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1 Introduction

As noted throughout this Handbook, forecasting is a crucial part of economic and financial

decision-making. The reason is clear: The efficacy of decisions made today depend on

unknown future states of the world. Insofar as forecasts provide information about these

unknown states, obtaining accurate forecasts is a critical step toward ensuring that good

decisions are being made.

But how do we know that accurate forecasts are being made? Answering such a question

first requires a definition of “accuracy.” As a foil for discussion, suppose that at time T ,

we are interested in forecasting the value of a scalar y one period into the future. To do

so, we use the information available to us, in the form of historical values of ys, and other

variables xs = (x1, ..., xk)′, s = 1, ..., T , to form a prediction ŷT+1. When the future value of

y eventually becomes known, accuracy can take many forms. The most common approach

is to base this evaluation on how close ŷT+1 is to the realized value of yT+1 using a user-

specific loss function L(.) that depends on both ŷT+1 and yT+1. The canonical example

of such a loss function is quadratic and hence the numeric value of (yT+1 − ŷT+1)2 defines

the degree of accuracy. Smaller values are more accurate than larger values. Other loss

functions include absolute loss |yT+1−ŷT+1|, linex exp(α(yT+1−ŷT+1))−α(yT+1−ŷT+1)−1,

and so on.

Taken literally, at any given forecast origin T , such values are infeasible because there

is simply no way to know the unknown future state of the world. A second-best approach

to answering the original question is to ask a different one: On average, do we expect

our forecasts to be accurate? That is, while we cannot possibly know whether the value

of (yT+1 − ŷT+1)2 is small, can we know something about whether E(yT+1 − ŷT+1)2 is

small, where E(.) denotes the expectations operator? At face value the answer is typically

“no” because we do not know the probability law governing the randomness associated

with the unknown future (which, in turn, determines the magnitude of the forecast error

(yT+1 − ŷT+1)).

That said, under reasonable assumptions on the observables (the values of y and x known

to the forecasting agent at time T ), one can construct an estimate of E(yT+1− ŷT+1)2 that

does not require knowledge of yT+1 or the unknown expectations operator E(.). The

most common approach to doing this is to conduct what Stock and Watson (2003) refer

to as a “pseudo-out-of-sample” forecasting exercise. The idea is pretty intuitive. Given
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today’s known observables {ys, xs}Ts=1, define an “in-sample” portion of observables using

observations {ys, xs}Rs=1 and let the remaining observables {ys, xs}Ts=R+1 define the “out-of-

sample” portion. The thought experiment is to pretend that you are constructing forecasts

ŷt+1 at each of the P = T −R forecast origins t = R, ..., T − 1 using the same methodology

you propose to use at forecast origin T (but obviously with different information sets). At

the end of this exercise, while still not knowing the true value of E(yT+1 − ŷT+1)2, we can

construct P−1
∑T−1

t=R
(yt+1 − ŷt+1)2 with the hope that this sample average provides some

information about the unknown expected accuracy of the time T forecast.

In simplistic terms, tests of unconditional predictive ability are intended to answer this

last, unknown aspect of the pseudo-out-of-sample exercise. Statistically, how close do

we think P−1
∑T−1

t=R
(yt+1 − ŷt+1)2 is to E(yT+1 − ŷT+1)2? More precisely, we can ask

whether P−1
∑T−1

t=R
(yt+1− ŷt+1)2 is a consistent estimate of E(yT+1− ŷT+1)2, ask whether

we can form a meaningful confidence interval for E(yT+1− ŷT+1)2, and more generally, ask

whether we can conduct asymptotically valid inference about E(yT+1 − ŷT+1)2 based on

P−1
∑T−1

t=R
(yt+1− ŷt+1)2. The answers to these questions — especially the last — depend

on the type of data being used, the definition of accuracy, and the methods by which the

forecasts are being constructed. Delineating these details is our prime objective.

Before doing so, it is worth noting how tests of unconditional predictive ability differ

from tests of conditional predictive ability as discussed in Giacomini (this volume). Con-

tinuing with our previous example, the main difference involves asking questions not about

E(yT+1 − ŷT+1)2 but rather about E[(yT+1 − ŷT+1)2|=T ], where E[·|=T ] denotes the con-

ditional expectation operator given an information set available to the forecasting agent at

time T . At some level, tests of conditional predictive ability encompass those associated

with tests of unconditional predictive ability. This arises because the user can always

choose to be interested only in the trivial σ-field (∅,Ω), in which case the conditional ex-

pectation operator is equivalent to the unconditional expectation operator. To date, as

we detail in the body of this chapter, the unconditional and conditional testing literatures

differ primarily in (1) the assumptions necessary to obtain asymptotic results and (2) some

of the asymptotic results.

In the following sections we provide a brief overview of methods for constructing tests of

unconditional predictive ability. In Section 2 we begin by describing the necessary notation

for delineating these results. Sections 3 and 4 provide a discussion of the two main forms
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of the null hypothesis: (i) population-level unconditional tests of predictive ability and

(ii) finite-sample unconditional tests of predictive ability. For each we discuss the main

methodological approaches to conducting inference, emphasizing results in West (1996),

Clark and McCracken (2001, 2005b, 2009b), Giacomini and White (2006), and McCracken

(2007).1 In both instances, our discussion is in the context of using estimated parametric

models to form a point prediction of a scalar dependent variable y. Other types of forecasts

are referenced when relevant. Section 5 provides a brief overview of other developments in

this literature and suggests new directions for future research. Section 6 provides Monte

Carlo evidence on the efficacy of selected methods. Section 7 concludes.

2 The pseudo-out-of-sample environment

The sample of observations {yt, x′t}Tt=1 includes a scalar random variable yt to be predicted,

as well as a (k × 1) vector of predictors xt. Specifically, for each time t the variable to be

predicted is yt+τ , where τ denotes the forecast horizon. The sample is divided into in-sample

and out-of-sample portions. The total in-sample observations (on yt and xt) span 1 to R.

Letting P − τ + 1 denote the number of τ -step-ahead predictions, the total out-of-sample

observations span R+ τ through R+P . The total number of observations in the sample is

R+ P = T .2

The literature is largely silent on the best way to split the sample into in- and out-of-

sample portions. There is, however, a clear trade-off. More out-of-sample observations

(larger P ) imply more forecasts and therefore more information regarding the accuracy of

the forecasts. The converse is that more in-sample observations (larger R) imply that the

parameter estimates will be more accurately estimated and likely lead to more accurate

forecasts. As seen below, asymptotic inference regarding unconditional tests of predictive

ability depends explicitly on the relative sample sizes P/R. This dependence, however, is

largely a matter of asymptotic theory under the null hypothesis. To our knowledge, the

only paper that considers the effect of the sample split under the alternative is Clark and

McCracken (2005a), and even there attention is restricted to the effect on tests of predictive

ability when there is unmodeled structural change.
1See West (2006) for a previous and detailed survey of the literature on the evaluation of population-level

forecast accuracy.
2This seemingly innocuous assumption is actually nontrivial. For many macroeconomic variables (such

as GDP) the forecasting agent actually has access to a triangular array of vintages of both the y’s and x’s.
Such data are accessible at the Federal Reserve Banks of Philadelphia and St. Louis. Section 5.2 briefly
discusses tests of unconditional predictive ability with real-time data.

3



In practice, the sample split (as measured by the ratio P/R) has taken a wide range

of values, ranging from as small as 0.05 (Kuan and Liu, 1995) to as large as 10 (Breen et

al., 1989). Equal splits are fairly common (in which case P/R ≈ 1). One other common

practice is to conduct two or more pseudo-out-of-sample exercises simultaneously as a means

of observing whether the predictive ability has remained constant over time. For example,

using data from 1958 to 2004 Clark and McCracken (2006) conduct two out-of-sample

exercises, one in which the in-sample portion is 1958-1976 and the out-of-sample portion is

1977-1989, and another in which the in-sample portion is 1958-1989 and the out-of-sample

portion is 1990-2003. By doing this, the accuracy of the models being considered can be

observed over two distinct periods and any changes in performance can be detected — at

least using an ocular test.

Given the sample split, forecasts of yt+τ , t = R, . . . , T−τ , are generated using parametric

models of the form yt+τ = g(xt, β∗) + ut+τ for a known function g(·, ·) and unknown finite-

dimensioned parameter β∗. These parameters are estimated using one of three distinct

observation windows. Under the recursive scheme, the parameter vector is updated at each

forecast origin t = R, ..., T − τ using all available information. For example, if NLLS is

used to estimate the above model, we have β̂t = arg minβ
∑t−τ

s=1
(ys+τ − g(xs, β))2. Under

the rolling scheme, the parameters are also updated at each forecast origin but always using

the same number of observations R in the window. Continuing with the same example

this implies β̂t = arg minβ
∑t−τ

s=t−τ−R+1
(ys+τ − g(xs, β))2. In our final scheme — the fixed

scheme — the parameters are estimated only once at the initial forecast origin and hence

β̂t = β̂R = arg minβ
∑R−τ

s=1
(ys+τ − g(xs, β))2.

Regardless of the sample window used, the parameter estimates and the predictors are

used to construct forecasts ŷt+τ (xt, β̂t) = ŷt+τ of the dependent variable at each forecast

origin. These in turn can be used to construct forecast errors ût+τ = yt+τ− ŷt+τ . Typically

the accuracy of the forecasts is evaluated based on a known function of this forecast error.

Table 1 provides a list of several of the most common measures of “accuracy,” using our

loose interpretation of the term. The first three measures are intended to evaluate the

accuracy of a single model, whereas the remaining ones are better thought of as evaluating

the accuracy of a model relative to another model.

Note that regardless of the measures of accuracy (from Table 1) of interest, each can be
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Table 1. Common Measures of Forecast Accuracy
measure ft+τ (β)
1. bias (zero mean prediction error ) ut+τ
2. serial correlation (zero first-order correlation) ut+τut+τ−1

3. efficiency (no correlation between error and prediction) ut+τg(xt, β)
4. encompassing (no correlation between u1,t+τg2(xt, β)

model 1’s error and model 2’s prediction)
5. mean square error u2

t+τ

6. mean absolute error |ut+τ |
7. linex loss eαut+τ − αut+τ − 1

written in a general form as f(yt+τ , xt, β̂t) = ft+τ (β̂t).3 Parallel to the example given in

the introduction, the goal of tests of unconditional predictive ability is to determine how

best to use (P − τ + 1)−1
∑T−τ

t=R
ft+τ (β̂t) as a means of telling us something about the

unknown future accuracy of the model(s). The following two subsections offer two distinct

approaches to doing just that.

3 Population-Level Predictive Ability

A test of population-level predictive ability addresses the following question: Can we use

(P − τ + 1)−1
∑T−τ

t=R
ft+τ (β̂t) to learn something about Eft+τ (β∗)? For this question, it

is crucial that we recognize that Eft+τ (β∗) depends on β∗, the unknown true value of the

parameter estimate β̂t. With this in mind, the original question can be recast as: Can

(P−τ+1)−1
∑T−τ

t=R
ft+τ (β̂t) be used to learn something about the accuracy of the forecasts

were we to know the true values of the model parameters?

3.1 West (1996)

Building on earlier work by Diebold and Mariano (1995), West (1996) develops a theory for

addressing this question. In particular, he shows that

(P − τ + 1)−1/2
∑T−τ

t=R
(ft+τ (β̂t)− Eft+τ (β∗))→d N(0,Ω), (1)

and hence for a given null hypothesis regarding Eft+τ (β∗), asymptotically valid inference

can be conducted using standard normal critical values so long as one can obtain an asymp-

totically valid estimate of Ω.4

3When two models are involved, redefine β̂t as the vector formed by stacking the parameter estimates

from each of the two models so that β̂t = (β̂
′
1,t, β̂

′
2,t)
′.

4Studies such as Corradi and Swanson (2007) have developed bootstrap-based inference approaches that
can be applied with tests that have power against generic alternatives or with tests applied to forecasts from
misspecified models.
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The details of how to estimate Ω is perhaps the main technical development in West

(1996). Before providing this result, some notation and assumptions are needed.5

(A1) β̂t = β∗ + BH(t) + oa.s.(1), where for some mean zero process ht+τ = ht+τ (β∗)

[with h denoting the orthogonality conditions used to estimate parameters, such as ht+τ =

xtut+τ for a single linear regression], H(t) equals t−1
∑t−τ

s=1
hs+τ , R−1

∑t−τ

s=t−R+1
hs+τ , and

R−1
∑R−τ

s=1
hs+τ for the recursive, rolling, and fixed schemes, respectively, and B denotes

a nonstochastic matrix.

(A2) The vector (ft+τ (β∗), h′t+τ )′ is covariance stationary and satisfies mild mixing and

moment conditions.

(A3) limP,R→∞ P/R→ π, a constant that is finite for the rolling and fixed schemes but

can be infinite for the recursive scheme.

(A4) The vector F = E[∂ft+τ (β)/∂β]β=β∗ is finite.6

(A5) Ω is positive.

Given these assumptions, West (1996) shows that the asymptotic variance Ω can take

a variety of forms depending on how the parameters are estimated:

Ω = Sff + λfh(FBS′fh + SfhB
′F ′) + λhhFBShhB

′F ′, (2)

where Sff = limT→∞ V ar(T−1/2
∑T−τ

s=1
ft+τ (β∗)), Shh = limT→∞ V ar(T−1/2

∑T−τ

s=1
ht+τ ),

Sfh = limT→∞Cov(T−1/2
∑T−τ

s=1
ft+τ (β∗), T−1/2

∑T−τ

s=1
ht+τ ), and

λfh = λhh =
Recursive 1− π−1 ln(1 + π) 2(1− π−1 ln(1 + π))
Rolling, π ≤ 1 π/2 π − π2/3
Rolling, 1 < π <∞ 1− (2π)−1 1− (3π)−1

Fixed 0 π

.

In equation (2) we see that Ω consists of three terms. The first, Sff , is the long-

run variance of the measure of accuracy when the parameters are known. The third

term, λhhFBShhB′F ′, captures the contribution of the variance due purely to the fact

that we do not observe β∗ but must estimate it instead. The second term, λfh(FBS′fh +

SfhB
′F ′), captures the covariance between the measure of accuracy and the estimation

error associated with β̂t. Because the parameter estimates can be constructed using three

different observation windows (recursive, rolling, and fixed) it is not surprising that the

terms that arise due to estimation error depend on that choice via the terms λfh and λhh.
5These assumptions are intended to be expository, not complete. See West (1996) for more detail.
6McCracken (2000) weakens this assumption to F = ∂E[ft+τ (β)]/∂ββ=β∗ so that the function ft+τ (β)

need not be differentiable.
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With this formula in hand, estimating Ω is straightforward. Since π̂ = P/R → π

and both λfh and λhh are continuous in π, substituting π̂ for π is sufficient for esti-

mating both λfh and λhh. The F term can be estimated directly using F̂ = (P −

τ + 1)−1
∑T−τ

t=R
∂ft+τ (β̂t)/∂β. When only one model has been estimated, the B term

is typically the inverse of the Hessian matrix associated with the loss function used to

estimate the model parameters. For example, if NLLS is used to estimate the model

such that β̂t = arg minβ
∑t−τ

s=1
(ys+τ − g(xs, β))2, then a consistent estimate of B is given

by B̂ = (T−1
∑T−τ

s=1
∂2(ys+τ − g(xs, β̂T ))2/∂β∂β′)−1. If more than one model is being

used to construct ft+τ (β̂t) (so that β̂t = (β̂
′
1,t, β̂

′
2,t)
′), then B is the block diagonal matrix

diag(B1, B2) and hence a consistent estimate is B̂ = diag(B̂1, B̂2).

For the long-run variances and covariances, West (1996) shows that standard kernel-

based estimators are consistent. To be more precise, define f̄ = (P−τ+1)−1
∑T−τ

t=R
ft+τ (β̂t),

Γ̂ff (j) = (P−τ+1)−1
∑T−τ

t=R+j(ft+τ (β̂t)−f̄)(ft+τ−j(β̂t−j)−f̄), Γ̂hh(j) = T−1
∑T−τ

t=j+1 ht+τ (β̂t)×

h′t+τ−j(β̂t−j) and Γ̂fh(j) = (P − τ + 1)−1
∑T−τ

t=R+j ft+τ (β̂t)h′t+τ−j(β̂t−j), with Γ̂ff (j) =

Γ̂ff (−j), Γ̂hh(j) = Γ̂′hh(−j), and Γ̂fh(j) = Γ̂′fh(−j). The long-run variance estimates Ŝff ,

Ŝhh, and Ŝfh are then constructed, as in Newey and West’s (1987) HAC estimator, by

weighting the relevant leads and lags of these covariances.

Interestingly, for some cases estimating Ω is as simple as using the estimate Ω̂ = Ŝff .

This arises when the second and third terms in equation (2), those due to estimation error,

cancel and hence we say the estimation error is asymptotically irrelevant.

Case 1. If π = 0, then both λfh and λhh are zero and hence Ω = Sff . This case arises

naturally when the sample split is chosen so that the number of out-of-sample observations

is small relative to the number of in-sample observations.7

Case 2. If F = 0, then Ω = Sff . This case arises under certain very specific circum-

stances but arises most naturally when the measure of “accuracy” is explicitly used when

estimating the model parameters. The canonical example is the use of a quadratic loss

function to evaluate the accuracy of forecasts from two non-nested models estimated by

NLLS. In this situation, the F term equals zero and estimation error is asymptotically

irrelevant.

Case 3. Under the recursive scheme, there are instances where −SfhB′F ′ = FBShhB
′F ′.

In this case, it isn’t so much than any particular term equals zero but that the sum of the
7Chong and Hendry (1986) first observed that the parameter estimation error is irrelevant if P is small

relative to R.
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components just happens to cancel to zero. See West (1996) and West and McCracken

(1998) for some examples.

3.2 Clark and McCracken (2001, 2005b), McCracken (2007)

Although the results in West (1996) have many applications, the theory is not universal.

In particular, one of the primary assumptions for the results in West (1996) to hold is

that Ω must be positive. In nearly all the examples from Table 1, this is not an issue.

However, problems arise in applications where one wishes to compare the accuracy of two

models — but the models are nested under the null of equal unconditional forecast accuracy.

Consider the case where two nested OLS-estimated linear models are being compared. If

we define the (k × 1, k = k1 + k2) vector of predictors xt = x2,t = (x′1,t, x
′
12,t)

′, the models

take the form yt+τ = x′i,tβ
∗
i +ui,t+τ , for i = 1, 2, such that model 2 nests model 1 and hence

β∗2 = (β∗′1 , β
∗′
12)′ = (β∗′1 , 0)′ under the null. If we use quadratic loss to measure accuracy, we

find that ft+τ (β∗) = (yt+τ−x′1,tβ∗1)2−(yt+τ−x′2,tβ∗2)2 = (yt+τ−x′1,tβ∗1)2−(yt+τ−x′1,tβ∗1)2 = 0

for all t, and hence it is clearly the case that Sff , Sfh, and F all equal zero, making Ω also

equal zero.

In this case, Clark and McCracken (2001, 2005b) and McCracken (2007) develop a differ-

ent set of asymptotics that allow for an out-of-sample test of equal population-level uncondi-

tional predictive ability between two nested models. The key to their theory is to note that

while P−1/2
∑T−τ

t=R
(ft+τ (β̂t) − 0) →p 0 when the models are nested,

∑T−τ

t=R
(ft+τ (β̂t) − 0)

need not have a degenerate asymptotic distribution. Building on this insight they show

that, in the context of linear, OLS-estimated, direct-multistep forecasting models, a vari-

ety of statistics can be used to test for equal forecast accuracy and forecast encompass-

ing despite the fact that the models are nested. Let ûi,t+τ = yt+τ − x′i,tβ̂i,t, i = 1, 2,

d̂t+τ = û2
1,t+τ − û2

2,t+τ , ĉt+τ = û1,t+τ (û1,t+τ − û2,t+τ ), and σ̂2
2 = (P − τ + 1)−1

∑T−τ

t=R
û2

2,t+τ .

If we let Ŝdd and Ŝcc denote long-run variance estimates for, respectively, d̂t+τ and ĉt+τ

(analogous to Ŝff above) constructed as in Newey and West’s (1987) HAC estimator, these

statistics take the form

MSE-t =
P−1/2

∑T−τ

t=R
d̂t+τ

Ŝ
1/2
dd

, MSE-F =

∑T−τ

t=R
d̂t+τ

σ̂2
2

(3)

ENC-t =
P−1/2

∑T−τ

t=R
ĉt+τ

Ŝ
1/2
cc

, ENC-F =

∑T−τ

t=R
ĉt+τ

σ̂2
2

. (4)
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In each case the asymptotic distributions have representations as functions of stochas-

tic integrals of quadratics in Brownian motion. In limited cases, where the models are

correctly specified and the forecast errors are serially uncorrelated and exhibit conditional

homoskedasticity, critical values are tabulated.8

For all other cases, the asymptotic distributions depend on unknown nuisance param-

eters that capture the presence of serial correlation in the forecast errors and conditional

heteroskedasticity. Since tabulating critical values in the general case is infeasible, in the

following we present a simple bootstrap developed in Clark and McCracken (2009b) that

provides asymptotically valid critical values.

1. (a) Use OLS to estimate the parameter vector β∗1 associated with the restricted model.

Store the fitted values x′1,sβ̂1,T , s = 1, ..., T . (b) Use OLS to estimate the parameter vector

β∗2 associated with the unrestricted model. Store the residuals v̂2,s+τ , s = 1, ..., T .

2. Using NLLS, estimate an MA(τ − 1) model for the OLS residuals v̂2,s+τ such that

v2,s+τ = ε2,s+τ + θ1ε2,s+τ−1 + ...+ θτ−1ε2,s+1. Let ηs+τ , s = 1, ..., T, denote an i.i.d N(0, 1)

sequence of simulated random variables. Define v̂∗2,s+τ = (ηs+τ ε̂2,s+τ+ θ̂1ηs−1+τ ε̂2,s+τ−1 +

...+ θ̂τ−1ηs+1ε̂2,s+1), s = 1, ..., T . Form artificial samples of y∗s+τ using the fixed regressor

structure, y∗s+τ = x′1,sβ̂1,T + v̂∗2,s+τ .

3. Using the artificial data, construct an estimate of the test statistics (e.g., MSE-F ,

MSE-t, ENC-F , ENC-t) as if these were the original data.

4. Repeat steps 2 and 3 a large number of times: j = 1, ..., N .

5. Reject the null hypothesis, at the α% level, if the test statistic is greater than the

(100− α)%-ile of the empirical distribution of the simulated test statistics.

Both analytically and via a range of Monte Carlo simulations, Clark and McCracken

(2009b) show that this bootstrap provides valid — asymptotically and in practice — critical

values for testing the null of equal population-level predictive ability between two nested

models. Further evidence is given in Section 6.

4 Finite-Sample Predictive Ability

A test of finite-sample predictive ability addresses a different, but related, question than

the one described in the previous section: Can we use (P −τ+1)−1
∑T−τ

t=R
ft+τ (β̂t) to learn

something about Eft+τ (β̂t)? For this question, it is crucial to recognize that Eft+τ (β̂t)
8We have made available at www.estima.com a computer procedure in the RATS software package that

generates 1-step ahead forecasts, test statistics, and asymptotic critical values.
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depends on β̂t and not the unknown true value of the parameter β∗. In other words,

we want to know whether (P − τ + 1)−1
∑T−τ

t=R
ft+τ (β̂t) can be used to learn something

about the accuracy of the forecasts given that our forecasts are constructed using estimated

parameters.

The importance of such a distinction is perhaps easiest to see when comparing the

forecast accuracy of two nested models. Continuing with the notation above, suppose the

two models take the form yt+τ = x′i,tβ
∗
i + ui,t+τ for i = 1, 2. We know that if β∗12 = 0,

then the two models are identical and hence have equal population-level predictive ability.

We also know that if β∗12 6= 0, then in population, the larger model will forecast more

accurately than the smaller model. In practice, though, even when β∗12 6= 0, the parameters

are estimated with finite samples of data. It is then perfectly reasonable to consider the

option that the smaller model is as accurate as (or even more accurate than) the larger

model despite the fact that β∗12 6= 0. This is particularly likely when the dimension of β∗12

is large relative to the existing sample size.

4.1 Giacomini and White (2006)

The first study to address this type of null hypothesis is Giacomini and White (2006). They

note that two models can have equal forecast accuracy in finite samples if, continuing with

our nested model comparison, the bias associated with estimating the misspecified restricted

model happens to balance with the additional estimation error associated with estimating

β∗12 in the correctly specified unrestricted model. This observation is perfectly true, but

implementing a test for it is much harder, especially given a universe where you don’t want

to have to make extremely restrictive assumptions on the data (such as joint normality,

conditionally homoskedastic and serially uncorrelated forecast errors, etc.). This scenario

is much harder because we know in advance that any asymptotic approach to inference that

allows the parameter estimates to be consistent for their population counterparts will imply

that the unrestricted model is more accurate than the restricted model. In the notation

of the tests of population-level predictive ability and our nested model comparison, this

implies that any asymptotics that allow R to diverge to infinity will fail to be relevant for

the null of equal finite-sample unconditional predictive ability.

As a result, Giacomini and White (2006) dispense with that assumption. More precisely

they show that if the parameter estimates are constructed using a rolling scheme with a
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finite observation window R, then

(P − τ + 1)−1/2
∑T−τ

t=R
(ft+τ (β̂t)− Eft+τ (β̂t))→d N(0, V ), (5)

where V = Sf̂ f̂ = limP→∞ V ar((P − τ + 1)−1/2
∑T−τ

t=R
(ft+τ (β̂t)−Eft+τ (β̂t))). Note that

this differs from the asymptotic variance in West (1996) even when the second and third

terms in Ω are asymptotically irrelevant since Sf̂ f̂ 6= Sff .

This result is extremely powerful and covers a wide range of applications, including

every example in Table 1. Interestingly, by requiring that the forecasts be constructed

using a small, finite, rolling window of observations, Giacomini and White (2006) are able

to substantially weaken many of the most important assumptions needed for the results in

West (1996) and Clark and McCracken (2001, 2005b). In particular, covariance stationarity

of the observables is no longer needed — only that the observables are I(0) with relatively

mild mixing and moment conditions. There is no need for Ω to be positive (though V must

be), and hence both nested and non-nested comparisons are allowed.9

The primary weakness of the results in Giacomini and White (2006) is that their ap-

proach cannot be used with the recursive scheme. The recursive scheme fails because,

absent any other assumptions on the parameter β∗12, as the sample size increases the pa-

rameter estimates β̂t are consistent for their population counterparts and thus estimation

error vanishes. Although the rolling scheme is relatively common among forecasting agents,

it is by no means universal. Moreover, the asymptotics apply only when we think of the

rolling observation window as small relative to the number of out-of-sample observations.

Monte Carlo evidence on the magnitudes of P and R needed for accurate inference is limited.

4.2 Clark and McCracken (2009b)

More recent work by Clark and McCracken (2009b) shows that, in some circumstances,

one can construct a test of equal finite-sample unconditional predictive ability that permits

not only the rolling scheme, but also the recursive scheme. In particular, they consider

the case of testing this null hypothesis when comparing two OLS-estimated linear models

and hence Eft+τ (β̂t) = E[(yt+τ − x′1,tβ̂1,t)2 − (yt+τ − x′2,tβ̂2,t)2] = 0. The asymptotics

are not unlike those from their previous work on equal population-level predictive ability

(described in the previous section) but capture the bias and estimation error associated
9While not the focus of this review, the forecasts can be based on estimators that are Bayesian, nonpara-

metric, or semi-parametric. The key is that R must be small and finite in all cases.
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with, respectively, a misspecified restricted model and a correctly specified, but imprecisely

estimated, unrestricted model.

But as noted above, since their results are asymptotic and the estimation error as-

sociated with the parameter estimates vanishes asymptotically, balancing that estimation

error with a bias component is problematic using standard parameterizations of a linear

regression model. Instead Clark and McCracken (2009b) consider the case in which the

additional predictors in the unrestricted model are “weak” using the following local-to-zero

parameterization:

yt+τ = x′2,tβ
∗
2,R + ut+τ = x′1,tβ

∗
1 + x′12,t(R

−1/2β∗12) + ut+τ . (6)

The intuition for this parameterization is based on an observation: As the sample size

used to estimate the regression parameters increases, the estimation error vanishes at a

root-R rate. If bias due to model misspecification in the smaller (restricted) model is going

to balance with the estimation error, it must also vanish at a root-R rate. To be clear,

we do not take the model in equation (6) as a literal representation of the data, but rather

consider it a tool for modeling how a bias-variance trade-off can exist in large samples as

the size of the sample used for estimation increases.

With this parameterization, on average over the out-of-sample period, the two mod-

els have equal unconditional forecast accuracy if for Bi = (Exi,tx′i,t)
−1, i = 1, 2, J2 =

(0k2×k1 , Ik2×k2)′, F2 = J ′2B2J2, and V = limT→∞ V ar(T−1/2
∑T−τ

s=1
h2,s+τ ),

β∗′22F
−1
2 β

∗
22

tr((−JB1J ′ +B2)V )
= δ,

where δ takes the value ln(1+π)
π and 1 for the recursive and rolling schemes, respectively. In

the case of one-step-ahead forecasts with conditionally homoskedastic errors, this simplifies

since tr((−JB1J
′ +B2)V ) = σ2k2.

However, as was the case for tests of equal population-level forecast accuracy between

two nested models, the asymptotic distributions derived by Clark and McCracken (2009b)

are nonstandard and have representations as functions of stochastic integrals of quadratics

in Brownian motion. Moreover, the asymptotic distributions depend on unknown nuisance

parameters that capture the presence of serial correlation in the forecast errors and condi-

tional heteroskedasticity. Since tabulating critical values in the general case is infeasible, in

the following we present a simple bootstrap (not unlike the one presented previously) that
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can provide asymptotically valid critical values in certain circumstances. In the following,

let π̂ = P/R, Bi(T ) = (T−1
∑T−τ

s=1
xi,sx

′
i,s)
−1, and let V (T ) denote a HAC estimator of the

long-run variance of the OLS moment condition v̂2,s+τx2,s associated with the unrestricted

model.

1. (a) Estimate the parameter vector β∗2 associated with the unrestricted model using

the weighted ridge regression

β̃2,T = (β̃
′
12,T , β̃

′
22,T )′ (7)

= arg min
b2

∑T−τ

s=1
(ys+τ − x′2,sb2)2 s.t. b′2J2F

−1
2 (T )J ′2b2 = δ̂/R,

where δ̂ equals ln(1+π̂)
π̂ tr((−JB1(T )J ′+B2(T ))V (T )) or tr((−JB1(T )J ′+B2(T ))V (T )) for

the recursive or rolling schemes, respectively. Store the fitted values x′2,tβ̃2,T . (b) Estimate

the parameter vector β∗2 associated with the unrestricted model using OLS and store the

residuals v̂2,s+τ .

2. Using NLLS, estimate an MA(τ − 1) model for the OLS residuals v̂2,s+τ such that

v2,s+τ = ε2,s+τ + θ1ε2,s+τ−1 + ...+ θτ−1ε2,s+1. Let ηs+τ , s = 1, ..., T, denote an i.i.d N(0, 1)

sequence of simulated random variables. Define v̂∗2,s+τ = (ηs+τ ε̂2,s+τ+ θ̂1ηs−1+τ ε̂2,s+τ−1 +

...+ θ̂τ−1ηs+1ε̂2,s+1), s = 1, ..., T . Form artificial samples of y∗s+τ using the fixed regressor

structure, y∗s+τ = x′2,sβ̃2,T + v̂∗2,s+τ .

3. Using the artificial data, construct an estimate of the test statistics (e.g., MSE-F ,

MSE-t) as if this were the original data.

4. Repeat steps 2 and 3 a large number of times: j = 1, ..., N .

5. Reject the null hypothesis, at the α% level, if the test statistic is greater than the

(100− α)%-ile of the empirical distribution of the simulated test statistics.

Clark and McCracken (2009b) show that critical values from this bootstrap are asymp-

totically valid in two important special cases. First, if the number of additional predictors

(k2) is 1, then the bootstrap is asymptotically valid and allows for both multiple-step-ahead

forecasts and conditionally heteroskedastic errors. Second, if the forecast horizon (τ) is 1

and the forecast errors are conditionally homoskedastic, then the bootstrap is asymptoti-

cally valid even when the number of additional predictors is greater than 1. But in the

most general case where k2 > 1 and either the forecast horizon is greater than 1 or the

forecast errors are conditionally heteroskedastic, then the bootstrap is not asymptotically

valid. Regardless, Monte Carlo evidence in Clark and McCracken (2009b) suggests that
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even when the bootstrap validity conditions fail, the size distortions are not particularly

severe.

5 Other Dimensions of Predictive Ability

This section briefly reviews existing extensions of the research previously cited on tests

for equal unconditional predictive ability, extensions to real-time data, and some areas for

future research.

5.1 Existing extensions

The research described above establishing the properties of important tests of equal predic-

tive ability generally applies only under some limitations, including covariance stationarity

of the data and an interest in point forecasts from a single model or pair of models. Other

researchers have developed testing methods that address these limitations. For example,

Corradi, Swanson, and Olivetti (2001) extend the results of West (1996), Clark and Mc-

Cracken (2001, 2005b), and McCracken (2007) on tests of equal MSE with non-nested and

nested models to allow for data with unit roots and cointegrating relationships. Their con-

ditional moment-type test of predictive accuracy can be compared against critical values

computed with a conditional p-value approach. Rossi (2005) extends prior theory to tackle

the evaluation of long-horizon forecasts generated with persistent regressors.

Other researchers have developed tests of superior predictive ability for use with multiple

models. White (2000) uses the asymptotics of West (1996) to develop a bootstrap-based ap-

proach to determining whether the best forecast among many is significantly more accurate.

Hansen’s (2005) modified version of White’s test has better power and is less sensitive to

especially poor alternative forecasts. The dependence of the White and Hansen asymptotics

on West (1996) means that these tests are appropriately applied with forecasts from non-

nested models, but not nested models. Hubrich and West (2009) develop some approaches

to testing for equal accuracy at the population level in a small set of nested models. One

such approach involves adjusting t-tests for equal MSE for the impact of parameter estima-

tion error and comparing the maximum test statistic against critical values obtained from

simulations of the maximum of a set of normal random variables.

Finally, other studies have extended existing work on point forecasts by developing tests

for density forecasts. Although most of the density evaluation literature has abstracted
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from forecasts from estimated models (e.g., Christoffersen, 1998), some recent work has

developed testing methods applicable to forecasts from estimated models. Using West

(1996)-type asymptotics, Corradi and Swanson (2006) use bootstrap methods to develop a

density accuracy test that can be applied to forecasts from non-nested models. Amisano

and Giacomini (2007) use the asymptotics of Giacomini and White (2006) to develop a

density test — in its simplest form, a t-test for the equality of the log predictive score —

that can be applied to forecasts from nested or non-nested models, as long as the models

are estimated with a rolling sample of data.

5.2 Real-time data

The aforementioned literature on tests of equal predictive ability has generally ignored the

real-time nature of the data used in many applications. Specifically, most research has

abstracted from the possibility that, at any given forecast origin, the most recent data

is subject to revision. While a data revision process is very difficult to accommodate in

asymptotic theory for forecast tests, out-of-sample tests of equal predictive ability may

be affected significantly by changes in the correlation structure of the data as the revision

process unfolds. This susceptibility to data revisions has three sources: (i) while parameter

estimates are typically functions of only a small number of observations that remain subject

to revision, out-of-sample statistics are functions of a sequence of parameter estimates (one

for each forecast origin t = R, . . . , T − τ), (ii) the predictand used to generate the forecast

and (iii) the dependent variable used to construct the forecast error may be subject to

revision and hence a sequence of revisions contribute to the test statistic. If data subject

to revision possess a different mean and covariance structure than final revised data, tests

of predictive ability using real-time data may have a different asymptotic distribution than

tests constructed using data that is never revised.

To our knowledge, as of this writing, Clark and McCracken (2009a) represents the only

existing extension of tests of equal predictive ability to the case of data subject to revision.

The results of that study indicate data revisions can significantly affect the asymptotic be-

havior of tests of equal population-level predictive ability. For example, for tests applied to

forecasts from non-nested models, West (1996) shows that the effect of parameter estimation

error on the test statistic can be ignored when the same loss function is used for estimation

and evaluation. In the presence of data revisions, this result continues to hold only in the

special case when revisions are news, as defined in Mankiw, Runkle and Shapiro (1984).
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When even some noise is present, parameter estimation error contributes to the asymp-

totic variance of the test statistic and cannot be ignored in inference. As another example,

for nested model tests of equal predictive ability, Clark and McCracken (2001, 2005b) and

McCracken (2007) show that standard test statistics are not asymptotically normal but in-

stead have representations as functions of stochastic integrals. However, when the revision

process contains a noise component, Clark and McCracken (2009a) show that the standard

test statistics diverge with probability one under the null hypothesis. They introduce a

variant of the standard test statistic that is asymptotically standard normal despite being

a comparison between two nested models.

Much remains to be done to extend out-of-sample inference methods to accommodate

real-time data. One particular challenge is to develop methods for testing equal finite-

sample predictive ability in forecasts from real-time data. Another is to develop tests of

density forecasts made with real-time data.

5.3 Topics for future research

Beyond forecast inference with real-time data, there remain many other important topics

for future research. One such topic is the development of tests of predictive ability based on

forecasts from nested models estimated with data incorporating unit roots and cointegrating

relationships. It would also be useful to extend the results of Clark and McCracken (2009b)

on finite-sample predictive ability from their case of nested models to the case of non-

nested models. Another important topic is the optimal choice of the sample split — that

is, how best to divide a given sample between observations for initial estimation and for

forecast evaluation. To this point, there has been no analytical work on this important

practical question. Yet another area for further research would be predictive ability tests

for models that overlap in the sense of Vuong (1989) — the two competing forecast models

are not nested with each other but nest a restricted, baseline model that is, in fact, the

data-generating process.

Perhaps the most glaring omission in this literature is simply a complete characterization

of why one would use out-of-sample methods in the first place. Although arguments in

favor of out-of-sample methods often reference robustness to data mining (e.g., Ashley et

al., 1980), Inoue and Kilian (2004) argue that out-of-sample methods are no more robust to

data-mining than in-sample methods provided appropriate critical values are used. They

further argue, both analytically and via Monte Carlo simulations, that out-of-sample tests
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of predictive ability have lower power than their in-sample counterparts. In our opinion,

the strongest argument in favor of out-of-sample methods is made (albeit opaquely) in Clark

and McCracken (2005a). There they show that the sequential nature of out-of-sample tests

allows them to detect not only predictive ability, but also changes in predictive ability due

to unmodeled structural change that in-sample tests cannot detect by construction.10

6 Monte Carlo Evidence

In the interest of brevity, we focus our Monte Carlo investigation on a limited subset of the

many issues with testing for unconditional predictive ability, with an eye toward current,

relatively unexplored topics. Specifically, our experiments focus on the following issues in

testing for equal MSE in forecasts from nested models: (1) equal accuracy in the population

versus the finite sample and (2) inference based on the asymptotics of Giacomini and White

(2006) versus Clark and McCracken (2009b). Accordingly, our simulation results are mostly

closed related to those of Giacomini and White (2006) and Clark and McCracken (2009b).

These experiments are based on data-generating processes (DGPs) from common macroe-

conomic applications. In all cases, the benchmark forecasting model is a univariate model of

the predictand y; the alternative models add lags of various other variables of interest. The

general null hypothesis is that the forecast from the alternative model is no more accurate

than the benchmark forecast. This general null, however, takes different specific forms: (1)

The models’ forecasts are equally accurate in population, due to the variables in the alter-

native model having no predictive content (coefficients of 0); or (2) the models’ forecasts

are equally accurate in the finite sample, because the relevant coefficients in the alternative

model are nonzero but small.

To distinguish the results in this paper, we depart from the focus of our prior papers in

some important ways. First, in this paper, we focus on forecasts generated under the rolling

scheme and the MSE-t test for equal accuracy. Under a rolling scheme, both the bootstrap

method developed in Clark and McCracken (2009b) and standard normal inference as in

Giacomini and White (2006) are asymptotically valid for inference with the MSE-t test. In

contrast, in our prior work (such as Clark and McCracken, 2009b), we focused on recursive

forecasts and presented only a limited set of results under the rolling scheme. In practice,

though, the distinction between recursive and rolling forecasts is modest; the results we
10Giacomini and Rossi (2009) develop methods of testing for forecast breakdowns based on the asymptotics

of Giacomini and White (2006).
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present here also apply in recursive test results not reported. Second, we consider a larger

and wider array of sample sizes than in our past work. We consider P/R ratios of 0.1,

0.2, 0.5, 1, 2, and 3, with R set at 50, 100, 150, and 200. Finally, as detailed below, for

experiments under the null of equal accuracy in a finite sample, we refine the Monte Carlo

settings of Clark and McCracken (2009b) by using preliminary sets of simulations to adjust

the coefficients of the DGPs to be sure the competing models’ MSEs can be expected to be

equal on average.

6.1 Monte Carlo design

The Monte Carlo design is largely the same as that used by Clark and McCracken (2009b).

The DGPs are based on empirical relationships among U.S. inflation and a range of pre-

dictors, estimated with 1968-2008 data. In the interest of brevity, we focus on a forecast

horizon of one step. For all DGPs, we generate data using independent draws of innovations

from the normal distribution and the autoregressive structure of the DGP. In all cases, our

reported results are based on 5000 Monte Carlo draws and 499 bootstrap replications.

6.1.1 DGPs

DGP 1 is based on the empirical relationship between the change in core inflation (yt) and

the Chicago Fed’s National Activity Index of the business cycle (x1,t, the CFNAI):

yt+1 = −0.4yt − 0.1yt−1 + b11x1,t + ut+1

x1,t+1 = 0.7x1,t + v1,t+1 (8)

var
(
ut+1

v1,t+1

)
=
(

0.8
0.0 0.3

)
.

In the DGP 1 experiments, the alternative (unrestricted) forecasting model takes the

form of the DGP equation for yt+1 (with constant added); the null or benchmark (restricted)

model drops x1,t:

null: yt+1 = β0 + β1yt + β2yt−1 + u0,t+1. (9)

alternative: yt+1 = β0 + β1yt + β2yt−1 + β3x1,t + u1,t+1. (10)

We consider various experiments with different settings of b11, the coefficient on x1,t,

which corresponds to the elements of our theoretical construct β∗12/
√
R in (6). In one set of

simulations (Table 2), the coefficient is set to 0 to make the competing forecasting models

equally accurate in population. In another set of experiments (Table 5), the coefficient is
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set to 0.3, such that the alternative model is expected to be more accurate than the null,

in population and in the finite sample.

In experiments under the null of equal accuracy in the finite sample (Tables 3 and 4),

the coefficient is set to a value that makes the models equally accurate (in expectation)

on average over the forecast sample. We used the asymptotic approximations developed in

Clark and McCracken (2009b) and Monte Carlo experiments to set the coefficient value for

each R,P combination. Specifically, for a given R,P setting, we first use the asymptotics

to determine an equal-accuracy coefficient value. For example, with R = P = 100, the

asymptotics yield a coefficient value of b11 = 0.1166, about one-half of the empirical estimate.

We then conduct two sets of Monte Carlo experiments with a large number of draws,

searching across grids of coefficient values — centered around the asymptotically-set value

— to select a coefficient value that minimizes the average (across Monte Carlo draws)

difference in MSEs from the competing forecasting models.11 This Monte Carlo search

typically results in some small upward adjustment of the asymptotically set coefficient. In

the experiment with R = P = 100, the Monte Carlo refinement yields a coefficient setting

of b11 = 0.1245, which is the value used to generate the DGP 1 results given in Tables 3

and 4 for R = P = 100. Overall, this Monte Carlo refinement yields models that appear

to truly be equally accurate in a finite sample, with average MSE differences (Model 1 less

Model 2) that are at most 0.0001 percentage point in absolute value. By comparison, the

population error variance for the DGP equation is 0.8.

DGP 2 is based on the empirical relationship of the change in core inflation (yt) to the

CFNAI (x1,t), food price inflation less core inflation (x2,t), and import price inflation less

11Specifically, we first consider 11 different experiments, each using 20,000 draws and a modestly different
value of b11, based on a grid of b11 values centered around the asymptotically-determined value for each
given R, P combination. We then pick the coefficient value that yields the lowest (in absolute value) average
(across draws) difference in MSEs. We then consider a second set of 21 experiments, with a more refined grid
of coefficient values and 200,000 draws. The coefficient value that yields the smallest (absolute) difference in
MSEs in this second set of experiments is then used as the coefficient in the DGP simulated for the purpose
of evaluating test properties.
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core inflation (x3,t).12 Based on these data, DGP 2 takes the form

yt+1 = −0.4yt − 0.1yt−1 + b11x1,t + b12x2,t + b13x3,t + ut+1

x1,t+1 = 0.7x1,t + v1,t+1

x2,t+1 = 0.9x2,t − 0.2x2,t−1 + v2,t+1 (11)

x3,t+1 = 1.1x3,t − 0.3x3,t−1 + v3,t+1

var


ut

v1,t+1

v2,t+1

v3,t+1

 =


0.8
0.0 0.3
−0.1 0.0 2.2
0.5 0.1 0.8 9.0

 .

In DGP 2 experiments, the null (restricted) and alternative (unrestricted) forecasting

models take the following forms, respectively:

yt+1 = β0 + β1yt + β2yt−1 + u0,t+1. (12)

yt+1 = β0 + β1yt + β2yt−1 + β3x1,t + β4x2,t + β5x3,t + u1,t+1. (13)

As with DGP 1, we consider experiments with three different settings of the set of bij

coefficients. In the Table 2 simulations of DGP 2, all of the bij coefficients are set to zero,

to make the competing forecasting models equally accurate in population. In another set

of experiments (Table 5), the coefficients are set at b11 = 0.3, b12 = 0.1, and b13 = .015

(roughly their empirical values). With these values, the alternative model is expected to

be more accurate than the null. In the Tables 3 and 4 experiments, the values of the bij

coefficients from the Table 5 experiments are multiplied by a constant less than 1, such

that the null and alternative models are expected to be equally accurate, on average, over

the forecast sample. As described for DGP 1, we used the asymptotic approximations

developed in Clark and McCracken (2009b) and preliminary Monte Carlo experiments to

determine the appropriate coefficient scaling for each R,P combination. For example, in the

experiment with R = P = 100, the asymptotic calculations yield initial DGP 2 coefficient

values of b11 = 0.1327, b12 = 0.0442, and b13 = 0.0066. The Monte Carlo refinement yields

coefficient settings of b11 = 0.1471, b12 = 0.0490, and b13 = 0.0074, which are the values

used to generate the results given in Tables 3 and 4 for R = P = 100. This Monte Carlo

refinement yields models that appear to truly be equally accurate in a finite sample, with
12To simplify the lag structure necessary for reasonable forecasting models, the inflation rates used in

forming variables x2,t and x3,t are computed as two-quarter averages.

20



average MSE differences (model 1 less model 2) that are at most 0.001 percentage point

(the population error variance for the DGP equation is 0.8).

6.2 Results

The results presented below focus on a nominal size of 10 percent (results for 5 percent

are qualitatively similar) and one-sided MSE-t tests. The tests are one-sided because, in

light of the principle of parsimony familiar to forecasters, we take the small model as the

null and consider only rejections of the null in favor of the alternative. However, Giacomini

and White (2006) permit rejections of the larger model in favor of the smaller and conduct

two-sided tests. Accordingly, we also report some results based on two-sided tests.

For each experiment, the MSE-t test is compared against three different critical values.

The first, appropriate for the null hypothesis of equal accuracy in population, is com-

puted with a fixed regressor: population EPA bootstrap developed in Clark and McCracken

(2009b) (described here in Section 3.2). The second, appropriate for the null hypothesis of

equal accuracy in the finite sample, is computed with a fixed regressor: finite-sample EPA

developed in Clark and McCracken (2009b) (described in Section 4.2). Testing for equal

accuracy in the finite sample effectively raises the bar relative to testing for equal accu-

racy in population (literally, yielding higher right-tail critical values from the finite-sample

EPA bootstrap than from the population EPA bootstrap). Finally, the test is compared

against standard normal critical values, which should be appropriate under the null of equal

accuracy in a finite sample, based on the asymptotics of Giacomini and White (2006).

6.2.1 Equal accuracy at the population level

Table 2 presents Monte Carlo results for DGPs in which, in population, the competing

forecasting models are equally accurate. In these DGPs, the x variables considered have no

predictive content for y. As a result, while the models are equally accurate in population,

in a finite sample the null forecasting model should be expected to be more accurate. In

these experiments, using critical values from the population EPA bootstrap consistently

yields rejection rates of about the nominal size of 10 percent. Across all of the experiments,

size ranges from 9.4 to 12.6 percent, with a median of 10 percent. Other critical values

typically yield rejection rates well below 10 percent, and sometimes close to 0. Under the

finite-sample EPA bootstrap, rejection rates range from 0 to 7.4 percent, with a median of

2 percent. Using standard normal critical values yields rejection rates between 0 and 12.6
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percent, with a median of 2 percent (in almost all cases, the test is undersized, but for a

few exceptions with small P ).

6.2.2 Equal accuracy in the finite sample

Table 3 presents results for DGPs in which the bij coefficients on some x variables are

nonzero but small enough that, on average, the null and alternative forecasting models can

be expected to be equally accurate over the sample considered. Generating critical values

from the finite-sample EPA bootstrap works well: With this approach to critical values, the

MSE-t test has size close to 10 percent for nearly all combinations of DGP and sample size.

With DGP 1, size ranges from 9.0 to 11.7 percent, with a median of 10 percent. With DGP

2, size ranges from 9.4 to 16.6 percent; the median is 11 percent. The oversizing occurs

with small R (R = 50) and large P/R (P/R = 2 and 3). More generally, with DGP 2, it

is clear that, given R, the rejection rate rises with P/R. For example, with R = 100, the

rejection rate based on the finite-sample EPA bootstrap increases from 9.8 percent at P

= 10 to 12.9 percent at P = 300. (Under the recursive forecasting scheme, this pattern is

much less pronounced, with the result that the finite-sample EPA bootstrap always yields

nominal size of close to 10 percent.)

Using critical values from the standard normal distribution does not work as well: The

MSE-t test compared against normal critical values is typically undersized, but oversized

for small P . With DGP 1, size varies from 3.9 to 17.1 percent; the median rejection rate is

7 percent. With DGP 2, the size range is 5.2 to 17.7 percent, with a median of 8 percent. In

contrast to the pattern noted for the finite-sample EPA bootstrap results, when the MSE-t

test is compared against standard normal critical values, the rejection rate falls as P/R

rises. As an example, with DGP 2 and R = 100, the rejection rate based on normal critical

values falls from 18.8 percent at P = 10 to 5.8 percent at P = 300. This pattern runs

contrary to the asymptotic results of Giacomini and White (2006), which imply that the

test should be more accurate when P is large. It is possible, of course, that the asymptotics

“kick in” very slowly. As a check, we ran two additional experiments with DGP 1, using (R,

P ) = (100, 1000) and (100, 2000), respectively. The much larger values of P are associated

with very small increases in size, to 4.8 (P = 1000) and 5.2 percent (P = 2000).13

Testing based on the population EPA bootstrap may be seen as an unreliable indicator
13In the same experiments, comparing the test against critical values from the finite-sample EPA bootstrap

yields rejection rates of 12.5 percent (P = 1000) and 13.7 percent (P = 2000).
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of equal forecast accuracy in a finite sample. Comparing the MSE-t test against critical

values from the population EPA bootstrap generally yields rejection rates far in excess of

10 percent. The rejection rate ranges from 13.9 to 50.9 percent in DGP 1 experiments and

from 16.9 to 79.8 percent in DGP 2 experiments. As in prior studies such as Kilian (1999)

and Clark and McCracken (2006), using a restricted VAR bootstrap, rejection rates rise as

P increases. As an example, with DGP and R = 150, the rejection rate increases from 14.1

percent with P = 15 to 47.3 percent with P = 450.

With the performance of standard normal-based testing less favorable in our Table 3

results than the findings of Giacomini and White (2006) suggest, in Table 4 we adopt their

convention and report two-sided test results. With standard normal inference, two-sided

rejection rates (Table 4) are consistently higher than one-sided rejection rates (Table 3).

This pattern of course suggests the finite sample distribution is shifted somewhat to the

left relative to the standard normal distribution. With two-sided testing, the MSE-t test

compared against normal critical values is typically undersized, but oversized for small P .

However, the undersizing is less severe and the oversizing more severe than with one-sided

testing. With DGP 1, two-sided size varies from 7.3 to 20.9 percent; the median rejection

rate is 10 percent. With DGP 2, the size range is 6.3 to 20.8 percent, with a median

of 9 percent. In contrast, using critical values from the finite-sample EPA bootstrap for

a two-sided MSE-t test yields quite accurate outcomes, with size consistently close to 10

percent. Across the DGP 1 and DGP 2 experiments, the two-sided rejection rate based on

the finite-sample EPA bootstrap ranges from 9.2 to 11.6 percent.

6.2.3 Alternative model most accurate

Table 5 provides results for DGPs in which the bij coefficients on some x variables are large

enough that the alternative model can be expected to be more accurate than the null model

— in population and in the finite sample. Not surprisingly, using critical values from the

population EPA bootstrap typically yields the highest rejection rate. Across experiments,

the rejection rate ranges from 18.2 to 100 percent, with a median of 72 percent. Comparing

the MSE-t test against critical values estimated with the finite-sample EPA bootstrap yields

somewhat lower rejection rates, ranging from 12.3 to 100 percent, with median of 40 percent.

Rejection rates are systematically (for every R, P combination) lower with the finite-sample

EPA bootstrap than the population EPA bootstrap because the former raises the bar, by

testing the null of equal accuracy in the finite sample instead of equal accuracy in population.
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Using standard normal critical values yields rejection rates between 17.1 and 100 percent,

with a median of 33 percent. For small P , the normal-based tests have power comparable

to the population EPA bootstrap-based tests. But for large P , the normal-based tests have

relatively low power. Consider, for example, experiments with DGP 1 and R = 100. The

rejection rate based on normal critical values rises from 21.0 percent at P = 10 to 67.1

percent at P = 300. The rejection rate based on the population EPA bootstrap is similar

at P = 10 (22.8 percent) but much higher at P = 300 (97.9 percent).

7 Conclusion

This chapter provides an overview of pseudo-out-of-sample tests of unconditional predictive

ability. Unconditional and conditional predictive ability differ in that the former focuses on

E(yT+1−ŷT+1)2, whereas the latter focuses on E[(yT+1−ŷT+1)2|=T ], where E[.|=T ] denotes

the conditional expectation operator given an information set available to the forecasting

agent at time T . The chapter first reviews in some detail forecast evaluation at the

population level, under which estimated model coefficients converge to their population

values. This analysis covers both non-nested and nested forecasting models. The chapter

then reviews recent work on forecast evaluation at the finite-sample level, under which

forecast accuracy is assessed on the basis of estimated model coefficients. This analysis

focuses on nested models. We then provide a brief overview of other aspects of predictive

ability that have been addressed in existing work or remain areas for further research. We

conclude by presenting new Monte Carlo evidence on tests for equal accuracy in population

versus the finite sample and on inference based on two alternative approaches developed in

recent work.
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Table 2. Monte Carlo Rejection Rates, Equal Population-Level Accuracy
(one-sided MSE-t test, 1-step ahead rolling forecasts, nominal size = 10%)

DGP 1 DGP 2
fixed fixed fixed fixed

regressor: regressor: standard regressor: regressor: standard
population finite-sample normal population finite-sample normal

EPA EPA EPA EPA
R=50, P=5 0.110 0.074 0.126 0.126 0.064 0.113
R=50, P=10 0.116 0.061 0.087 0.118 0.044 0.061
R=50, P=25 0.107 0.040 0.041 0.115 0.025 0.023
R=50, P=50 0.102 0.023 0.015 0.113 0.009 0.005
R=50, P=100 0.104 0.008 0.004 0.109 0.002 0.001
R=50, P=150 0.103 0.005 0.002 0.110 0.001 0.000
R=100, P=10 0.105 0.069 0.096 0.116 0.059 0.083
R=100, P=20 0.101 0.054 0.063 0.115 0.044 0.050
R=100, P=50 0.105 0.039 0.033 0.103 0.022 0.018
R=100, P=100 0.106 0.025 0.014 0.109 0.010 0.005
R=100, P=200 0.105 0.011 0.004 0.103 0.003 0.001
R=100, P=300 0.108 0.006 0.001 0.096 0.001 0.000
R=150, P=15 0.101 0.065 0.083 0.107 0.057 0.071
R=150, P=30 0.098 0.053 0.056 0.102 0.039 0.041
R=150, P=75 0.101 0.039 0.030 0.105 0.023 0.019
R=150, P=150 0.102 0.025 0.013 0.099 0.009 0.005
R=150, P=300 0.098 0.007 0.003 0.099 0.002 0.000
R=150, P=450 0.100 0.005 0.001 0.104 0.000 0.000
R=200, P=20 0.098 0.062 0.074 0.105 0.054 0.065
R=200, P=40 0.097 0.052 0.052 0.104 0.041 0.042
R=200, P=100 0.098 0.037 0.028 0.102 0.023 0.017
R=200, P=200 0.098 0.023 0.012 0.101 0.009 0.004
R=200, P=400 0.100 0.011 0.002 0.103 0.001 0.000
R=200, P=600 0.102 0.005 0.001 0.094 0.001 0.000

Notes:
1. The data-generating processes are defined in equations (8) and (11). In these experiments, the coefficients
bij = 0 for all i, j, such that the competing forecasting models are equally accurate in population, but the
null forecasting model should be expected to be more accurate in the finite-sample.
2. For each artificial data set, forecasts of yt+1 are formed recursively using estimates of equations (9) and
(10) in the case of the DGP 1 experiments and equations (12) and (13) in the case of the DGP 2 experiments.
These forecasts are then used to form the t-test for equal MSE, given in equation (3). R and P refer to the
number of in–sample observations and forecasts, respectively.
3. In each Monte Carlo replication, the simulated test statistics are compared against standard normal
and bootstrap critical values, using a significance level of 10%. Sections 3.2 and 4.2 describe the bootstrap
procedures.
4. The number of Monte Carlo simulations is 5000; the number of bootstrap draws is 499.
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Table 3. Monte Carlo Rejection Rates, Equal Finite-Sample Accuracy
(one-sided MSE-t test, 1-step ahead rolling forecasts, nominal size = 10%)

DGP 1 DGP 2
fixed fixed fixed fixed

regressor: regressor: standard regressor: regressor: standard
population finite-sample normal population finite-sample normal

EPA EPA EPA EPA
R=50, P=5 0.148 0.101 0.171 0.197 0.104 0.177
R=50, P=10 0.171 0.097 0.132 0.234 0.102 0.134
R=50, P=25 0.215 0.102 0.100 0.346 0.115 0.104
R=50, P=50 0.284 0.101 0.072 0.493 0.126 0.082
R=50, P=100 0.405 0.104 0.053 0.674 0.143 0.070
R=50, P=150 0.509 0.117 0.051 0.798 0.166 0.068
R=100, P=10 0.141 0.093 0.129 0.182 0.098 0.138
R=100, P=20 0.157 0.092 0.106 0.230 0.105 0.119
R=100, P=50 0.205 0.095 0.080 0.320 0.107 0.095
R=100, P=100 0.287 0.100 0.063 0.459 0.108 0.071
R=100, P=200 0.403 0.103 0.046 0.649 0.127 0.061
R=100, P=300 0.490 0.112 0.046 0.761 0.129 0.058
R=150, P=15 0.141 0.098 0.119 0.178 0.099 0.123
R=150, P=30 0.158 0.090 0.094 0.211 0.095 0.100
R=150, P=75 0.216 0.100 0.081 0.305 0.099 0.082
R=150, P=150 0.271 0.092 0.055 0.448 0.112 0.070
R=150, P=300 0.398 0.105 0.051 0.632 0.111 0.052
R=150, P=450 0.473 0.097 0.039 0.753 0.121 0.053
R=200, P=20 0.139 0.094 0.109 0.169 0.098 0.113
R=200, P=40 0.156 0.091 0.091 0.204 0.094 0.098
R=200, P=100 0.203 0.092 0.073 0.316 0.105 0.085
R=200, P=200 0.287 0.101 0.057 0.437 0.101 0.063
R=200, P=400 0.384 0.094 0.040 0.630 0.107 0.053
R=200, P=600 0.471 0.099 0.040 0.749 0.117 0.052

Notes:
1. See the notes to Table 2.
2. In these experiments, the DGP coefficients bij = 0 are scaled such that the null and alternative models
are expected to be equally accurate in the finite-sample.
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Table 4. Monte Carlo Rejection Rates, Equal Finite-Sample Accuracy: Two-Sided
(two-sided MSE-t test, 1-step ahead rolling forecasts, nominal size = 10%)

DGP 1 DGP 2
fixed fixed fixed fixed

regressor: regressor: standard regressor: regressor: standard
population finite-sample normal population finite-sample normal

EPA EPA EPA EPA
R=50, P=5 0.131 0.115 0.209 0.150 0.105 0.208
R=50, P=10 0.136 0.099 0.146 0.168 0.099 0.147
R=50, P=25 0.161 0.100 0.117 0.241 0.102 0.115
R=50, P=50 0.213 0.097 0.101 0.369 0.103 0.095
R=50, P=100 0.300 0.093 0.086 0.555 0.106 0.078
R=50, P=150 0.389 0.095 0.074 0.707 0.116 0.073
R=100, P=10 0.126 0.108 0.148 0.142 0.108 0.153
R=100, P=20 0.126 0.100 0.122 0.165 0.107 0.128
R=100, P=50 0.154 0.099 0.109 0.220 0.103 0.104
R=100, P=100 0.209 0.099 0.096 0.335 0.099 0.082
R=100, P=200 0.298 0.092 0.081 0.529 0.101 0.070
R=100, P=300 0.380 0.099 0.077 0.657 0.103 0.067
R=150, P=15 0.126 0.108 0.135 0.135 0.105 0.135
R=150, P=30 0.127 0.100 0.115 0.151 0.101 0.114
R=150, P=75 0.159 0.102 0.107 0.209 0.100 0.096
R=150, P=150 0.193 0.095 0.096 0.328 0.100 0.083
R=150, P=300 0.294 0.103 0.087 0.511 0.094 0.067
R=150, P=450 0.367 0.096 0.073 0.648 0.102 0.067
R=200, P=20 0.121 0.106 0.126 0.130 0.102 0.121
R=200, P=40 0.127 0.104 0.117 0.147 0.105 0.112
R=200, P=100 0.150 0.095 0.101 0.216 0.097 0.092
R=200, P=200 0.204 0.099 0.095 0.320 0.099 0.085
R=200, P=400 0.276 0.095 0.081 0.510 0.099 0.070
R=200, P=600 0.357 0.100 0.074 0.641 0.101 0.063

Notes:
1. See the notes to Table 2.
2. In these experiments, the DGP coefficients bij = 0 are scaled such that the null and alternative models
are expected to be equally accurate in the finite-sample.
3. In these experiments, the MSE-t test is compared against two-sided critical values, rather than one-sided
critical values as in Tables 2, 3, and 5.
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Table 5. Monte Carlo Rejection Rates, Alternative Model Best
(one-sided MSE-t test, 1-step ahead rolling forecasts, nominal size = 10%)

DGP 1 DGP 2
fixed fixed fixed fixed

regressor: regressor: standard regressor: regressor: standard
population finite-sample normal population finite-sample normal

EPA EPA EPA EPA
R=50, P=5 0.182 0.123 0.201 0.230 0.124 0.206
R=50, P=10 0.237 0.145 0.189 0.305 0.139 0.179
R=50, P=25 0.345 0.176 0.173 0.480 0.189 0.175
R=50, P=50 0.506 0.227 0.171 0.683 0.249 0.176
R=50, P=100 0.728 0.328 0.208 0.875 0.361 0.212
R=50, P=150 0.822 0.409 0.250 0.956 0.457 0.254
R=100, P=10 0.228 0.157 0.210 0.302 0.178 0.231
R=100, P=20 0.310 0.198 0.222 0.430 0.236 0.259
R=100, P=50 0.516 0.309 0.275 0.695 0.379 0.346
R=100, P=100 0.739 0.443 0.338 0.913 0.584 0.482
R=100, P=200 0.929 0.679 0.523 0.994 0.837 0.709
R=100, P=300 0.979 0.816 0.671 0.999 0.931 0.849
R=150, P=15 0.273 0.195 0.233 0.349 0.221 0.261
R=150, P=30 0.377 0.252 0.262 0.525 0.320 0.331
R=150, P=75 0.617 0.406 0.362 0.822 0.546 0.500
R=150, P=150 0.852 0.621 0.504 0.977 0.802 0.720
R=150, P=300 0.984 0.866 0.751 1.000 0.972 0.938
R=150, P=450 0.998 0.961 0.905 1.000 0.997 0.990
R=200, P=20 0.293 0.217 0.241 0.412 0.273 0.307
R=200, P=40 0.428 0.300 0.298 0.594 0.394 0.401
R=200, P=100 0.710 0.501 0.448 0.889 0.668 0.624
R=200, P=200 0.920 0.745 0.638 0.994 0.912 0.860
R=200, P=400 0.997 0.952 0.893 1.000 0.997 0.990
R=200, P=600 1.000 0.993 0.972 1.000 1.000 1.000

Notes:
1. See the notes to Table 2.
2. In these experiments, the coefficients bij = 0 are set to values (given in section 6.1) large enough that the
alternative model is expected to be more accurate than the null model.
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