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Abstract

This paper develops a novel and e¤ective bootstrap method for simulating as-
ymptotic critical values for tests of equal forecast accuracy and encompassing among
many nested models. The bootstrap, which combines elements of �xed regressor and
wild bootstrap methods, is simple to use. We �rst derive the asymptotic distributions
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tiple models that nest the benchmark model � that is, reality check tests applied to
nested models. We then prove the validity of the bootstrap for these tests. Monte
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1 Introduction

With improvements in computational power, it has become increasingly straightforward to

mine economic and �nancial datasets for variables that might be useful for forecasting. This

point is made clearly in any number of papers, including Denton (1985), Lo and MacKinlay

(1990), and Hoover and Perez (1999). In light of this data mining, it is clear that the search

itself must be taken into account when trying to validate whether any of the �ndings are

statistically signi�cant. Various methods exist to manage this multiple testing problem,

including the traditional use of Bonferroni bounds as well as more recent methods involving

q-values (Storey 2002). Each of these methods has strengths and weaknesses in terms of

applicability to a given situation.

The bootstrap is one particularly tractable method of managing this multiple testing

problem. Speci�cally, in the context of out-of-sample tests of predictive ability, White

(2000) develops a bootstrap method of constructing an asymptotically valid test of the

null hypothesis that forecasts from a potentially large number of predictive models are as

accurate as those from a baseline model. Since then, some research has extended the

applicability of the results in White (2000). Hansen (2005) shows that normalizing and

re-centering the test statistic in a speci�c manner can lead to a more accurately sized and

powerful test. Corradi and Swanson (2007) provide important modi�cations that permit

situations in which parameter estimation error enters the asymptotic distribution.

One thing these existing bootstrap �reality check�s�have in common is the assumption

that the baseline model is non-nested with at least one of the competing models. More

precisely, they require that the (M �1) vector of out-of-sample averages of the loss di¤eren-

tials (each element of the vector is the average di¤erence in forecast accuracy between the

baseline and a distinct competing model) is asymptotically normal with a positive semi-

de�nite long-run covariance matrix. Along with additional moment and mixing conditions,

this condition on the long-run covariance matrix is satis�ed if at least one of the models is

non-nested with the baseline.

However, in many forecast comparisons, the baseline model is a simpler, nested ver-

sion of all of the competing models. The purpose of such a comparison is to determine

whether the additional predictors associated with the larger models improve forecast accu-

racy relative to the restricted baseline. In general, in asset return applications, economic

theories of e¢ cient markets imply that excess returns form a martingale di¤erence and a
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null hypothesis under which all predictive models nest the baseline model of zero expected

return. In macroeconomic applications, it is standard to examine the predictive content

of some variable for output or in�ation by comparing a baseline autoregressive model to

alternative models that add in lags of other potential predictors. Examples in the literature

include Cheung, Chinn, and Garcia�s (2005) examination of various exchange rate models,

Goyal and Welch�s (2003, 2008) studies of the predictive content of a variety of business

fundamentals for stock returns, and Stock and Watson�s (1999, 2003) analyses of output

and in�ation forecasting models.

In such evaluations of multiple forecasting models that nest the benchmark model, the

results in studies such as White (2000) on the asymptotic and �nite-sample properties of

bootstrap-based joint tests of equal forecast accuracy, based on non-nested models, may not

apply. Intuitively, with nested models, the null hypothesis that the restrictions imposed in

the benchmark model are true implies the population errors of all of the competing fore-

casting models are exactly the same. This in turn implies that the population di¤erence

between the competing models�mean square forecast errors is exactly zero, with zero vari-

ance. As a result, the distribution of a t�statistic for equal MSE may be non�standard.

Indeed, Clark and McCracken (2001, 2005) and McCracken (2007) show that, for pairs

of forecasts from nested models, the distributions of tests for equal forecast accuracy are

typically not Normally distributed.

Motivated by the frequency with which researchers compare predictions from a baseline

nested model with many alternative, nesting models, this paper develops a novel, simple

bootstrap that can be used to construct joint tests of equal out-of-sample forecast accu-

racy or forecast encompassing among such forecasts. This new bootstrap allows for both

conditional heteroskedasticity and serial correlation in the forecast errors.

Before proceeding, we should make clear our contribution to the literature on simulation-

based methods for multiple testing. Hansen (2005) notes explicitly that his and the results

in White (2000) do not apply when the baseline model is nested by all of its competitors.

For the case of a small set of nested models, Hubrich and West (2010) propose comparing an

adjusted t-test for equal mean square error (equivalently, a t-test for forecast encompassing)

against the simulated maximum of a set of standard normal random variables. Their ap-

proach is based on the observation of Clark and West (2007) that, while the true asymptotic

distributions of the t-tests are not normally distributed under general conditions, the dis-
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tributions can often be reasonably approximated by the standard normal. Inoue and Kilian

(2004) explicitly derive the asymptotic distribution of two tests for equal population-level

out-of-sample predictive ability when the baseline model is nested by many competing mod-

els � both of which we consider here. Our paper extends Inoue and Kilian (2004) in three

dimensions. First, we provide analytics for two more tests. Second, we extend the results in

Inoue and Kilian (2004) to environments that allow for forecast horizons greater than one

period and conditionally heteroskedastic errors. Finally, and most importantly, we develop

a �xed regressor bootstrap method for obtaining asymptotic critical values under the null

of equal accuracy at the population level, and we prove the validity of the bootstrap.

Although our results apply only to a setup that some might see as restrictive � direct,

multi�step (DMS) forecasts from nested models � the list of studies analyzing such forecasts

suggests our results should be useful to many researchers. Recent applications considering

a variety of DMS forecasts from nested linear models include, among others: the studies

cited at the beginning of this section; Hong and Lee (2003); Hubrich (2005); Mark (1995);

Kilian (1999); Butler, Grullon and Weston (2005); Sarno, et al. (2005); Cooper and Gulen

(2006); Guo (2006); Rapach and Wohar (2006); Bruneau, et al. (2007); Rapach and Strauss

(2007); Moench (2008); Billmeier (2009); Chen, et al. (2009); Hendry and Hubrich (2009);

and Molodtsova and Papell (2009).

The remainder proceeds as follows. After introducing essential notation and the

forecast-based tests considered, Section 2 presents the tests considered and our proposed

bootstrap method. Section 3 derives the asymptotic distributions of the tests and proves

the validity of the bootstrap. Section 4 presents Monte Carlo results on the �nite�sample

performance of our proposed bootstrap compared to the methods of White (2000), Hansen

(2005), and Hubrich and West (2010). Section 5 applies our tests to forecasts of commodity

prices and GDP growth in the U.S. Section 6 concludes.

2 A bootstrap for nested model reality checks

After describing essential notation and the forecast test statistics considered, this section

presents our proposed bootstrap algorithm.
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2.1 Essential notation

At each forecast origin t = T; :::; T + P � � , we observe the sequence fys; x0sgts=1. � -step

ahead forecasts of the scalar yt+� , � � 1, are generated using a (k � 1; k = k0 + k �M ) vector

of covariates xt = (x00;t; x
0
�M;t
)0 that consists of a baseline set of predictors x0;t that occur

in each model as well as a vector of additional covariates x �M;t. The set of predictors xt

may include lags of yt. Sub-vectors of x �M;t di¤erentiate the competing unrestricted models.

There therefore exists 2k �M � 1 unique unrestricted linear regression models that nest the

baseline model within it. Let j = 1; :::;M denote an index of the collection ofM � 2k �M �1

unique models x0j;t�j to be compared to the baseline nested model x
0
0;t�0.

1

At every forecast origin, each of the forecasting models is estimated by OLS, yielding

coe¢ cients �̂j;t. The � -step ahead forecast errors for model j are ûj;t+� = (yt+� � x0j;t�̂j;t),

j = 0; 1; :::;M . Because the models are nested, the null hypothesis that the additional

predictors do not provide predictive content implies the population forecast errors uj;t+� �

(yt+� � x0j;t�j) satisfy uj;t+� = u0;t+� � ut+� for all j = 1; :::;M .

2.2 Test statistics

We consider a total of four forecast�based tests: two tests of equal forecast accuracy and two

tests for forecast encompassing. In particular, we consider multiple-model variants of the

t�statistic for equal MSE developed by Diebold and Mariano (1995) and West (1996) and

the F�statistic proposed by McCracken (2007). We also consider multiple-model variants

of the t�statistic for encompassing developed in Harvey, Leybourne, and Newbold (1998)

and West (2001) and the variant proposed by Clark and McCracken (2001). Application of

the tests to multiple models involves taking the maximum of test statistics formed for each

alternative model forecast to the benchmark model forecast.

The two tests of equal MSE are based upon the sequence of vectors of loss di¤erentials

(d̂1;t+� ; :::; d̂M;t+� )
0, where d̂j;t+� = û20;t+��û2j;t+� . If we de�neMSEj=(P � � + 1)�1

PT+P��
t=T û2j;t+�

(j = 0; 1; :::;M), �dj = (P � � +1)�1
PT+P��
t=T d̂j;t+� =MSE0 �MSEj , ̂djdj (l) = (P � � +

1)�1
PT+P��
t=T+l (d̂j;t+� � �dj)(d̂j;t+��l � �dj), ̂djdj (�l) = ̂djdj (l), and (for a kernel K(�) and

truncation parameter L de�ned later) Ŝdjdj =
P�l
l=��lK(l=L)̂djdj (l), the statistics take the

1Note that while we do not require that M = 2k �M � 1, we do require that all k �M of the x0s are used in
at least one of the unrestricted models.
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form

max
j=1;:::;M

(MSE-tj) = max
j=1;:::;M

((P � � + 1)1=2 �
�djq
Ŝdjdj

): (1)

max
j=1;:::;M

(MSE-Fj) = max
j=1;:::;M

((P � � + 1)�
�dj

MSEj
): (2)

Similarly, the two tests of forecast encompassing are based upon the sequence of vectors

(ĉ1;t+� ; :::; ĉM;t+� )
0, where ĉj;t+� = û0;t+� (û0;t+� � ûj;t+� ). If we de�ne �cj = (P � � +

1)�1
PT+P��
t=T ĉj;t+� , ̂cjcj (l) = (P � � +1)

�1PT+P��
t=T+l (ĉj;t+� � �cj)(ĉj;t+��l� �cj), ̂cjcj (�l) =

̂cjcj (l), and Ŝcjcj =
P�l
l=��lK(l=L)̂cjcj (l), the statistics take the form

max
j=1;:::;M

(ENC-tj) = max
j=1;:::;M

((P � � + 1)1=2 � �cjq
Ŝcjcj

): (3)

max
j=1;:::;M

(ENC-Fj) = max
j=1;:::;M

((P � � + 1)� �cj
MSEj

): (4)

2.3 The bootstrap

Our new, bootstrap-based method of approximating the asymptotically valid critical values

for multiple-model comparisons between nested models is an extension of that discussed in

Clark and McCracken (2009) in the context of pairwise comparisons. Speci�cally, we use a

variant of the wild �xed regressor bootstrap developed in Goncalves and Kilian (2004) but

adapted to the direct multi-step nature of the forecasts. In this framework the x�s are held

�xed across the arti�cial samples and the dependent variable is generated using the direct

multi-step equation y�s+� = x
0
0;s�̂0;T+v̂

�
s+� , s = 1; :::; T+P�� , for a suitably chosen arti�cial

error term v̂�s+� designed to capture both the presence of conditional heteroskedasticity and

an assumed MA(� � 1) serial correlation structure in the � -step ahead forecasts. Specif-

ically, we construct the arti�cial samples and bootstrap critical values using the following

algorithm.2

1. Estimate the parameter vector � �M associated with the unrestricted model that

includes all k �M predictors using OLS and store the residuals v̂s+� = ys+� � x0s�̂ �M , s =

1; :::; T + P � � .

2. Using NLLS, estimate an MA(� � 1) model for the OLS residuals v̂s+� such that

vs+� = "s+�+�1"s+��1+ :::+���1"s+1: Let �s+� ; s = 1; :::; T +P �� ; denote an i:i:d N(0; 1)
2Our approach to generating arti�cial samples of multi-step forecast errors builds on a sampling approach

proposed in Hansen (1996).
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sequence of simulated random variables. De�ne v̂�s+� = (�s+� "̂s+�+ �̂1�s�1+� "̂s+��1+ :::+

�̂��1�s+1"̂s+1), s = 1; :::; T + P � � .

3. Estimate the parameter vector �0 associated with the restricted model using OLS

and store the �tted values x00;s�̂0;T s = 1; :::; T + P � � . Form arti�cial samples of y�s+�

using the �xed regressor structure, y�s+� = x
0
0;s�̂0;T + v̂

�
s+� .

4. Using the arti�cial data, construct an estimate of the test statistics (e.g., max
j=1;:::;M

(MSE-Fj))

as if this were the original data.

5. Repeat steps 2� 4 (note, however, that the NLLS estimation of an MA model is not

repeated) a large number of times: j = 1; :::; N .

6. Reject the null hypothesis, at the �% level, if the test statistic is greater than the

(100� �)%-ile of the empirical distribution of the simulated test statistics.

3 Theoretical results on distributions and bootstrap validity

This section proves the validity of the bootstrap proposed above, after providing further

detail on the econometric environment and deriving the asymptotic distributions of the tests

presented in section 2.2. The proofs are provided in Appendix 1.

3.1 Environment details

We denote the loss associated with the � -step ahead forecast errors as û2j;t+� = (yt+� �

x0j;t�̂j;t)
2, j = 0; 1; :::;M . As indicated above, under the null, the population forecast errors

uj;t+� � (yt+� � x0j;t�j) satisfy uj;t+� = u0;t+� � ut+� for all j = 1; :::;M .

The following additional notation will be used. De�ne the selection matrices Jj satis-

fying xj;s = J 0jxs for all j = 0; 1; :::;M . Let H(t) = (t
�1Pt��

s=1 xsus+� ) = (t
�1Pt��

s=1 hs+� ),

Bj(t) = (t�1
Pt��
s=1 xj;sx

0
j;s)

�1, Bj = (Exj;sx
0
j;s)

�1, B(t) = (t�1
Pt��
s=1 xsx

0
s)
�1, and B =

(Exsx
0
s)
�1. ForH(t) and Jj de�ned above, �2 = Eu2t+� , and a ((kj�k0)�k; kj = dim(xj;s))

matrix ~Aj satisfying ~A0j ~Aj = B
�1=2(�J0B0J 00 + JjBjJ 0j)B�1=2, let ~hj;t+� = ��1 ~AjB1=2ht+�

and ~Hj(t) = ��1 ~AjB1=2H(t). If we de�ne ~h~h;j(i) = E~hj;t+�~h
0
j;t+��i, then S~h~h;j =

~h~h;j(0) +
P��1
i=1 (~h~h;j(i) + 

0
~h~h;j

(i)). Let W (s) denote a k � 1 vector standard Brown-

ian motion.

To derive the asymptotic distributions of the tests, we need four assumptions.

Assumption 1: The vector of coe¢ cients �j in each forecasting model j are estimated

recursively by OLS: �̂j;t = argmin�j t
�1Pt��

s=1(yt+� � x0j;t�j)2, j = 0; 1; :::;M .
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Assumption 2: (a) Ut+� = [h0t+� ; vec(xtx
0
t�Extx0t)0]0 is covariance stationary. (b) EUt+� =

0. (c) For all l > � � 1, Eht+�h0t+��l = 0. (d) Extx0t < 1 and is positive de�nite. (e) For

some r > 8, Ut+� is uniformly Lr bounded. (f) For some r > d > 2, Ut+� is strong mixing

with coe¢ cients of size �rd=(r�d). (g) limT!1T
�1E(

PT��
s=1 Us+� )(

PT��
s=1 Us+� )

0 = 
 <1

is positive de�nite.

Assumption 3: (a) Let K(x) be a continuous kernel such that for all real scalars x, jK(x)j �

1, K(x) = K(�x) and K(0) = 1. (b) For some bandwidth L and constant i 2 (0; 0:5),

L = O(P i). (c) The number of covariance terms �l; used to estimate the long�run covariances

Scjcj and Sdjdj de�ned in Section 2.2, satis�es � � 1 � �l <1.

Assumption 4: limP;T!1 P=T = �P 2 (0;1).

The assumptions provided here are very similar to those provided in Clark and Mc-

Cracken (2005). We restrict attention to forecasts generated using parameters estimated

recursively by OLS (Assumption 1)3 and we do not allow for processes with either unit roots

or time trends (Assumption 2).4 We provide asymptotic results for situations in which the

in-sample and out-of-sample sizes T and P are of the same order (Assumption 4).

Assumption 3 is necessitated by the serial correlation in the multi-step (� -step) forecast

errors � errors from even well-speci�ed models exhibit serial correlation, of an MA(� � 1)

form. Typically, researchers constructing a t-statistic utilizing the squares of these errors

account for serial correlation of at least order � � 1 in forming the necessary standard error

estimates. Meese and Rogo¤ (1988), Groen (1999), and Kilian and Taylor (2003), among

other applications to forecasts from nested models, use kernel-based methods to estimate the

relevant long-run covariance.5 We therefore impose conditions su¢ cient to cover applied

practices. Parts (a) and (b) are not particularly controversial. Part (c), however, imposes

3Assumption 1 could easily be weakened to allow for parameters estimated using a rolling window of
T observations at each forecast origin t. Under the rolling scheme, after rede�ning the �i, i = 1 � 3
appropriately, Theorems 3:1 and 3:2 continue to hold. More importantly, Theorems 3:3 and 3:4 also
continue to hold and hence our bootstrap is valid under both the rolling and recursive schemes.

4Our assumptions do, however, allow yt and xt to be stationary di¤erences of trending variables. As to
other technical aspects of Assumption 2, (a) and (d) together ensure that in large samples, sample averages of
the outer product of the predictors will be invertible and hence the least squares estimate will be well de�ned.
Part (c) enables the use of Markov inequalities when showing certain terms are asymptotically negligible.
Along with (c), (e) and (f) allow us to use results in Hansen (1992) and Davidson (1994) regarding the
weak convergence of partial sums to Brownian motion and that functionals of these partial sums converge
in distribution to stochastic integrals.

5For similar uses of kernel�based methods in analyses of non�nested forecasts, see, for example, Diebold
and Mariano (1995) and West (1996).
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the restriction that the known MA(� � 1) structure of the model errors (from Assumption

2c) is taken into account when constructing the MSE-t and ENC-t statistics discussed in

Section 2. Although Assumption 3 and our theoretical results admit a range of kernel

and bandwidth approaches, in our Monte Carlo experiments and empirical application we

compute the variances required by the MSE-t and ENC-t statistics (for � > 1) using the

Newey and West (1987) estimator with a lag length of 1:5 � � .

3.2 Asymptotic Distributions

Under the null that x �M;t has no population level predictive power for yt+� , for all j =

1; :::;M the population di¤erence in MSEs, E(u20;t+� � u2j;t+� ), and the moment condition

Eu0;t+� (u0;t+� � uj;t+� ) will equal 0. Clark and McCracken (2005) show that for a given j,

MSE-tj , MSE-Fj , ENC-tj and ENC-Fj are bounded in probability. Since the max operator

is continuous andM is �nite, we therefore expect the maxima of each of the four statistics to

also be bounded in probability. In contrast, when x �M;t has predictive power, the population

di¤erence in MSEs, E(u20;t+� � u2j;t+� ), and the moment condition Eu0;t+� (u0;t+� � uj;t+� )

will be positive for at least one j. In the case where j is known, Clark and McCracken

(2005) show that MSE-tj , MSE-Fj , ENC-tj and ENC-Fj diverge to positive in�nity and

hence each test is consistent. But again, in the present environment with multiple models,

we do not know which model j has predictive content. However, since the max operator is

continuous and M is �nite, we expect the maxima of each of the four statistics to also be

consistent regardless of whether we know which model j has predictive content.

For a given j, Clark and McCracken (2005) and McCracken (2007) show that, for ��step

ahead forecasts, the MSE-Fj , MSE-tj , ENC-Fj , and ENC-tj statistics converge in distribu-

tion to functions of stochastic integrals of quadratics of Brownian motion, with limiting dis-

tributions that depend on the sample split parameter �, the number of exclusion restrictions

kj � k0, and the unknown nuisance parameter S~hj~hj . This continues to hold in the pres-

ence of multiple-model comparisons. If we de�ne �1;j =
R 1+�P
1 s�1W 0(s)JjS~hj~hjJ

0
jdW (s),

�2;j =
R 1+�P
1 s�2W 0(s)JjS~hj~hjJ

0
jW (s)ds, and �3;j =

R 1+�P
1 s�2W 0(s)JjS2~hj~hj

J 0jW (s)ds, the

following two theorems provide the asymptotic distributions of the multiple model variants

of these four statistics.

Theorem 3.1: Maintain Assumptions 1; 2; and 4. Under the null hypothesis, it follows that:

(a) max
j=1;:::;M

(MSE-Fj)!d max
j=1;:::;M

(2�1;j ��2;j), and (b) max
j=1;:::;M

(ENC-Fj)!d max
j=1;:::;M

(�1;j).
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Theorem 3.2: Maintain Assumptions 1� 4. Under the null hypothesis, it follows that: (a)

max
j=1;:::;M

(MSE-tj)!d max
j=1;:::;M

((�1;j�:5�2;j)=�1=23;j ), and (b) max
j=1;:::;M

(ENC-tj)!d max
j=1;:::;M

(�1;j=�
1=2
3;j ).

Theorem 3.1 extends the results in Inoue and Kilian (2004) to environments in which the

model errors are allowed to be not only conditionally heteroskedastic but serially correlated

of anMA(��1) form. Theorem 3.2 is new and extends the asymptotics for the MSE-t and

ENC-t statistics of Clark and McCracken (2005) to an environment where there are many

nested comparisons. The results in both theorems exploit some asymptotic theory derived

in Clark and McCracken (2005), the rank condition on 
, and a simple application of the

Continuous Mapping Theorem applied to the max functional.

Unfortunately, neither of these theorems provides us with a closed form for the as-

ymptotic distribution of the test statistic and hence tabulating critical values is infeasible.

Simulating critical values may be feasible but will be context-speci�c due to having to esti-

mate the unknown nuisance parameters S~hj~hj . Our simple and novel bootstrap method for

computing asymptotically valid critical values overcomes this problem.

Proving the asymptotic validity of this bootstrap requires a modest strengthening of the

moment conditions on the model residuals.

Assumption 20: (a) Ut+� = [h0t+� ; vec(xtx
0
t�Extx0t)0]0 is covariance stationary. (b) E("s+� j"s+��j ; xs�j

j � 0) = 0. (c) Let  = (�0�M ; �1; :::; ���1)
0, ̂ = (�̂

0
�M ; �̂1; :::; �̂��1)

0, and de�ne the function

"̂s+� = "̂s+� (̂) such that "̂s+� () = "s+� . In an open neighborhood N around , there

exists r > 8 such that sup1�s�T jj sup2N ("̂s+� ();r"̂0s+� (); xs)0jjr � c. (d) Extx0t < 1

and is positive de�nite. (e) For some r > d > 2, Ut+� is strong mixing with coe¢ cients of

size �rd=(r�d), (f) limT!1T
�1E(

PT��
s=1 Us+� )(

PT��
s=1 Us+� )

0 = 
 <1 is positive de�nite.

Assumption 20 di¤ers from Assumption 2 in two ways. First, in (b) it emphasizes the

point that the forecast errors, and by implication ht+� , form anMA(��1) process. Second,

in (c) it bounds the second moments not only of ht+� = ("s+� +�1"s+��1+ :::+���1"s+1)xs

but also the functions "̂s+� ()xs, and r"̂s+� ()xs for all  in an open neighborhood of .

These assumptions are primarily used to show that the bootstrap-based arti�cial samples,

which are a function of the estimated errors "̂s+� ; adequately replicate the time series

properties of the original data in large samples. Speci�cally, we must insure that the

bootstrap analog of hs+� is not only zero mean but has the same long-run variance V .
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Such an assumption is not needed for our earlier results since the model forecast errors

ûj;s+� , are linear functions of �̂j and Assumption 2 already imposes moment conditions on

ûj;s+� via moment conditions on hs+� .

In the following let MSE-F �j ; ENC-F
�
j , MSE-t

�
j , and ENC-t

�
j denote statistics generated

using the arti�cial samples from our bootstrap and let =d
�
and !d� denote equality and

convergence in distribution with respect to the bootstrap-induced probability measure P �.

Similarly, let ��i;j , i = 1� 3, denote random variables generated using the arti�cial samples

satisfying ��i;j =
d�
�i;j for �i;j de�ned in Theorems 3.1 and 3.2.

Theorem 3.3: Maintain Assumptions 1; 20; and 4. (a) max
j=1;:::;M

(MSE-F �j )!d� max
j=1;:::;M

(2��1;j�

��2;j). (b) max
j=1;:::;M

(ENC-F �j )!d� max
j=1;:::;M

(��1;j).

Theorem 3.4: Maintain Assumptions 1; 20; 3; and 4. (a) max
j=1;:::;M

(MSE-t�j )!d� max
j=1;:::;M

((��1;j�

:5��2;j)=�
�1=2
3;j ). (b) max

j=1;:::;M
(ENC-t�j )!d� max

j=1;:::;M
(��1;j=�

�1=2
3;j ).

In Theorems 3.3 and 3.4 we show that our �xed-regressor bootstrap provides an asymp-

totically valid method of estimating the critical values associated with the null of equal

(population-level) forecast accuracy among many nested models. To understand this, note

that nowhere in either Theorem do we make an assumption about whether the null or al-

ternative hypothesis is true. Hence regardless of whether or not the null hypothesis holds,

the bootstrapped critical values are consistent for the appropriate percentiles of the asymp-

totic distributions in Theorems 3.1 and 3.2 associated with the speci�c statistic being used

for inference. This result follows directly from how we generate the arti�cial data using

our bootstrap. First, the null is imposed by modeling the conditional mean component

of yt+� as the restricted model x00;t�0 and hence none of the other predictors x �M;t exhibit

any predictive content. Second, we insure that all of the predictors are orthogonal to the

pseudo-residuals (and exhibit the appropriate degree of serial correlation and conditional

heteroskedasticity) by using a wild form of the bootstrap based on those residuals estimated

using all of the predictors and not just those in the restricted model.

As we will show in the next section, our �xed regressor bootstrap provides reasonably

sized tests in our Monte Carlo simulations, outperforming other bootstrap-based methods

for estimating the asymptotically valid critical values necessary to test the null of equal

predictive ability among many nested models.
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4 Monte Carlo evidence

We use simulations of multivariate DGPs with some of the features of common �nance and

macroeconomic applications to evaluate the �nite sample properties of the above approaches

to testing for equal forecast accuracy. In these simulations, the benchmark forecasting

model is a univariate model of the predictand y; the alternative models add combinations

of other variables of interest. The null hypothesis is that, in population, the forecasts are

all equally accurate. The alternative hypothesis is that at least one of the other forecasts is

more accurate than the benchmark. All of the forecasts are generated under the recursive

scheme.

We proceed by summarizing the test statistics and inference approaches considered,

detailing the data generating processes (DGPs), and presenting the size and power of the

tests, for a nominal size of 10% (results for 5% are qualitatively the same).

4.1 Tests and inference approaches

We evaluate the size and power properties of the MSE-F , MSE-t, ENC-F , and ENC-t

test statistics given in section 2.2. More speci�cally, we compare these test statistics to

critical values obtained from the �xed regressor bootstrap detailed in section 2.3. Under

our asymptotics, the bootstrapped critical values are asymptotically valid.

For comparison to our suggested approach, we include in the analysis size and power

results for test statistics compared against alternative sources of critical values. Speci�cally,

we compare the MSE-F and MSE-t tests to critical values obtained from a non-parametric

bootstrap patterned on White�s (2000) method: we create bootstrap samples of forecast

errors by sampling (with replacement) from the time series of sample forecast errors, and

construct test statistics for each sample draw. However, as noted above and in White (2000),

this procedure is not, in general, asymptotically valid when applied to nested models. While

not established in any existing literature, this non-parametric approach may be valid under

the alternative asymptotics of Giacomini and White (2006), which treat the estimation

sample size T as �nite and the forecast sample size P as limiting to 1. We include the

method in part for its computational simplicity and in part to examine the potential pitfalls

of using the approach.

In our non-parametric implementation, we follow White (2000) in using the stationary

bootstrap of Politis and Romano (1994) and centering the bootstrap distributions around
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the sample values of the test statistics (speci�cally, the numerators of the t-statistics). The

stationary bootstrap is parameterized to make the average block length equal to twice the

forecast horizon. As to centering of test statistics, under the non�parametric approach, the

relevant null hypothesis is that the MSE di¤erence (benchmark MSE less alternative model

MSE) is at most 0. Following White (2000), each bootstrap draw of a given test statistic

is re-centered around the corresponding sample test statistic. Bootstrapped critical values

are computed as percentiles of the resulting distributions of re�centered test statistics.

We also include Hansen�s (2005) SPA test (the centered version, SPAc), which modi�es

the reality check of White (2000) to improve power when the model set includes some that

forecast poorly. The SPA test is compared against the bootstrap approach of Hansen (2005),

based on the non-parametric sampling we use for the MSE-t test.6

For the DGPs involving small numbers of models (DGPs 2 and 3), we also provide

results for the testing approach of Hubrich and West (2010). They suggest comparing an

adjusted test for equal MSE � which is the same as the ENC-t test � against critical

values obtained from Monte Carlo simulations of the distribution of the maximum of a set

of correlated normal random variables. The suggestion is based on the observation in Clark

and West (2007) that, while the ENC-t test applied to forecasts from nested models has

a non-standard asymptotic distribution under large T , P asymptotics, critical values from

that distribution are often quite similar to standard normal critical values. Hubrich and

West emphasize that their approach has the advantage of requiring Monte Carlo simulations

of a normal distribution that may be simpler than bootstrap simulations.

4.2 Monte Carlo design

For all DGPs, we generate data using independent draws of innovations from the normal

distribution and the autoregressive structure of the DGP. The initial observations necessi-

tated by the lag structure of each DGP are generated with draws from the unconditional

normal distribution implied by the DGP. We consider forecast horizons (�) of one and four

steps. With quarterly data in mind, we also consider a range of sample sizes (T; P ), re�ect-

ing those commonly available in practice: 40,80; 40,120; 80,40; 80,80; 80,120; 120,40; and

120,80. In all cases, our reported results are based on 2000 Monte Carlo draws and 499

bootstrap replications.

6For consistency with the rest of our analysis, for multi-step forecasts we compute the HAC variance
that enters the SPA test statistic with the Newey and West (1987) estimator. In re-running a subset of our
experiments with the HAC estimator used by Hansen (2005), we obtained essentially the same results.
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4.2.1 DGP 1

DGP 1 is based loosely on the empirical properties of the change in core U.S. in�ation (yt+� ,

where � denotes the forecast horizon) and various economic indicators, some persistent and

some not. With this DGP, we examine the properties of tests applied to a large number of

forecasts � 128 � based on combinations of predictors.

In DGP 1, the true model for yt+� includes yt and up to one other predictor, x1;t:

yt+� = �0:3yt + bx1;t + ut+�

ut+� = "t+� if � = 1; ut+� = "t+� + 0:95"t+��1 + 0:9"t+��2 + 0:8"t+��3 if � = 4

xi;t = ixi;t�1 + vi;t; i = 0:8� 0:1(i� 1); i = 1; : : : ; 7 (5)

E("tvi;t) = 0 8 i; E(vi;tvj;t) = 0 8 i 6= j

var("t+� ) = 2:0; var(vi;t) = (1� 2i );

where the coe¢ cient b varies across experiments, as indicated below. Note that, for a

forecast horizon of 4 steps, the error term ut+� in the equation for yt+� follows an MA(3)

process.

In DGP 1 experiments, forecasts are generated from models that include all possible

combinations of x1;t and six other (i = 2; : : : ; 7) xi;t variables. The null forecasting model

is

yt+� = �0 + �1yt + u0;t+� : (6)

We consider a total of 127 alternative models, each of which includes a constant, yt, and a

di¤erent combination of the xi;t, i = 1; : : : ; 7, variables:

yt+� = �0 + �1yt +
~�
0
j ~x �M;j;t + uj;t+� ; j = 1; : : : ; 127; (7)

where ~x �M;j;t contains a unique combination of the xi;t, i = 1; : : : ; 7, variables.

To evaluate the size properties of tests of equal (population-level) forecast accuracy, the

coe¢ cient b is set to 0, such that the benchmark model is the true one and, in population,

forecasts from all of the models are equally accurate. To evaluate power, we set b = 0.4 in

experiments at the 1-step ahead horizon and b = 0.8 in experiments at the 4-step ahead

horizon.7 In these power experiments, in population the best forecast model is the one that

includes yt and x1;t; other models that include these and other variables will be just as

accurate, in population.
7We obtained qualitatively similar results in power experiments in which the DGP for yt+� included

multiple x variables (speci�cally, x1;t, x2;t, and x3;t).
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4.2.2 DGP 2

DGP 2 is based on the empirical properties of the quarterly stock return (corresponding

to our predictand yt+� ) and predictor (xi;t) data of Goyal and Welch (2008). With this

DGP, we examine the properties of tests applied to a modest number of forecasts � 17 �

obtained by adding a di¤erent single indicator to each alternative model.

In DGP 2, the true model for yt+� includes a constant and up to one other predictor,

x1;t:

yt+� = 1:0 + bx1;t + ut+�

ut+� = "t+� if � = 1; ut+� = "t+� + 0:95"t+��1 + 0:9"t+��2 + 0:8"t+��3 if � = 4

var("t+� ) = 2:0 (8)

xi;t = ixi;t�1 + vi;t; i = 1; : : : ; 16;

where the coe¢ cient b varies across experiments, as indicated below, and the coe¢ cients i,

i = 1; : : : ; 16, and the variance-covariance matrix of the error terms are set on the basis of

estimates obtained from the Goyal-Welch data. The AR(1) coe¢ cients on the x variables

range from 0.99 to -0.13, with most above 0.95. At the 1-step horizon, the correlations

between ut and vi;t range from 0.04 to -0.8 (across i). Again, for a forecast horizon of 4

steps, the error term ut+� in the equation for yt+� follows an MA(3) process.

In DGP 2 experiments, forecasts are generated from a total of 17 models, similar in form

to those used in such studies as Goyal and Welch (2008). The null forecasting model is

yt+� = �0 + u0;t+� : (9)

The 16 alternative models each include a single xi;t:

yt+� = �0 + �ixi;t + ui;t+� ; i = 1; : : : ; 16: (10)

To evaluate the size properties of tests of equal (population-level) forecast accuracy, the

coe¢ cient b is set to 0, such that the benchmark model is the true one and, in population,

forecasts from all of the models are equally accurate. To evaluate power, we set b = 0.8 in

experiments at the 1-step ahead horizon and b = 2.0 in experiments at the 4-step ahead

horizon. In these power experiments, in population the best forecast model is the one that

includes yt and x1;t.
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4.2.3 DGP 3

Finally, we also report size and power results for DGP 3, which is the same as DGP 2

except that all of the covariances among the error terms ut and vi;t are set to 0. Our

rationale is that, as highlighted in Stambaugh (1999), the combination of (1) a signi�cant

correlation between ut and vi;t and (2) high persistence in xi;t can lead to signi�cant bias in

the regression estimate of the coe¢ cient on xi;t. The presence of such a bias may adversely

a¤ect the properties of the forecast tests. By setting to 0 the covariances between ut and

each vi;t in DGP 3, we eliminate such potential distortions.

4.3 Size results

The results in Tables 1 and 2 indicate that tests of equal MSE and forecast encompassing

based on our proposed �xed regressor bootstrap have good size properties in a range of

settings. For example, with DGPs 1 and 3, the empirical size of the MSE-t test based on

our bootstrap critical values averages 10.8 percent (range of 9.1 to 12.3 percent) at the 1-step

horizon and averages 11.3 percent (range of 9.6 to 13.4 percent) at the 4-step horizon. In

the same experiments, the empirical size of the ENC-t test compared against �xed regressor

bootstrap critical values averages 9.8 percent (range of 8.9 to 10.7 percent) at the 1-step

horizon and averages 10.4 percent (range of 8.9 to 12.3 percent) at the 4-step horizon. In

most, although not all, cases, the tests of forecast encompassing have slightly lower size

than tests of equal MSE. In broad terms, the F - and t-type tests have comparable size.

With DGP 2, the tests compared against critical values from our proposed bootstrap are

prone to modest over-sizing. For example, in these experiments, the size of the MSE-t test

averages 15.0 percent (range of 14.0 to 16.7 percent) at the 1-step horizon and averages 17.0

percent (range of 14.7 to 18.8 percent) at the 4-step horizon. In these DGP 2 experiments,

the rejection rate for the ENC-t test averages 13.1 percent (range of 11.6 to 14.0 percent)

at the 1-step horizon and averages 15.5 percent (range of 13.7 to 16.8 percent, at the 4-step

horizon. As these examples indicate, with DGP 2, the over-sizing is a little greater at the

4-step horizon than the 1-step horizon.

Tests of forecast encompassing (or equality of adjusted MSEs) based on the approach

of Hubrich and West (2010) have reasonable size properties at the 1-step horizon, but not

the 4-step horizon. With DGP 3 and 1-step ahead forecasts, the size of the ENC-t test

compared against critical values obtained by simulating the maximum of normal random
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variables ranges from 5.4 to 9.8 percent. For most T; P settings with DGP 3, the Hubrich-

West approximation yields a slightly to modestly undersized test, consistent with simulation

results in Hubrich and West (2010). But with DGP 2 and 1-step ahead forecasts, the ENC-

t test compared against Hubrich-West critical values can be slightly undersized or slightly

oversized, with a rejection rate ranging from 8.1 to 12.1 percent. At the 4-step horizon, the

Hubrich-West approach yields too high a rejection rate, especially for small P . For example,

with DGP 3, the rejection rate ranges from 16.7 to 35.6 percent. The clear tendency of size

to improve as P increases suggests the over-sizing is due to small-sample imprecision of the

autocorrelation-consistent estimated variance of the normal random variables.8

The results in Tables 1 and 2 also indicate that tests of equal MSE based on critical values

obtained from a non-parametric bootstrap are generally unreliable for the null of equal

accuracy at the population level. Rejection rates based on the non-parametric bootstrap are

systematically too low. In particular, across all three DGPs and the two forecast horizons,

the size of the MSE-t test peaks at 1.2 percent. At the 1-step horizon, the size of the MSE-

F test is modestly better, peaking at 4.2 percent. At the 4-step horizon, the MSE-F test

based on the non-parametric bootstrap is generally undersized for DGPs 1 and 3 but ranges

from modestly undersized to slightly oversized for DGP 2. Consistent with the results in

Hansen (2005), the SPA test is slightly more accurately sized than the MSE-t based on the

non-parametric bootstrap. The biggest improvement occurs at the smallest forecast sample

size, of P = 40. For example, with DGP 2 and 1-step forecasts, the rejection rate of the SPA

test is 8.5 percent, compared to 1.2 percent for the non-parametric version of the MSE-t

test. At the 4-step horizon, the spike in the rejection rate at P = 40 is large enough to make

the SPA test over-sized: for instance, with DGP 2, the rejection rates of the SPA and MSE-t

tests are 34.8 and 0.4 percent, respectively. This spike that occurs with a small sample and

a multi-step horizon suggests the problem rests in the autocorrelation-consistent variance

that enters the test statistic.

4.4 Power results

Broadly, the Monte Carlo results on �nite-sample power re�ect the size results. For testing

the null of equal forecast accuracy at the population level, power is much better for tests

based on our proposed �xed regressor bootstrap than the non-parametric bootstrap. For a

t-test of forecast encompassing, power based on the Hubrich-West approach to inference is

8 In some additional experiments, incorporating pre-whitening in the HAC estimator did not improve size.
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similar to, although generally a bit lower, than power based on the �xed regressor bootstrap.

More speci�cally, based on critical values from the �xed regressor bootstrap, the powers

of the MSE-F , MSE-t, ENC-F , and ENC-t tests are generally consistent with the patterns

Clark and McCracken (2001, 2005) summarize for pairwise forecast comparisons. The

empirical powers of these tests can be ranked as follows: ENC-F > MSE-F , ENC-t >

MSE-t. MSE-F is often more powerful than ENC-t, but the ranking of these two tests

varies with � and the T; P setting. For example, with 1-step ahead forecasts, DGP 1, and

T; P = 80,80, the powers of the MSE-F , MSE-t, ENC-F , and ENC-t tests are, respectively,

67.0, 43.3, 76.2, and 62.1 percent, respectively. As might be expected, power increases with

the size of the forecast sample. For instance, with 1-step ahead forecasts, DGP 1, and T =

80, the rejection rate of the MSE-F test rises from 48.5 percent at P = 40 to 78.9 percent

at P = 120.

At the 1-step horizon, using the Hubrich and West (2010) approach to simulating critical

values for the ENC-t test yields modestly lower power than does the �xed regressor boot-

strap. For example, in the DGP 3 results, the power of the ENC-t test based on the �xed

regressor bootstrap ranges from 32.2 to 64.9 percent; power based on Hubrich-West critical

values ranges from 30.5 to 58.9 percent. However, at the 4-step horizon, the Hubrich-West

approach yields higher rejection rates than the �xed regressor bootstrap method (for ENC-

t), due to the size distortions of the Hubrich-West approach at the multi-step horizon. For

instance, with DGP 3 and � = 4, the power of the ENC-t test based on the �xed regressor

bootstrap ranges from 16.6 to 36.7 percent; power based on Hubrich-West critical values

ranges from 35.2 to 48.1 percent.

Rejection rates based on the non-parametric bootstrap are much lower. For the MSE-t

test, in most cases power is trivial, in the sense that it is below the nominal size of the

test (10 percent). For example, under DGP 1, the rejection rate of the MSE-t test ranges

from 0.2 to 6.0 percent (across forecast horizons and sample sizes). Power is quite a bit

higher for the MSE-F and SPA tests than the MSE-t test, but still well below the power of

the tests based on the �xed regressor bootstrap. For example, with 1-step ahead forecasts,

DGP 1, and T; P = 80,80, the powers of the MSE-F and SPA tests based on the non-

parametric bootstrap are 21.4 and 12.9 percent, respectively, compared to the 6.0 percent

power of the MSE-t test based on the non-parametric bootstrap. Using critical values from

the �xed regressor bootstrap raises the powers of the MSE-F and MSE-t tests to 67.0 and
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43.3 percent, respectively. While power based on the non-parametric bootstrap tends to

be slightly to modestly higher with DGPs 2 and 3 than with DGP 1, the same patterns

prevail.

5 Applications

In this section we illustrate the use of the tests and inference approaches described above

with two applications. In the �rst, based on Chen, Rogo¤, and Rossi (2010), we examine

the predictive content of exchange rates for commodity prices, at a monthly frequency. In

the second, patterned after studies such as Stock and Watson (2003), we apply our tests to

forecasts of quarterly U.S. GDP growth based on a range of potential leading indicators.

More speci�cally, in the commodity price application, we examine forecasts of monthly

growth in commodity prices from a total of 28 models. Commodity prices are measured with

the spot price for industrials published by the Commodities Research Bureau (CRB). The

null model includes a constant and one lag of growth in commodity prices. The alternative

models add various combinations of a commodity futures price (the CRB index for industrial

commodities) and exchange rates, all in growth rates and lagged one month (and with all

exchange rates relative to the U.S. dollar). Drawing on Chen, Rogo¤, and Rossi (2010), we

use exchange rates for a few important commodity economies with relatively long histories

of �oating exchange rates (Australia, Canada, and New Zealand), some other industrialized

economies (U.K. and Japan), one index of exchange rates for major U.S. trading partners,

and another index of exchange rates for other important U.S. trading partners. To ensure

some heterogeneity in predictive content, we have deliberately included some exchange rates

(e.g., for Japan and the U.K.) that, based on the conceptual framework of Chen, Rogo¤,

and Rossi, should not be expected to have predictive content for commodity prices.

The full set of variables and models for the commodity price application is listed in

Table 5. Appendix 2 provides further descriptions of the data. Our model estimation

sample begins with January 1987, and we examine recursive 1-month ahead forecasts (that

is, our estimation sample expands as forecasting moves forward in time) for 1997 through

2008.

In the GDP application, we examine 1-quarter and 4-quarter ahead forecasts of real

GDP growth from 14 models. The null model includes a constant and one lag of GDP
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growth, where GDP growth is measured as (400=�) ln(GDPt+�=GDPt):

yt+� = b0 + b1yt + ut+� : (11)

Each of 13 alternative models adds in one lag of a (potential) leading indicator xt:

yt+� = b0 + b1yt + b2xt + ut+� ; (12)

where the set of leading indicators includes the change in consumption�s share in GDP

(measured with nominal data), weekly hours worked in manufacturing, building permits,

purchasing manager indexes for supplier delivery times and orders, new claims for unem-

ployment insurance, growth in real stock prices (real price = S&P 500 index/core PCE price

index), the change in the 3-month Treasury bill rate, the change in the 1-year Treasury bond

yield, the change in the 10-year Treasury bond yield, the 3-month to 10-year yield spread,

the 1-year to 10-year yield spread, and the spread between Aaa and Baa corporate bond

yields (from Moody�s).

The full set of variables and models for the GDP growth application is listed in Table 6.

Appendix 2 provides further descriptions of the data. Our model estimation sample begins

with 1961:Q2, and we examine recursive forecasts for 1985:Q1+� -1 through 2009:Q4.

Tables 5-7 provide the results of the applications. Tables 5 and 6 report RMSE ratios for

each alternative model forecast relative to the benchmark (a number less than 1 indicates

the alternative is more accurate than the benchmark) and p-values for tests of equal MSE

and forecast encompassing, applied on a pairwise basis for each alternative compared to

the benchmark. The models are listed in order of forecast accuracy (most to least accurate

relative to the benchmark model) as measured by RMSE. Table 7 provides p-values of the

reality check tests, along with a listing of the best model identi�ed by each test. We use

9999 replications in computing the bootstrap p-values.

The pairwise forecast comparisons of Table 5 indicate that both exchange rates and the

commodity futures price have predictive content for spot commodity prices: nearly all of

the alternative models forecast commodity prices more accurately � although only slightly

so, in terms of RMSEs � than the benchmark AR(1). The model with the lowest RMSE

includes the constant and commodity price lag of the benchmark model, the futures price,

and the Australian dollar exchange rate. Ranked by RMSE, the next few models include

various combinations of the futures price, Australian dollar exchange rate, major country

exchange rate index, and other important trading partners exchange rate index. According
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to the pairwise tests based on the �xed regressor bootstrap, more than one-half of the models

are signi�cantly better than the benchmark at the 10 percent signi�cance level. Consistent

with our Monte Carlo evidence, using a non-parametric bootstrap consistently yields higher

p-values and implies fewer models to have predictive content on a pairwise basis.

The reality check results provided in the top panel of Table 7 show that, taking the

search for a best model into account, most of the tests compared against our proposed

bootstrap critical values continue to reject the null of equal forecast accuracy. In particular,

the lowest MSE model remains signi�cantly better than the benchmark: the reality check

version of the MSE-F test has a �xed regressor bootstrap p-value of 1.6 percent; the reality

check version of the ENC-F test identi�es the same model as best and rejects equal accuracy

with a p-value of 4.1 percent. The t-tests for equal MSE and encompassing identify other

models as best, with the reality check version of the MSE-t test indicating the model with

the futures price is signi�cantly more accurate than the benchmark but the ENC-t test

failing to reject the null of equal accuracy. Again, consistent with the Monte Carlo results,

p-values are considerably higher with the non-parametric bootstrap than our �xed regressor

approach. Under the non-parametric approach to the reality check, neither MSE-t nor SPA

reject the null of equal accuracy.

The pairwise forecast comparisons of Table 6 show that, at the 1-quarter horizon, a

handful of variables have signi�cant predictive content for real GDP growth, while evidence

of predictive content is much weaker at the 4-quarter horizon. At the shorter horizon,

most of the tests based on a �xed regressor bootstrap indicate that �ve models � the ones

including (in addition to the constant and GDP growth lag of the benchmark), respectively,

the change in the consumption share, growth in building permits, growth in stock prices, the

Baa-Aaa interest rate spread, and the purchasing manager index of new orders � forecast

signi�cantly better than the AR(1) benchmark (using a 10 percent signi�cance level). As

expected, p-values based on the non-parametric bootstrap are considerably higher and yield

weaker evidence of predictive content, with both the MSE-F and MSE-t tests rejecting the

null for just the model including the change in the consumption share.

At the longer horizon, only three models have RMSEs lower than the benchmark, and

only one � the model including growth in building permits � is signi�cantly better ac-

cording to the pairwise tests. However, the ENC-F and ENC-t tests indicate that, at

the population level, stock prices have signi�cant predictive content for GDP growth, even
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though, in this sample, the model yields an RMSE equal to that of the benchmark model.

The ENC-F test yields the same result for the purchasing manager index of new orders.

The reality check test results provided in the second and third panels of Table 7 show

that some of the evidence of predictive content in leading indicators for GDP growth hold

up (using �xed regressor bootstrap p-values) once the search for a best model is taken into

account. As should be expected, the p-values are generally higher for reality check tests

than pairwise tests. But the signi�cance in the pairwise case mostly holds up under the

reality check microscope. In particular, at the 1-quarter horizon, the MSE-F test continues

to indicate that the consumption share signi�cantly improves forecasts of GDP growth

� using �xed regressor critical values, but not non-parametric critical values. At the 4-

quarter horizon, the reality check p-values of the MSE-F and ENC-F tests are 0.1 and

0.3 percent, respectively, indicating building permits have signi�cant predictive content for

GDP growth even once model search is taken into account. However, the reality check

p-values for MSE-t and ENC-t tests (which generally have lower power than their F -type

counterparts, according to our Monte Carlo results) are above the 10 percent threshold,

failing to reject the null.

6 Conclusion

This paper develops a new bootstrap method for simulating asymptotic critical values for

tests of equal forecast accuracy and encompassing among many nested models. The boot-

strap, which combines elements of �xed regressor and wild bootstrap methods, is simple

to use. We �rst derive the asymptotic distributions of tests of equal forecast accuracy and

encompassing applied to forecasts from multiple models that nest the benchmark model �

that is, reality check tests applied to nested models. These distributions are non-standard

and involve unknown nuisance parameters. We then prove the validity of the bootstrap for

simulating critical values from these distributions.

Using our new �xed regressor bootstrap, we then conduct a range of Monte Carlo sim-

ulations to examine the �nite-sample properties of the tests. These experiments indicate

our proposed bootstrap has good size and power properties, especially in comparison to

the non-parametric methods of White (2000) and Hansen (2005) developed for use with

non-nested models. In the �nal part of our analysis, we illustrate the use of our tests with

applications to forecasts of commodity prices and GDP growth.
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7 Appendix 1: Proofs

The following additional notation will be used. For any matrix A, let jAj denote the max norm,

let supt denote supT�t�T+P�� , let 
11 denote the upper k � k block-diagonal element of 
, and

de�ne both Qj(t) = �JjBj(t)J 0j + B(t) and Qj = �JjBjJ 0j + B. De�ne v�s+� = (�s+�"s+� +

�1�s+��1"s+��1+� � �+���1�s+1"s+1); bv�s+� = (�s+�b"s+�+b�1�s+��1b"s+��1+� � �+b���1�s+1b"s+1); h�s+� =
xsv

�
s+� , bh�s+� = xsbv�s+� , H�(T ) = (T�1

PT��
t=1 h

�
s+� ) and Ĥ

�(T ) = (T�1
PT��

t=1 ĥ
�
s+� ). More gener-

ally, we let � denote a statistical property, such as convergence in distribution !d� , de�ned with

respect to the bootstrap-induced probability measure P �.

Proof of Theorems 3.1 and 3.2: In both cases, the proof follows almost directly from Theo-

rems 3.1-3.4 in Clark and McCracken (2005) adjusted for a few details. Speci�cally, for a �xed model

j, if we rede�ne ~hj;s+� as ~hs+� the algebra follows identically from Clark and McCracken (2005)

and hence we obtain the asymptotic distributions for the pairwise comparisons. That we obtain the

appropriate joint distribution of all M of the pairwise test statistics follows from the rank condition

on 
 in Assumption 2 and the fact that under our assumptions, Corollary 29.19 of Davidson (1994)

su¢ ces for T�1=2
Pt

s=1 S
�1=2
~h~h

~hs+� to converge weakly to a standard Brownian motion W (s). The

result then follows from an application of the Continuous Mapping Theorem to themax functional.

Lemma 1: Maintain Assumptions 1; 2; and 4. (a) supt jT 1=2(Bj(t)�Bj)j = Op(1). Maintain As-

sumptions 1; 20 and 4. (b) T�1=2
Pt��

s=1 h
�
s+� )� 


1=2
11 W

�(s). (c)
PT+P��

t=T (T�1=2~h0�j;t+� )(T
1=2 ~H�

j (t))!d�

��1;j . (d) supt jT 1=2H�(t))j = Op�(1). (e) supt jT 1=2(Ĥ�(t)�H�(t))j = op�(1), (f) �̂2�j !p� �2.

Proof of Lemma 1: (a) The proof is given in Lemma A1 of Clark and McCracken (2005).

(b) First note that relative to the bootstrap-induced probability measure P �, h�s+� is a het-

eroskedastic vector MA(� � 1) sequence with independent, zero mean, Normally distributed incre-

ments. As such it is a Lr-bounded k-vector sequence with each element L2�NED of size �1 on an

�-mixing process of size �r=(r� 2). Second, note that since the increments �s are i:i:d: N(0; 1), we

obtain E�(T�1=2
Pt��

s=1 h
�
s+� )(T

�1=2Pt��
s=1 h

�
s+� )

0 = (T�1=2
Pt��

s=1 hs+� )(T
�1=2Pt��

s=1 hs+� )
0. Finally,

since Assumption 20 implies limT!1(T
�1=2PT

s=1 hs+� )(T
�1=2PT

s=1 hs+� )
0 !p 
11 <1, Corollary

29.19 of Davidson (1994) implies T�1=2
Pt��

s=1 h
�
s+� )� 


1=2
11 W

�(s) and the proof is complete.

(c) Given the proof of (b) (notably the delineation of the properties associated with h�s+� ),

Theorem 30.14 of Davidson (1994) implies
PT+P��

t=T (T�1=2~h0�j;t+� )(T
1=2 ~H�

j (t)) !d� ��1;j . Note that

the typical drift term associated with a stochastic integral based on correlated increments is zero

because of the ��lag between ~h�j;t+� and ~H�
j (t) �that is, E

�(~h�j;t+� j ~H�
j (t)) = 0 for all t. A detailed

argument is given in Lemma A1 of Clark and McCracken (2005).
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(d) First note that since T � t � T + P � � , supt jT 1=2H�(t))j � supt jT�1=2
Pt��

s=1 h
�
s+� j. The

Continuous Mapping Theorem, Lemma 1 (b), and Assumption 4 then imply supt jT�1=2
Pt��

s=1 h
�
s+� j !d�

sup1�s�1+�P j

1=2
11 W

�(s)j = Op�(1) and the proof is complete.
(e) For ease of presentation, we show the result assuming � = 2 and hence bv�s+2 = �s+2b"s+2 +b��s+1b"s+1 and v�s+2 = �s+2"s+2 + ��s+1"s+1. Rearranging terms gives us

T 1=2( bH�(t)�H�(t)) = T�1=2
Xt��

s=1
(bv�s+2 � vs+2)xs = T�1=2Xt��

s=1
(�s+2(b"s+2 � "s+2)

+��s+1(b"s+1 � "s+1) + (b� � �)�s+1(b"s+1 � "s+1) + (b� � �)�s+1"s+1)xs.
If we take a �rst order Taylor expansion of both b"s+2 and b"s+1, then for some s+2 and s+1 in the
closed cube with opposing vertices b and  we obtain
T 1=2( bH�(t)�H�(t)) = T�1=2

Xt��

s=1
(�s+2rb"s+2(s+2)(b � ) + ��s+1rb"s+1(s+1)(b � )

+(b� � �)�s+1rb"s+1(s+1)(b � ) + (b� � �)�s+1"s+1)xs
and hence

sup
t
jT 1=2( bH�(t)�H�(t))j � (k + 1) sup

t
jT�1

Xt��

s=1
�s+2xsrb"s+2(s+2)jjT 1=2(b � )j

+j�j(k + 1) sup
t
jT�1

Xt��

s=1
�s+1xsrb"s+1(s+1)jjT 1=2(b � )j

+jb� � �j(k + 1) sup
t
jT�1

Xt��

s=1
�s+1xsrb"s+1(s+1)jjT 1=2(b � )j

+jT 1=2(b� � �)j sup
t
jT�1

Xt��

s=1
�s+1xs"s+1j:

Assumptions 1 and 20 su¢ ce for both T 1=2(b � ) and T 1=2(b� � �) to be Op(1). In addition
since, for large enough samples, Assumption 20 bounds the second moments of rb"s+2(s+2) and
rb"s+1(s+1) as well as xs, the fact that the �s+� are i:i:d: N(0; 1) then implies T�1PT��

s=1 �s+2xsrb"s+2(s+2),
T�1

PT��
s=1 �s+1xsrb"s+1(s+1), and T�1PT��

s=1 �s+1xs"s+1 are all oa:s:�(1). This in turn, (along

with Assumption (4)) implies that suptj:j of each of the partial sums is op�(1) and the proof is

complete.
(f) Straightforward algebra shows that

�̂2�j = P�1
XT+P��

t=T
û�2j;t+� = fP�1

XT+P��

t=T
v̂�2t+�g

�f2P�1
XT+P��

t=T
ĥ0�t+� (Q0(t)�Qj(t))B

�1
(t)J0�̂0;T � 2P�1

XT+P��

t=T
ĥ0�t+�Bj(t)Jj

0Ĥ�(t)

+�̂
0
0;TJ0[P

�1
XT+P��

t=T
B�1(t)(Q0(t)�Qj(t))xtx

0
t(Q0(t)�Qj(t))B

�1
(t)]J 00�̂0;T

�2�̂
0
0;TJ0[P

�1
XT+P��

t=T
B�1(t)(Q0(t)�Qj(t))xtx

0
tJjBj(t)J

0
jĤ

�(t)]

+P�1
XT+P��

t=T
Ĥ�(t)JjBj(t)J

0
jxtx

0
tJjBj(t)J

0
jĤ

�(t)g:

We �rst show that P�1
PT+P��

t=T v̂�2t+� !p� �2. If we take a �rst order Taylor expansion of

v̂�2t+� then for some t+� in the closed cube with opposing vertices ̂ and  we obtain v̂
�2
t+� =
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v�2t+� + 2v̂
�
t+� (t+� )(@v̂

�
t+� (t+� )=@)(̂ � ). That P�1

PT+P��
t=T v�2t+� !p� �2 follows from the fact

that E�(P�1
PT+P��

t=T v�2t+� ) = P
�1PT+P��

t=T v2t+� !p �2 and limT!1 V
�(P�1

PT+P��
t=T v�2t+� ) = 0.

Since Assumptions 1 and 20 su¢ ce for both P�1
PT+P��

t=T v̂�t+� (t+� )(@v̂
�
t+� (t+� )=@) = Op�(1)

and ̂ �  = op(1), the proof is complete.

We now must show that each element of the second bracketed right-hand side term is op�(1).

For brevity we only show the result for the �rst and third terms. For the �rst bracketed term

note that since the �t�s are i:i:d: zero mean increments, conditional on the observables ĥ
0�
t+� (Q0(t)�

Qj(t))B
�1(t)J0 is a heteroskedasticMA(� �1) process with �nite variance and hence P�1

PT+P��
t=T

ĥ0�t+� (Q0(t) � Qj(t))B�1(t)J0 = op�(1). Since �̂0;T = Op(1) the result is complete. For the

third bracketed term, algebra along the lines of that in Clark and McCracken (2005) implies that

P�1
PT+P��

t=T J0B
�1(t)(Q0(t)�Qj(t))xtx0t(Q0(t)�Qj(t))B�1(t)J 00 !p J0B

�1[Q0�Qj ]B�1J 00. Since

�̂0;T = Op(1) and J0B
�1[Q0 �Qj ]B�1J 00 = 0 the proof is complete.

Proof of Theorem 3.3: Given Lemma 1(f), throughout we will ignore the denominator term

�̂2�j in both the MSE-F �j and ENC-F
�
j statistics. In parts (a) and (b) below we focus on the as-

ymptotic distributions for a �xed pairwise comparison between models 0 and j. That we obtain the

appropriate joint distribution of all M of the pairwise test statistics follows from the rank condition

on 
 in Assumption 20, Lemma 1(b), and the fact that for each j, each of the statistics have as-

ymptotic representations as functionals of the same standard Brownian motion W �(s). The result

then follows from an application of the Continuous Mapping Theorem to the max functional.
(a) Straightforward algebra implies that for each j,PT+P��
t=T (û�20;t+� � û�2j;t+� ) =

PT+P��
t=T f2h0�t+� (Q0(t)�Qj(t))H�(t)

�H 0�(t)(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJjBj(t)J 0j)H�(t)g
+2
PT+P��

t=T fh0�t+� (Q0(t)�Qj(t))(Ĥ�(t)�H�(t)) + (ĥ�t+� � h�t+� )
0
(Q0(t)�Qj(t))H�(t)

�H 0�(t)(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJjBj(t)J 0j)(Ĥ�(t)�H�(t))

+(ĥ�t+� � h�t+� )
0
(Q0(t)�Qj(t))(Ĥ�(t)�H�(t))

�(0:5)(Ĥ�(t)�H�(t))
0
(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJjBj(t)J 0j)(Ĥ�(t)�H�(t))g

(13)

Note that there are 2 bracketed f:g terms in (13). We will show that the �rst of these has as its limit

2��1;j � ��2;j where ��i =d
�
�i, for �i, i = 1; 2, de�ned in the text. We then show that the remaining

bracketed term is op�(1).
Proof of bracket 1: Consider the �rst part of the bracket. Rearranging terms gives usPT+P��

t=T 2h0�t+� (Q0(t)�Qj(t))H�(t) = 2
PT+P��

t=T h0�t+� (Q0�Qj)H�(t)

+
PT+P��

t=T h0�t+�f(Q0(t)�Qj(t))� (Q0�Qj)gH�(t)

= 2�2
PT+P��

t=T (T�1=2~h0�j;t+� )(T
1=2 ~H�

j (t))+

T�1
PT+P��

t=T h0�t+�fT 1=2((Q0(t)�Qj(t))� (Q0�Qj))g(T 1=2H�(t));

where ~h�j;t+� and ~H�
j (t) are the bootstrap equivalents of ~hj;t+� and ~Hj(t) de�ned in section 3.1.
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That �2
PT+P��

t=T (T�1=2~h0�j;t+� )(T
1=2 ~H�

j (t)) !d� �2��1;j follows from Lemma 1 (c). To show that

the remainder term is op�(1) note that Lemmas 1 (a) and (d) imply supt jT 1=2H�(t)j = Op�(1) and

supt jT 1=2((Q0(t) � Qj(t)) � (Q0 � Qj))j = Op(1). Since E�(h�t+� jH�(t); B0(t); Bj(t)) = 0 for all

t and limT!1 V ar
�(T�1

PT+P��
t=T h0�t+�fT 1=2((Q0(t) � Qj(t)) � (Q0 � Qj))g(T 1=2H�(t))) = 0 the

proof is complete.
Now consider the second part of the bracket. Rearranging terms gives usPT+P��
t=T H 0�(t)(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJjBj(t)J 0j)H�(t)

=
PT+P��

t=T H 0�(t)(Q0�Qj)H�(t)

+
PT+P��

t=T H 0�(t)f(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJjBj(t)J 0j)� (Q0�Qj)gH�(t)

= �2
PT+P��

t=T
~H 0�(t) ~H�(t)

+
PT+P��

t=T H 0�(t)f(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJjBj(t)J 0j)� (Q0�Qj)gH�(t):

That �2
PT+P��

t=T
~H 0�
j (t)

~H�
j (t) !d� �2��2;j follows from the Continuous Mapping Theorem and

Lemma 1 (b). To show that the remaining term is op�(1) note that by adding and subtracting terms
we obtainPT+P��

t=T H 0�(t)f(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJjBj(t)J 0j)� (Q0�Qj)gH�(t)

=
P

(all m;n;o)=1;2

PT+P��
t=T H 0�(t)f(�J0am;tJ 00bn;tJ0ao;tJ 00 + Jjcm;tJ 0jbn;tJjco;tJ 0j)� (Q0�Qj)gH�(t);

where a1;t = B0, a2;t = B0(t)�B0, b1;t = B�1, b2;t = xtx0t �B�1, c1;t = Bj , and c2;t = Bj(t)�Bj .
If the indices m;n; o are all 1 then the remainder term is numerically zero and hence it su¢ ces to
show that for all other permutations of the indices that the elements of the remainder term are
op�(1). The proofs of each are very similar and hence we show the result for the case when the
indices are all equal to 2. To do so note that

j
XT+P��

t=T
H 0�(t)(�J0a2;tJ 00b2;tJ0a2;tJ 00 + Jjc2;tJ 0jb2;tJjc2;tJ 0j)H�(t)j

� 2k4T�1(sup
t
jT 1=2H�(t)j)2(max

i
sup
t
jT 1=2(Bi(t)�Bi)j)2(T�1

XT+P��

t=T
jxtx0t �B�1j)

Lemma 1 (d) implies supt jT 1=2H�(t)j isOp�(1) while Lemma 1 (a) impliesmaxi supt jT 1=2(Bi(t)�

Bi)j is Op(1). Since Assumption 20 is su¢ cient for T�1
PT+P��

t=T jxtx0t�B�1j to be Op(1) the result

follows from the fact that T�1 is o(1).
Proof of bracket 2: We must show that each of the �ve components of the second bracketed term

in (13) are op�(1). The proofs of each are similar and as such we only show the result for the fourth
component. If we take the absolute value of this term we �nd that

j
PT+P��

t=T (ĥ�t+� � h�t+� )
0
(Q0(t)�Qj(t))(Ĥ�(t)�H�(t))j

� k2(T�1=2
PT+P��

t=T jĥ�t+� � h�t+� j)(supt jQ0(t)�Qj(t)j)(supt T 1=2jĤ�(t)�H�(t)j):

Lemma 1(e) implies supt T
1=2jĤ�(t)�H�(t)j = op�(1) while Assumption 20 su¢ ces for supt jQ0(t)�

Qj(t)j = Op(1).
The result will follow if T�1=2

PT+P��
t=T jĥ�t+� � h�t+� j = Op�(1): For simplicity we assume, as in

the proof of Lemma 1(e), that � = 2 and hence the forecast errors form an MA(1) process. If we

25



then take a Taylor expansion in precisely the same fashion as in the proof of Lemma 1(e) we have

T�1=2
XT+P��

t=T
jĥ�t+� � h�t+� j � (k + 1)T�1

XT+P��

t=T
j�t+2xtrb"t+2(t+2)jjT 1=2(b � )j

+j�j(k + 1)T�1
XT+P��

t=T
j�t+1xtrb"t+1(t+1)jjT 1=2(b � )j

+jb� � �j(k + 1)T�1XT+P��

t=T
j�t+1xtrb"t+1(t+1)jjT 1=2(b � )j

+jT 1=2(b� � �)jT�1XT+P��

t=T
j�t+1xt"t+1j:

Assumptions 1 and 20 su¢ ce for both T 1=2(b � ) and T 1=2(b� � �) to be Op(1). Since, for large
enough samples, Assumption 20 bounds the second moments of rb"t+2(t+2), rb"t+1(t+1), and xt,
that �t+� is distributed i:i:d: N(0; 1) implies T

�1PT+P��
t=T j�t+2xtrb"t+2(t+2)j, T�1PT+P��

t=T j�t+1xtrb"t+1(t+2)j,
and T�1

PT+P��
t=T j�t+1xt"t+1j are all Op�(1), and the proof is complete.

(b) Straightforward algebra implies that for each j,PT+P��
t=T û�0;t+� (û

�
0;t+� � û�j;t+� ) =

PT+P��
t=T fh0�t+� (Q0(t)�Qj(t))H�(t)g

�
PT+P��

t=T fH 0�
(t)(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + J0B0(t)J 00xtx0tJjBj(t)J 0j)H�(t)g

+
PT+P��

t=T fh0�t+� (Q0(t)�Qj(t))(Ĥ�(t)�H�(t))

+(ĥ�t+� � h�t+� )
0
(Q0(t)�Qj(t))H�(t)

�H 0�(t)(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + J0B0(t)J 00xtx0tJjBj(t)J 0j)(Ĥ�(t)�H�(t))

�H 0�(t)(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + JjBj(t)J 0jxtx0tJ0B0(t)J 00)(Ĥ�(t)�H�(t))

+(ĥ�t+� � h�t+� )
0
(Q0(t)�Qj(t))(Ĥ�(t)�H�(t))

�(Ĥ�(t)�H�(t))
0
(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + J0B0(t)J 00xtx0tJjBj(t)J 0j)(Ĥ�(t)�H�(t))g:

(14)

Note that there are 3 bracketed f:g terms in (14). We will show that the �rst of these has as its

limit ��1;j where �
�
1;j =

d� �1;j , for �1;j de�ned in the text. We then show that the remaining two

bracketed terms are op�(1).

Proof of bracket 1: This term is identical to the �rst component of the �rst bracketed term in

the proof of Theorem 3.3 (a) (multiplied by 1=2) and hence the result is immediate.
Proof of bracket 2: We must show that this term is op�(1). Note however, that this term is

nearly identical to that in equation (13) from the proof of Theorem 3.3 (a) and hence nearly identical
arguments show thatPT+P��

t=T H 0�(t)(�J0B0(t)J 00xtx0tJ0B0(t)J 00 + J0B0(t)J 00xtx0tJjBj(t)J 0j)H�(t)

=
PT+P��

t=T H 0�(t)(�J0B0J 00B�1J0B0J 00 + J0B0J 00B�1JjBjJ 0j)H�(t) + op�(1):

The result then follows since �J0B0J 00B�1J0B0J 00 + J0B0J 00B�1JjBjJ 0j = 0.

Proof of bracket 3: We must show that each of the six components of the third bracketed term

in (14) are op�(1). However, these terms are nearly identical to those in the second bracketed term

from the proof of Theorem 3.3 (a) and hence the proofs are omitted for brevity.

Proof of Theorem 3.4: In parts (a) and (b) below we focus on the asymptotic distributions for a

�xed pairwise comparison between models 0 and j. That we obtain the appropriate joint distribution
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of allM of the pairwise test statistics follows from the rank condition on 
 in Assumption 20, Lemma

1(b), and the fact that for each j, each of the statistics have asymptotic representations as functionals

of the same standard Brownian motion W �(s). The result then follows from an application of the

Continuous Mapping Theorem to the max functional.
(a) Given Theorem 3.3 (a) and the Continuous Mapping Theorem it su¢ ces to show that, for

each j, P
Pl

l=�lK(l=M)̂
�
dd;j(l) !d� 4�4��3;j where �

�
3;j =

d� �3;j for �3;j de�ned in the text.
Before doing so it is convenient to rede�ne the two bracketed terms terms from (13) used in the
main decomposition of the loss di¤erential in Theorem 3.3(a) (absent the summations, but keeping
the brackets) as

(û�20;t+� � û�2j;t+� ) = f2A�1;t �A�2;tg+ 2fB�1;t +B�2;t +B�3;t +B�4;t +B�5;tg:

With this in mind, if we ignore the �nite sample di¤erence between P and P � � + 1, we obtain

P
Pl

l=�lK(l=M)̂
�
dd;j(l) =

Pl
l=�lK(l=M)

PT+P��
t=T+l (û

�2
0;t+� � û�2j;t+� )(û�20;t�l+� � û�2j;t�l+� )

= 4f
Pl

l=�lK(l=M)
PT+P��

t=T+l A
�
1;tA

�
1;t�lg

+4
Pl

l=�lK(l=M)
PT+P��

t=T+l f other cross products of A�1;t; A�2;t; B�1;t,B�2;t,B�3;t,B�4;t,B�5;t,
with A�1;t�l; A

�
2;t�l; B

�
1;t�l,B

�
2;t�l,B

�
3;t�l,B

�
4;t�l,B

�
5;t�lg:

(15)

In the remainder we show that the bracketed term converges to �4 times ��3;j =
d� �3;j and that each

of the cross product terms are each op�(1).
Proof of bracket 1: Straightforward algebra implies thatPl
l=�lK(l=M)

PT+P��
t=T+l A

�
1;tA

�
1;t�l =

�4
Pl

l=�lK(l=M)
PT+P��

t=T+l (T
1=2 ~H�0

j (t))E
�~h�j;t+�

~h�0j;t�l+� (T
1=2 ~H�

j (t� l))
+�4

Pl
l=�lK(l=M)

PT+P��
t=T+l fH�0(t)((Q0(t)�Qj(t))� (Q0�Qj))E�h�t+�h�0t�l+� (Q0�Qj)H

�(t� l)
+H�0(t)((Q0(t)�Qj(t))� (Q0�Qj))(h�t+�h0�t�l+� � E

�
h�t+�h

�0
t�l+� )(Q0�Qj)H

�(t� l)
+H�0(t)((Q0(t)�Qj(t))� (Q0�Qj))(h�t+�h0�t�l+� � E

�
h�t+�h

�0
t�l+� )((Q0(t� l)�Qj(t� l))� (Q0�Qj))H�(t� l)

+H�0(t)(Q0�Qj)(h�t+�h0�t�l+� � E
�
h�t+�h

�0
t�l+� )(Q0�Qj)H

�(t� l)
+H�0(t)(Q0�Qj)(h�t+�h0�t�l+� � E

�
h�t+�h

�0
t�l+� )((Q0(t� l)�Qj(t� l))� (Q0�Qj))H�(t� l)

+H�0(t)(Q0�Qj)E
�
h�t+�h

�0
t�l+� ((Q0(t� l)�Qj(t� l))� (Q0�Qj))H�(t� l)

+H�0(t)((Q0(t� l)�Qj(t� l))� (Q0�Qj))E
�
h�t+�h

�0
t�l+� ((Q0(t� l)�Qj(t� l))� (Q0�Qj))H�(t� l)g;

where ~H�(t) is the bootstrap equivalent of ~H(t) de�ned in section 3.1. Since l is �nite, the Contin-
uous Mapping Theorem and Lemma 1(b) imply

�4
Xl

l=�l
K(l=M)

XT+P��

t=T+l
(T 1=2 ~H 0�

j (t))E
�~h�j;t+�

~h�0j;t�l+� (T
1=2 ~H�

j (t� l))!d� �4��3;j :

We must now show that each element of the second bracketed right-hand side term in (15)

is op�(1). The proof of each is similar and as such we provide the result for the �rst and fourth

elements.
For the �rst, after taking the absolute value we obtain

j
Xl

l=�l
K(l=M)

XT+P��

t=T+l
H�0(t)((Q0(t)�Qj (t))� (Q0 �Qj ))E

�
h�t+� h

�0
t�l+� (Q0 �Qj)H

�
(t� l)j

� 2T�1=2 �lk
4
( sup

t
T 1=2 jH�

(t)j)2(jQ0 �Qj j)( sup
t
T 1=2 j(Q0 (t)�Qj (t))� (Q0 �Qj )j)�

(max
jlj��l

(T
�1XT+P��

t=T+l
jE� h�t+� h�0t�l+� j)):
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Lemmas 1(a) and (d) imply both supt T
1=2jH�(t)j = Op�(1) and supt T 1=2j(Q0(t)�Qj(t))�(Q0�

Qj)j = Op(1). Since for each jlj � �l, Assumption 20 is su¢ cient for T�1
PT+P��

t=T+l jE�h�t+�h�0t�l+� j to

be Op(1) the result follows from the fact that T�1=2 = o(1).
For the fourth term note that after rearranging terms we obtainXl

l=�l
K(l=M)

XT+P��

t=T+l
H�0(t)(Q0�Qj)(h

�
t+�h

0�
t�l+� � E

�
h�t+�h

�0
t�l+� )(Q0�Qj)H

�(t� l)

= T�1=2
Xl

l=�l
K(l=M)

XT+P��

t=T+l
(T 1=2H�0(t� l)(Q0�Qj)
T

1=2H�0(t)(Q0�Qj))�

(T�1=2vec(h�t+�h
0�
t�l+� � E

�
h�t+�h

�0
t�l+� )):

Recall that by Lemma 1 (b), T 1=2H�(t))� 

1=2
11 W

�(s). Moreover, note that conditional on the

observables, h�t+�h
0�
t�l+��E�h�t+�h�0t�l+� forms a heteroskedastic L2-boundedMA(��1) process with

increments that are uncorrelated with H�(t) and H�(t � l). Hence conditional on the observables

and for each jlj � �l, Theorem 30.14 of Davidson (1994) su¢ ces for
PT+P��

t=T+l (T
1=2H�0(t � l)(Q0 �

Qj) 
 T 1=2H�0(t)(Q0 � Qj))(T�1=2vec(h�t+�h0�t�l+� � E�h�t+�h�0t�l+� ) = Op�(1). The result follows

since T�1=2 = o(1) and K(x) < 1 for all x:
Proof of bracket 2: We must show each of the remaining cross-products of A�1;t, A

�
2;t, and B

�
i;t

with A�1;t�l, A
�
2;t�l, and B

�
i;t�l (all i = 1; :::; 5) in (15) are op�(1). The proofs of each are similar and

as such we only show the result for that associated with the cross-product of A�1;t and B
�
4;t�l. If we

take the absolute value of this term we �nd that

j
Pl

l=�lK(l=M)
PT+P��

t=T h0�t+� (Q0(t)�Qj(t))H�(t)(ĥ�t�l+� � h�t�l+� )
0�

(Q0(t� l)�Qj(t� l))(Ĥ�(t� l)�H�(t� l))j
� 2�lk5(T�1

PT+P��
t=T jĥ�t+� � h�t+� jjh�t+� j)(supt jQ0(t)�Qj(t)j)2(supt T 1=2jĤ�(t)�H�(t)j)�

(supt T
1=2jH�(t)j):

Lemma 1(e) implies supt T
1=2jĤ�(t) �H�(t)j = op�(1) while Lemmas 1(a) and (d) imply both

supt jQ0(t)�Qj(t)j = Op(1) and (supt T 1=2jH�(t)j) = Op�(1).
The result will follow if T�1=2

PT+P��
t=T jĥ�t+� � h�t+� jjh�t+� j = Op�(1). For simplicity we assume,

as in the proof of Lemma 1(e), that � = 2 and hence the forecast errors form an MA(1) process.
If we then take a Taylor expansion in precisely the same fashion as in the proof of Lemma 1(e) we
have

T�1=2
XT+P��

t=T
jĥ�t+� � h�t+� jjh�t+� j

� (k + 1)T�1
XT+P��

t=T
j�t+2xtrb"t+2(t+2)jjh�t+� jjT 1=2(b � )j

+j�j(k + 1)T�1
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j�t+1xt"t+1jjh�t+� j:
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Assumptions 1 and 20 su¢ ce for both T 1=2(b � ) and T 1=2(b� � �) to be Op(1). Since, for
large enough samples, Assumption 20 bounds the second moments of rb"t+2(t+2), rb"t+1(t+1),
and xt, that �s+� is distributed i:i:d: N(0; 1) implies that T

�1PT+P��
t=T j�t+2xtrb"t+2(t+2)jjh�t+2j,

T�1
PT+P��
t=T j�t+1xtrb"t+1(t+1)jjh�t+2j, and T�1PT+P��

t=T j�t+1xt"t+1jjh�t+2j are all Op�(1), and

the proof is complete.
(b) Given Theorem 3.3 (b) and the Continuous Mapping Theorem it su¢ ces to show that, for

each j, P
Pl

l=�lK(l=M)̂
�
cc;j(l)!d� �4u�

�
3;j where �

�
3;j =

d� �3;j for �3;j de�ned in the text. Before
doing so it is convenient to rede�ne the three bracketed terms terms from (14) used in the main
decomposition of the product of the forecast error from the baseline model with the di¤erence in
the baseline and model j forecast errors in Theorem 3.3 (b) (absent the summations, but keeping
the brackets) as

û�0;t+� (û
�
0;t+� � û�j;t+� ) = fA�1;tg+ fB�t g+ fC�1;t + C�2;t + C�3;t + C�4;t + C�5;t + C�6;tg:

With this in mind, if we ignore the �nite sample di¤erence between P and P � � + 1, we obtain

P
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cc;j(l)
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Pl

l=�lK(l=M)
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t=T+l A
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1;t�lg

+
Pl
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t=T+l f other cross products of A�1;t; B�t ,C�1;t,C�2;t,C�3;t,C�4;t,C�5;t,C�6;t,
with A�1;t�l; B

�
t�l,C

�
1;t�l,C

�
2;t�l,C

�
3;t�l,C

�
4;t�l,C

�
5;t�l,C

�
6;t�lg:

(16)

In the remainder we show that the bracketed term converges to �4 times ��3;j =
d� �3;j and that each

of the cross product terms are each op�(1).

Proof of bracket 1: This term is identical to that in the proof of Theorem 3.4 (a) and hence the

result is immediate.
Proof of bracket 2: We must show each of the remaining cross-products of A�1;t, B

�
t , and C

�
i;t

with A�1;t�l, B
�
t�l, and C

�
i;t�l (all i = 1; :::; 6) in (16) are op�(1). Nearly all of these cross products

are identical to those from the proof of Theorem 3.4 (a). The only ones that are distinct are those
that contain B�t (or B

�
t�l). As such we will only show the result for the cross product of B�t with

A�1;t�l. If we take the absolute value of this term we �nd that

j
Pl

l=�lK(l=M)
PT+P��

t=T+l h
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t�l+� (Q0(t� l)�Qj(t� l))H�(t� l)�
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Since Assumption 20 su¢ ces for

T�1
XT+P��

t=T
jh�t�l+� jj � J0B0(t)J 00xtx0tJ0B0(t)J 00 + J0B0(t)J 00xtx0tJjBj(t)J 0j j = Op�(1)

and Lemmas 1(a) and (d) imply both supt jQ0(t) � Qj(t)j = Op(1) and supt T 1=2jH�(t)j = Op�(1)

the result follows from the fact that T�1=2 = o(1).
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8 Appendix 2: Data

All data were obtained from the FAME database of the Federal Reserve Board of Governors.

The tables below describe each series, in some cases using the acronym PCE to denote

personal consumption expenditures. As indicated in the text, the data from the commodity

price application are monthly, with the commodity price series constructed as averages of

weekly data (from Tuesday of each week) and the exchange rates obtained as monthly

averages of daily data. In the case of the GDP application, the series on GDP, nominal

PCE, nominal GDP, and the PCE price index ex food and energy are source quarterly

data; for all other series, the quarterly data were constructed as within-quarter averages of

source monthly data. The transformations to changes or growth rates were applied to the

quarterly levels.

Data for commodity price application
variable description
CRB spot CRB index of spot prices, raw industrials
CRB futures CRB index of futures prices, raw industrials
XR-AUS spot exchange rate, Australia (U.S. $)
XR-CAN spot exchange rate, Canada (U.S. $)
XR-JAP spot exchange rate, Japan (U.S. $)
XR-NZ spot exchange rate, New Zealand (U.S. $)
XR-UK spot exchange rate, U.K. (U.S. $)
XR major major currencies dollar index
XR other other important trading partners dollar index

Data for GDP application
variable description
GDP GDP, chain dollar
C/Y nominal PCE/nominal GDP
Hours average weekly hours of production workers in manufacturing
Unemp. claims initial claims for unemployment insurance
Permits new privately-owned housing units authorized, single-family
PMI orders Purchasing Managers Index (manuf.) of supplier deliveries
PMI deliveries Purchasing Managers Index (manuf.) of new orders
S&P 500 S&P index of 500 common stocks/PCE price index ex food and energy
3-month Treasury 3-month Treasury bill rate (secondary market)
1-year Treasury Yield on U.S. Treasury securities, 1-year constant maturity
10-year Treasury Yield on U.S. Treasury securities, 10-year constant maturity
AAA Moody�s yield on Aaa corporate bonds
BAA Moody�s yield on Baa corporate bonds
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Table 1: Monte Carlo Results on Size, 1-Step Horizon
(nominal size = 10%)

DGP 1
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.125 0.121 0.105 0.120 0.115 0.118 0.113
MSE-t fixed regressor 0.108 0.110 0.113 0.111 0.104 0.123 0.112
ENC-F fixed regressor 0.118 0.105 0.093 0.115 0.104 0.104 0.104
ENC-t fixed regressor 0.099 0.104 0.097 0.100 0.093 0.104 0.104
MSE-F non-parametric 0.002 0.000 0.012 0.004 0.005 0.023 0.009
MSE-t non-parametric 0.001 0.000 0.004 0.005 0.002 0.009 0.005
SPA non-parametric 0.005 0.000 0.025 0.009 0.005 0.044 0.013

DGP 2
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.161 0.145 0.125 0.159 0.148 0.120 0.126
MSE-t fixed regressor 0.148 0.142 0.167 0.146 0.140 0.159 0.147
ENC-F fixed regressor 0.138 0.147 0.102 0.125 0.132 0.100 0.109
ENC-t fixed regressor 0.134 0.126 0.140 0.138 0.128 0.137 0.116
MSE-F non-parametric 0.009 0.007 0.022 0.023 0.014 0.042 0.028
MSE-t non-parametric 0.001 0.002 0.004 0.004 0.004 0.012 0.005
SPA non-parametric 0.011 0.005 0.058 0.024 0.014 0.085 0.033
ENC-t Hubrich-West 0.096 0.081 0.121 0.093 0.084 0.116 0.085

DGP 3
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.100 0.113 0.102 0.114 0.101 0.096 0.094
MSE-t fixed regressor 0.096 0.102 0.123 0.097 0.091 0.121 0.103
ENC-F fixed regressor 0.095 0.101 0.079 0.099 0.112 0.089 0.081
ENC-t fixed regressor 0.090 0.096 0.100 0.097 0.089 0.107 0.095
MSE-F non-parametric 0.011 0.008 0.021 0.011 0.009 0.035 0.017
MSE-t non-parametric 0.000 0.000 0.004 0.002 0.002 0.005 0.002
SPA non-parametric 0.003 0.001 0.044 0.009 0.008 0.048 0.016
ENC-t Hubrich-West 0.066 0.067 0.092 0.072 0.054 0.098 0.072

Notes:
1. The data generating processes are defined in equations (5) and (8). In all of these experiments, the coefficient b in the
DGPs is set to 0, such that, in population, all of the models are equally accurate.
2. For each artificial data set, forecasts of yt+τ (where τ denotes the forecast horizon) are formed recursively using estimates
of the forecasting equations described in section 4.2. These forecasts are then used to form the indicated test statistics, given
in section 2.2. T and P refer to the number of in–sample observations and 1-step ahead forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against bootstrapped critical values, using a
significance level of 10%. Sections 2.3 and 4.1 describe the bootstrap procedures.
4. The number of Monte Carlo simulations is 2000; the number of bootstrap draws is 499.
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Table 2: Monte Carlo Results on Size, 4-Step Horizon
(nominal size = 10%)

DGP 1
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.135 0.115 0.119 0.135 0.119 0.116 0.104
MSE-t fixed regressor 0.115 0.113 0.133 0.120 0.114 0.134 0.096
ENC-F fixed regressor 0.127 0.124 0.119 0.120 0.108 0.117 0.107
ENC-t fixed regressor 0.115 0.111 0.123 0.109 0.103 0.118 0.094
MSE-F non-parametric 0.012 0.002 0.061 0.019 0.009 0.072 0.025
MSE-t non-parametric 0.002 0.001 0.007 0.001 0.001 0.014 0.003
SPA non-parametric 0.027 0.009 0.190 0.056 0.019 0.221 0.054

DGP 2
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.208 0.199 0.201 0.181 0.178 0.144 0.166
MSE-t fixed regressor 0.188 0.175 0.167 0.163 0.176 0.147 0.171
ENC-F fixed regressor 0.162 0.145 0.157 0.144 0.146 0.115 0.136
ENC-t fixed regressor 0.164 0.163 0.150 0.143 0.168 0.137 0.158
MSE-F non-parametric 0.054 0.030 0.130 0.066 0.050 0.127 0.074
MSE-t non-parametric 0.000 0.001 0.005 0.002 0.001 0.004 0.004
SPA non-parametric 0.110 0.052 0.334 0.137 0.081 0.348 0.177
ENC-t Hubrich-West 0.290 0.227 0.423 0.261 0.230 0.413 0.276

DGP 3
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.115 0.114 0.120 0.125 0.104 0.103 0.110
MSE-t fixed regressor 0.096 0.116 0.118 0.100 0.109 0.114 0.107
ENC-F fixed regressor 0.106 0.109 0.114 0.114 0.107 0.086 0.103
ENC-t fixed regressor 0.093 0.101 0.104 0.089 0.099 0.105 0.098
MSE-F non-parametric 0.030 0.018 0.088 0.048 0.026 0.098 0.059
MSE-t non-parametric 0.000 0.000 0.004 0.001 0.001 0.002 0.001
SPA non-parametric 0.044 0.019 0.258 0.077 0.039 0.288 0.113
ENC-t Hubrich-West 0.207 0.167 0.335 0.193 0.169 0.356 0.220

Notes:
1. See the notes to Table 1.
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Table 3: Monte Carlo Results on Power, 1-Step Horizon
(nominal size = 10%)

DGP 1
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.613 0.748 0.485 0.670 0.789 0.531 0.714
MSE-t fixed regressor 0.438 0.606 0.292 0.433 0.573 0.279 0.421
ENC-F fixed regressor 0.643 0.768 0.547 0.762 0.860 0.634 0.829
ENC-t fixed regressor 0.579 0.738 0.367 0.621 0.798 0.383 0.645
MSE-F non-parametric 0.056 0.102 0.097 0.141 0.214 0.141 0.215
MSE-t non-parametric 0.011 0.030 0.026 0.037 0.060 0.038 0.059
SPA non-parametric 0.061 0.095 0.119 0.099 0.129 0.138 0.139

DGP 2
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.706 0.821 0.567 0.763 0.871 0.642 0.822
MSE-t fixed regressor 0.510 0.668 0.388 0.554 0.679 0.370 0.567
ENC-F fixed regressor 0.758 0.883 0.617 0.844 0.938 0.722 0.902
ENC-t fixed regressor 0.672 0.824 0.452 0.701 0.863 0.460 0.735
MSE-F non-parametric 0.108 0.191 0.110 0.194 0.286 0.152 0.247
MSE-t non-parametric 0.040 0.065 0.043 0.083 0.145 0.070 0.136
SPA non-parametric 0.104 0.142 0.188 0.201 0.235 0.232 0.273
ENC-t Hubrich-West 0.598 0.770 0.429 0.645 0.804 0.440 0.670

DGP 3
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.445 0.594 0.381 0.554 0.678 0.439 0.616
MSE-t fixed regressor 0.336 0.469 0.285 0.394 0.515 0.284 0.414
ENC-F fixed regressor 0.455 0.595 0.412 0.578 0.717 0.481 0.654
ENC-t fixed regressor 0.404 0.569 0.322 0.502 0.649 0.357 0.554
MSE-F non-parametric 0.088 0.170 0.105 0.194 0.290 0.158 0.248
MSE-t non-parametric 0.017 0.036 0.026 0.060 0.087 0.049 0.098
SPA non-parametric 0.045 0.075 0.125 0.120 0.150 0.174 0.189
ENC-t Hubrich-West 0.353 0.520 0.305 0.451 0.589 0.337 0.508

Notes:
1. The data generating processes are defined in equations (5) and (8). In all of these experiments, the coefficient b in the
DGPs is set to the non-zero values given in section 4.2, such that, in population, the most accurate model is one of the
alternatives.
2. See the notes to Table 1.
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Table 4: Monte Carlo Results on Power, 4-Step Horizon
(nominal size = 10%)

DGP 1
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.404 0.452 0.333 0.436 0.526 0.379 0.476
MSE-t fixed regressor 0.256 0.301 0.193 0.239 0.313 0.201 0.251
ENC-F fixed regressor 0.450 0.499 0.360 0.495 0.604 0.408 0.552
ENC-t fixed regressor 0.281 0.373 0.202 0.280 0.401 0.203 0.312
MSE-F non-parametric 0.066 0.059 0.127 0.104 0.121 0.166 0.163
MSE-t non-parametric 0.004 0.002 0.017 0.011 0.015 0.022 0.013
SPA non-parametric 0.092 0.064 0.264 0.131 0.120 0.314 0.182

DGP 2
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.607 0.707 0.529 0.627 0.747 0.515 0.661
MSE-t fixed regressor 0.430 0.520 0.276 0.384 0.494 0.255 0.377
ENC-F fixed regressor 0.584 0.708 0.505 0.637 0.779 0.535 0.712
ENC-t fixed regressor 0.438 0.595 0.266 0.433 0.618 0.264 0.456
MSE-F non-parametric 0.180 0.184 0.220 0.212 0.236 0.239 0.231
MSE-t non-parametric 0.005 0.004 0.015 0.015 0.018 0.017 0.025
SPA non-parametric 0.290 0.228 0.508 0.331 0.300 0.506 0.377
ENC-t Hubrich-West 0.627 0.699 0.637 0.635 0.718 0.626 0.652

DGP 3
source of T=40 T=40 T=80 T=80 T=80 T=120 T=120

statistic critical values P=80 P=120 P=40 P=80 P=120 P=40 P=80
MSE-F fixed regressor 0.328 0.412 0.298 0.397 0.490 0.305 0.436
MSE-t fixed regressor 0.206 0.287 0.173 0.227 0.301 0.176 0.263
ENC-F fixed regressor 0.320 0.406 0.294 0.383 0.513 0.311 0.462
ENC-t fixed regressor 0.200 0.309 0.166 0.241 0.367 0.185 0.302
MSE-F non-parametric 0.081 0.100 0.172 0.138 0.177 0.195 0.191
MSE-t non-parametric 0.001 0.001 0.005 0.003 0.006 0.008 0.007
SPA non-parametric 0.116 0.088 0.350 0.170 0.147 0.384 0.244
ENC-t Hubrich-West 0.352 0.415 0.481 0.391 0.465 0.479 0.446

Notes:
1. The data generating processes are defined in equations (5) and (8). In all of these experiments, the coefficient b in the
DGPs is set to the non-zero values given in section 4.2, such that, in population, the most accurate model is one of the
alternatives.
2. See the notes to Table 1.
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Table 5: Pairwise Tests of Equal Accuracy for Monthly Commodity Prices
(1-Month Forecast Horizon)

Bootstrap p–values
alternative model RMSE(alt.)/ MSE-F MSE-t ENC-F ENC-t MSE-F MSE-t
variables RMSE(null) fix. reg. fix. reg. fix. reg. fix. reg. non-par. non-par.
CRB futures, XR-AUS 0.970 0.004 0.010 0.007 0.022 0.048 0.075
XR-AUS, XR-major, XR-other 0.974 0.004 0.010 0.009 0.026 0.046 0.068
XR-AUS, XR-other 0.975 0.005 0.014 0.009 0.025 0.050 0.072
CRB futures, XR-other 0.976 0.003 0.005 0.012 0.026 0.022 0.046
XR-AUS 0.977 0.008 0.016 0.010 0.018 0.046 0.070
CRB futures, XR-CAN 0.980 0.011 0.013 0.021 0.033 0.069 0.093
CRB futures 0.981 0.009 0.006 0.019 0.022 0.018 0.048
CRB futures, XR-JAP 0.981 0.010 0.017 0.027 0.054 0.055 0.084
CRB futures, XR-NZ 0.982 0.010 0.012 0.025 0.036 0.056 0.099
CRB futures, XR-major 0.983 0.012 0.008 0.030 0.033 0.028 0.061
XR-NZ, XR-AUS, XR-CAN 0.983 0.024 0.036 0.035 0.057 0.127 0.142
CRB futures, XR-UK 0.984 0.016 0.020 0.031 0.049 0.059 0.098
CRB futures, all 7 XR’s 0.989 0.037 0.040 0.064 0.089 0.254 0.262
XR-CAN, XR-other 0.991 0.043 0.049 0.068 0.074 0.158 0.166
XR-CAN, XR-major, XR-other 0.992 0.049 0.055 0.085 0.094 0.186 0.184
XR-NZ, XR-other 0.993 0.042 0.032 0.081 0.061 0.125 0.173
XR-JAP, XR-major, XR-other 0.993 0.072 0.087 0.130 0.177 0.238 0.240
XR-other 0.993 0.032 0.015 0.071 0.034 0.039 0.063
XR-JAP, XR-other 0.994 0.071 0.068 0.126 0.126 0.159 0.172
XR-CAN 0.995 0.084 0.102 0.095 0.096 0.222 0.229
XR-NZ, XR-major, XR-other 0.995 0.064 0.053 0.116 0.087 0.217 0.249
XR-UK, XR-other 0.997 0.114 0.118 0.166 0.161 0.272 0.283
XR-NZ 0.998 0.107 0.102 0.131 0.108 0.317 0.330
XR-major 1.001 0.410 0.691 0.534 0.768 0.866 0.912
XR-JAP 1.002 0.353 0.331 0.400 0.389 0.614 0.616
XR-UK 1.003 0.801 0.483 0.704 0.473 0.721 0.755
XR-UK, XR-major, XR-other 1.009 0.682 0.439 0.544 0.478 0.744 0.783

Notes:
1. As described in section 5, monthly forecasts of the growth rate of commodity prices in period t + 1 are generated from a
null model that includes a constant and growth in prices in period t and alternative models that include the baseline model
variables and the period t values of the growth rates of the futures price and various exchange rates. The table lists the
additional variables included in each alternative model. Forecasts from January 1997 to December 2008 are obtained from
models estimated with a data sample starting in January 1987.
2. This table provides pairwise tests of equal forecast accuracy. For each alternative model, the table reports the ratio of
the alternative model’s RMSE to the null model’s forecast RMSE and bootstrapped p-values for the null hypothesis of equal
accuracy, for the test statistics indicated in the columns. Sections 2.3 and 4.1 describe the bootstrap procedures. The RMSE
of the null model is 2.408 (the predictand is defined as 100 times the log change in the price level).
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Table 6: Pairwise Tests of Equal Accuracy for GDP
Bootstrap p–values

alternative model RMSE(alt.)/ MSE-F MSE-t ENC-F ENC-t MSE-F MSE-t
variables RMSE(null) fix. reg. fix. reg. fix. reg. fix. reg. non-par. non-par.

1-quarter horizon
∆(C/Y ) 0.921 0.000 0.011 0.000 0.003 0.079 0.047
∆ ln Permits 0.930 0.000 0.026 0.000 0.002 0.106 0.090
∆ ln S&P 500 0.941 0.000 0.044 0.000 0.004 0.173 0.146
Spread, Baa − Aaa 0.982 0.017 0.079 0.023 0.079 0.185 0.163
PMI orders 0.987 0.041 0.169 0.000 0.002 0.437 0.435
Unemp. claims 0.997 0.126 0.139 0.164 0.153 0.268 0.298
∆ 3-month Treasury 0.997 0.140 0.084 0.246 0.132 0.167 0.177
∆ 1-year Treasury 1.002 0.455 0.772 0.614 0.858 0.934 0.929
Hours 1.002 0.331 0.602 0.523 0.729 0.846 0.896
PMI deliveries 1.004 0.796 0.809 0.824 0.799 0.891 0.907
∆ 10-year Treasury 1.008 0.645 0.614 0.738 0.639 0.884 0.898
Spread, 10y − 3m 1.108 0.998 0.991 0.913 0.568 0.999 1.000
Spread, 10y − 1y 1.206 1.000 1.000 0.973 0.686 1.000 1.000

4-quarter horizon
∆ ln Permits 0.843 0.000 0.043 0.000 0.015 0.010 0.092
Hours 0.992 0.147 0.167 0.135 0.163 0.432 0.444
∆(C/Y ) 0.998 0.216 0.195 0.239 0.165 0.293 0.304
∆ ln S&P 500 1.000 0.283 0.277 0.000 0.011 0.597 0.596
Unemp. claims 1.001 0.371 0.367 0.341 0.337 0.593 0.590
PMI orders 1.004 0.317 0.255 0.026 0.104 0.559 0.557
Spread, Baa − Aaa 1.005 0.398 0.780 0.498 0.831 0.866 0.935
PMI deliveries 1.010 0.790 0.420 0.116 0.294 0.655 0.657
∆ 3-month Treasury 1.027 0.951 0.737 0.946 0.683 0.997 0.927
∆ 1-year Treasury 1.030 0.960 0.813 0.937 0.672 0.992 0.965
∆ 10-year Treasury 1.055 0.967 0.944 0.867 0.641 0.964 0.993
Spread, 10y − 3m 1.233 0.998 0.986 0.296 0.346 0.993 0.998
Spread, 10y − 1y 1.387 1.000 0.996 0.752 0.607 1.000 1.000

Notes:
1. As described in section 5, quarterly forecasts of GDP growth in period t+ τ are generated from a null model that includes
a constant and GDP growth in period t and alternative models that include the baseline model variables and the period t
value of one additional predictor, listed in the table. Forecasts from 1985:Q1+τ -1 through 2009:Q4 are obtained from models
estimated with a data sample starting in 1961:Q2.
2. This table provides pairwise tests of equal forecast accuracy. For each alternative model, the table reports the ratio
of the alternative model’s RMSE to the null model’s forecast RMSE and bootstrapped p-values for the null hypothesis of
equal accuracy, for the test statistics indicated in the columns. Sections 2.3 and 4.1 describe the bootstrap procedures. The
RMSE of the null model is 2.275 at the 1-quarter horizon and 1.832 at the 4-quarter horizon (the predictand is defined as
(400/τ) ln(GDPt+τ/GDPt)).
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Table 7: Reality Check (Best Model) Tests of Equal Accuracy
MSE-F MSE-t ENC-F ENC-t

1-month ahead commodity price forecasts
variables in best model CRB futures, CRB CRB futures, XR-AUS, XR-major,

XR-AUS futures XR-AUS XR-other
fix. reg. p-value 0.016 0.060 0.041 0.178
non-par. p-value 0.080 0.274 NA NA
SPA p-value NA 0.245 NA NA
Hubrich-West p-value NA NA NA 0.238

1-quarter ahead GDP forecasts
variables in best model ∆(C/Y ) ∆(C/Y ) ∆ ln S&P 500 ∆ ln Permits
fix. reg. p-value 0.000 0.137 0.000 0.047
non-par. p-value 0.242 0.427 NA NA
SPA p-value NA 0.321 NA NA
Hubrich-West p-value NA NA NA 0.040

4-quarter ahead GDP forecasts
variables in best model ∆ ln Permits ∆ ln Permits ∆ ln Permits ∆ ln S&P 500
fix. reg. p-value 0.001 0.377 0.003 0.298
non-par. p-value 0.011 0.846 NA NA
SPA p-value NA 0.523 NA NA
Hubrich-West p-value NA NA NA 0.224

Notes:
1. See the notes to Tables 5 and 6. The variables in the best models (the model that maximizes each test statistic) are given
in the top rows of each panel.
2. The table reports p-values for various tests of the null that, in population, all of alternative models are as accurate as the
null model (for each application).
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