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1 Introduction

The unemployment rate is a key macroeconomic indicator and is the foundation of a number of

theoretical or empirical relationships such as the Phillips curve and Okun’s Law. An important

element of these relationships is the so-called natural rate of unemployment. The natural rate is

often defined as the non-accelerating inflation rate of unemployment– that is, the rate of unem-

ployment which applies no upward or downward pressure on inflation. The natural rate, however,

is an unobserved quantity, typically estimated in multivariate models as the trend or the permanent

component of unemployment.

Despite (or perhaps because of) its potential significance for policy discussions, recent studies

have questioned the validity of the natural rate and, in particular, the Phillips curve relationship

[e.g., Galí, Gertler, and López-Salido (2005); Ball and Mankiw (2002)]. The Phillips curve is

an apparent empirical relationship between inflation and the unemployment rate in which, at the

natural rate, inflation is stable. Thus, in order to validate the Phillips curve relationship, one

would need to accurately estimate the natural rate, requiring in turn an empirical model of the

unemployment rate.

Many classes of empirical models have been estimated with the unemployment rate, often with

the goal of obtaining the natural rate. First, smooth-transition autoregressions (STAR) have been

used extensively to study unemployment [e.g., Skalin and Teräsvirta (2002); Deschamps (2008)].

The smooth transition models have the appealing feature that the threshold rate of unemployment

may determine the evolution of inflation. Second, trend-cycle decompositions (and unobserved

components) can separate the permanent and temporary components of unemployment [e.g., Clark

(1989); Jaeger and Parkinson (1994); Sinclair (2009); Basistha and Nelson (2007); Doménech and

Gómez (2006)]. Standard unobserved components models often identify the permanent component

as that which evolves as a unit root. The transitory component, then, is the stationary portion of

the decomposition often interpreted as the cyclical component. Finally, Markov-switching models

can model a shifting relationship between inflation and unemployment [e.g., Phelps and Zoega

(1998); Chauvet, Juhn, and Potter (2001); Owyang (2001)].

One of the benefits of the latter two models is that the natural rate can move across time as

the state of the economy changes. A number of studies have found evidence in favor of a time-
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varying natural rate [see, for example, Summers (1986); Gordon (1997, 1998); Ball and Mankiw

(2002); many others]. The time-varying natural rate models can account for changes in labor force

participation, discouraged workers, changes in unemployment compensation, and expectations of

future policies.

In this paper, we propose an extension of the STAR model [Granger and Teräsvirta (1993)]

which allows for potential time-variation of the natural rate. In particular, we construct a STAR

model in which the latent threshold is both endogenous and time-varying. In addition, we incor-

porate an error-correction term which depends on the deviation of unemployment from the latent

threshold. An estimate of a time-varying threshold level of unemployment, for example, might

serve as a meaningful estimate of the natural rate of unemployment. More precisely, within a STAR

framework, one might call the time-varying threshold the “tipping level” rate of unemployment,

at which the mean and dynamics of the unemployment rate shift. In addition, once the threshold

level is allowed to be time-varying, one can add an error-correction term– between the lagged level

of unemployment and the lagged threshold level– to the autoregressive terms in the STAR model.

In this way, the time-varying latent threshold level serves dual roles: as a demarcation between

regimes and as part of an error-correction term.

In the literature, there are models with multiple levels for the threshold in multiple-regime mod-

els, but the thresholds themselves are constant across time. In terms of a time-varying threshold,

only special cases have appeared in the literature so far. Dueker et al. (2010) present a model

in which the threshold level varies as a function of another observable variable. This approach is

akin to older models of heteroscedasticity, where the variance was posited to be a function of an

observable variable.

Because the type of time-varying threshold we consider makes maximum likelihood estimation

impossible, we estimate the model in a Bayesian environment. Lopes and Salazar (2006) proposed

using MCMC to estimate smooth transition models. They use a joint Metropolis-Hastings (MH)

step to estimate the hyperparameters of the transition function. We take a similar approach but

split the estimation of the transition hyperparameters. This becomes necessary because of both

the time-variation in the threshold and because the threshold appears as the latent attractor in

the error-correction term. In addition, the nonlinearity in the transition function requires a more

complicated proposal density; in this case, we use the unscented Kalman filter– a nonlinear version
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of the classic Kalman filter– to obtain the hyperparameters of a normal proposal.

We find our time-varying threshold tracks unemployment in a manner similar to an HP-filtered

trend. However, our threshold is typically smoother than the filtered trend. In addition, we find

a negative relationship between the inflation rate and the cyclical component of unemployment,

defined as the difference between the actual unemployment rate and the threshold. This finding

is consistent with a Phillips curve-type relationship.

The rest of the paper develops as follows: Section 2 presents the STAR model with the endoge-

nous, time-varying threshold. Section 3 outlines the sampler used for the MCMC estimation. In

particular, we provide details of the MH step using the unscented Kalman filter proposal for the

time-varying threshold. Section 4 presents the empirical results. Section 5 discusses the results

in the context of the time varying Phillips curve models. Section 6 concludes.

2 The Time-varying Threshold Model

Let yt be an (n× 1) vector of variables of interest. Define two separate p-lag processes, y0t and

y1t, as

y0t = α0 +

p0∑
i=1

θ0iyt−i + ε0t

and

y1t = α1 +

p1∑
i=1

θ1iyt−i + ε1t,

where ε0t ∼ N (0n,Ω0) and ε1t ∼ N (0n,Ω1). Then, the standard smooth-transition autoregression

model [Granger and Teräsvirta (1993)], STAR(p), can be thought of as a combination of these two

parameterized processes:

yt = π (zt−1) y0t + [1− π (zt−1)] y1t, (1)

where π (zt−1) is a transition function, p = max {p0, p1}. The transition function determines

the weights of each autoregression on the path of yt in terms of the two latent regimes defined by

π (zt−1) = 0 and π (zt−1) = 1. The path of the economy is determined by π (zt−1), which is bounded
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by zero and one and a function of past values of the driving variable, zt−1. When π (zt−1) = 0,

the steady-state yt is α0 [1−
∑p

i=1 θ0i]
−1. Conversely, when π (zt−1) = 1, the steady-state yt is

α1 [1−
∑p

i=1 θ1i]
−1.

Figure 1 (transition function) about here

The transition function depends on the threshold variable, zt−1, which influences the state of

the economy. While the transition function can take a number of forms, we assume the following

representation1:

π (zt−1) = Φ (γ (zt−1 − z∗)) , (2)

where γ is a slope parameter, z∗ is a (fixed) threshold, and Φ (.) is the normal cdf. To normalize

the regimes, we impose γ < 0. In (2), the regime process is determined by the sign of the deviation

of zt−1 from the threshold z∗. If zt is less than z∗, the transition function, π (zt−1), moves further

toward the first regime (in this case, normalized to π (zt−1) = 1). Figure 1 plots a number of

parameterizations of the transition function for fixed z∗. Increasing the magnitude of γ increases

the transition speed between regimes.

Figure 2 (3D time-varying transition function) about here

We are interested in the case in which the threshold parameter, z∗, varies over time. This

might occur in a number of cases. For example, in a model of unemployment, we may believe the

natural rate is time varying. Alternatively, we could be modeling a time-varying inflation target

in a Taylor rule. We can rewrite (2) to account for this potential time-variation:

π
(
zt−1; z

∗
t−1
)

= Φ
(
γ
(
zt−1 − z∗t−1

))
, (3)

where Φ (.) is the normal cdf. In addition, we need to specify a process for the evolution of the

time-varying threshold. Figure 2 plots the transition function with time-varying z∗t . Suppose that

the time-varying threshold is an autoregressive process:

1We refer the reader to van Dijk, Teräsvirta, and Franses (2002) for a review of alternative representations for
the transition function. The estimation algorithm outlined below generalizes to any number of alternative transition
functions.

4



z∗t = λ0 +
m∑
j=1

λjz
∗
t−j + ut, (4)

where ut is normalized to have unit variance.2 The threshold innovation may be correlated with

the shocks to the observable data,

Cov(εt, ut) = ρ,

where ρ is a vector of parameters that governs this cross-correlation. For simplicity, we abstract

from potential regime-dependence in the error terms so that εt ∼ N (0,Ω) and vt = [εt, ut]
′, where

vt ∼ N

0,

 Ω ρ

ρ 1


 .

Because we allow for a time-varying threshold, we can introduce an error-correction term into

the threshold autoregression:

yt = π
(
zt−1; z

∗
t−1
) [
α0 +

p∑
i=10

θ0iyt−i + Γ0
(
zt−1 − z∗t−1

)]
(5)

+
[
1− π

(
zt−1; z

∗
t−1
)] [

α1 +

p∑
i=1

θ1iyt−i + Γ1
(
zt−1 − z∗t−1

)]
+ εt,

where Γ0 and Γ1 are the error-correction coeffi cients. Given the specification of the transition

function, we have a regime change when zt rises above or falls below from z∗t . If the first variable

in y is the first difference of the threshold variable y1t = ∆zt, then there is a natural interpretation

to the error correction term. Essentially, the error correction term pushes zt back toward the

threshold.

3 Estimation

Because the time-varying latent threshold enters the regime weights, π (zt−1) and 1 − π (zt−1),

the model cannot be estimated by maximum likelihood. It is also not possible to derive exact

2The threshold could also be a function of exogenous shifters as in Dueker et al. (2010).
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conditional distributions for Gibbs sampling. Instead, an MH algorithm [Chib and Greenberg

(1995)] is needed for Bayesian estimation of this model. The MH algorithm generates a draw from

the target distribution by first drawing a candidate from a proposal density and then accepting

or rejecting the candidate based on a probability determined, in part, by the model likelihood.

The key to the MH step is to find a tractable proposal density as close as possible to the target

distribution for the latent threshold series, {z∗t }Tt=1.

The algorithm partitions the set of model parameters into four blocks, including one block

that draws the time-varying threshold. The parameter groupings for Markov Chain Monte Carlo

estimation of the model are: (1) Ψ = [α,θ,Γ], the coeffi cients in the observation equation; (2)

λ, the coeffi cients in the latent variable equation; (3) Σ = [Ω, ρ], the elements in the variance-

covariance matrix for joint system; (4) γ, the coeffi cient in the transition function; and (5) {z∗t }Tt=1,

the set of latent time-varying thresholds. We can combine the estimation of the first and second

blocks. The priors for each of the parameter blocks, their prior distributions, and their prior

hyperparameters are given in Table 1, where κ = n (4 + p0 + p1) +m+ 1.

The following subsections discuss the methods used to generate draws from each parameter

block’s conditional distribution.3 The sampler is then executed for 10,000 iterations, discarding

the first 5,000 before forming the joint posterior.

3.1 Drawing Ψ,λ conditional on γ,Σ, and {z∗t }Tt=1

Conditional on π (zt−1), drawing from the posterior distributions for the parameters of (6) is a

straightforward application of Chib (1993) and Chib and Greenberg (1996). We can rewrite (5) in

the following form:

yt = Ψxt + εt, (6)

where

xt =

[
π (zt−1) y†t (1− π (zt−1)) y†t

]
,

and

y†t =
[
1,yt−1, ...,yt−p,

(
zt−1 − z∗t−1

)]
.

3Appendix 1 contains the parameterization for the prior.
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Then, we can stack these with the latent threshold, z∗t . Then, define

ỹt = Σ−1/2

 yt

z∗t


and

x̃t = Σ−1/2

 xt 01×2

0(4+2p)×1

[
1 z∗t−1

]
 .

Given the prior N (m0,M0), we define X and Y as the time-stacked vectors of x̃t and ỹt, respec-

tively. Then, the joint parameter vector can be drawn from

 Ψ′

λ

 ∼ N (m,M) ,

where

M =
(
M−10 + X′X

)−1
and

m = M
(
M−10 m0 + X′Y

)
.

3.2 Drawing γ conditional on Ψ,λ,Σ, and {z∗t }Tt=1

The draw of the transition function parameters is slightly more problematic. Given a uniform

prior, the posterior for γ is intractable. However, γ can be drawn from an MH step. Then, a

candidate, γ̂, can be drawn from the proposal density:

γ̂ ∼ U (κ1, κ2) ,

κ1 < κ2 < 0, and accepted with probability ag = min {Ag, 1}, where
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Ag =

∏
t φ (yt|π (zt−1|γ̂,z∗t ) ,Ψ,Σ)∏

t φ
(
yt|π

(
zt−1|γ[i],z∗t

)
,Ψ,Σ

) ,
γ[i] represents the last accepted value of γ, and φ (.) is the normal pdf.

3.3 Drawing Ω,ρ conditional on Ψ,λ, γ, and {z∗t }Tt=1

To draw the variance-covariance matrix of the observables equation, Ω, suppose Ω−1 has the prior

W
(
$0
2 ,

D0
2

)
. Then, the posterior is

Ω−1 ∼W
(
$0 + T

2
,
D0 + εtε

′
t

2

)
,

where W (., .) represents the Wishart distribution and εt = yt − π (zt−1) y0t − [1− π (zt−1)] y1t.

Once we obtain a draw for the observables variance-covariance matrix, the correlations between the

observables errors and the threshold errors, ρi = Cov(εit, ut), can be drawn. Define the vector ϕ

such that

ut = ϕ′εt + νt,

where νt ∼ N (0, 1). Then, if ϕ has prior N (f0, F0), it can be drawn from N (f ,F), where

F =
(
F−10 + ε′ε

)−1
and

f = F
(
F−10 f0 + ε′u

)
.

3.4 Drawing {z∗t }Tt=1 conditional on Ψ,γ, λ, and Σ

The last step in the sampler is to draw the series of latent thresholds. This draw, as indicated

above, is complicated by the fact that the posterior distribution is intractable and by the fact that

the transition function is nonlinear. We can solve the first problem with an MH step; however,

the choice of the proposal density in the MH step is made more diffi cult by the nonlinearity. In

some nonlinear models [e.g., Hamilton’s (1989) Markov-switching model], the posterior distribution
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for the latent variable can be computed analytically via the Kalman filter. We take a similar

approach here, accounting for the nonlinearity by employing a variation of the Kalman filter using

the unscented transformation.

We can rewrite the model as the state equation in a state-space representation:

xt = g(xt−1) + εt, (7)

where the nonlinear function g(.) contains, among others, the transition function. Given this state-

space representation, inferred values for the state variable xt – which here includes the data of

interest, yt; the driving data, zt; and the latent threshold z∗t – can be obtained from the unscented

Kalman filter (UKF). The UKF is a nonlinear filter that serves as an alternative to the extended

Kalman filter, which uses first-order Taylor-series approximations to any nonlinear functions in the

measurement and transition equations. Instead, the UKF tracks the state variable by computing

its distribution across a set of deterministic points called sigma points.4

The unscented transformation applies the nonlinear function g (.) on each of the sigma points.

The corresponding prediction or update in the Kalman filter is taken as the weighted sum of the

transformed sigma points. Let

χp =


x , for p = 0

x +
(√

(L+ ζ)P
)
p

, for p = 1, ..., L

x−
(√

(L+ ζ)P
)
p−L

, for p = L+ 1, ..., 2L

(8)

define the sigma points for any stage of the filter, where ζ = a2 (L+ κ) − L. Here, a and κ are

user-chosen parameters that govern the spread and scale of the cloud of sigma points, respectively,

and
(√

X
)
i
is the ith column of the lower triangular Cholesky factorization of the square matrix

X. The matrix P is the uncertainty surrounding the state vector x. Given the set of sigma points,

we propagate {χp} through the function g (.) to recover a prediction for each of the sigma points:

χ̃p = g (χp) , for p = 0, ..., 2L.

4See Julier and Uhlmann (1997) and Wan and van der Merwe (2001).
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The predicted state vector, x̃, is the weighted sum of the χ̃p’s. The updated state vector is obtained

from propagated predicted state vector. Details of the algorithm are provided in the appendix.

The series of latent thresholds, {z∗t }
T
t=1, are elements of the state vector, xt. The UKF yields

smoothed estimates of the state vector for (7), x̂st , and its uncertainty, P
s
t , for each time period.

This output of the UKF can be thought of as the hyperparameters of a proposal density for the MH

algorithm used to draw the latent thresholds. Given x̂st and P
s
t , the candidate ẑ

∗
t can be drawn as

a subvector of xt:

ẑ∗t ∼ N (x̂szt, P
s
zt) ,

where the subscripted z indicates the truncation of the state vector. The candidate is accepted

with probability az = min {Az, 1}, where

Az =

∏
t φ (yt|π (zt−1|γ,ẑ∗t ) ,Ψ,Σ)∏

t φ
(
yt|π

(
zt−1|γ,z∗[i]t

)
,Ψ,Σ

) ,
where, as above, the superscript [i] represents the past accepted value.

4 An Application to the U.S. Unemployment Rate

We estimate the system, (3), (4), and (5), using the Bayesian algorithm described above. For

our application, we employ the unemployment rate, inflation, and a short term interest rate. In

addition, we choose one lag for the threshold evolution (i.e., m = 1) and three lags for the VAR

(i.e., p = 3).

4.1 Data

Figure 3 (data) about here

Estimation of the model requires two sets of possibly overlapping data. First, we require a

set of observables for yt. In this case, we use the change in the monthly unemployment rate,

inflation, and an interest rate. The unemployment rate is the annualized monthly, seasonally-

adjusted measure taken from the BLS’s payroll employment survey. Inflation is the annualized
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seasonally-adjusted monthly rate of change of the CPI prices, excluding food and energy. Finally,

the interest rate is the 30-day T-Bill. The full sample of data begins in January 1968 and ends in

February 2010. Next, we must choose the variable, zt−1, which will determine the regime process.

In the literature on STAR models, it is standard to use one or more of the set of observables– the

self-exciting threshold models. In this case, we use the first lag of the unemployment rate. Figure

3 plots the data for reference.

4.2 Results

Figure 4 (threshold, u rate include HP filtered trend) about here

Figure 4 shows the estimated threshold, along with the unemployment rate and its HP-filtered

trend.5 Both the latent threshold and the Hodrick-Prescott-filtered trend exhibit fluctuations

similar to those from the unemployment rate. Obviously, both the threshold and the HP trend are

smoother than the unemployment rate. Additionally, though, the threshold appears to lead the

HP trend unemployment rate. The threshold level is smoother than the HP trend, however, such

that deviations of the threshold from the unemployment rate larger than those for the HP trend.

Figure 5 (posterior regimes) about here

Figure 5 shows the estimated regime probabilities, the values of the transition function for each

period. For the most part, the posterior probability of being in regime 1 increases around NBER

recessions and decreases during expansions. For the period following the 1990 and 2001 recessions,

however, the posterior regime probability remains high, reflecting the jobless recoveries. Obviously,

given (3), regime 1 should roughly correspond to periods in which unemployment is greater than

the threshold.

Table 2 (posterior distributions) about here

Table 2 presents the means of the posterior distributions for the parameters from the estimation

of the model with the unemployment rate, inflation, and a short-term interest rate. We note a

5For our application, the use of the unscented Kalman filter as a proposal density yielded acceptance rates of
about 60 percent.
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few of the features for some of the estimated parameters of interest. First, the effect of regime

switching in this model appears to manifest mostly in the interest rate response to the gap between

unemployment and the threshold. Monetary policy (or the expectation of future monetary policy)

is more sensitive to the gap in regime 1, the periods consistent with NBER recessions. Thus, during

“ordinary times”, monetary policy does not respond to the difference between unemployment and

the threshold. Second, the threshold appears to be closely approximated by a random walk with

drift — at the very least, the threshold is governed by a highly persistent process. Third, the

threshold is negatively correlated with other shocks. While the correlation with unemployment

and inflation is weak, an increase interest rate yields decrease in the threshold. This feature is

especially obvious when considering the regime-dependent impulse responses.

Figures 6 and 7 (impulse responses) about here

From the state-space model described above, we can compute regime-dependent impulse re-

sponses, i.e., VAR responses computed as if the system were regime-invariant. In order to identify

the shocks and compute their associated impulse responses, we must impose some identifying re-

strictions. In this case, we impose a Cholesky ordering with the latent threshold ordered last.

Unemployment is ordered first, inflation is second, and interest rates are third. This implies un-

employment and inflation do not contemporaneously respond to interest rates and no variable can

respond contemporaneously to the latent threshold.

Figures 6 and 7 depict the regime-dependent responses of the three variables and the latent

threshold to the various model shocks. The first two columns present the responses to unemploy-

ment and inflation shocks. The two shocks have opposite but expected effects on interest rates

(i.e., monetary policy). When unemployment rises, interest rates fall; on the other hand, when

inflation rises, interest rates rise. The last panel in the third column in each of the figures depicts

the response of the latent threshold to a contractionary monetary shock. The model produces

inflation and unemployment responses consistent with the VAR literature, including the price puz-

zle. In both regimes, the contractionary monetary shock produces a relatively persistent decline

in the threshold. Suppose that unemployment is below the threshold. Then, increasing interest

rates (perhaps through expectations) appears to shrink the wedge between unemployment and the
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threshold through both a change in the unemployment rate (small) and a decrease in the threshold.

5 Implications for the Phillips Curve and the Natural Rate

A simple expectations-augmented Phillips curve relates inflation, πt, and unemployment, Ut, as

πt − πet = −b (Ut − U∗t ) + vt,

where πet are inflation expectations and U
∗
t is the natural rate. If one begins with such a model, the

natural rate can be identified by imposing statistical restrictions [see Staiger, Stock, and Watson

(1997)]. In particular, the cyclical component of the unemployment rate should be mean zero and

the should be inversely related to the gap between inflation and inflation expectations. Instead of

imposing such a relationship, we ask whether the time-varying threshold identified in the previous

section has properties consistent with those implied by the Phillips curve for the natural rate.

Figure 8 (threshold, cyclical component, inflation) about here

Figure 8 plots the inflation rate alongside the cyclical unemployment rate defined by zt −

z∗t . Almost by definition, the cyclical unemployment rate is mean zero, consistent with the first

restriction identifying the natural rate. Because the regimes roughly coincide with the periods

in which the unemployment rates is above or below the threshold, it is illuminating to return to

the regime-dependent impulse responses. This time, we consider the last columns in Figures 6 and

7– the responses to a shock to the threshold. In particular, we highlight the variation across the

regimes for inflation and the interest rate. When unemployment is below the threshold (regime 0),

a positive shock to z∗ widens the gap and leads to an increase in both inflation and a contractionary

rise in interest rates. Conversely, when unemployment is above the threshold, a positive shock to

z∗ closes the gap and produces the opposite responses to both inflation and unemployment. Thus,

in these ways, the threshold does appear to have features consistent with a Phillips-curve notion of

the natural rate.
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6 Conclusions

The standard smooth transition autoregression is a popular alternative to regime switching models.

One drawback of the standard STAR model is that it must be estimated with a constant threshold

(or constant thresholds in the case of multiple-regime models). We extend the STAR model to

include a time-varying threshold. The added complexity of the time-varying threshold requires that

we estimate the model with Bayesian methods, including a nonlinear alternative to the Kalman filter

to generate proposals for our MH step. We applied the model to the change in the unemployment

rate, inflation, and a short-term interest rate, assuming that the unemployment rate governed the

regime process.

We found that the estimated time-varying threshold has properties which may allow it to be

interpreted as the natural rate of unemployment. If we interpret the time-varying threshold as the

natural rate, the regimes in the STAR model depend in part on the sign of the employment gap.

Moreover, allowing the threshold to vary lets us analyze the effect of shocks to the natural rate.

We found that the effect of these shocks differs across regimes.
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A Details of the UKF

A.1 Filtering

We begin with a set of initial values. We then augment the mean with the expectation of the
transition noise

xat−1|t−1 =

[
xt−1|t−1
E [εt]

]
and augment the state covariance

P at−1|t−1 =

[
Pt−1|t−1 0N,N
0N,N IN

]
,

where xt−1|t−1 and Pt−1|t−1 are the estimates of the state and its covariance matrix at time t− 1.
Our task is to construct a set of 2L+ 1 sigma points, where L is the dimension of xat−1|t−1. Let

χpt−1|t−1 =



xat−1|t−1 , for p = 0

xat−1|t−1 +

(√
(L+ ζ)P at−1|t−1

)
p

, for p = 1, ..., L

xat−1|t−1 −
(√

(L+ ζ)P at−1|t−1

)
p−L

, for p = L+ 1, ..., 2L

define the initial sigma points, where ζ = a2 (L+ κ)−L. Here, a and κ are user-chosen parameters
that govern the spread and scale of the cloud of sigma points, respectively, and

(√
X
)
i
is the ith

column of the lower triangular Cholesky factorization of the square matrix X. Given the set of

initial sigma points, we can then propagate
{
χpt−1|t−1

}
through the function g (.) to recover a

prediction for each of the initial sigma points:

χpt|t−1 = g
(
χpt−1|t−1

)
, for p = 0, ..., 2L.

The predicted states and covariances can then be extrapolated from a weighted sum of the
propagated sigma points:

x̂t|t−1 =
2L∑
p=0

wpsχ
p
t|t−1

and

Pt|t−1 =

2L∑
p=0

wpc

[
χpt|t−1 − x̂t|t−1

] [
χpt|t−1 − x̂t|t−1

]′
,

where w0s = L (L+ ζ)−1, w0c = L (L+ ζ)−1 +
(
1− α2 + β

)
, and wps = wpc = 1

2 (L+ ζ)−1 for all
other p. We form the updated state similar to the standard Kalman filter

x̂t|t = x̂t|t−1 +Kt (yt − ŷt) ,

where Kt is the Kalman gain defined by
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Kt = PyzP
−1
yy .

Here, Pyz defines the cross-covariance

Pyz =
2L∑
p=0

wpc

[
χpt|t−1 − x̂t|t−1

] [
γpt|t − ŷt

]′
and Pyy is the predicted covariance

Pyy =
2L∑
p=0

wpc

[
γpt|t − ŷt

] [
γpt|t − ŷt

]′
.

The updated covariance is defined by

Pt|t = Pt|t−1 −KtPyyK
′
t.

A.2 Unscented Smoothing

Multi-move sampling of the latent attractor, {z∗}Tt=1, requires backwards sampling from one-period
smoothed inferences of the state vector. A typical smoothed Kalman filter uses a forward filter and a
backward smoother. Because the filter is linear, it is always possible to employ a backward smoother
for the Kalman filter. The unscented transformation, however, is not always invertible, making a
backward-looking smoother impossible to implement in all cases. The Rauch-Tung-Striebel (RTS)
filter is alternative, forward smoother for the Kalman filter. Särkkä (2008) constructed a smoother
using principles similar to RTS. The unscented RTS smoother begins by augmenting the unscented
Kalman filter with a step that recomputes the state estimate:

x̂st = x̂t +Dt

[
x̂st+1 − x̂t+1|t

]
with covariance matrix

P st = Pt +Dt

[
P st+1 − Pt+1|t

]
D′t.

The smoother gain, Dt, defined by

Dt = Pzt,zt+1P
−1
t+1|t,

where

Pzt,zt+1 =

2L∑
p=0

wpc

[
χpt+1|t − x̂t+1|t

] [
χpt|t − x̂t|t

]′
and

χt|t = χt|t−1 +Kt(yt − ŷt|t−1).
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Table 1: Priors for Estimation
Parameter Prior Distribution Hyperparameters
{z∗t }

T
t=1 latent threshold ∼ MH draw unscented Kalman filter proposal n/a

α, θ,Γ, λ N (m0,M0) m0 = 0κ×1 ; M0= Iκ
γ U (κ1, κ2) κ1 = −10 ; κ2 = 0

ρ N (f0, F0) f0 = 1 ; F0 = 1

Ω−1 W
(
$0
2 ,

D0
2

)
$0 = 1 ; D0 = In
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Figure 1: Transition Function

Figure 2: 3-D Time-Varying Transition Function
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Figure 3: The Data
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Figure 4: Unemployment Rate and Latent Threshold Level



Figure 5: Regime Probilities for Time-Varying Threshold Model



Figure 6: Impulse Responses in Regime 0



Figure 7: Impulse Responses in Regime 1
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Figure 8: In�ation Rate and Latent Threshold Level




