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Abstract

This paper presents empirical evidence on the e¢ cacy of forecast averaging using
the ALFRED real-time database. We consider averages taken over a variety of di¤erent
bivariate VAR models that are distinguished from one another based upon at least
one of the following: which variables are used as predictors, the number of lags, using
all available data or data after the Great Moderation, the observation window used
to estimate the model parameters and construct averaging weights, and for forecast
horizons greater than one, whether or not iterated- or direct-multistep methods are
used. A variety of averaging methods are considered. Our results indicate that the
bene�ts to model averaging relative to BIC-based model selection are highly dependent
upon the class of models being averaged over. We provide a novel decomposition of the
forecast improvements that allows us to determine which types of averaging methods
and models were most (and least) useful in the averaging process.
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1 Introduction

This paper provides evidence on the ability of various forms of forecast averaging to improve

the real�time forecast accuracy of monthly frequency bivariate VAR forecasts of headline

and core CPI-based in�ation, growth in Industrial Production (IP), and the unemployment

rate. We consider a range of approaches to averaging forecasts made by a variety of

primitive methods for managing the estimation of each bivariate VAR model. The averaging

methods include: equally weighted averages, medians, MSE�weighted averages, Bayesian

model averages based upon a BIC approximation, and combinations based on percentile

average forecasts. For each of these averaging approaches, we construct forecasts of each

variable using real�time data taken from the ALFRED database. We compare our results

to bivariate VAR models selected using BIC as a model selection procedure.

Of course, model averaging for forecasting is nothing new. There is plenty of evidence

suggesting that model averaging can provide improvements in terms of forecast accuracy

relative to model selection. Empirical examples of this evidence include, but are certainly

not limited to, Stock and Watson (2004), Kapetanios, Labhard, and Price (2008), and

Kascha and Ravazzolo (2010). Theoretical results include Hansen (2008), Elliott and

Timmermann (2004), Clark and McCracken (2008), and many others.

In some instances, for example Clark and McCracken (2010) and Faust and Wright

(2009), the real-time nature of the data is accounted for when forecasting with model

averages. Even so, such examples are the exception and not the norm. Here we use the

ALFRED database to mimic the type of data that a forecaster would have access to at

each point in time as they construct their monthly forecasts. This is important because

it takes account of the fact that economic data is often subject to revision and hence the

actual value of a variable may change as we move across forecast origins. In addition,

using real time data allows us to account for the fact that most macroeconomic data arrive

only after a substantial lag and, moreover, these time lags can vary widely across variables

from as little as a week (for employment �gures) to as along as two months (for trade data).

Finally, by using the ALFRED database as the universe of potential predictors, we allow for

the fact that new series become available across time and existing series sometimes become

discontinued.

In accordance with the previous literature, our results indicate that model averaging

can �but does not always� improve forecast accuracy relative to the more standard BIC-
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based approach to model selection. Put di¤erently, model averaging per se is not a panacea

for improving forecast accuracy. Improvements from model averaging depend critically

upon the type of models we average over. There appears to be some advantage to pre-

selecting which primitive models should be used in the averaging process. For example,

when forecasting core CPI-based in�ation there appears to be substantial gains in forecast

accuracy at all horizons when we average over only those models estimated using a rolling

observation window of �xed size rather than a recursive, expanding, observation window.

In contrast, we �nd that when forecasting indistrial production there are gains in forecast

accuracy when we average over only those models estimated using a recursive window rather

than a rolling window of observations.

With these two examples in mind, we provide a novel decomposition of the relative

root mean-square error improvements for each of our dependent variables, at each forecast

horizon, that allows us to determine which types of primitive models and which model

averaging techniques are, on average, most (and least) bene�cial in the averaging process.

In some, though not all, instances we �nd that our decomposition meshes well with those

permutations of types of models and types of averaging procedures that produce the most

accurate forecasts.

The remainder of the paper proceeds as follows. Section 2 describes the real-time data

used in our analysis. Section 3 provides a synopsis of the primitive models that we average

across as well as a description of the types of model averaging we consider. Section 4

presents our results on forecast accuracy and our decomposition. Section 5 concludes.

2 Data

We obtained our data from the ALFRED database maintained by the Federal Reserve Bank

of St. Louis. This database consists of collections of vintages of data for each variable �

vintages that vary across time as either new data is released or existing data is revised

by the relevant statistical agency. By using this database we are able to insure that at

each monthly forecast origin we are using only data that was available at the time that the

forecast was made. We therefore have de�ned �real-time� forecasting as using any data

available by the end of the month from which we are forecasting.

Choosing the end of a month as the forecast origin is non-trivial. Nearly all monthly

macroeconomic data is released after the end of the month it references. A model that
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uses data associated with January 1996 must therefore be constructed after that month has

ended. If we choose the �rst day of February as our forecast origin, the forecast would be

very timely but there would be almost no data associated with January to make use of-thus

reducing the accuracy of the forecast. On the other hand, if we choose the �rst day of May

as our forecast origin we would have all the January data available to us but the forecast

would be very much out of date. As a middle ground we choose the end of the month

following the most recent data vintage as the relevant forecast origin. This implies that

our 1-step ahead forecasts, constructed using January 1996 vintage data, made at the end

of February, will be a forecast of data associated with February 1996.1

From this database, we use a total of 238 unique monthly macroeconomic series in our

analysis. Of these 238 series, 67 of them are available for the January 1996 vintage data. As

we progress across time, we allow the number of variables used to increase or decrease with

data availability. For example, the number of series more than doubles in November 1996.

By the end of our forecasting exercise in December of 2008 we have a total of 193 series that

are used either as dependent variables or as predictors. This is less than the total number

of variables because 45 series were discontinued or did not have enough observations at

some point in time to adequately estimate either the model parameters or model averaging

weights.2 There are 29 Output & Production series, 8 Income, Outlays, & Savings series, 40

Labor Market series, 52 Monetary Aggregate and Reserve series, 35 Exchange Rate series,

38 Financial Market and Interest Rate series, 34 Price series, and 2 Survey series. The

detailed list available from the authors upon request.

At each forecast origin starting in February of 1996, we construct forecasts of three

variables: headline CPI-based in�ation, IP growth, and the unemployment rate. We begin

forecasting core CPI-based in�ation using December 1996 vintage data �the �rst available

vintage for this series. For each of these four variables we construct h = 1; 3; 6; 12, and

24�month ahead forecasts. For unemployment, the target variable being forecasted is

yt+h, the unemployment rate at the forecast horizon h. For the in�ation and growth

forecasts, the target variable being forecasted is the average annualized monthly rate of

growth over the forecast horizon and hence interpretation of the target variable varies with

1Giannone, Reichlin, and Small (2008) refer to this type of forecast as a "nowcast."
2 In our analysis we set a few basic rules for which variables to include: (i) we do not use seasonally

unadjusted data when the seasonally adjusted version is available, (ii) we do not use regional data for our
analysis, (iii) we omit a variable if there is less than 10 years worth of data to use for estimating the model
parameters, and (iv) we omit a variable if we do not have at least 24 pseudo out-of-sample forecast errors
to calculate the MSE weighted forecasts.
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the forecast horizon. More precisely, if we let yt denote the time t log-di¤erence in, say,

headline CPI, the target variable being forecasted at horizon h is y(h)t+h = (
1200
h )

Ph
i=1 yt+i.

When constructing our forecast errors, we use the third release (or equivalently, the

second revision) of the variable as the realized value of our target variable. In total, since

December 2008 is the �nal vintage we use to evaluate our forecasts, for each model we

have roughly 155 1-month ahead forecast errors that we use to measure accuracy. This

number shrinks to 151, 145, 133, and 109 for the 3-, 6-, 12-, and 24-month ahead forecasts

respectively.

Following Marcellino, Stock and Watson (2006), each variable we use is transformed

to ensure stationarity using di¤erences or log-di¤erences. For our dependent variables, we

treat the unemployment rate as stationary in levels but treat headline CPI, core CPI, and

IP as stationary in log �rst di¤erences. These transformations are done across all vintages

uniformly. We do not allow for the possibility that the type of transformation could be

di¤erent across vintages. After transforming our variables we then check for outliers de�ned

as observations that are greater than 6 times its interquartile range. These are replaced with

the mean of the series (without the outlier) from the relevant vintage. This is done vintage

by vintage and hence the outlier detection is not in�uenced by observations not available at

each forecast origin. Note that across the time period for which we forecast, the price and

IP indices have been periodically renormalized so that the units of measurement are not

the same across all vintages. To avoid mixing and matching, we renormalized each vintage

relative to that of the December 2008 vintage.

3 Methods

In this section we describe the primitive models that we average across as well as describe

the various model averaging approaches that we consider. All models have one thing in

common: they all (see section 3.4 below for a caveat) take the form of an OLS estimated

bivariate VAR in the variable to be predicted and one additional predictor. Otherwise

all of the primitive models di¤er by at least one of 6 features: (i) which element of the

ALFRED database is used as a predictor, (ii) how many lags of the dependent variable are

being used as a predictor, (iii) how many lags of the additional predictor are being used, (iv)

whether the model is being estimated using all available data (i.e. the recursive scheme) or

is estimated using a moving window of observations (i.e. the rolling scheme), (v) whether
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the model is estimated only using post Great Moderation data or uses data as far back as

the vintage has available, or (vi) for forecast horizons greater than one, whether we use

iterated- or direct-multistep methods to create our primitive forecasts.

3.1 Predictors

As noted above, we use the ALFRED database for our real-time forecasting exercise. In

particular, we treat it as the universe of potential variables that could be used as a predictor

for any one of our four dependent variables. Since the number of variables in ALFRED

changes across forecast origins, the number of primitive models that we average across

changes across forecast origins. At the beginning of our sample, January 1996, we have

a total of only 66 potential predictors for each dependent variable. At the last potential

forecast origin (November 2008), for a 1-step ahead forecast we have a total of 192 potential

predictors. While the number of predictors typically grows �sometimes dramatically as

was the case of November 1996 �there are a few instances in which the number of predictors

falls as various variables are discontinued or dropped because of insu¢ cient data.3

3.2 Full Sample and Great Moderation Sample

For each of the above models, we estimate the regression parameters using one of two

subsets of data. In the �rst we use all available data in that vintage (Full). While the �rst

observation varies across individual variables, many date back to as early as January 1959.

For the second subset of data we restrict attention to only that data which occurs starting in

January 1983 (Post), roughly the time frame in which the Great Moderation is considered

to have started. Note that this implies that for each vintage we use for estimation, any

historical observations pre-1983 are discarded.

We consider both of these separate subsets of data since there is considerable evidence,

including that in D�Agostino, Giannone, and Surico (2007), that the predictability of many

macroeconomic variables has changed since the onset of the Great Moderation. Even so,

there is a trade-o¤. Using less information to estimate model parameters may generate

estimates that are closer to being unbiased because older data comes from a di¤erent macro-

economic regime, but it also can decrease the precision of the estimates. In practice, this

trade-o¤ may favor using more or less data to estimate parameters due to a bias variance

trade-o¤.
3See footnote 2 for more detail.
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3.3 Recursive and Rolling Windows

For each of the above models, and conditional on whether we use the Full or Post sample,

we estimate the bivariate VAR using one of two observation windows. In the recursive

scheme (Rec), we estimate the model by OLS using all available data. Hence as we move

forward from one month to the next we use one more observation to estimate the model

parameters. In the rolling scheme (Roll), we estimate the model by OLS using only the

past 10 years of available data. Hence as we move forward from one month to the next we

use the same number of observations to estimate the model parameters.

In some ways, our decision to consider two sample subsets (Full vs. Post) as well as

two types of observations windows (Rec vs. Roll) may seem redundant. We view the two

choices as distinct but related. In the former, we are essentially assuming a discrete break

in the data and seeing how doing so helps forecast accuracy. For the latter, we are assuming

something closer to a smooth sequence of breaks. Since we are unsure of which is the proper

way to manage forecasting in the presence of uncertain forms of potential structural change,

we consider both. See Clark and McCracken (2010) for further discussion on this issue.

3.4 IMS and DMS

For each permutation of predictor, sample, and observation window, we estimate our bi-

variate VAR-based forecasting model using two di¤erent methods: the textbook approach

that induces an iterated multi-step (IMS) forecast and the somewhat easier-to-implement

method of using a direct multi-step (DMS) forecasting model. Below we give a brief de-

scription of each. In the following, let yt denote either the time t level of the unemployment

rate or the time t log-�rst di¤erence of headline or core CPI or IP. In addition, recall that

the target variable to be forecasted at forecast horizon h is y(h)t+h = (
1200
h )

Ph
i=1 yt+i for the

price and IP indices but is simply yt+h for unemployment.

When using the iterated multi-step (IMS) approach to forecasting, at each forecast origin

t we �rst use OLS to estimate the bivariate VAR model

�
yt
xt

�
=

�
�y;0
�x;0

�
+A(L)

�
yt�1
xt�1

�
+

�
"y;t
"x;t

�
(1)

where A(L) denotes a lag operator of appropriate dimension for the given number of

lags used in both the y and x equations. With the regression parameter estimates in hand,

the recursive nature of the VAR is used to generate a sequence of 1 through h step ahead
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forecasts ŷt+i i = 1; :::; h. For the unemployment rate, ŷt+h is the resulting forecast of

our target variable. For the other dependent variables, we follow Marcellino, Stock, and

Watson (2006) and de�ne our h�step ahead IMS forecast as (1200h )
Ph
i=1 ŷt+i. Note that

for each forecast horizon, the same parameter estimates are used when constructing the

forecasts.

When using the direct multi-step (DMS) approach to forecasting, a distinct model is

estimated separately for each forecast horizon h. For the unemployment rate and a �xed

value of h, this model takes the form

yt+h = �y;0 +Ay(L)yt +Ax(L)xt + "y;t+h (2)

where Ay(L) and Ax(L) denote lag operators of appropriate dimension for the given

number of lags used for y and x respectively. For each separate forecast horizon the

forecast is de�ned as ŷt+h = �̂y;0 + Ây(L)yt + Âx(L)xt. For the price and production

indices, the model takes the slightly di¤erent form

y
(h)
t+h = �y;0 +Ay(L)yt +Ax(L)xt + "y;t+h. (3)

For each separate forecast horizon the forecast is similarly de�ned as ŷ(h)t+h = �̂y;0 +

Ây(L)yt + Âx(L)xt. Note that in each of the above examples, the parameter estimates

resulting from these models will vary with the forecast horizon.

3.5 Lags

Each of the IMS and DMS speci�cations above require choosing the number of lags of y and

x to use as predictors. The textbook choice would be to use a model selection procedure

such as BIC. Such a choice, however, contrasts with our goal of providing evidence on the

bene�ts of model averaging relative to model selection techniques. In addition, due to the

considerable degree of evidence suggesting that there has been a change in the degree of

persistence in in�ation (e.g. Levin and Piger 2006), one might consider the possibility that

the lag order structure of the model for in�ation, in particular has changed over time. We

therefore consider all 144 permutations of up to 12 lags of either the y or x variable.

3.6 Averaging Methods

After considering all the permutations of model elements discussed above, for each variable

we have 76,128 1-month ahead forecasting models estimated in January 1996 and 221,280 1-
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month ahead forecasting models estimated in November of 2008.4 With this rich collection

of individual forecasting models as building blocks, we consider a range of approaches to

model averaging with an eye towards determining which types of model averaging are most

useful and moreover, which types of primitive models are the most useful to average over.

Our �rst set of model averages are the simplest. We consider the equally weighted

average (Average) as well as the median forecast from among these models (Median). While

these methods are not statistically exciting, there is substantial evidence suggesting that

simple forms of model averaging can perform quite well (e.g. Smith and Wallis 2009). Note

that this form of model averaging implies model weights that are invariant to the forecast

horizon.

We then consider two distinct forms of weighted model averaging. In the �rst, we follow

Stock and Watson (2004) as well as others and consider using relative inverse mean square

forecast error (MSE)-based weights to combine our models. The intuition is that if one has

historical evidence on the accuracy of a collection of models in the form of those model�s

MSEs, then one might want to use those measures of accuracy to give a particular model

more weight if it has been more accurate than the other models. Computationally, let

MSEi;t;h denotes the known MSE associated with individual model i at forecast origin t

associated with a sequence of past h�step ahead forecast errors, the weight given to model

i is
MSE�1i;t;hPNt
j=1MSE�1j;t;h

where j = 1; :::; Nt denotes an index of all the available primitive models

at forecast origin t:

In our application, for the relevant vintages of data needed to estimate a particular model

at forecast origin t, we conduct a pseudo out-of-sample forecasting exercise to generate these

MSEs. The particulars of what we do depend upon whether we are using the Full or Post

sample and whether we use the recursive or rolling scheme to construct our forecasts. If the

recursive (rolling) scheme is used to construct the model forecast, then the recursive (rolling)

scheme is used to construct the pseudo out-of-sample forecasts that are used to construct

the model weights. If the Full sample is used, the �rst pseudo out-of-sample forecast is

constructed using data from January 1960 to December 1969 and iterates forward until the

availability of real-time data, at time t, is insu¢ cient to calculate a forecast error using

the third release of the relevant dependent variable. If the Post sample is used, the �rst

pseudo out-of-sample forecast is constructed using data from January 1984 to December

4The number of models not only changes across forecast origins but varies slightly across forecast horizons
due to data availability. See footnote 2.
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1993 and iterates forward in time as discussed above. Since our forecasting exercise starts

in January 1996, this implies that the model weights constructed using the Full sample are

estimated based upon an average MSE that uses many more squared forecast errors than

those constructed using the Post sample.

We also consider an approximate Bayesian model averaging strategy in which we calcu-

late a posterior probability from prior probabilities and marginal likelihoods for each model,

with each model assigned the same prior probability. Following Garrat, Koop, and Vahey

(2006), the marginal likelihood of a given model is approximated using it�s BIC. In our

analysis, for each vintage we estimate each model using the relevant subset of the available

data (i.e. the Full or Post sample) and based upon the subsequent residuals, calculate the

value of the BIC. Computationally, if we let BICi;t;h denote the value of the BIC associated

with the residuals from individual model i at forecast origin t, the weight given to model

i is exp(�:5�BICi;t;h)PNt
j=1 exp(�:5�BICj;t;h)

. For the iterated multistep models the BIC is constructed in the

typical fashion using equation (1) that implicitly assumes that the residuals are serially

uncorrelated. For the direct multi-step models however, we know that when h > 1 the

residuals from equation (2) are not serially uncorrelated and hence the typical formulation

is invalid.5 For simplicity, we use the standard BIC formula regardless.

In addition to the weighted forecasts described above that averages across all models, we

also considered a variant that �lters out those models considered "less accurate" by some

metric and averages over only those remaining. Speci�cally, at each forecast origin t we

follow Aiol�and Timmermann (2006) as well as Clark and McCracken (2010) by calculating

a Top 10% MSE and a Top 10% BIC weighted average that is constructed using only the

top ten percent of the available models. For the Top 10% MSE models this is done by

averaging only over the models with the lowest 10% of pseudo out-of-sample MSEs based

on the most recent vintage of data. For the Top 10% BIC models this is done by averaging

only over the models with the lowest 10% of values of BIC based on the most recent vintage

of data.

3.7 Benchmark Forecast

In reporting our results it is useful to get a feel for the magnitude of the bene�ts of model

averaging. To do so we need to choose a baseline for comparison. Since our goal is to observe

the bene�ts of model averaging relative to model selection, using a �xed autoregressive

5See Hansen (2010) for a discussion of how this a¤ects the de�nition of BIC.
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model with known lags is insu¢ cient. Not only does that baseline not capture the time

varying nature of model selection in a real-time forecast setting, in many cases it doesn�t

even serve as a particularly di¢ cult benchmark to beat. For example, we could have used

the standard random walk benchmark but as we will see below, while this turns out to be

a strong benchmark for the unemployment rate, it is a horrible benchmark for industrial

production and both of the price indices.

Instead we use the recursively estimated, iterated multi-step, BIC-selected forecast es-

timated over the Full sample as our benchmark. At each forecast origin t this entails

calculating the value of the BIC for each IMS model from equation (1), estimated using the

Full sample, separately across all possible lag permutations, and choices of predictor and

then choosing the model with the lowest BIC as the model that is used to construct the

forecast. The reason behind our selection is that this particular BIC-selected forecast is the

conventional model that a textbook in time series econometrics would suggest we use. For

completeness, we also report the relative RMSEs associated with the random walk model.

3.8 Summary of Methods

In all, for each variable and each horizon, we consider 6 di¤erent forms of model averaging:

Average, Median, MSE weight, Top 10% MSE, BIC weight, and Top 10% BIC. Each of

these forms of averaging are then applied separately to several distinct classes of models

�models indexed by whether they are constructed using (i) the Full and/or Post samples,

(ii) the Rec and/or Roll schemes, and (iii) the IMS and/or DMS approaches to forecasting.

Note that since we allow for averaging over (for example) models estimated using either the

Rec or Roll schemes, there are 33 = 27 model classes that we consider. In all, this gives

us 6� 33 = 162 distinct permutations of form of model averaging and the types of models

that are averaged over.

4 Results

In this section we discuss our results on the value of using forecast averaging as a tool for

improving forecast accuracy. For brevity, however, we do not present the tables associated

with all 162 model averaging and model class variants. Instead, in Tables 1 and 2 we

present results for each of the types of model averaging when we average over all models.

Table 1 presents results for headline and core CPI-based in�ation while Table 2 presents
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results for growth in Industrial Production and the unemployment rate. The values in

the �rst row of each panel are the RMSEs associated with the benchmark model chosen

using BIC at each forecast origin. The remaining values in each panel are relative RMSEs.

Values greater than 1 favor the benchmark model while values less than 1 favor the form

of model averaging denoted in the �rst column. For each forecast horizon, the best relative

RMSE is highlighted in bold.

4.1 RMSE of Nominal Variables

The �rst panel of Table 1 provides the results on forecasting headline CPI-based in�ation

when we average across all models. Here we �nd that at the shortest three horizons there

are little if any advantages to forecast averaging across all models in terms of RMSEs. When

averaging over all the primitive models the benchmark is either better than model averaging

or only marginally worse. However, as the forecast horizon increases to 12 months, model

averaging improves accuracy by roughly �ve percent and at the longest horizon, forecast

averaging improves accuracy by as much as thirty percent. In each of these latter horizons,

the Top 10% BIC weighted forecasts gave the lowest RMSEs.

The second panel of Table 1 provides the same results but for core CPI-based in�ation.

In contrast to the results for headline in�ation, here there are consistent improvements at all

horizons when model averaging across all models. At the shortest horizons the gains were

on the order of a modest �ve percent but as the horizon increases the improvements rise to

something closer to �fteen percent. Across all horizons, no single averaging approach really

sticks out as consistently giving the greatest improvements: The Average, MSE weighted,

and Top 10% BIC each perform best in at least one horizon.

4.2 RMSE of Real Variables

The �rst and second panels of Table 2 parallel those in Table 1 in terms of the bene�ts

of model averaging. As was the case for headline CPI, model averaging across all models

provides little-to-no improvement relative to model selection when forecasting IP growth at

the shortest horizons. In fact, model averaging typically does worse than model selection

at the longest horizons with losses of roughly �ve percent.

But again, in contrast to the results in the �rst panel, model averaging across all models

consistently improves forecast accuracy relative to model selection when forecasting the

unemployment rate. Each model averaging procedure improves forecast accuracy at every
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horizon. Somewhat surprisingly the improvements are U-shaped: the improvements in

RMSE are roughly seven percent at the shortest and longest horizon but are closer to

twelve percent at the intermediate horizons. Across all but the longest horizon, the Top

10% MSE weighted forecast has the largest improvements relative to the benchmark. At

the longest horizon the BIC weighted average performs best.

4.3 Decomposition Regression Analysis

In Tables 1 and 2 we see that while model averaging can improve forecast accuracy, it

does not always do so relative to our model selection-based benchmark. Moreover, when

model averaging does provide improvements the best form of model averaging varies across

dependent variables and across forecast horizons. Finally, though obviously not apparent

in Tables 1 and 2 (which present results when averaging over all of the primitive models),

comparable conclusions can be reached were we to report all of the remaining 162�6 = 156

permutations of types of model averaging and model classes for each dependent variable

and each horizon.

Even so, it may be that on average across all of these permutations, some simple patterns

emerge that could help us identify which types of model averaging are best to use and which

classes of models should be averaged over. In order to parse out such e¤ects we estimate

a regression in which we use dummy variables for the types of model averaging and model

classes as predictors for the corresponding relative RMSEs. Speci�cally, for each dependent

variable and each forecast horizon h, we use OLS to estimate the regression:

RMSEhi � 1 = �1DMS+ �2Post+ �3Roll

+�1IMS/DMS+ �2Full/Post+ �3Rec/Roll

+
1Equal+ 
2Weight+ 
3Top 10%+ 
4MSE+ �
h
i (4)

where RMSEhi is the relative RMSE of permutation i = 1; :::; 162: By subtracting 1

the coe¢ cients are more easily interpreted as indicating percent improvement (a negative

coe¢ cient) or percent deterioration (a positive coe¢ cient) relative to our benchmark.

The � coe¢ cients are associated with variables that indicate how an individual forecast

is made: DMS takes the value 1 if only direct multi-step models are included and zero other

wise, Post takes the value 1 if only Great Moderation data is used and zero otherwise, and

Roll takes the value 1 if only a rolling window of observations is used to estimate the model
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parameters and zero otherwise. The ��s are associated with the di¤erent combination of

the ��s: IMS=DMS takes the value of 1 if the weighted forecast combines both IMS and

DMS forecasts and zero otherwise, Full=Post takes the value 1 if the weighted forecast

combines both the Full and Post samples, and Rec=Roll takes the value 1 if the weighted

forecast combines both recursive and rolling estimation schemes. The 
�s are associated

with how the weighted forecasts are constructed: Equal takes the value 1 if either the

Average or Median averaging methods are used and zero otherwise, Weight takes the value

1 if the models are weighted unequally and zero otherwise, Top 10% takes the value 1 if the

averaging only uses the Top 10% of forecast and zero otherwise, and MSE takes the value

1 if MSE weights are used and zero otherwise.

4.4 Results for Nominal Variables

Table 3 shows our decomposition results for both headline and core CPI-based in�ation.

In each panel, the �rst six rows relate to the selection of models to average over while the

latter four rows relate to the type of averaging method. We begin by looking at panel 1,

that associated with headline in�ation.

In the �rst two rows of panel 1, those associated with choosing to average over DMS

models, IMS models, or both, there appears to be little statistically signi�cant advantage

to using any of these particular forecasting methods. The sole exception is that at the

12�month horizon where DMS models appear to be favored. The results are stronger for

the choice of data used to estimate the models. Across all horizons there appears to be

a signi�cant advantage to using only Great Moderation data to estimate the models: Not

only are the coe¢ cients on Post signi�cantly di¤erent from zero and negative, they are more

negative than the coe¢ cients associated with averaging over both Full and Post samples.

The results for the choice of sampling scheme are a bit messier but still instructive. At

the shortest and longest horizon, combining both the recursive and rolling schemes - as

suggested by Clark and McCracken (2008) - appears to provide the largest average bene�ts

in terms of reducing RMSEs. At the other horizons, simply using the rolling scheme tends

to be best.

Moving to the �nal four rows of panel 1, the results for the type of averaging method

clearly indicate that the simple equally weighted averaging methods are signi�cantly worse

than using the benchmark. At all horizons the coe¢ cient associated with Equal is positive

and di¤erent from zero. Unfortunately, the remaining 3 rows are less clearly interpretable.
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While the MSE, Weight, and Top 10% coe¢ cients are typically negative �suggesting that

a Top 10% MSE weighted average might be best � the coe¢ cients are only statistically

signi�cant in a few of instances at the longer horizons.

The results in panel 2, those associated with core in�ation, are similar to the results

for headline in�ation with a few speci�c di¤erences. The evidence in favor of using the

DMS approach to forecasting is stronger at all horizons and signi�cantly so. And again,

for all but the shortest horizon, the evidence favors using only Great Moderation data for

estimation of the model parameters. Similarly we �nd that using the rolling scheme or a

combination of the rolling and recursive schemes is the preferred approach.

In the �nal four rows of panel 2, the results on the type of averaging method are much

sharper than those for headline in�ation. In all but the shortest horizons, the simple equally

weighted averaging methods are signi�cantly worse than using the benchmark. But at the

1-month horizon, it appears that using a simple averaging method does provide signi�cant

gains in forecast accuracy and moreover, those gains are larger than were we to use some

form of weighting. For horizons longer than 1-month, the coe¢ cients on Top 10% are all

signi�cantly negative which, along with the negativeMSE andWeight coe¢ cients, suggest

that a Top 10% MSE weighted average might be best.

4.5 Results for Real Variables

The results for the real variables, and in particular those for IP, are very di¤erent from

those we saw for the nominal variables. A quick glance at the �rst six rows of panel 1

indicates quite clearly that the preferred type of models that should be averaged are now

IMS forecasting models estimated recursively using the Full sample�a sharp contrast to the

type of models chosen for both headline and core in�ation. Moreover, in the �nal four rows

of panel 1, it appears that while there is some evidence favoring MSE weights relative to

BIC weights, the bulk of the evidence suggests that one would do even better to use one

of the simple equally weighted averages rather than use a weighted or Top 10% weighted

average.

The results in panel 2, those associated with the unemployment rate, are less clear cut

than those for IP and even those for headline and core in�ation. At the 3- and 6-month

horizons the DMS approach to forecasting appears to be best but at the longest horizon

the IMS appears to be best. Similarly, at the intermediate horizons, using the Great

Moderation sample appears to be best but at the longest horizon using the Full sample
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appears to be best. And while using the rolling scheme or a combination of the recursive

and rolling schemes tends to best at the shortest horizons, the recursive scheme clearly tends

to dominate at the 6-month and longer horizons Finally, as was the case for the results

for IP, it appears that while there is some evidence favoring MSE weights relative to BIC

weights, the bulk of the evidence suggests that one would do even better to use one of the

equally weighted averages rather than use a weighted or Top 10% weighted average.

4.6 Rankings

The results in Tables 3 and 4 give some indication as to which types of model averaging

should be used and which classes of models should be averaged over. However, we should

emphasize that those results are indicators of average treatment e¤ects across all 162 permu-

tations of averages and model classes. They do not necessarily indicate which permutations

actually turn out to be the best. In Tables 5 and 6, we provide a brief description of those

permutations that do turn out to perform best. In particular, we list the 10 best performing

permutations of averaging methods and model classes, along with their respective relative

RMSEs, for each variable and each of the 1-, 3-, and 12-month horizons.6 In addition, we

provide the 5 worst performing permutations for the sake of comparison.

The �rst panel of Table 5 provides the rankings for headline CPI-based in�ation. There

are several striking features. In line with the results from Table 1, at the 1- and 3-month

horizons their are few if any gains to model averaging irrelevant of model class. But as the

horizon increases to 12-months, gains of roughly ten percent are available when using Top

10% weighted averages; in line with the decomposition results from Table 3. In addition,

across all horizons, all of the top ten ranked permutations use either the rolling scheme

or a combination of the rolling with the recursive. In contrast all of the lowest ranked

permutations exclusively use the recursive scheme. Finally, as suggested in Table 3, all

but one of the worst �ve permutations makes use of the simple equally weighted averaging

schemes.

In the second panel of Table 5, that associated with core in�ation, we get a slightly

di¤erent picture on the bene�ts of model averaging relative to model selection. In particular,

as was the case in Table 1, there are consistent bene�ts to model averaging at all horizons so

long as the right permutations of model averages and model classes are used. The top ten

6We present these three horizons for brevity. A complete set of results is available from the authors
upon request.
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permutations outperform the benchmark by roughly seven percent at the shortest horizon

and by as much as twenty-�ve percent at the longest horizon. On the other hand, while

the bottom �ve permutations outperform the benchmark at the 1-month horizon, they fail

to do so at the 3- and 12-month horizons.

Interestingly, the types of model averages that do best and worst for core in�ation match

up nicely with the results in Table 3. At the shortest horizon, equally weighted averages

tend to do best but as the horizon increases, the Top 10% weighted averages begin to

dominate. And by in large, the class of models to average over match up well too: the

top ten ranked permutations are dominated by DMS forecasting models estimated over the

Great Moderation sample, or an average of the Great Moderation and Full samples, using

the rolling scheme, or a combination of the rolling and recursive. One feature that does

not match up is that at the 12-month horizon, the BIC weighted averages appear to be best

while the results in Table 3 suggest the MSE weighted would do better.

The �rst panel of Table 6 provides the rankings for IP growth. As we saw in Table

2, the advantages to model averaging relative to model selection, while feasible, are not

particularly large with a maximum of only �ve percent at the 12-month horizon. As

indicated in the decomposition, the equally weighted averages seem to do best at the 1-

month horizon but as the horizon increases to 3-months, Top 10% weighted models appear

to gain some traction among the best performing averaging methods � a sharp contrast

to the decomposition in Table 4. Apparently part of the problem is that many of the

worst performing models are also Top 10% averages and hence when we average across all

permutations, our decomposition in Table 4 indicates the equally weighted averages should

perform better. One point that clearly matches our decomposition is the choice of sampling

scheme: Nearly all of the best performing permutations average across models estimated

recursively while all the worst performing permutations average across models estimated

using the rolling scheme.

In the second panel of Table 6, that associated with forecasts of the unemployment rate,

a few things pop out immediately. The �rst is that model averaging uniformly improves

forecast accuracy across all horizons and all permutations. In fact, at the 3-month horizon

the worst performing model average provides an improvement of ten percent relative to the

benchmark. Also, across all horizons the best ten types of model averaging are of the Top

10% form. This is in sharp contrast with the prediction from our decomposition which
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predicted that the equally weighted averages tended to perform best. Even so, as was the

case for our decomposition in Table 4, it appears that at the shortest horizon the rolling

scheme appears to perform best but as the horizon increases the recursive scheme becomes

preferred. At the 12-month horizon, all of the bottom �ve performing permutations use

the rolling scheme.

5 Conclusion

Using the ALFRED real-time database, we provide empirical evidence on the real time

bene�ts to model averaging monthly frequency forecasts of headline and core CPI-based

in�ation, growth in industrial production, and the unemployment rate. Our results support

much of the literature on forecasting: Model averaging typically improves forecast accuracy

relative to a benchmark chosen using model selection. Even so, we emphasize a di¤erent

point that is typically glossed over in the literature on forecast averaging. The choice of

models that we average across can make a big di¤erence on the e¢ cacy of the averaging

methods.

Using a novel decomposition of the bene�ts to forecast averaging relative to using model

selection methods a few rules of thumb seem to be evident. First, when forecasting either

headline or core CPI-based in�ation, DMS forecasting models estimated over the Great

Moderation sample (or an average of the Great Moderation and Full samples) using the

rolling scheme (or a combination of the rolling and recursive schemes) seem to perform

best. Second when forecasting either IP growth or the unemployment rate, averaging over

models estimated using the recursive scheme (or an average of the rolling and recursive)

seems to perform best. Third, while the Top 10% averaging approach frequently provides

the best improvements in forecast accuracy, it is not immune to performing poorly relative

to equally weighted averages because past model performance does not always indicate

future model performance.
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Table 1: RMSE of Out-of-Sample Forecasts of Nominal Variables

Headline CPI 1-month 3-month 6-month 12-month 24-month

BIC, Recursive, IMS, Full 3:560 2:741 1:622 1:146 0:800
Random Walk 1:151 1:519 2:298 2:851 4:234
Median 0:995 1:018 0:990 0:934 0:760
Average, all forecasts 0:995 1:021 1:008 0:952 0:816
MSE Weight, all forecasts 0:995 1:018 0:993 0:934 0:778
MSE Weight, Top 10% 1:000 1:030 1:006 0:943 0:821
BIC Weight, all forecasts 0:994 1:024 1:007 0:946 0:781
BIC Weight, Top 10% 0:994 1:023 0:996 0:913 0:667

Core CPI

BIC, Recursive, IMS, Full 1:233 0:805 0:606 0:586 0:591
Random Walk 1:198 1:580 1:858 1:855 1:954
Median 0:938 0:942 0:899 0:867 0:827
Average, all forecasts 0:931 0:962 0:944 0:944 0:967
MSE Weight, all forecasts 0:934 0:938 0:884 0:840 0:827
MSE Weight, Top 10% 0:958 0:949 0:893 0:848 0:834
BIC Weight, all forecasts 0:936 0:946 0:918 0:918 0:922
BIC Weight, Top 10% 0:946 0:932 0:888 0:842 0:810
Notes :

(i) Values associated with the �rst row are RMSEs. The remaining values are ratios of
RMSEs relative to that of the �rst row.
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Table 2: RMSE of Out-of-Sample Forecasts of Real Variables

Industrial Production 1-month 3-month 6-month 12-month 24-month

BIC, Recursive, IMS, Full 9:951 6:229 5:050 4:136 2:837
Random Walk 1:125 1:263 1:313 1:561 2:281
Median 0:985 0:972 0:986 0:994 1:070
Average, all forecasts 0:985 0:970 0:981 0:994 1:055
MSE Weight, all forecasts 0:986 0:970 0:982 0:996 1:056
MSE Weight, Top 10% 0:988 0:974 0:982 1:011 1:067
BIC Weight, all forecasts 0:987 0:972 0:983 1:001 1:072
BIC Weight, Top 10% 0:989 0:990 1:005 1:023 1:094

Unemployment Rate

BIC, Recursive, IMS, Full 0:167 0:301 0:463 0:696 1:023
Random Walk 0:995 0:958 0:947 0:982 1:031
Median 0:936 0:882 0:864 0:922 0:936
Average, all forecasts 0:935 0:877 0:857 0:917 0:922
MSE Weight, all forecasts 0:935 0:877 0:856 0:916 0:926
MSE Weight, Top 10% 0:922 0:865 0:836 0:910 0:969
BIC Weight, all forecasts 0:935 0:879 0:862 0:918 0:919
BIC Weight, Top 10% 0:938 0:895 0:889 0:953 0:985

Notes :
(i) Values associated with the �rst row are RMSEs. The remaining values are ratios of

RMSEs relative to that of the �rst row.
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Table 3: Decomposition Regression of Nominal Variables

CPI 1-month 3-month 6-month 12-month 24-month

DMS 0:000 �0:004 �0:001 �0:016� 0:014
DMS/IMS 0:000 �0:001 0:001 �0:005 �0:000
Post �0:011��� �0:027��� �0:049��� �0:066��� �0:147���
Post/Full �0:009��� �0:019��� �0:035��� �0:050��� �0:113���
Roll �0:004��� �0:045��� �0:075��� �0:086��� �0:141���
Rec/Roll �0:012��� �0:031��� �0:050��� �0:078��� �0:177���
Equal 0:018��� 0:074��� 0:088��� 0:082��� 0:087��

Weighted �0:001 �0:002 �0:000 0:001 �0:017
Top 10% 0:000 �0:002 �0:011� �0:020�� �0:047���
MSE �0:001 0:002 �0:006 �0:022��� �0:011
N 162 162 162 162 162

Core CPI

DMS �0:000 �0:010� �0:034��� �0:085��� �0:152���
DMS/IMS �0:000 �0:004 �0:011 �0:025 �0:044
Post 0:001 �0:041��� �0:075��� �0:130��� �0:230���
Post/Full �0:002 �0:034��� �0:060��� �0:102��� �0:176���
Roll �0:002� �0:069��� �0:134��� �0:236��� �0:414���
Rec/Roll �0:013��� �0:056��� �0:105��� �0:182��� �0:317���
Equal �0:048��� 0:046��� 0:096��� 0:215��� 0:439���

Weighted �0:004��� �0:013�� �0:011 �0:015 �0:027
Top 10% 0:009��� �0:011�� �0:025�� �0:049��� �0:073���
MSE 0:004�� 0:000 �0:020�� �0:040�� �0:041
N 162 162 162 162 162

Notes :
(i) ***, **, and * denote statistical signi�ance at the 1%, 5%, and 10% levels, respectively.
(ii) Each column in each panel provides the coe¢ cients associated with a distinct OLS esti-

mated version of equation (4).

22



Table 4: Decomposition Regression of Real Variables

IP 1-month 3-month 6-month 12-month 24-month

DMS �0:000 0:003��� 0:013��� 0:024��� 0:025���

DMS/IMS �0:000 0:000 0:004�� 0:001 �0:003
Post 0:000 0:000 0:006��� 0:006�� �0:001
Post/Full �0:000 �0:000 0:004�� 0:004 �0:001
Roll 0:012��� 0:013��� 0:049��� 0:089��� 0:147���

Rec/Roll 0:004��� 0:006��� 0:025��� 0:050��� 0:085���

Equal �0:018��� �0:034��� �0:047��� �0:053��� �0:009��
Weighted 0:001��� 0:002��� 0:000 �0:000 0:003
Top 10% 0:003��� 0:007��� 0:007��� 0:002 0:003
MSE �0:002��� �0:006��� �0:003� 0:002 �0:006
N 162 162 162 162 162

UR

DMS 0:000 �0:006��� �0:016��� 0:004 0:077���

DMS/IMS 0:000 �0:002 �0:004� �0:002 0:001
Post 0:001 �0:009��� �0:010��� �0:009��� 0:026���

Post/Full �0:001 �0:007��� �0:008��� �0:009��� 0:014
Roll �0:014��� �0:002 0:013��� 0:054��� 0:159���

Rec/Roll �0:009��� �0:004�� 0:004 0:023��� 0:071���

Equal �0:054��� �0:107��� �0:127��� �0:088��� �0:151���
Weighted 0:003��� 0:003� 0:003 0:002 0:001
Top 10% �0:007��� �0:005�� �0:006� 0:001 0:034���

MSE �0:008��� �0:009��� �0:014��� �0:010��� �0:006
N 162 162 162 162 162

Notes :
(i) ***, **, and * denote statistical signi�ance at the 1%, 5%, and 10% levels, respectively.
(ii) Each column in each panel provides the coe¢ cients associated with a distinct OLS esti-

mated version of equation (4).
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