
      Research Division 
          Federal Reserve Bank of St. Louis 
                   Working Paper Series 
 

 
 
 

Connectionist-Based Rules Describing the  
Pass-through of Individual Goods Prices into 

Trend Inflation in the United States 
 
 

 
 

Richard G. Anderson 
Jane M. Binner 

and 
Vincent A. Schmidt 

 
 
 

Working Paper 2011-007A 
http://research.stlouisfed.org/wp/2011/2011-007.pdf 

 
 
 

February 2011 
 

 
FEDERAL RESERVE BANK OF ST. LOUIS 

Research Division 
P.O. Box 442  

St. Louis, MO 63166 
 

______________________________________________________________________________________ 

The views expressed are those of the individual authors and do not necessarily reflect official positions of 
the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors. 

Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate 
discussion and critical comment. References in publications to Federal Reserve Bank of St. Louis Working 
Papers (other than an acknowledgment that the writer has had access to unpublished material) should be 
cleared with the author or authors. 



1 

 

 

 

Connectionist-Based Rules Describing the Pass-through of Individual Goods Prices into 

Trend Inflation in the United States  

 

 

Richard G. Anderson a, b 

Jane M. Binner b 

Vincent A. Schmidt c 

 

a Federal Reserve Bank of St. Louis 

b University of Sheffield, School of Management 

c U.S. Air Force Research Laboratory, Dayton, Ohio 

 

February 2011 

 

 

 

 

Keywords: Consumer prices, Inflation, Neural Network, Data Mining, Rule Generation  

JEL Codes: E31, C45 

 

Views expressed herein are solely those of the authors, and are not necessarily the views 

of the Federal Reserve Bank of St Louis or the Federal Reserve System. Paper cleared 

by the Department of Defense for public release #88ABW-2010-1111. Anderson thanks 

the Aston Business School, Aston University (Birmingham UK) and the Management 

School, Sheffield University (Sheffield UK) for financial support and hospitality during 

the conduct of this research. Anderson also thanks the Research Division of the Federal 

Reserve Bank of Minneapolis for hospitality during the completion of this manuscript. 

The authors thank Yang Liu of the Federal Reserve Bank of St. Louis for research 

assistance.  



2 

 

 

Abstract 

This paper examines the inflation "pass-through" problem in American monetary policy, 

defined as the relationship between changes in the growth rates of individual goods and 

the subsequent economy-wide rate of growth of consumer prices. Granger causality tests 

robust to structural breaks are used to establish initial relationships. Then, a 

feedforward artificial neural network (ANN) is used to approximate the functional 

relationship between selected component subindexes and the headline CPI. Moving 

beyond the ANN “black box,” we illustrate how decision rules can be extracted from the  

network. Our custom decompositional extraction algorithm generates rules in human-

readable and machine-executable form (Matlab code). Our procedure provides an 

additional route, beyond direct Bayesian estimation, for empirical econometric 

relationships to be embedded in DSGE models. A topic for further research is 

embedding decision rules within such models. 
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Introduction 

This is a study in data mining, and also a study in macroeconomics. We apply a 

nonparametric, nonstructural, connectionist model (artificial neural network, or ANN) 

to examine the “inflation pass-through problem,” that is, how large (if any) is the 

subsequent change in the headline or core (excluding food and energy) inflation rate 

following an abrupt increase or decrease in the rate of change of the price of a specific 

commodity or group of commodities. Following the connectionist paradigm, we extract 

sets of “human readable” rules that span the same mapping as the underlying network 

from inputs to outputs. We suggest that such tools are potentially useful in economics.  

This analysis thus both presents some evidence regarding inflation pass-through and 

illustrates the power and value of interpreting neural networks in terms of rules rather 

than as black box forecasting tools. 

Data mining is a broad term describing the use of statistical methods to locate 

interesting and (usually) less-than-obvious relationships among variables. Traditional 

data mining relies on classification and association rules: it has been described as “a 

cooperative effort of humans and computers” (Weiss and Indurkhya, 1998) and as “the 

automatic extraction of novel, useful and understandable patterns in very large 

databases" (Zaki, 1998). Often, it is a computationally intensive task that includes 

experimentation over a range of models.  

 

 

 

Data mining, the mystical art of calling forth hordes of applicable, relevant marketable 
knowledge from both small, limited, contemporary surveys and from databases teeming 
with years of facts alike... and neurocomputing, the arcane magic of coaching case after 
case of information through a winding series of artificial neurons, breathing life into the 
ever-changing, constantly rearranging connectionist web, ever searching for the perfect 
match between sensory input and perceived reality. Combine these mighty forces and 
gain the ultimate prize – or, perhaps, complete chaos (most likely). The magic of these 
models is a very satisfying illusion but there is substantial mathematical power in each 
one...if it can be harnessed correctly.       
        -- Schmidt (2002) 
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Connectionist Neural Networks 

 The descriptive term “connectionist” was introduced by Feldman and Ballard 

(1982) to describe an emphasis on the use of neural networks as statistical tools, with 

little (if any) reference to biology or human physiology.1  The popularity of 

connectionist models as statistical tools in economics dates largely from the studies by 

Hal White and collaborators (Hornick, Stinchcombe and White, 1989, 1990; White, 

1988, 1989, 1990; Kuan and White, 1994). Hornick et al (1989), for example, established 

that a feedforward neural network with one hidden layer is able to approximate an 

unknown continuous real-valued function to an arbitrary level of accuracy (e.g., Judd, 

1998, pp 245-6). Other studies have proven that feedforward networks with a single 

hidden layer can perform classification for decision regions that are not convex. White 

(1990) provided conditions under which the least-squares (or maximum likelihood) 

estimation of feedforward networks is statistically consistent. Recent papers concerning 

inflation include Binner et al (2010) and Nakumura (2005); McNelis (2005) and Blynski 

and Faseruk (2006) discuss the use of neural networks in financial economics; Lim and 

McNelis (2008) use neural networks to approximate complex first-order conditions in 

solving DSGE macroeconomic models.; and recent forecasting papers include Pradhan 

and Kumer (2008) and Kiani and Kastens (2008). 2 A second thread of the connectionist 

literature, exemplified by early research in Australia (Andrews et, 1995) and at the 

                                     

1. Stephen Gallant also was an early supporter of the connectionist viewpoint (Gallant, 1988, 1993). 

Medler (1998) surveys the history of connectionist thought; see also Cheng and Titterington (1994). 

2.  Despite classic articles cautioning users that neural networks are not to be treated as a “black box” 

with mystical and magical powers (Sarle, 1994; Faraway and Chatfield, 1998), extraordinary (and false) 

claims continue to appear in print. For example, Yildiz and Yezegel (2010) claim: “The most powerful 

feature of artificial neural network technology is solving nonlinear problems that other classical techniques 

do not deal with. The artificial neural network (ANN) technology does not require any assumption about 

data distribution and missing, noisy and inconsistent data do not possess any problems. Another 

important aspect of the ANN is its ability to learn from the data. Artificial neural network technology is 

used in classification, clustering, predicting, forecasting, pattern recognition problems successfully. In most 

cases, ANN technology produces superior performance than other statistical techniques.” Persons familiar 

with the methods will immediately recognize this as false. Other published papers include mistreatment of 

the methods that are obvious to the better informed—Haider and Hanif (2009) estimate a network with 

12 hidden layers.  
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University of Wisconsin (e.g., Towell and Shavlik, 1993), is the extraction of human-

readable rules from the model, so that that the model need not be considered an 

impenetrable “black box.” In its most comprehensive form, such a set of rules provides 

the same mapping from inputs to outputs as is provided by the connectionist model 

(ANN) itself. Connectionist models and the extracted rules are members of the family of 

statistical tools referred to as “hybrid systems,” including fuzzy-logic-based systems. 

The essential “fuzziness” of fuzzy logic systems is an emphasis on inference while 

acknowledging that “structural” information is incomplete or imprecise. Robustness is 

critical. Constraints (usually exogenously imposed) prevent the system’s extracted rules 

from suggesting unreasonable choices. The term “fuzzy” does not imply “uncertain”, 

“inaccurate” or “confused” systems, but rather describes systems that rely on a 

mathematical foundation that seeks to capture concepts such as of "mostly", “rarely", 

“often”, “white but not quite white”, “white or black”, and “black but not quite black”.  

Fuzzy inference is closely connected to the literature on model robustness in which rules 

extracted from models, including those extracted from macroeconomic models, usually 

are best interpreted as highly uncertain, with a premium on robustness (e.g, Orphanides 

and Williams, 2003, 2007). 

 

The Inflation Pass-Through Problem 

Simply stated, the pass-through problem asks whether future values of a headline 

or “core” (that is, excluding food and energy) inflation rate will be affected by current 

or earlier period changes in the rate of increase/decrease in certain other prices. Usually, 

the most volatile prices are chosen for study, often food and energy prices. 

Models of inflation pass-through, and indeed all inflation forecasting models, 

must acknowledge the inflation targeting regime of the monetary authorities (Bernanke, 

Gertler and Watson, 1997). Inflation pass-through is likely to be small when the 

authorities have credibility regarding policy implementation and have adopted an 

inflation target. In the extreme case of “inflation nutters,” there will be little or no pass-

through if there exist a set of policy actions capable of preventing it. For more moderate 

policymakers operating in a sticky price (slowing changing expectations) environment, 

some near-term pass-through might be permitted so as to temper any downward 
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pressure on economic activity emanating from anti-inflationary policies. 3 Reduced-form 

studies of the type in this analysis are of value when there is no agreed upon general 

equilibrium model for policymaking and evaluation, and when the dates of putative 

changes in inflation regimes and/or policymakers distaste for inflation are highly 

uncertain. The relationships that link movements in individual prices to the aggregate 

inflation trend are difficult to estimate because they depend on the private sector’s 

perception of policymakers’ time-varying inflation goals and strength of commitment to 

low, stable inflation. Changes in a nation's political leadership may refocus concern on 

price stability versus more rapid growth of economic activity. 4  

In recent years the relationship between changes in the prices of individual goods 

and services and overall consumer inflation has assumed prominence in academic 

literature and in central banks' circles. Some central bankers explicitly have accepted 

that subsets of consumer prices are the appropriate objectives of monetary policy (core 

measures excluding food and energy prices), while others prefer overall "headline" 

inflation as a target. The most prominent among the former is the U.S. Federal Reserve, 

which has accepted the core chain price index for personal consumption expenditures 

("core PCE") as its policy objective. Among the latter are the Bank of England and the 

European Central Bank, which prefer the headline measure because it includes all the 

products purchased by consumers, including food and energy.  

In addition, the pattern of price increases across goods and services changes 

through time. The pattern of external shocks (such as weather patterns and energy 

prices) affecting the economy varies, as do the levels of economic activity in trading 

partner countries. Further, the (endogenous) reaction of firms and households may differ 

among goods, with some price changes eliciting strong reactions and others little if any 

reaction. Such variation will affect the strength and pattern of pass through from 

changes in individual prices to the overall headline inflation rate.  

Energy prices often are regarded as the most likely to have large pass through 

effects because changes in energy prices are quickly observed by households and firms: 

energy products are purchased more-or-less continuously. Further, energy is an essential 

                                     

3. See for example Gagnon and Ihrig (2004), Mishkin and Schmidt-Hebbel (2001, 2006).   

4. For models of the latter type, see Owyang and Ramey (2004) and Francis and Owyang (2005). 
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input to transport, although only one of a number of inputs.  The actions of households 

and firms will tend to temper other goods’ price movements. Prices of consumer durable 

goods, such as cars and home furnishings, are expected to have the weakest pass 

through because these purchases are more readily deferred. Intermediate are prices for 

foods because less expensive food products may be substituted when prices increase 

sharply.  

Our work is related to the large literature on the recessionary effects of oil price 

shocks, including Hamilton (2003, 2009), Hamilton and Herrera (2004), Hooker (1996),  

Barsky and Kilian (2001), Segal (2007), Norhaus (2007), Kilian (2008), and Blanchard 

and Riggi (2009). Studies specifically addressing the passthrough problem include 

Hooker (2002), van den Noord and Andre (2007), De Gregorio, Landerretche, and 

Neilson (2007), Cecchetti et al (2007), Blanchard and Gali (2008), Chen (2009), and 

Clark and Terry (2010). The latter group of studies, like the former, has focused on oil 

and has found little passthrough since the mid-1980s. Reasons cited include more 

flexible foreign exchange markets, more active monetary policy, and a higher degree of 

trade openness, although the evidence (with the recent exception of Clark and Terry’s 

Bayesian VAR containing time-varying coefficients and variances) has largely relied on 

relatively simple methods of assessing changes over time. Broadly, the literature has 

concluded that: (i) the relationship between oil prices and economic activity has been 

time-varying, with changes in both regression coefficients and innovation variances; (ii) 

the relationship likely was nonlinear, with sharp price increases adversely affecting 

economic activity far more than price decreases boosted activity (if they did so at all); 

(iii) an almost-sure structural break occurred between the second year of Paul Volcker’s 

disinflation policy (circa 1981) and the collapse of oil prices in 1985-86,  and (iv) the 

sharp decrease in the sensitivity of economic activity and inflation to oil prices after 

1985 almost surely reflected both a more sophisticated public understanding of the 

volatility of oil prices and a Federal Reserve that, by committing itself to low, stable 

inflation, felt itself less compelled to respond to adverse supply shocks.  Moving beyond 

oil, this study more broadly explores housing, food, and transportation prices, as well as 

a broader energy price index. 
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Empirical Analysis of Passthrough 

We present here an empirical summary of the relationship between individual-

component price indexes and the headline inflation rate (in the CPI-U-RS data). We 

focus on prices indexes for four important subgroups: housing, transport, energy and 

food. Housing expenditures, by itself, comprises 40 percent of expenditures in the overall 

headline index, and more than half of the expenditures in the “core” index (excluding-

food-and-energy). We focus on quasi-reduced-form relationships between “causal” and 

output variables, following in style, for example, Chen, Rogoff and Rossi (2010). 

Our data are the Bureau of Labor Statistics’s Consumer Price Index “Research 

Series” (CPI-U-RS) in which indexes have been constructed for historical dates using 

the same definitions and methods used for newly published data (Stewart, 1998).5 We 

include the aggregate “headline” index, a “core” index (excluding food and energy 

prices), and subcomponent indexes for food, energy, housing, and transportation. Our 

figures are the monthly percentage change from the same month one year earlier, not-

seasonally-adjusted, from December 1977 through December 2009.6 

We ask if any of the four component indexes (food, energy, housing, transport) 

Granger-causes (GC) either the headline or core index. Such tests are well-known to 

lack robustness to structural breaks. Rossi (2005) considers the case when a subset of 

parameters is to be tested against a known alternative while admitting the possibility of 

parameter instability, and derives a family of optimal (locally asymptotically most 

powerful) tests. Here, we use the simplest computational form of the test, as in Chen, 

                                     
5 We sometimes have been asked to explain the difference between the CPI-U and CPI-U-RS series. The 

principal difference is the treatment of housing and mortgage interest during 1977-1983 when the CPI-U 

increases and later decreases more rapidly than the CPI-U-RS. Measured year-over-year, the CPI-U-RS 

exceeded 10 percent per annum from September 1979 to March 1981, peaking in March 1980 at 11.8 

percent. In contrast, the CPI-U exceeded 10 percent from March 1979 to April 1981, peaking in April 

1980 at 14.7 percent. The CPI-U thereafter fell to a low of 2.5 percent in June 1983, when the CPI-U-RS 

was at 4.3 percent. The low point for the CPI-U-RS was December 1983 at 3.8 percent, a month in which 

the CPI-U also was 3.8 percent.  
6 Year-over-year measures remove the necessity for modeling seasonal effects, and specifically avoids the 

well-known lead-lag distortions that are present in data seasonally adjusted using the two-sided filters in 

the Census X-11/X-12 program. In this study, approximately the same results are obtained using data 

pre-filtered using monthly dummy variables. 
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Rogoff and Rossi (2010). Let the parameter vector be partitioned as  1 2,   ,  

denote a partition of the sample  1 1, ..., , , ...,T T T   ,   J  the distribution function of  , 

s denote the time-position of an observation within the sample, and  1s   be the 

indicator function that equals unity if s T and zero otherwise. For the null hypothesis  

2
*  and the alternative      2 1 1*

A sT T          ,   

Rossi (equ 23, 24) shows that, for a particular Gaussian weighting function, the 

test statistic with the greatest average power has the asymptotic distribution 

     1
21

*exp
c

dJ
c

 


     

 
   
     1 1
1

* '
'p p

p p

BB BB
B B

 


 
 

    
 

where p is the number of parameters not specified under the null,  B  is scalar 

Brownian motion, and  BB  is a p-dimensional Brownian bridge. The specific statistic 

we consider is the Andrews-Quandt optimal test, *
TQLR , which is obtained by allowing 

 1c c   and has asymptotic distribution  *sup T


  (Rossi, equ (27)). The statistic 

 *
T  may be computed in alternative asymptotically equivalent forms. We choose the 

Lagrange multiplier form as used, for example, in Chen, Rogoff, and Rossi (2010),

 1 2
*
T LM LM    , where 1LM  corresponds to 2 2

*   and 2LM  corresponds to the 

Andrews QLR test for a break at an unknown breakpoint, say, T  (Rossi, equ (23)).  

Tables 1, 2 and 3, respectively, report p-values for Granger causality (GC), Andrews 

QLR, and Rossi’s optimal tests. The sections labeled “Panel A” correspond to the 

headline and core CPI as the dependent variable and the component subindexes as the 

explanatory variable, while the sections labeled “Panel B” correspond to tests of 

feedback (“reverse causation”) with the subindexes as dependent variables and headline 

or core as the explanatory variable.   

We conducted extensive lag-length selection experiments for all 6 price indexes, 

using AIC, BIC and a general-to-specific strategy, each beginning with a length of 40 

periods. Our experiments suggest that it is essential to begin with a large putative lag: 

beginning with a software-default of six periods, all three tests suggested a lag of one 

period, that is, suggested writing the regressions in the “predictive form” 

 ,t t r t r ty f y x     with 1r  , regardless of whether the data were monthly month-to-
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month or  year-over-year percentage increases. Beginning at 40 periods, the AIC and 

BIC selected lag lengths of 12 and 24 periods, respectively, for both month-to-month 

and year-over-year changes. For robustness, the tables display results for lag lengths of 

13 and 25 periods. The data are year-over-year percentage changes, monthly. 

Consider first the upper half of table 1, for headline CPI. The results in panel A 

reject the null that the headline CPI is not Granger caused by energy, transport, and 

housing at both lag lengths, and by food at the longer lag. The reverse-causality results 

in panel B reject the null that the headline CPI is not GC by transport, housing and 

food at the shorter lag length, and transport and housing at the longer lag. The 

combined direct and reverse causality results for the housing price index suggest 

simultaneity between the headline and housing index, perhaps due to imputed items. In 

the lower half of table 1, for core inflation, the direct-causality results in panel A 

suggest rejecting the null of no GC only for food at the shorter lag. The reverse-

causality results in panel B suggest rejection only for housing and food, at the shorter 

lag. 

Table 2 reports Andrews QLR tests. The tests fail to reject the null of parameter 

stability for all series and both lag lengths. Note that in each regression only a subset of 

the parameters (those on the “explanatory” variable) are time-varying under the 

alternative. Although surprising at first, it must be kept in mind that CPI-U-RS data, 

as a constant methodology series, are somewhat smoother than the CPI-U data, 

especially during the late 1970s and early 1980s. Previous studies that have identified 

breaks circa the mid-1980s (e.g., Clark and Terry, 2011) often have used quarterly data 

and considered data earlier than the 1977 beginning of the CPI-U-RS series. 7  

Table 3 reports p-values for Rossi’s (2005) robust tests. We include these tests for 

completeness despite the Andrews QLR test showing no breaks. Where possible, p-

values are linearly interpolated between the asymptotic critical values in Rossi (2005), 

table B.3, p. 990. Where test statistics fall outside the bounds of her table, the p-values 

are denoted “<0.01” or “>0.10”.  Both direct GC (panel A) and reverse GC (panel B) 

is reported. In the upper half of Table 3 for headline CPI and direct causality (panel A), 

                                     
7 The Bureau of Labor Statistics also has published a CPI-U-X1 series for dates beginning 1967. Because 

its methodology differs somewhat from the CPI-U-RS, we do not include it here.  
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we reject at the 10 percent level the null of no GC by energy, transport and housing at 

both lag lengths, and for food at the 5 percent level for the longer lag. In panel B 

(reverse causality), we reject at the 5 percent level the null of no GC for transport, 

housing and food at the shorter lag, and for housing at the longer lag. Inference 

regarding housing continues to be clouded by strong reverse GC. In the lower half of 

Table 3 for core CPI, in panel A, the null of no GC is rejected for energy, housing and 

food at the shorter lag length; in panel B (reverse causality), the null is rejected for 

housing and food at the shorter lag. 

The above tests suggest that the relationships between headline and core CPI, 

and the energy and transport component subindexes, are sufficiently reliable to warrant 

further exploration. Food prices also have support, but due to the results sensitivity to 

lag length we leave them as a topic for future research. 

 

Technical Details Regarding Neural Network 

A comprehensive discussion of connectionist models is beyond the scope of this 

paper. To make the paper more self-contained, however, we include here a brief 

summary of connectionist models from a statistical point of view. The discussion follows 

Bishop (1995), who described the artificial neural network (ANN) as a “general 

parameterized nonlinear mapping between a set of input variables and a set of output 

variables.” Given a sufficient number of terms, the ANN can approximate any 

reasonable function to arbitrary accuracy. 

The multi-layer connectionist network may be expressed as a convolution 

(superposition) of functions. Recall that a two-layer feedforward network (one hidden 

layer plus one output layer) is sufficient to approximate any reasonable unknown 

function to any arbitrary degree of accuracy (Hornik et al, 1989). Consider a network 

with d  input nodes, M  hidden units, and c  output units. The output of the j-th 

hidden unit, ja , is the linear function  

 (1) (1)
, ,0

1

d

j j t i j
i

a w x w
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where the ix  are inputs and the  (1) (1)
, ,0,j t jw w are coefficients (“weights”) to be determined 

during network “training.” 8  The importance of the j-th hidden layer is determined by 

its activation function, ( )jg a . Activation functions are binary functions, the two most 

popular being the Heaviside step function 

 
0 0

( )
1 0

a
g a

a


  

 

and the continuous sigmoidal function 

 
1

( )
1 a

g a
e




. 

In turn, the k-th network output may be expressed as  

 (2) (2)
, ,0

1

( )
M

k jk j k
j

y w g a w


   

Often in economics k=1, that is, there is a single output.  

An additional issue in economics is that the networks often are treated as black 

boxes, where the analyst may be unconcerned with the internal workings of the 

network—that is, the estimated weights and choice of functions (e.g., Swanson and 

White, 1995, 2007). It is well-known, however, that such practice is dangerous; attention 

must be paid to the structure of the network even if (or, perhaps, particularly if) it is 

identified and estimated “automatically” during the training phase (e.g., Sarle, 1994; 

Faraway and Chatfield, 1998). One technique for doing so is rule extraction from the 

network (e.g., Baesens et al., 2003). 

 

Model Estimation (Training)  

In terms used by neural network scientists, our connectionist model is a 

“supervised three-layer feedforward neural network, using sigmoidal activation functions 

and linear output functions, trained via back propogation.” (It is “supervised” because 

the training includes both inputs and outputs; it has three layers because there are 

input, hidden, and output layers.)  Training (that is, estimation) of such models is a 

mixed integer-real optimization problem involving choosing the number of nodes in the 

                                     
8 Here we include explicit additive “bias” terms 1

0
( )
,jw . These may be subsumed into the weights 1( )

,j tw  by 

appending a vector of ones to the jx .  
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hidden layer and estimation of the network’s weights.9 We conducted a grid search with 

respect to the integer, examining models with 2, 3, 4, 5, 6, 7, 8, 9, and 12 nodes in the 

single hidden layer. For all networks, the single hidden layer applied a sigmoid 

activation function (MATLAB's logsig function), and an unconstrained linear link 

function (MATLAB's purelin function) was used for the six nodes at the output layer. 

All candidate models were provided the same dataset. The estimation/training dataset 

contained 242 observations and the test dataset contained 131 observations, both groups 

randomly selected from a set of 343 monthly observations. All networks were trained for 

2500 epochs, and for each architecture the single best of 25 instances was chosen for 

evaluation.10 Note that the “best” network instance
 
was defined as the instance with the 

highest training and testing accuracy.11  

                                     
9 For neural networks, “training” is the process of iteratively determining the number of hidden 

(intermediate) layers and estimating the weights (conditional on the choice of activation function). 

Available data are divided into a training set, a test set, and a validation set. Training algorithms 

typically iterate through the training dataset, with the test and validation datasets used to avoid 

accepting a network that has been overfitted during training.  
10 An epoch is one backward and forward pass through the dataset, creating a set of values for the 

weights. The number of epochs is the number of iterations through the data. Typically, several thousand 

iterations are necessary to achieve the a prior minimum acceptable degree of fit to the data (essentially, 

the maximum permitted sum of squared residuals). An excessive number of nodes and/or iterations risks 

overfitting in-sample, and subsequent poor forecasting performance. Protection against overfitting is 

achieved by examining the model’s error when subsequently confronted with the hold-out datasets (the 

test and validation datasets).  
11 Although 25 network instances were trained, solutions tend to fall into small numbers of "classes" or 

"categories." In this case, the “best” network is merely a (reasonably) random selection of a single solution 

from the category of networks exhibiting the most desirable behavior. Any network instance within this 

class would be a suitable selection (candidate) for the rule extraction. The main difference across 

instances is the set of starting values for estimation of the weights, which are chosen randomly; algorithms 

for the optimal choice of starting values is a topic of current research in the neural network field (see 

Sulaiman et al, 2005; Asadi et al, 2009). Also, we are merely using the network to discover and describe 

relationships within the data. The “real” product of our exercise are the rules generated via the extraction 

algorithm; these rules are an approximate representation of the neural network. The extraction process 

and the focus on the rules decouples at least in part the end result from the specific details of the 

network.  
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To date, all algorithms for ANN rule extraction require that data be discretized 

prior to network training. 12 One common technique is two-step “thermometer 

encoding.” First, the continuous data are recoded as if they were values falling in a set 

of discrete intervals. Second, these discrete values are encoded into a thermometer-like 

array of (typically) Boolean values. 13 This technique is illustrated in Figure 1, using all-

items headline CPI. As illustrated in the upper panel, N-1 thermometer variables (T1 to 

T5) are required to encode a series that has been discretized into N ranges. The lower 

panel displays the encoding for selected dates. Note that this example also highlights the 

major shortcoming that limits the use of rule-based connectionist models in economics: 

all time-series information is lost in such encoding.14  

Selection of ranges for all variables was assisted by the automated clustering 

algorithm of Schmidt (2002). Transportation and energy were classified into 12 and 17 

bins, respectively. The same algorithm was initially used to cluster the inflation values, 

but inspection of the values and a comparative test at selected breakpoints resulted in 

headline inflation being manually discretized into six ranges. After encoding, the model 

has 29 (12 + 17) inputs and six outputs, as shown in Table 4. 

Our preference is to accept the most accurate model that also has the smallest 

number of nodes in the single hidden layer because doing so reduces the combinatorial 

complexity of rule extraction. Interestingly, all tested networks—including those with 

only 2 nodes in the hidden layer—produced accuracy in the range of 87%-89% for 

training data, and 82%-84% for testing data. Eventually, we chose a model with five 

                                     
12 A little-known exception is Setiono et al (2002) who extracts rules by approximating hidden node 

activation functions by piecewise linear functions. Exploration of their methods is left as a topic for future 

research. 
13 This discretization is less restrictive in the connectionist model than is occasionally argued. Rules 

obtained from the ANN’s output typically are of the if-then-else form plus constraints and often have 

ranges wherein the optimal action is to take no action whatsoever. This suggests that an economic model 

of costs and benefits should underlie the discretization process, a topic beyond the scope of this paper but 

essential if ANN-based rules eventually are to be embedded in DSGE macro models. 
14 Dynamic models can be constructed by using a two-dimension set of ranges such that each observation 

is encoded based on the value during period t and the value during period t-1.So doing in this example 

would double the number of thermometer encoded variables. We have not, however, estimated such a 

model. 
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nodes in the hidden layer; although we would have preferred to select the network 

model with two nodes in the hidden layer, the rule extraction algorithm required at 

least five nodes. (We do not go into further detail about these constraints here.)  

A representative drawing of the selected network architecture is shown in Figure 

2. Table 5 summarizes the final accepted model. Column 1 displays the label (number) 

assigned to each output node; column 2 displays the associated numerical range. 

Column 3 displays the number of extracted rules for each output node. Output node 4 

has the largest number of rules (6 rules), while output node 3 has the smallest (3 rules). 

Columns 4 and 5 display the numbers of data points within each output range in the 

estimation (that is, training) and test datasets, respectively.  

Columns 6 and 7 summarize the model’s accuracy during the training 

(estimation) and test exercises. In column 6, for example, node 6 was chosen correctly in 

240 months and incorrectly in 2 months. Output node 4, with the largest number of 

observations, was chosen incorrectly in 60 months, one-fourth of the time. Column 7 

displays the same information for the test (holdout) dataset. Choice accuracy is 

disappointing for output nodes 3 and 4, that is, headline trend inflation between 2 

percent and 3 percent, and between 3 percent and 5 percent.  

 

Analysis of the Extracted Rules 

The use of rules to extract and summarize information in neural network models 

has a long history. We rely on a decompositional approach to rule extraction, described 

in Schmidt (2002) and Schmidt and Chen (2002).15 The 26 extracted rules are displayed 

in Table 6. 

The rule extraction algorithm works recursively as follows: For each output node, 

the algorithm identifies those nodes within the (single) hidden layer that feed the 

                                     
15 Rule extraction discussions have their own hierarchy. The upper-most categories are “symbolic” and 

“connectionist.” The latter contains two sub-categories: pedagogical and decompositional. 

Decompositional methods trace the connection of each output node to each hidden node (intermediate 

transfer function) and, in turn, each hidden node to the input nodes. At a somewhat lower rank is 

“pedagogical extraction” which treats the network as a black box and extracts rules via simultation. 

Andrews et al (1995) and Tickle et al (1998), respectively, survey rule extraction algorithms for 

feedforward and recursive networks.   
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specific output node; next, the algorithm identifies the input nodes that feed each of 

those hidden-layer output nodes, etc. In this manner, the algorithm iteratively 

constructs a mapping from the input nodes to the output nodes. For example, the set of 

rules extracted for output node 5 exhaustively describe those combinations of values of 

the model’s inputs (that is, the set of input nodes) that suggest a trend rate of headline 

inflation in the range 5%-9%. There are six nodes in the output layer. The mapping 

from a given vector of input values to an output node is one-to-one and onto, that is, 

the rule extraction algorithm ensures that the set of input ranges in each rule selects 

only a single output node. Extracted rules must replicate the behavior of the model: in 

response to a given set of input values, the extracted rules and the model both must 

select the same output node.   

The output rules are straightforward to interpret as if-then-else constructions. 

Rules 1-4, for example, map to output node 1: inflation less than or equal to 1-1/4 

percent per annum.  Rules 5-8, for example, map to output node 2: inflation between 

1.25 percent and 2 percent. Consider node 1 in Table 6. Rule 1 says “if A is true, then 

output node 1.” Similarly, rule 3: “if at least one of {C, D, I, K, L} and M are true, 

then output node 1” and rule 7: “if E is true and at least 1 of {M, N,…,V, X ,Z} is true, 

then output node 2.”16 

The extracted rules for the 6 output nodes differ relatively little in complexity. 

Note that node 3, corresponding to headline inflation between 2 and 3 percent, has the 

smallest number of rules (3), rules 9, 10 and 11. These rules, as a group, display the 

weakest dependence of headline inflation on movements in energy and transport prices. 

This is completely reasonable because observations during this period comprise much of 

the “Great Moderation.” In contrast is output node 6, with a monthly headline CPI 

inflation rate exceeding 9 percent. Inflation at that rapid a pace was observed only in 

one epoch: May 1979 to September 1981, when inflation was consistently greater than a 

9 percent annual rate; subsequently, headline inflation has never again revisited rates 

that high. Energy prices also increased at an unusually rapid pace: 20 percent per 

annum in May 1979, peaking at a 47 percent pace in May 1980, and continuing at more 

than a 10 percent pace through December 1981. For node 6, it would be 20 years until 

                                     
16 The “MofN” interpretation was introduced by Towell and Shavlik (1993). 
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energy price inflation once again reached a 20 percent rate in March and June 2000—

but then headline inflation was at a 3.7 percent pace. Three of the five rules focus on 

rapid energy price inflation; one rule includes 16 of the 17 bins for energy price inflation 

(!), and one rule excludes energy entirely while including only very large increases in 

transport costs. Considering the unusual type of shocks that generate such inflation, the 

rules do a reasonable job of capturing the functional linkages.  

 

Conclusions & Future Work  

We have illustrated methods to open the black box that surrounds connectionist 

models (statistically oriented neural networks), and have illustrated them with an 

application to the inflation pass-through problem. We find rules in line with our priori 

expectations, based on extant empirical results in the economics literature.  

Our results suggest that, from a policy perspective, there is almost no pass 

through from energy prices into trend headline inflation: although our estimated 

ANN/rule extraction methods suggest that energy should be included in a number of 

rules, the rules have a wide range of values. This is consistent with the economics liter-

ature: energy fluctuates so wildly that it is difficult to infer much from the fluctuations.  

The U.S. Federal Reserve’s Federal Open Market Committee has adopted the 

core (excluding food and energy prices) chain price index for personal consumption 

expenditures ("core PCE") as its policy objective. Both the rules reported here (and 

additional experiments comparing the contents of the rules to the binning of 

transportation and energy inputs, not included in this paper) have wide variability. In 

part, this to be expected because the inflation series are highly volatile.  

Our study suggests a number of topics for future research. One is to determine 

exactly how to use these rules as a means of applying suitable weights to the 

components of personal consumption expenditure so as to take account of the volatility 

of food and energy prices in monetary policymaking. Food and energy prices are clearly 

important components of households’ everyday budgeting decisions. An additional topic 

for future research is to test these rules in an out-of-sample forecasting framework so as 

to gain further insights into their validity. Finally, comparative analyses using discrete 

multivariate statistics or, alternatively, embedding such rules into a DSGE macro model 

likely would yield new insights.   
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Energy Transport Housing Food

Panel A:

N=13

N=25

0.00***
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0.01***

Panel B:

N=13
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0.30

0.29

0.04**

0.07*

0.00***
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0.05**

0.12

Energy Transport Housing Food

Panel A:

N=13

N=25

0.06

0.31

0.10*

0.37

0.28

0.60

0.02**

0.17

Panel B:

N=13

N=25

0.53

0.35

0.33

0.43

0.00***

0.08*

0.00***

0.15

cp :: Headline CPI

Table 1

Bivariate Granger Causality Tests

cp :: Core CPI (excludes food and energy)

The table shows p-values for the null hypothesis of Granger causality. Asterisks mark significance at the 1% 

(***), 5% (**), and 10% (*) levels, suggesting support for Granger causality.
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Energy Transport Housing Food

Panel A:

N=13 0.58 0.21 0.53 0.30

N=25 0.77 0.46 0.86 0.49

Panel B:

N=13 0.79 0.26 0.51 0.19

N=25 0.98 0.49 0.85 0.27

Energy Transport Housing Food

Panel A:

N=13 0.22 0.42 0.38 0.53

N=25 0.37 0.50 0.59 0.77

Panel B:

N=13 0.63 0.63 0.73 0.69

N=25 0.46 0.44 0.65 0.61

Table 2

Andrew's (1993) QLR Test for Instabilities

cp :: Headline CPI

cp :: Core CPI (excludes food and energy) 

The table reports p-values for Andrew's (1993) "QLR" test of temporal parameter stability. In those sections labled Panel A, headline and 

core CPI are the dependent variables and component subindexes are the regressors. In those sections labeled Panel B, the headline and 

core CPI series are the regressors. In no case is the null of parameter stability rejected.
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Energy Transport Housing Food

Panel A:

N=13 0.025** <0.01*** 0.029** >0.10

N=25 0.070* <0.01*** 0.082* 0.036**

Panel B:

N=13 >0.10 0.043** <0.01*** 0.043**

N=25 >0.10 >0.10 0.027** 0.096*

Energy Transport Housing Food

cp :: Headline CPI

cp :: Core CPI (headline CPI excluding food and energy)

Table 3

Granger Causality Tests Robust to Instabilities (Rossi, 2005)
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Panel A:

N=13 0.051* >0.10 0.050** 0.071*

N=25 >0.10 >0.10 >0.10 >0.10

Panel B:

N=13 >0.10 >0.10 0.042** 0.025**

N=25 >0.10 >0.10 >0.10 >0.10

The table reports p-values for the null hypotheses that each of the four component price indexes does not Granger-cause the 
headline or core CPI, adjusted for instabilities as in Rossi (2005). Asterisks indicate rejection of the null at the 1% (***), 
5% (**), and 10% (*) levels. We test at two lag lengths: the AIC generally suggested 24 lags, the BIC suggested 12. For 
robustness, we increase each lag by one.
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Table 4. Input and Output Ranges, and Observations per Range (Combined Training 

and Test Datasets) 

 

 

  

Number of 

Observations

Number of 

Observations

Number of 

Observations

Lower 

Bound

<=

Upper 

Bound

<

Lower 

Bound

<=

Upper 

Bound

<

Lower 

Bound

<=

Upper 

Bound

<

A        ‐Inf ‐0.121254 7 M       ‐Inf ‐0.265215 2 1 ‐inf 0.0125 19

B ‐0.121254 ‐0.101202 2 N ‐0.265215 ‐0.204803 6 2 0.012500 0.020000 48

C ‐0.101202 ‐0.070711 2 O ‐0.204803 ‐0.107416 21 3 0.020000 0.030000 113

D ‐0.070711 ‐0.032497 17 P ‐0.107416 ‐0.022121 38 4 0.030000 0.050000 134

E ‐0.032497 ‐0.011131 25 Q ‐0.022121 0.050777 155 5 0.050000 0.090000 30

F ‐0.011131 0.014684 41 R 0.050777 0.106695 54 6 0.090000 inf 29

G 0.014684 0.074562 217 S 0.106695 0.138965 18

H 0.074562 0.135777 40 T 0.138965 0.163726 22

I 0.135777 0.166635 11 U 0.163726 0.185737 15

J 0.166635 0.192465 6 V 0.185737 0.215139 14

K 0.192465 0.220937 3 W 0.215139 0.253502 11

L 0.220937          Inf 2 X 0.253502 0.282514 1

Y 0.282514 0.321399 4

Z 0.321399 0.371623 6

AA 0.371623 0.409081 2

AB 0.409081 0.447016 2

AC 0.447016          Inf 2

Transportation ranges Energy ranges Output ranges

Input and Output Ranges, and Number of Observations per Range
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Table 5: Accuracy of the Trained Model 

 

  

 

Output  "Infation % change"   Train  Test  Net Train Accuracy  Net Test Accuracy 
Node  Range (min,max)  Rules  Targets Targets Correct of 242, %  Correct of 131, %  

1  < 1.25%  4  10  9  (237) 97.93%  (127) 96.95%  
2  (1.25%, 2.0%)  4  32  16  (223) 92.15%  (116) 88.55%  
3  (2.0%, 3.0%)  3  72  41  (174) 71.90%  (85) 64.89%  
4  (3.0%, 5.0%)  6  90  44  (182) 75.21%  (84) 64.12%  
5  (5.0%, 9.0%)  4  18  12  (230) 95.04%  (117) 89.31%  
6  > 9.0%  5  20  9  (240) 99.17%  (123) 93.89%  
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Table 6. Graphical Representation of Extracted Rules 

 

 

  

Graphical representation of ranges used in output nodes (rules)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Input

Range

Transportation ranges

A        ‐Inf ‐0.121254 X X

B ‐0.121254 ‐0.101202 X X X

C ‐0.101202 ‐0.070711 X X X X X

D ‐0.070711 ‐0.032497 X X X X X

E ‐0.032497 ‐0.011131 X X X X X

F ‐0.011131 0.014684 X X X X X

G 0.014684 0.074562 X X X X X

H 0.074562 0.135777 X X X X

I 0.135777 0.166635 X X X   X

J 0.166635 0.192465 X X X

K 0.192465 0.220937 X X X

L 0.220937          Inf X X X

Energy ranges

M       ‐Inf ‐0.265215 X X X X X X X X

N ‐0.265215 ‐0.204803 X X X X X X X X

O ‐0.204803 ‐0.107416 X X X X X X X X X

P ‐0.107416 ‐0.022121 X X X X X X X X

Q ‐0.022121 0.050777 X X X X X X X X

R 0.050777 0.106695 X X X X X X X X

S 0.106695 0.138965 X X X X   X X X

T 0.138965 0.163726 X X X X X X X X X X

U 0.163726 0.185737 X X X X X X X X X X

V 0.185737 0.215139 X X X X X X X X X X

W 0.215139 0.253502 X X X X X X X

X 0.253502 0.282514 X X X X X  X X X

Y 0.282514 0.321399 X X X X X X    X

Z 0.321399 0.371623 X X X X X X

AA 0.371623 0.409081 X X X X X X X X

AB 0.409081 0.447016 X X X X X X X X

AC 0.447016          Inf X X X X X X X X

Output Nodes

Rule Number >

Node 3

(2.0... 3.0]

Node 2

(0.0125... 2.0]

Node 1

[‐inf, 0.0125]

Node 6

(9.0... Inf]

Node 5

(5.0... 9.0]

Node 4

(3.0... 5.0]
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Figure 1 

 
  

Lower 

Bound

<=

Upper 

Bound

< T1 T2 T3 T4 T5

1 ‐inf 0.0125 0 0 0 0 0

2 0.0125 0.0200 0 0 0 0 1

3 0.0200 0.0300 0 0 0 1 1

4 0.0300 0.0500 0 0 1 1 1

5 0.0500 0.0900 0 1 1 1 1

6 0.0900 inf 1 1 1 1 1

Dec‐78 0.0790 0 1 1 1 1

Jan‐79 0.0816 0 1 1 1 1

Feb‐79 0.0851 0 1 1 1 1

Mar‐79 0.0874 0 1 1 1 1

Apr‐79 0.0886 0 1 1 1 1

May‐79 0.0907 1 1 1 1 1

Jun‐79 0.0908 1 1 1 1 1

Oct‐81 0.0887 0 1 1 1 1

Nov‐81 0.0867 0 1 1 1 1

Dec‐81 0.0831 0 1 1 1 1

Dec‐82 0.0509 0 1 1 1 1

Jan‐83 0.0479 0 0 1 1 1

Feb‐83 0.0449 0 0 1 1 1

Mar‐83 0.0442 0 0 1 1 1

Apr‐83 0.0503 0 1 1 1 1

May‐83 0.0486 0 0 1 1 1

Jun‐83 0.0427 0 0 1 1 1

Jan‐86 0.0381 0 0 1 1 1

Feb‐86 0.0306 0 0 1 1 1

Mar‐86 0.0213 0 0 0 1 1

Apr‐86 0.0146 0 0 0 0 1

Output ranges Thermometer Variables

Selected Dates

Example of Thermometer Encoding, Based on Headline Inflation Rate
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Figure 2. Schematic of the Model 

 
 

 

 

 

 

 

 

 


