycle is that of alternating phases of expansion

and recession, where expansions correspond to widespread, persistent growth in economic

activity, and recessions consist of widespread, relatively rapid, decline in economic activity.1

A large literature investigates different aspects of these business cycle phases and documents

asymmetries across them. Such work experienced a resurgence following Hamilton (1989),

who built a modern statistical model of the alternating phases characterization of the business

cycle by describing the latent business cycle phase as following a first-order Markov process

that influences the mean growth rate of output.

Timely identification of business cycle phases, and the associated turning points between

them, is of particular interest to academics, policymakers, and practitioners. A substantial

literature has investigated the extent to which the business cycle phase can be predicted

using a variety of economic and financial time series.2 Here, the forecasting problem is to

use data available at time period t to predict whether period t + h will be an expansion or

recession period. The most ambitious task is of course to predict the future business cycle

phase at long horizons, and the literature has had some limited success predicting recessions

one-year ahead using a predictor that measures the slope of the yield curve. For forecasting

the business cycle phase at short horizons, predictors measuring aggregate real activity, such

as employment or output growth, are found to be valuable. Not surprisingly, this is especially

true for h = 0 predictions, which are typically referred to as “nowcasts.”3

Although they have received less attention in the literature, short-horizon forecasts and

nowcasts of business cycle turning points are of considerable interest. While long horizon

forecasts of the business cycle phase would give economic agents the most advance warning

1See Mitchell (1927) and Burns and Mitchell (1946).
2See e.g., Estrella (1997), Estrella and Mishkin (1998), Kauppi and Saikkonen (2008), Rudebusch and
Williams (1991) and Berge (2013). For a recent summary of this literature, see Katayama (2008).

3Here, the prefix “now” in nowcast refers to the use of data available in period t to evaluate whether period
t is a recession or expansion period. Note that because of data reporting lags, some of the data available in
period t will be measuring a period prior to month t.
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of a new business cycle turning point, it has historically been the case that new business

cycle phases have not been forecasted accurately. Indeed, in most cases new phases have

only been identified in real time after many months have passed following the turning point.4

As a recent example of this, Hamilton (2011) surveys a wide range of statistical models that

were in place to nowcast business cycle turning points using aggregate data, and finds that

such models did not send a definitive signal regarding the December 2007 NBER peak until

late 2008. Improved short-horizon forecasts and nowcasts thus hold the promise of giving a

quicker signal that a new recession or expansion is imminent or has already begun. These

could improve the speed of both policy and private sector adjustments to this new business

cycle phase.

The existing literature has focused on the use of predictors measured at the national

level. However, there is reason to believe that variables measured at the subnational level

would be useful for identifying the national business cycle phase. Owyang et al. (2005) and

Hamilton and Owyang (2011) provide evidence that the business cycles of individual U.S.

states are often out of phase with that of the nation. If these phase shifts are systematic, then

incorporating data from leading regions may be useful for predicting the national business

cycle phase. Also, even if subnational regions are coincident with the aggregate business cycle

phase, there may be regions that experience recession and expansion phases more severely

than the nation as a whole. In these cases, incorporating data from these regions will provide

a stronger signal regarding the business cycle phase that is currently in operation, and will

thus improve nowcasts and short-horizon forecasts of the business cycle phase.5

In this paper, we assess whether state-level economic indicators contain incremental infor-

mation useful for forecasting and nowcasting U.S. business cycle phases. Following the bulk

4Since the inception of the NBER’s business cycle dating committee in 1978, the NBER has announced new
business cycle peaks with a lag of 7.5 months and troughs with a lag of 15 months. Chauvet and Piger
(2008) show that statistical models estimated using aggregate data improve on the NBERs timeliness for
troughs, but not for peaks.

5Short-horizon forecasts will be improved because of the persistence of business cycle phases. If subnational
data sends a quicker signal that a new business cycle phase has begun, then we will have more accurate
short-horizon forecasts of the future business cycle phase.
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of the literature, we take the NBER’s chronology of the dates of U.S. business cycle phases

as given. We then construct a monthly probit model to attach probabilities of expansion and

recession to current and future periods, which incorporates both national- and state-level

variables as predictors. The national variables we use are those found to be good predictors

of national business cycle phases at various horizons by the existing literature. In particular,

we focus on interest rates, asset prices, aggregate employment, and aggregate industrial pro-

duction. To these, we add state-level employment growth to capture the predictive ability

of subnational economic activity measures.

By using state-level employment growth, we measure subnational economic activity with

a coincident indicator, rather than a leading indicator. This raises the question of what

hope such data would have for helping predict the aggregate business cycle phase? While

state employment growth is a coincident indicator, it is likely an indicator that is coincident

with that state’s business cycle phase. Thus, as discussed above, if a state’s business cycle

leads the national business cycle phase, then state employment growth could be a leading

indicator for the national business cycle phase. As evidence of this, Hernandez-Murillo

and Owyang (2006) show that adding regional employment data can assist in predicting

aggregate employment growth in the United States. Also, even if state employment growth

is coincident with the national level business cycle phase, state employment growth may

provide improved nowcasts and short-horizon forecasts of the aggregate business cycle phase

if the employment response to the business cycle phase in operation is relatively strong for

certain states.6

Despite the potential promise of state-level data for improving nowcasts and forecasts of

6Our choice to focus on state-level employment growth is also driven by the lack of suitable leading indi-
cators measured at the state level. The state-level leading index produced by the Federal Reserve Bank
of Philadelphia is only available in real-time for less than ten years. Because this series was constructed
in-sample specifically to maximize its ability to predict state-level economic activity, using it in a pseudo
out-of-sample forecasting exercise could yield very distorted results. See Diebold and Rudebusch (1991) for
a similar point made for the national index of leading indicators. Also, only two of the four components
of the index are measured at the state level, and neither of these is available until after the early 1980s
recession. Given the relative scarcity of recessions over this period, this would not allow us to both estimate
the model and perform an out-of-sample forecasting experiment over a reasonable number of recessions.
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business cycle phases, simply adding this data into the information set used in a forecasting

model is problematic. It is likely that many states will not be informative about future

national business cycle phases at all, or perhaps any, forecast horizons. Further, there is

significant collinearity in employment growth across U.S. states. Put together, the naive

use of all state-level data will likely lead to an overparameterized model with a high level

of estimation uncertainty, which will not bode well for improved forecasting performance.

One may reduce, though not eliminate, these problems by aggregating across states to the

regional level. However, this aggregation would potentially average states that contain very

different forecasting information.

In this paper, we take a Bayesian model averaging (BMA) approach to incorporate state-

level predictors in a forecasting model. In particular, we explicitly incorporate the selection of

predictors into the estimation of the model, and average forecasts across models with different

sets of predictors by constructing the posterior predictive distribution for the future business

cycle phase. This approach allows individual states with predictive content for the business

cycle phase at a particular horizon to be highlighted in producing forecasts, while pushing

out those states that are not informative. Notably, the Bayesian approach to constructing

forecasts also incorporates uncertainty regarding model parameters.

Based on a variety of forecast evaluation metrics, we find that including state-level em-

ployment growth significantly improves nowcasts and very short-horizon forecasts of the

NBER business cycle phase over those produced by a model using only national-level data.

We document the incremental information content of the state-level data based on the

model’s out-of-sample forecast performance over the past 30 years. We also show that the

forecasting improvement comes primarily from improved classification of recession months.

To give two examples, for one-month ahead forecasts, 23% of recession months are correctly

classified using the model that includes state-level data, but not by the model based on

national-level data only. Also, again based on one-month ahead forecasts, the December

2007 business cycle peak would have been identified by late February 2008 when using both
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state and national-level data, as opposed to late July 2008 when using only national-level

data.

The balance of the paper is as follows: Section 2 outlines the empirical model used for

forecasting recessions and describes the Bayesian approach to estimation and construction of

forecasts. Section 3 describes the national- and state-level data used to estimate the model

and evaluate forecasts. Section 4 presents the results for both in-sample model fit and the

performance of out-of-sample forecasts. Section 5 summarizes and concludes.

2 Empirical Approach

2.1 Model

Define St ∈ {0, 1} as a binary random variable that indicates whether month t belongs to

an expansion (0) or recession (1) phase. Our objective is to forecast the business cycle phase,

St+h, based on information available to a forecaster at the end of month t. This information

may include national-, state-, or regional-level variables and is collected in the n× 1 vector

Xt.

Following the bulk of the existing literature, we use a probit model to link St+h to Xt.

Here, the probability that St+h = 1 is given by:

Pr [St+h = 1|ρ] = Φ (α +X ′tβ) , (1)

where the link function, Φ (.), is the standard normal cumulative density function, β is an

n × 1 vector of coefficients, and ρ = [α, β′]′ is an (n+ 1) × 1 vector holding the model

parameters.

The number of potentially relevant forecasting variables available in Xt may be large.

This is especially true with the inclusion of subnational data, as variables are measured

repeatedly across regions or states. From a forecasting perspective, this is problematic as
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it is well established that highly parameterized models tend to have poor out-of-sample

forecasting performance. Moreover, because the probit is nonlinear, the marginal change

in the predicitve probabilities are functions of the values of all of the included variables.

This means that including irrelevant variables could bias the forecasts. Here, we focus on

a modified version of (1), in which not all variables in Xt need be included in the model.

In particular, define γ as an n × 1 vector of zeros and ones, with a one indicating that the

corresponding variable in Xt should be included in the model. We rewrite (1) to incorporate

this variable selection as follows:

Pr [St+h = 1|ργ, γ] = Φ
(
α +X ′γ,tβγ

)
, (2)

where Xγ,t, ργ, and βγ contain the elements of Xt, ρ, and β relevant for the variables selected

by γ. As is described in the next subsection, we treat γ as unknown, and estimate its value

along with the parameters of the model using Bayesian techniques.

2.2 Estimation

To estimate the model in (2) we take a Bayesian approach, which has some key advantages

for our purposes. For one, uncertainty about which variables should be included in the model

– that is uncertainty about γ – can be formally incorporated into Bayesian estimation in

a straightforward manner. Related to this, the Bayesian framework provides a mechanism,

through the posterior predictive density, to obtain forecasts that average over different choices

for variable inclusion and the values of unknown parameters.

Bayesian estimation requires priors be placed on the model parameters, ργ, as well as

the covariate selection vector, γ. We specify diffuse, i.i.d., mean-zero normal distributions

for the individual parameters collected in ργ:

p (ργ) = N
(
0kγ+1, σ

2Ikγ+1

)
; σ2 = 10, (3)
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where kγ = γ′γ is the number of covariates selected by γ, 0kγ+1 is a (kγ + 1) × 1 vector of

zeros, and Ikγ+1 is the (kγ + 1) × (kγ + 1) identity matrix. For γ, we specify a multinomial

distribution defined across the 2n different possible choices of γ. Let Ni =
(
n
i

)
be the number

of choices of γ for which kγ = i. The prior probability over γ is then:

Pr (γ) ∝ 1

Nkγ

. (4)

This distribution is flat in two dimensions. First, it assigns equal probability to all choices

of γ that have the same kγ. In other words, versions of (2) with the same number of

covariates will receive equal prior probability. Second, the prior assigns equal cumulative

probability to groups of choices for γ that imply different numbers of covariates. That is,

Pr (kγ = i) = Pr (kγ = j) , i, j = 0, 1, · · ·, n.7

To implement Bayesian estimation, we employ the Gibbs sampler to obtain draws from

the joint posterior distribution, π (ργ, γ|St), where St = [Sh+1, · · ·, St]′ represents the ob-

served data.8 The Gibbs sampler is facilitated by augmenting the system with a continuous

variable yt that is deterministically related to the observed state variable St (Tanner and

Wong (1987)). Define yt as:

yt = α +X ′γ,t−hβγ + ut, (5)

where ut ∼ i.i.d.N (0, 1). Given (2), the relationship between yt and St is:

St = 1 if yt ≥ 0.

The Gibbs sampler is then implemented in two blocks. In the first, ργ and γ are sampled

7Note that this prior does not assign equal probability to all possible choices of γ. While seemingly attractive
as a “flat” prior, an equal weights prior would give substantially different prior weight to the number of
variables included. For example, if there are 50 possible variables, the cumulative prior probability of all
models with 3 variables would be 16 times the cumulative prior probability of all models with 2 variables.

8See, for example, Albert and Chib (1993), Gelfand and Smith (1990), Casella and George (1992), and Carter
and Kohn (1994).
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conditional on St and the augmented data yt = [yh+1, · · ·, yt]′, as a draw from the conditional

posterior distribution π (ργ, γ|yt,St). As St is fully determined by yt, this distribution

simplifies to π (ργ, γ|yt). In the second, the augmented data yt is sampled conditional on ργ,

γ, and St, from the conditional posterior distribution π (yt|ργ, γ,St). We now describe each

of these blocks in detail:

Sampling π (ργ, γ|yt)

As suggested by Holmes and Held (2006), we jointly sample ργ and γ from:

π
(
ργ, γ|yt

)
= πρ

(
ργ|γ,yt

)
Pr
(
γ|yt

)
,

by employing a Metropolis step. Given a previous draw of ργ and γ, denoted
[
ρ
[g]
γ , γ[g]

]
, we

obtain a candidate for the covariate selection vector, denoted γ∗, by sampling a proposal

distribution q
(
γ∗|γ[g]

)
. Conditional on γ∗, we then obtain a candidate for ργ, denoted ρ∗γ,

by sampling from the full conditional posterior density πρ (ργ|γ∗,yt).

The proposal distribution q
(
γ∗|γ[g]

)
is set as follows. Conditional on γ[g], the candidate

covariate selection vector γ∗ is drawn with equal probability from the set of vectors that

includes γ[g] and all other vectors that alter a single element of γ[g] (either from 0 to 1 or

1 to 0.) In other words, the candidate covariate selection vector will either select the same

covariates as γ[g], take away one covariate from γ[g], or add one covariate to γ[g]. One notable

property of this proposal distribution is that q(γ∗|γ[g]) will equal q(γ[g]|γ∗).

The full conditional distribution for ρ, πρ (ργ|γ∗,yt), is as follows. Define Xγ,t−h =[
1, X ′γ,t−h

]
, t = h + 1, · · ·, t and let Xt−h

γ represent the (t− h)× (kγ + 1) matrix of stacked

Xγ,t−h. Then, given the prior distribution in (3), the conditional posterior for ργ is:

πρ
(
ργ|γ∗,yt

)
∼ N (mγ∗ ,Mγ∗) ,

where:
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Mγ∗ =

(
1

σ2
Ikγ+1 + (Xt−h

γ )′Xt−h
γ

)−1
,

mγ∗ = Mγ∗
(
(Xt−h

γ )′yt−h
)
.

The candidate, ρ∗γ is then sampled from N (mγ∗ ,Mγ∗).

The Metropolis step assigns an acceptance probability A to determine whether or not the

candidate will be accepted. Given the gth draw
[
ρ
[g]
γ , γ[g]

]
, the (g + 1)th draw is determined

by:

[
ρ[g+1]
γ , γ[g+1]

]
=


[
ρ∗γ, γ

∗] with probability A[
ρ
[g]
γ , γ[g]

]
with probability 1− A

,

where,

A = min

{
1,

Pr(γ∗|yt)πρ(ρ∗γ|γ∗,yt)q(γ[g]|γ∗)πρ(ρ
[g]
γ |γ[g],yt)

Pr(γ[g]|yt)πρ(ρ[g]γ |γ[g],yt)q(γ∗|γ[g])πρ(ρ∗γ|γ∗,yt)

}
,

which, given the symmetry of q (·|·), simplifies to

A = min

{
1,

Pr(γ∗|y)

Pr(γ[g]|y)

}
.

From Bayes’ Rule:

Pr(γ|y) ∝ f(y|γ) Pr(γ),

where f(y|γ) is the marginal likelihood for the augmented data, yt, conditional on the choice

of variables γ, and Pr(γ) is the prior distribution over γ. We can then rewrite the acceptance

probability as:
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A = min

{
1,

f(yt|γ∗) Pr (γ∗)

f(yt|γ[g]) Pr (γ[g])

}
.

To compute A, we must compute f (yt|γ). Given the prior distribution in (3), this is available

analytically, as:

f(yt|γ) ∼ N(0,Σγ)

where Σγ = It−h + σ2Xt−h
γ (Xt−h

γ )′. Using the equation for the multivariate normal we then

have:

A = min

1,

∣∣Σγ[g]

∣∣0.5 exp
(
−0.5

(
(yt)′ (Σγ∗)−1 yt

))
Pr (γ∗)

|Σγ∗ |0.5 exp
(
−0.5

(
(yt)′

(
Σγ[g]

)−1
yt
))

Pr
(
γ[g]
)
 . (6)

Sampling π (y|ργ, γ,S)

Conditional on ργ and γ, yt is normally distributed with mean δγ,t and unit variance,

where:

δγ,t = α +X ′γ,t−hβγ.

However, the target distribution also conditions on St, which adds the requirement that the

sign of yt must match the realization of St. In this case, yt has a truncated normal density:

yt ∼


N (δγ,t, 1) I[yt≥0] if St = 1

N (δγ,t, 1) I[yt<0] if St = 0

,

where the indicator I[.] reflects the direction of the truncation. A draw from yt is then

obtained by drawing yt from the appropriate truncated normal distribution, t = h+1, · · ·, T .
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Given arbitrary starting values for ργ and γ, the above two sampling steps are iterated

to obtain draws
[
ρ
[g]
γ , γ[g]

]
, for g = 1, · · ·, G. Following a suitably large initialization period,

these draws will be from the joint posterior distribution, π (ργ, γ|St). In all estimations

reported below, we sample 20,000 initialization draws to achieve convergence. Results are

then based on an additional set of G = 20, 000 draws. We verified the adequacy of the

initialization period by ensuring that results from two different runs of the Gibbs Sampler

with dispersed sets of starting values were similar.

2.3 Construction of Forecasts and Forecast Evaluation

To forecast the business cycle phase in period t+h, we use the posterior predictive dis-

tribution:

Pr
[
St+h = 1|St

]
. (7)

Although the posterior predictive distribution is not available analytically, we can simulate

from (7) as follows. The posterior predictive distribution is factored as:

Pr
[
St+h = 1|St

]
=

∫
ργ

∫
γ

Pr
[
St+h = 1|ργ, γ,St

]
π
(
ργ, γ|St

)
dγdργ . (8)

Equation (8) suggests a Monte Carlo integration approach to calculate the posterior predic-

tive distribution. Specifically, given a draw
[
ρ
[g]
γ , γ[g]

]
from π (ργ, γ|St) we simulate a value

of St+h, denoted St+h
[g], from:

Pr
[
St+h = 1|ργ, γ,St

]
= Pr [St+h = 1|ργ, γ, ] = Φ

(
α +X ′γ,tβγ

)
,

where the validity of the first equality sign comes from the fact that, given the model in

(2) and the model parameters, the observed data St are not informative for the distribution

of St+h. The simulated value S
[g]
t+h is a draw from the posterior predictive distribution,
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Pr [St+h|St], and it follows that:

lim
G→∞

1

G

G∑
g=1

(
St+h

[g]
)

= Pr[St+h = 1|St] (9)

Thus, we can construct a simulation consistent estimate of the posterior predictive density

Pr[St+h = 1|St], which will serve as our (point) forecast of St+h. In the following, we refer

to this forecast as Ŝt+h. It is worth emphasizing that Ŝt+h is not conditional on model

parameters or the choice of which variables to include in the model. These sources of

uncertainty have been integrated, over their respective posterior distributions, out of the

prediction. Note that the integration over the posterior distribution for γ gives Ŝt+h the

interpretation of a BMA prediction.

To evaluate Ŝt+h, we consider a variety of forecast evaluation metrics. The first is the Brier

(1950) quadratic probability score (QPS), which is a probability analog of mean squared

error:

QPS =
2

τ2 − τ1

τ2∑
t+h=τ1+1

(
Ŝt+h − St+h

)2
,

where τ1 and τ2 are chosen to cover the period over which Ŝt+h is being evaluated. The QPS

ranges from 0 to 2, with 0 indicating perfect forecast accuracy.

While the QPS is a standard metric for the evaluation of forecasts of binary variables,

it does not directly evaluate Ŝt+h as a classifier of St+h. Specifically, the QPS is focused

on the distance between Ŝt+h and St+h, rather than on the ability of Ŝt+h to classify St+h

accurately. This distinction is meaningful, as it is simple to construct examples where a

forecasting model with perfect classification ability has an inferior QPS to a model with less

than perfect classification ability.9 Thus, we also consider two forecast evaluation metrics

that directly assess classification ability. The first is the correspondence, defined as the

proportion of months for which Ŝt+h correctly indicates the NBER business cycle phase.

9See, e.g., Hand and Vinciotti (2003).
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The correspondence (CSP) is given by:

CSP =
1

τ2 − τ1

τ2∑
t+h=τ1+1

(
I[Ŝt+h≥c]St+h +

(
1− I[Ŝt+h≥c]

)
(1− St+h)

)
,

where c is a threshold point such that when Ŝt+h exceeds c we classify a month as a recession,

and I[Ŝt+h≥c] ∈ {0, 1} is an indicator function denoting the predicted business cycle phase.

In the results presented below, we set c = 0.5. Also, rather than focus directly on the

correspondence, we present a measure of “excess correspondence” (XCSP) that shows the

increase in the CSP above the correspondence produced by a simple classifier that sets

Ŝt+h = 1 with probability equal to the sample mean of St, and sets Ŝt+h = 0 otherwise.

The correspondence requires that we set a value of c, and while c = 0.5 is a natural

threshold for a probability in terms of likelihood, it could easily distort the performance of

a classifier for which an alternative threshold was appropriate. Thus, for our final forecast

evaluation metric we follow Berge and Jordá (2011) and consider the area under the receiver

operating characteristic, or ROC, curve. The ROC curve summarizes the classification per-

formance of a continuous index, such as Ŝt+h, by plotting the the proportion of true positives

against the proportion of false positives, where each is calculated for the range of possible

thresholds as c is varied from 1 to 0 (moving from left to right in the plot.) The area un-

der this curve, or AUC, is a summary statistic describing classification performance, with

a perfect classifier having an AUC = 1 and a coin-flip classifier having AUC = 0.5. Unlike

the CSP statistic, the AUC is not dependent on a particular value of c. An estimate of the

AUC is given by:

ÂUC =
1

n0n1

n0∑
j=1

n1∑
i=1

(
I[Ŝ1

i>Ŝ
0
j ]

)
,

where Ŝ1
i , i = 1, · · · , n1 are the values of Ŝt+h for the n1 out-of-sample periods for which

St+h = 1 and Ŝ0
j , j = 1, · · · , n0 are the values of Ŝt+h for the n0 out-of-sample periods for

which St+h = 0.
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3 Data

For the dependent variable in our estimation, St, we use the monthly chronology of

recessions and expansion dates provided by the NBER’s Business Cycle Dating Committee.

Our predictor variables consist of both national- and state-level variables, all of which are

sampled at the monthly frequency. For the national-level variables, we include a measure of

the term spread, the federal funds rate, and the return on the S&P 500 stock market index.

Each of these variables have been shown to help predict recessions at various horizons in

the existing literature.10 We also include two direct measure of aggregate economic activity,

namely payroll employment growth and industrial production growth. Such variables are of

obvious interest for nowcasting, and have also been found helpful for short-horizon business

cycle phase forecasting (Estrella and Mishkin (1998).)

In addition to this standard set of national-level variables, we also include a measure

of state-level economic activity, namely state-level payroll employment growth. We choose

payroll employment growth as the measure of state-level economic activity for two reasons.

First, we are interested in relatively high frequency monitoring of business cycle phases.

Payroll employment is the broadest measure of state-level economic activity that is sampled

at a monthly frequency.11 Second, as compared to other monthly measures of state-level

activity, such as retail sales, payroll employment is released quickly, roughly three weeks

following the end of the month. This timeliness makes payroll employment attractive for

nowcasting and forecasting.

The specific transformations applied to each variable are as follows. The term spread

is measured as the difference between the monthly averages of the 10-year Treasury bond

and the 3-month Treasury bill, while the Federal Funds rate is measured as its monthly

average value. The S&P 500 return is the three month growth rate of the S&P 500 index.

Industrial production and national- and state-level payroll employment growth are the three

10See e.g., Estrella and Mishkin (1998), Wright (2006), King et al. (2007), and Berge (2013).
11The most comprehensive measure of state-level economic activity, Gross State Product, is only released

annually.
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month growth rates of the underlying levels of these variables.12 We focus on three month

growth rates in order to smooth month-to-month variability in these series that is unrelated

to shifts in business cycle phases. We have also generated results using one month growth

rates, and these were uniformly inferior for models using only national-level data as well as

models using national and state-level data. However, the relative forecasting advantage of

using state-level data remained when using one month growth rates.

All data series were collected over the period from January 1960 to August 2013. After

constructing growth rates and adjusting for the maximum forecast horizon considered, the

full sample period for St+h covers from August 1960 to August 2013. Over this period there

are eight NBER defined recessions, and approximately 14% of the monthly observations are

recession months.

In our primary analysis, we use variables collected as of the September 2013 vintage.

Thus, for variables that are revised, which is the case for the economic activity measures in

our sample, we use ex-post revised data in our out-of-sample forecasting experiments rather

than the vintage of data that would have been available to a forecaster in real time. We make

this choice due to difficulties with obtaining long histories for state-level payroll employment

at a substantial number of vintages over our out-of-sample forecasting period. However, as a

robustness check, we additionally report results of an out-of-sample forecasting experiment

over a shorter time period for which we were able to obtain real-time data.

4 Results

This section presents results to assess the out-of-sample forecast performance of the

probit model augmented with state-level data. The state-level employment data we consider

is likely a coincident indicator of state-level business cycles. As discussed previously, it is

possible that state-level employment data might lead the national business cycle phase at

long horizons, which would be true if there was a systematic long lead of certain state-

12Where relevant, the underlying data are seasonally-adjusted.
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level business cycle phases over the national business cycle phase. However, our out-of-

sample forecast analysis suggests that forecast improvements coming from use of state-level

data exist only at very short horizons. This suggests that the primary benefit of the state

level data comes from exploitable short leads of state-level business cycles over the national

business cycle, or information provided by certain states that a recession has already begun.

To highlight these short-horizon forecast improvements here, we present results only for four

short forecast horizons, consisting of h = 0, 1, 2, 3 months ahead. Again, improved short-

horizon forecasts are of substantial interest, since definitive classification of new business

cycle phases have historically only been available with a substantial lag.

In all cases, we assume that the information used to predict St+h consists of the infor-

mation available at the end of month t. For the financial variables in our data set, this

includes the values of these variables measured for month t. For each of the real-activity

measures in the data set, both at the national- and state-level, this includes the values of

these variables measured for month t−1. As an example, a one-month-ahead forecast in our

context refers to a prediction of St+1 formed using financial variables measured for month t

and economic activity variables measured for month t− 1. A “nowcast” refers to the case of

h = 0, and corresponds to a prediction of the business cycle phase in month t, formed using

data available at the end of month t, some of which is data measured for month t and some

of which is measured for month t− 1.

The out-of-sample period extends from January 1979 to August 2013. The initial estima-

tion period is from August 1960 to December 1978, and the first out-of-sample forecast for

h = 0 and h = 1 is January 1979, for h = 2 is February 1979, and for h = 3 is March 1979.

The last out-of-sample forecast for all horizons is August 2013. After each out-of-sample

forecast is produced, the estimation sample is extended by one month, and the model re-

estimated. The out-of-sample period includes 5 NBER-defined recessions, accounting for

approximately 14% of the 416 months over this period.

Table 1 presents the forecast evaluation metrics for two alternative models. The first uses
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only national-level predictors. This model will serve as our baseline with which to compare

the second model, which includes both national- and state-level predictors. These metrics

tell a consistent story: the model that includes state-level data produces better forecasts than

the baseline model for very short horizon forecasts, namely nowcasts (h = 0) and one-step

ahead forecasts (h = 1.) At these horizons, the QPS is lower, while the XCSP and AUC

are higher, for the model including state-level data. For the QPS and XCSP , we further

test the null hypothesis of equal forecast accuracy using the Diebold-Mariano-West (DMW)

test, and find that this can be rejected for XCSP when h = 0 and for both metrics when

h = 1.13 The forecast improvements as measured by several metrics are quantitatively large.

As one example, the XCSP is 3 percentage points higher for the model including state-level

data when h = 1, meaning that approximately 12 more months were correctly classified by

the model that includes state-level data. For longer horizons, the inclusion of state-level data

appears less helpful. For h = 2 and h = 3, the forecast metrics are very similar for both the

baseline model and the model that includes state-level data.

We next investigate whether the improvements generated by the inclusion of state-level

data are symmetric across business cycle phases. Table 2 presents the forecast evaluation

metrics computed separately for expansion vs. recession months in the out-of-sample pe-

riod.14 These results demonstrate that the forecast improvements generated by the inclusion

of state-level data in the out-of-sample period are concentrated in recession months. In

particular, the forecast evaluation metrics computed for expansions are generally similar

for the baseline model and the model that includes state-level data, with which model has

better performance differing across horizon and forecast evaluation metric. However, when

we focus on recession months, there is a clear benefit from incorporating state-level data

for short-horizon forecasts. For h = 0 and h = 1, the QPS is reduced by 50% to 60% dur-

ing recession months. The XCSP improvements are approximately 25 percentage points at

13See Diebold and Mariano (1995) and West (1996).
14We do not report the AUC in Table 2 as it is only defined where there are instances of both classes in the

sample considered.
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these horizons, meaning that a quarter of the recession months over the sample period are

correctly classified by the model that includes state-level data, but not by the model that

includes only national-level data. The QPS and XCSP improvements are highly statisti-

cally significant based on the DMW test. There are again no clear improvements from the

addition of state-level data at longer horizons.

To provide an example from a specific recession, Table 3 presents the out-of-sample

forecasts, Ŝt+h, for the h = 1 case around the 2008-2009 recession. Beginning with the

model that includes only national-level variables, Ŝt+1 does not cross 50% probability of

recession until August 2008, eight months following the beginning of the NBER-defined

recession. For the h = 1 horizon, this forecast would have been available at the end of

July 2008. This is consistent with the considerable uncertainty that persisted well into 2008

about whether the economy had entered a recession phase. For example, the NBER did not

announce the December 2007 peak until December 1, 2008. Also, as discussed in Hamilton

(2011), statistical models designed to track business cycle turning points using national-level

data did not send a definitive signal that the recession had begun until mid-to-late 2008.

However, Table 3 also reveals that incorporating state-level data would have provided a

much quicker signal of the beginning of this recession. Specifically, Ŝt moved above 50%

probability of recession for March 2008, where this forecast would have been available as of

the end of February 2008, an impressive five month improvement over the model using only

national-level data. Notably, both models produce accurate one-month ahead forecasts of

the end of the 2008-2009 recession.

We next evaluate which variables are deemed as important predictors in the BMA pro-

cedure. Table 4 reports the posterior inclusion probabilities for the model that includes

both national- and state-level data, averaged over the recursive estimations conducted to

construct the out-of-sample forecasts. The table provides these inclusion probabilities for all

of the national-level variables. The state-level variables will be discussed separately below.

Of the national-level variables, the S&P 500 return is a robust predictor across all forecast
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horizons, with average inclusion probabilities close to 100%. The Federal Funds rate also

has average inclusion probabilities above 50% for several forecast horizons. The term spread

becomes a more robust predictor as the forecast horizon lengthens, consistent with the find-

ing of the existing literature that this variable is useful for long-horizon business cycle phase

predictions. Interestingly, neither aggregate employment or aggregate industrial production

growth have average inclusion probabilities above 50% for most forecast horizons, the single

exception being industrial production growth when h = 0. These variables have very high

average inclusion probabilities when state-level data is not included (not reported), implying

the importance of these aggregate level variables is substantially diminished by the inclusion

of state-level data.

The final row of 4 shows the posterior median for the number of variables in the model,

averaged across the recursive estimations. For the h = 0 and h = 1 horizon these values

are large, at greater than 15 variables. This suggests that there are a substantial number

of state-level variables that influence the forecast. To investigate which state level variables

these are, Figure 1 maps the states with ranges of inclusion probability. We focus on the

h = 0 and h = 1 forecast horizons, where the forecast improvements from the addition of

state level data are concentrated. These maps show that while there are few states with very

high average inclusion probabilities (darker shading), there are many states with average

inclusion probabilities in the 20%-60% range, meaning a large number of states influence

the BMA forecast. These probabilities also indicate significant model uncertainty regarding

which state-level variables should be included in the model. One likely reason for this

uncertainty is significant correlation between the state-level employment growth variables.

This uncertainty again highlights the potential importance of the BMA approach we take to

select predictors and incorporate uncertainty about this selection.

Given this potential importance, we next present results meant to evaluate whether the

BMA predictor selection algorithm is a significant factor for the out-of-sample forecast im-

provements generated with the addition of state-level data. Specifically, Table 5 reports the
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forecast evaluation metrics for out-of-sample forecasts produced from a model in which all

national- and state-level variables are always included. As the forecasting improvements from

adding state-level data were concentrated in short-horizon forecasts of recession months, we

focus on the forecast evaluation metrics computed for nowcasts (h = 0) and one-month-ahead

forecasts (h = 1) of recession months over the out-of-sample period. By comparing Table 5

to the bottom panel of Table 2, we can gauge the value added of using the BMA predictor

selection algorithm to construct forecasts, vs. simply including all possible variables. In-

deed, this comparison shows a deterioration in the out-of-sample forecast performance from

conditioning on a model that includes all possible variables rather than using BMA. Notably

however, the model with all variables included is still preferred to the model that doesn’t

include state-level data.

Finally, as was discussed in Section 3 above, our out-of-sample forecasts are constructed

using ex-post revised data for the predictors taken from the September 2013 vintage for each

series. In Table 6 we evaluate the robustness of the out-of-sample forecasting results when

we instead use “real-time” data of vintages that would have been available to a forecaster in

real time. Due to difficulties with obtaining long histories for state-level payroll employment

at a substantial number of vintages, we focus on a shorter out-of-sample period running

from July 2007 to June 2011, which includes the most recent NBER-defined recession. As

forecast improvements from the addition of state-level data were primarily at short horizons,

we focus on one month ahead forecasts.

Table 6 demonstrates that our primary conclusions from the longer out-of-sample period

using ex-post data are confirmed for the shorter out-of-sample period using real-time data.

In particular, there is a general improvement in the forecast evaluation metrics computed

for recession months from the addition of state-level data. As an example, the XCSP is 17

percentage points higher when state-level data is included, which corresponds to roughly

3 more recession months during the 2008-2009 recession being correctly classified. Also, as

before, there is no apparent improvement from the addition of state-level data for one-month
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ahead predictions of expansion phases.

5 Conclusion

A large literature has investigated the predictive content of variables measured at the na-

tional level, such as aggregate employment and output growth, for forecasting U.S. business

cycle phases (expansions and recessions.) Motivated by recent studies showing differences in

the timing of business cycle phases in nationally aggregated data from those for geographi-

cally disaggregated data, we investigate the information contained in state-level employment

growth for forecasting national business cycle phases. We use as a baseline a probit model

to explain NBER-defined business cycle phases, where the conditioning information con-

sists of national-level economic activity and financial variables. We then add to this model

state-level employment growth. To avoid issues associated with overparameterization of

forecasting models, we use a Bayesian model averaging procedure to construct forecasts.

Using a variety of forecast evaluation metrics, we find that adding state-level employment

growth improves nowcasts and short-horizon forecasts of the NBER business cycle phase over

a model that uses data measured at the national-level only. The gains in forecasting accuracy

are concentrated during months of recession, and are large and statistically significant. Pos-

terior inclusion probabilities indicate substantial uncertainty regarding which states belong

in the model, highlighting the importance of the Bayesian model averaging approach.
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Figure 1
Average Predictor Inclusion Probabilities for Recursive Estimations

h=0

h=1

Notes: These maps indicate the average posterior probability that state-level employment
variables are included in the model given by (2), where averaging is across the multiple
recursive estimations beginning over the period August 1960-December 1978, and ending
with the period August 1960-mid 2013, with the exact ending month dependent on the
forecasting horizon.
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Table 1
Forecast Evaluation Metrics

National-Level National and
Predictors State-Level Predictors

Forecast Horizon QPS XCSP AUC QPS XCSP AUC

h = 0 0.10 0.16 0.96 0.08 0.18∗ 0.98

h = 1 0.12 0.15 0.95 0.08∗∗ 0.18∗∗∗ 0.97

h = 2 0.14 0.14 0.93 0.15 0.14 0.93

h = 3 0.15 0.14 0.92 0.18 0.13 0.92

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed for
out-of-sample forecasts of the business cycle phase (expansion or recession) produced over
the period January 1979 to August 2013. The out-of-sample predictions are constructed
from the posterior predictive density of two versions of the model in (2), which differ on the
inclusion of state-level predictors. For the QPS and XCSP evaluation metrics, ∗, ∗∗, and
∗ ∗ ∗ indicate a rejection of the null hypothesis of equal forecast accuracy at the 0.10, 0.05
and 0.01 significance level respectively.
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Table 2
Forecast Evaluation Metrics - Expansion vs. Recession Months

National-Level National and
Predictors State-Level Predictors

Forecast Horizon QPS XCSP QPS XCSP

Expansion Months

h = 0 0.06 0.10 0.07 0.09

h = 1 0.07 0.09 0.06 0.10

h = 2 0.08 0.09 0.09 0.09

h = 3 0.07 0.10 0.09 0.09

Recession Months

h = 0 0.41 0.54 0.15∗∗∗ 0.78∗∗∗

h = 1 0.47 0.51 0.23∗∗∗ 0.74∗∗∗

h = 2 0.51 0.47 0.51 0.47

h = 3 0.64 0.40 0.71 0.38

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for out-of-sample forecasts of the business cycle phase (expansion or recession) produced
separately for NBER defined expansion and recession months over the period January 1979
to August 2013. The out-of-sample predictions are constructed from the posterior predic-
tive density of two versions of the model in (2), which differ on the inclusion of state-level
predictors. For the QPS and XCSP evaluation metrics, ∗, ∗∗, and ∗ ∗ ∗ indicate a rejection
of the null hypothesis of equal forecast accuracy at the 0.10, 0.05 and 0.01 significance level
respectively.
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Table 3
One-Month Ahead Forecasts: 2008-2009 Recession

Date NBER Recession National-Level National and State-
Indicator Predictors Level Predictors

November 2007 0 0.08 0.05
December 2007 0 0.08 0.02
January 2008 1 0.06 0.00
February 2008 1 0.36 0.38

March 2008 1 0.19 0.61
April 2008 1 0.42 0.90
May 2008 1 0.16 0.66
June 2008 1 0.15 0.10
July 2008 1 0.30 0.92

August 2008 1 0.80 1.00
September 2008 1 0.76 1.00
October 2008 1 0.88 1.00

November 2008 1 1.00 1.00
December 2008 1 1.00 1.00
January 2009 1 1.00 1.00
February 2009 1 1.00 1.00

March 2009 1 1.00 1.00
April 2009 1 1.00 1.00
May 2009 1 1.00 1.00
June 2009 1 0.66 0.90
July 2009 0 0.17 0.20

August 2009 0 0.35 0.26

Notes: This table holds the one-month ahead out-of-sample forecasts of the business cycle
phase (expansion and recession) around the 2008-2009 NBER-defined recession. The fore-
casts are constructed from two versions of the model in (2), which differ on the inclusion of
state-level predictors.

29



Table 4
Average Predictor Inclusion Probabilities for Recursive Estimations

h = 0 h = 1 h = 2 h = 3
National-Level Predictors

Federal Funds Rate 0.71 0.65 0.59 0.20
S&P 500 Return 0.97 1.00 0.98 1.00
Term Spread 0.37 0.64 0.74 0.98
Employment Growth 0.25 0.39 0.15 0.08
Industrial Production Growth 0.66 0.39 0.08 0.04

Number of Variables 16.88 15.83 10.82 9.78

Notes: This table holds the average posterior probability that the national-level variables are
included in the model given by (2), when both national and state-level variables are included
in the list of potential variables. Averaging is across the multiple recursive estimations
beginning over the period August 1960-December 1978, and ending with the period August
1960-mid 2013, with the exact ending month dependent on the forecasting horizon.
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Table 5
Forecast Evaluation Metrics - Recession Months

All National- and State-Level Predictors Included

Forecast Horizon QPS XCSP

h = 0 0.23 0.68

h = 1 0.20 0.72

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for out-of-sample forecasts of the business cycle phase (expansion or recession) computed
separately for NBER defined recession months over the period January 1979 to August
2013. The out-of-sample predictions are constructed from the posterior predictive density of
the model in (2), where all possible covariates, both national- and state-level, are included.
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Table 6
Forecast Evaluation Metrics with “Real-Time” Data

National-Level National and
Predictors State-Level Predictors

Forecast Horizon QPS XCSP QPS XCSP
All Months

h = 1 0.24 0.04 0.24 0.08

Expansion Months

h = 1 0.01 0.14 0.04 0.11

Recession Months

h = 1 0.64 0.37 0.57 0.54

Notes: This table holds the forecast evaluation metrics defined in Section 2.3 constructed
for out-of-sample forecasts of the business cycle phase (expansion or recession) produced over
the period January 1979 to June 2011. Forecasts are constructed using “real-time” data as it
appeared at the time the forecast would have been produced. The out-of-sample predictions
are constructed from the posterior predictive density of two versions of the model in (2),
which differ on the inclusion of state-level predictors.
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