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Abstract

Despite its role in monetary policy and finance, the expectations hypothesis (EH) of the term struc-

ture of interest rates has received virtually no empirical support. The empirical failure of the EH has

been attributed to a variety of econometric biases associated with the single-equation models most often

used to test it; however, none of these explanations appears to account for the massives failure reported

in the literature. We note that traditional tests of the EH are based on two assumptions—the EH per se

and an assumption about the expectations generating process (EGP) for the short-term rate. Arguing

that convential tests of the EH could reject it because the EGP embedded in these tests is significantly

at odds with the true EGP, we investigate this possibility by analyzing the out-of-sample predictive pre-

fromance of several models for predicting interest rates and a model that assumes the EH holds. Using

standard methods that take into account parameter uncertainty, the null hypothesis of equal predictive

accuracy of each models relative to the random walk alternative is never rejected.
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“The forecasting of short term interest rates by long term interest is, in general, so bad that the

student may well begin to wonder whether, in fact, there really is any attempt to forecast.”–

Macaulay (1938, p. 33)

1. Introduction

The expectations hypothesis (EH) of the term structure of interest rates–the proposition that the long-

term rate is determined by the market’s expectation of the short-term rate over the holding period of the

long-term bond plus a (constant) risk premium–is one of the key economic principles that is at the core

of the monetary policy transmission mechanism. Indeed, virtually every central bank conducts monetary

policy by targeting a short-term rate. However, as noted by Woodford (1999, 2003) and others, the

effectiveness of monetary policy depends critically on a central bank’s ability to affect longer-term rates

that matter most for aggregate demand. This has prompted at least four central banks–the Reserve Bank

of New Zealand (since 1997), the Norges Bank (since 2005), the Swedish Riksbank (since 2007), and the

Czech National Bank (since 2008)–to adopt formal policies of providing forward guidance about the path

of the relevant short-term interest rate in an attempt to have a larger effect on longer-term interest rates via

a typical EH-like mechanism (e.g., see Andersson and Hofmann, 2010). Moreover, the Fed appears to have

used forward guidance beginning 2003 and more explicitly since December 2008.1 Indeed, Kocherlakota

(2010) has recently suggested the Fed’s quantitative easing program might represent “(...) another form of

forward guidance about the path of the fed funds rate.”

The recent trend among central banks to increase the effect of their interest rate policy on longer-term

rate via the EH stands in stark contrast with the vast empirical evidence against it. The EH has been

tested and rejected using a wide variety of interest rate series, over a variety of sample periods, alternative

monetary policy regimes, etc. (e.g., Fama, 1984; Mankiw and Miron, 1986; Campbell and Shiller, 1991;

Roberds et al., 1996; Kool and Thornton, 2004; Thornton 2005; Sarno, et al., 2007; and Della Corte, et

al., 2008). The most common explanation for the EH’s failure is that the single-equation models that

have been most often used to test it are subject to spurious rejections because of time-varying risk premia,

non-rational expectations, peso problems, measurement errors, etc. However, none of numerous attempts

to rescue the EH from such problems (e.g., Simon, 1990; Driffill et al., 1997; Tzavalis and Wickens, 1997;

Balduzzi, et al. 1997; Roberds and Whiteman, 1999; Bekaert et al., 2001; Dai and Singleton, 2002; Bansal

and Zhou, 2002; Hess and Kamara, 2005) has adequately accounted for the EH’s failure. The evidence

against the EH is strengthened by Bekaert, Hodrick, and Marshall.’s (1997) demonstration that estimates

from these models are even less favorable to the EH because of a positive small-sample bias in parameter

estimates. The usefulness of these tests is further complicated by Thornton’s (2006) demonstration that

1At its August 2003 meeting the FOMC stated that “(...) policy accomodation can be maintained for a considerable

period.” This or very similar language remained in the policy statement until December 2005. In a somewhat more obvious

attempt to increase the effect on longer-term rates, following its December 2008 meeting the FOMC stated that “(...) the

federal funds rate is likely to remain exceptionally low [zero to 25 basis points] for an extended period.”
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single-equation models can yield estimates favorable to the EH when the EH is false.

As noted by Froot (1989) and others, conventional tests of the EH are based on two assumptions: a

specific (and simple) linear functional relationship linking changes in long-term rates to expected future

changes in short term rates (the EH narrowly defined); an assumption about the data generating process

for the market’s expectations of the future short rates, i.e., the expectations generating process (EGP).

Hence, conventional tests of the EH are really a joint tests of the EH and the EGP. Empirical rejections of

the EH can occur either because (a) the EH linkages between long and short-term rates are inconsistent

with the data, or (b) because the EGP that is assumed is significantly at odds with the true, but unknown,

EGP.2

Our paper investigates the possibility that the well documented empirical failure of the EH may be due

to the inability to forecast future short-term interest rates in the manner assumed by the EGP that is used

to derive conventional tests of the EH. To the extent that the empirical failure of the EH stems from (b)

rather than (a), our research provides hope that central banks’ recent efforts toward forward guidance may

be somewhat effective.3 Our research is further motivated by the fact that while the validity of the EH

is independent of the market’s ability to predict future short term interest rates, its practical usefulness

is. For example, if the market was unable to predict changes in the short-term rate beyond its current

level, the EH could still be valid but would be of little practical usefulness: The term spread would provide

no useful information about the future path of interest rates and central bankers would have no need to

provide forward guidance about their policy rate. Indeed, investors would avoid any temptation to forecast

future changes in short-term rates.

We are not the first to recognize the joint hypotheses problem associated with conventional tests of

the EH. For instance, Froot (1989) overcame this problem by using survey data in order to test the EH

independently of conventional assumption of the expectations generating mechanism. Noting that when

coupled with the standard EGP the EH fails miserably to explain existing data on riskless yields, several

researchers have investigated the EH using an alternative EGP for the short-term rate. For example,

Fuhrer (1996) compares the observed long-term rate with the that implied by the pure EH based on

rational expectations of the federal funds rate obtained from a Taylor-style reaction function with interest

rate smoothing (i.e., the lagged funds rate) that allows for shifts in the Fed’s reaction function. He finds

that his EH-implied long-term rate more nearly matches the observed long-term than that implied by a

five-variable VAR. Kozicki and Tinsely (2001) perform a similar analysis allowing for historical shifts in

2For instance, considering the simple example of a 3-month T-Bill, the (pure, for simplicity) EH only restricts the 2-month

rate to obey 2 = 051 + 05[
1
+1]. Of course, market expectations of future 1-month T-Bills are hard to measure and

reliably collect. However, when one assumes [
1
+1] = 1+1++1 (with +1 white noise) which amounts to imposing rational

expectations on forecasts of future short-term yields, and then rejects 2 = 051 + 051+1 + 05+1 it remains unclear

whether it is the EH or the assumption that [
1
+1] = 1+1 + +1 that is rejected, because the test is a joint test of the

EH and of a very specific EGP. In practice, a process for the market expectations, {[
1
+1]}=1, may exist such that the EH

holds and yet the model 2 = 051 + 051+1 + 05+1 is inconsistent with the data.
3Of course, it remains true that shoud the EH-implied connections between long and short rates be false, such efforts could

have no effect and be essentially mis-directed. However, this aspect is beyond the scope of our research design.
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market perceptions about shifts in the Fed’s goal for inflation.4 Based on their analysis they conclude that

“(...) empirical rejections might reflect incorrect assumptions about expectations formation rather than

incorrect assumptions about the theoretical link between long rates and short rates.”5 Carriero, Favero,

and Kaminska (2006) have suggested that the common practice of using the actual short-term rate as a

proxy for the -period ahead expectation of the short-term rate may be grossly inappropriate and report

that evidence against the EH is reduced by using an alternative model of the market’s expectation of the

short-term rate.

Because the EH places no restrictions on how the market participants’ expectations of the short-term

rate are formed, imposing auxiliary econometric models to capture the dynamics expectations is interesting

but arbitrary. Hence, rather than proposing yet another model-specific process of expectations formation,

we follow a growing empirical literature on forecasting interest rates (e.g., Chen and Scott, 1993; Dai and

Singleton, 2000; Duffee, 2002; Diebold and Li, 2006; Guidolin and Timmermann, 2009, Bali et al., 2009)

to investigate the extent to which the inability to predict future short-term rates might account for the

vast empirical failure of the EH. Specifically, we produce real-time, out-of-sample forecasts of short-term

rates using a variety of models, some of which have been shown elsewhere (e.g., Diebold and Li, 2006;

and Duffee, 2002) to have predictive power for forecasting future interest rates, but are not necessarily

consistent with the EH itself. We also make forecasts under the assumption that the EH holds, as these

have been popular in the empirical and policy literatures. Our model requires only that the EH is true, i.e.,

that the long-term rate is determined by the expectation of the short-term rate and that risk premiums

are constant on average over the sample period. These forecasts are based on observed long-term yields

and, as such, must reflect market’s actual expectations of future short-term rates. Moreover, by varying

the identifying restriction, EH-implied forecasts can be made by allowing considerable variation in the

risk premia over time—a standard explanation for the empirical failure of the EH.6 Some of the models

considered impose little or no structure on the term structure of rates, while others impose considerable

structure. For instance, Duffee’s (2002) family of “essentially affine” term structure models nest standard

linear affine term structure models. Affine term structure models allow for variation in the risk premia

and impose no-arbitrage; however, they also impose considerable structure on the shape of the yield curve.

Finally, we generate forecasts from two naive benchmarks models: the random walk model and a simple

regression model that forecasts the short-term rate by using the slope of the yield curve, as suggested by

Duffee (2002). The forecasts are made over a range of maturities over the period 1982-2003, using data on

4Kozicki and Tinsley (2005) perform a similar analysis but emphasize the fit of long-term yields based on the convention

test of the EH rather than on a comparison with the observed long-term yield as Fuhrer (1996) and Kozicki and Tinsely (2001).
5Kozicki and Tinsley (2005), p. 444.
6To echo the example in our earlier foonote, one can easily invert the (pure) EH restriction 3 = 051 + 05[

1
+1] to

find that under the EH it should be [
1
+1] = 2

2
 − 1  This is the forecast that should prevail under the EH when the

risk premium is zero. Section 2.1 shows how this simple intuition can be generalized to longer-term yields and to account for

non-zero risk premia. The EH-implied forecasts are conceptually similar but not identical to the implied forward rates used

in a portion of the fixed income literature. Section 2.1 further discusses the relationships with this literature.
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U.S. riskless, zero-coupon rates.

We report negative results on the ability of all the models examined to predict future short-term rates.

Specifically, none of these models are able to generate out-of-sample forecasts that are statistically superior

to those obtained from a random walk model. Particularly noteworthy is our finding that our EH-consistent

forecasting model frequently yields forecasting performance measures that are smaller than models that

require considerable structure and that are much more difficult to estimate. However, there were only a

few instances where the EH-consistent forecasts dominated the model-based forecasts based on standard

statistical tests of differences in predictive accuracy. There were no instances, however, where any of the

models considered were statistically significantly superior to the random walk model, and there were no

instances where any forecasting model consistently dominated any other model. While the logic of the EH

may be fundamentally correct, markets participants appear to forecast future short-term rates in ways that

are systematically different than the EGP assumed in conventional tests of the EH. Our evidence suggests

that the violation of this assumption alone is sufficient to account for the massive rejections of the EH

found in the literature. Consequently, our results provide some hope that central banks may be able to

influence yields further out on term structure, but only if they can succeed in making future short-term

rates more predictable.

The outline of the paper is as follows. Section 2 introduces the EH, demonstrates the restrictive nature

of the standard assumptions on the underlying EGP, and presents our methodology for generating EH-

consistent forecasts of the short-term rate under the assumption that risk premia are constant or smoothly

time-varying. Section 3 presents Diebold and Li’s (2006) three-factor model and Duffee’s (2002) affine and

essentially affine models. The time series properties of the data and parameter estimates of the affine term

structure models are presented in Section 4. Forecasts from all of the models are compared and analyzed

in Section 5. Section 6 presents the results of tests of differences in the out-of-sample predictive accuracy

of all of the models considered relative to each other. Section 7 concludes.

2. The EH and the Predictability of the Short-term Rate

The EH asserts that for   1,

 =
1



−1X
=0

[

+] +   =    (1)

where  denotes the current -period rate, [·] denotes the time  conditional expectation operator, and
 denotes a term-specific but constant risk premium.7 By construction,  is an integer and is defined

as  =  The most widely used test of the EH is obtained by subtracting  from both sides of (1)

7Shiller, Campbell, and Schoenholtz (1983) remind us that (1) is exact in some special cases and that it can be derived as

a linear approximation to a number of nonlinear expectations theories of the term structure.
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and rearranging terms to yield

( −  )−  =
1



−1X
=0

[

+]−  =

1



−1X
=1

[∆

+] (2)

where [∆

+] ≡ [


+]−  = [


+ −  ] is the expected change in the -period rate between

time  and +. (2) states that–apart from a (constant) term risk premium–the spread between long-

and short-term rates equals the scaled sum of expected future changes of short-term rates. Single-equation

tests of the EH are derived by assuming that market participants’ expectations are rational in the sense

that

[

+] = + + +  = 1 2   − 1 (3)

where + is distributed i.i.d. (0 
2
) and orthogonal to 


+, i.e., [


+


+] = 0. Substituting (3)

into (2) and parameterizing the resulting expression yields:

1



−1X
=0

+ −  = 0 + 1(

 −  ) +  (4)

where  = − 1
P−1

=1 

+. Under the EH, 0 = − and 1 = 1.

The EH has been routinely investigated by testing the null hypothesis that 1 = 1. Estimates of

1 are frequently positive and statistically significant from zero; however, the null hypothesis 1 = 1 is

nearly always rejected with very low p-values. Moreover, estimates of the adjusted R-square are typically

very small (frequently less than 10 percent), suggesting that the spread between the longer-term and the

short-term rates provides relatively little information about future changes in the short-term rate.

Note that (4) is based on two assumptions: (1) and (3), either of which could be false. The (3)

constitutes a strong assumption about the predictability of the future short-term rate. To see why substitute

(3) into (1) which yields

 =
1



−1X
=0

+ +  + + (5)

It is clear from (5) that (3) implies that if the EH holds long-term rate would be equal to the average of the

realized short-term rate over the holding period of the long-term asset. If the actual EGP is significantly

different from that assumed by (3), test of the EH could reject the null hypothesis that 1 = 1 even if

long-term rates were determined in accordance with the EH, i.e., in accordance with (1).

2.1. Estimating the Theoretical Expected Future Short-Term Rate

The EH per se places no restrictions on how the market participants’ form expectations of the future

short-term rate. If market’s are forward looking, the current long-term yield must simply embody the

market’s EGP for the future short-term rate. In fact, the EH can be imposed on riskless yield data to

retrieve (risk-adjusted, up to a Jensen inequality term) expectations on the future path of short-term rates,

5



which we call EH-consistent forecast of the short-term rate. To see how the expected short-term rate can

be computed under the assumption that the EH holds it is convenient to consider the case where  = 2

and  = 1, so that (2) is rewritten as:8

22 − 21 = [
1
+1]− 1 + 2

21 (6)

Since both 2 and 1 are observable from time  data, [
1
+1] can be estimated up to a constant term

premium under the assumption that the EH holds:

[
1
+1] = 2

2
 − 1 − 221 (7)

Indeed, this is procedure is commonly used to estimate the so-called forward rate by assuming that the

risk premium is zero (i.e., 21 = 0).9 In fact, academic researchers have built a long tradition in which

the (risk-neutral, i.e., under an assumption of zero risk premium) forward rate has been used to predict

short-term rates (e.g., Hamburger and Platt, 1975; Fama, 1976; Shiller, Campbell and Schoenholtz, 1983;

Fama and Bliss, 1987; Deaves, 1996; Park and Switzer, 1997; and Cochrane and Piazzesi, 2005). With

the exception of Deaves (1996), however, all prediction tests originally discussed in the academic literature

have been of an in-sample type, which clearly limits their usefulness and informativeness.

It is well known that in reality investors are not risk-neutral and so the risk premia reflected in interest

rates are usually positive. In fact, failure of the EH is often attributed to the non-constancy of the risk

premia (see, e.g., a simple proof in Engle and Ng, 1993). To reflect this basic empirical fact, we explicitly

consider risk premia in calculating the expected future short-term rate. For instance, in the simple case

above, we would first proceed to obtain an estimate of 21, to be called ̂21 and then proceed to identify

the expectation of the future interest rate as [
1
+1] = 22 − 1 − 2̂21. In general, (7) can be easily

generalized to a recursive set of the so-called Fisher-Hicks formulae:

[
1
+−1] =  − (− 1)−1 − 1 + (− 1)(−1)1 (8)

for all  ≥ 2 where 11 = 0. (8) shows that the expected future short-term rate is a function of current

long-term yields and the corresponding risk premia. Consequently, in order to estimate [
1
+−1] an

identifying assumption is required to estimate the risk premia. Note that the mean forecast error for

[
1
+−1] is given by:

1



X
=1

©
1+−1 − [ − (− 1)−1 ]

ª
=
1



X
=1

©
1+−1 −[

1
+−1]

ª− 1 + (− 1)(−1)1 (9)

8We set  ≡ 1  the one-month short-term (T-bill) rate, so that occasionally 1 is simply referred to as 
9The implications of the EH are sometimes investigated by regressing changes in the short-term rate on the spread between

the forward rate and the current short-term rate (e.g., see Fama and Bliss, 1987). MacDonald and Hein (1989) have found that

Treasury bill futures rates are significantly more accurate predictors of future spot rates than are the implied forward rates

because the latter would contain a possibly time-varying default risk premium due to the short positions needed to replicate

a synthetic forward. Our rolling-window risk premium estimation in (11) may in principle also take these components into

account.
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If it is assumed that expectations are unbiased on average over the sample period, i.e.,

1



X
=1

©
1+−1 −[

1
+−1]

ª
= 0 (10)

the constant risk premium ̂1 can be recursively estimated as:10

̂1 = − 1



X
=1

©
1+−1 − [ − (− 1)−1 ]

ª
+

− 1


̂(−1)1 (11)

Given estimates of the risk premiums, the expected future short-term rates [
1
+] can be estimated by

[
1
+−1] =  − (− 1)−1 − ̂1 + (− 1)̂(−1)1 (12)

We call these constant-risk-premium/EH-consistent forecasts. (1) assumes that risk premia are constant.

The empirical failure of the EH is often attributed to time-variation in the risk premia (which is more of a

tautology than an explanation). Hence, it is interesting to note that these forecasts can be calculated by

assuming that expectations are unbiased over any time horizon,  . Consequently, we also make forecast of

the future short rate with    . Estimates of the risk premia vary considerably over time so we call these

time-varying-risk-premium/EH-consistent forecasts. Finding that these forecasts were relatively unaffected

by the choice of  , we only report the results for a relatively small value of  .

3. Alternative Forecasting Models

As noted in the Introduction, in addition to the EH-implied expectations of future rates, we also consider

several term-structure econometric models for forecasting future short-term rates. Specifically, we forecast

the short-term rate with the three-factor term structure model of Diebold and Li (2006), with a number of

alternative affine or essentially affine models, and with a näıve OLS forecasting model suggested by Duffee

(2002) and often used by practitioners.

3.1. Diebold and Li’s Model

Diebold and Li (2006) use the following modified version of the Nelson and Siegel (1987, 1988) three-factor

forward rate curve to approximate the yield curve:

 = 1 + 2

∙
1− exp(−)



¸
+ 3

∙
1− exp(−)


− exp(−)

¸
 (13)

The parameter  governs the exponential decay rate. Small values produce slow decay and a better fit at

longer maturities, while large values tend to provide a better fit at short maturities.  also governs where

the loading on 3 achieves it maximum. Because the loading on 1 is 1 and, hence, its effect does not

decay with the horizon parameter , Diebold and Li interpret it to be the long-term factor corresponding

10The starting condition is given by: ̂21 = − 1
2



=1


1+1 − [22 − 1 ]
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to the level of the term structure. Because the factor loading on 2 decays monotonically from 1 to zero

as →∞, 2 is viewed as a short-term factor, corresponding to the slope of the yield curve. In contrast,

the factor loading on 3 rises from zero and then decays back to zero as  → ∞. Hence, Diebold and Li
suggest that this factor corresponds to the curvature of the yield curve.

Rather than estimating (13) by nonlinear least squares, Diebold and Li fix the value of . They

argue that this not only greatly simplifies the estimation of the factors, but likely yields more trustworthy

estimates as well. Diebold and Li set  = 00609, precisely the value where the loading on the curvature

factor reaches it maximum under the assumption that the curvature of the yield curve attains its maximum

at 30 months.

This framework is then used to generate out-of-sample forecasts of rates at all maturities along the yield

curve by making −period ahead forecasts of , i.e., ̂1+ ̂2+, and ̂3+. This is done by estimating

(13) for rates with maturities 1, 2, 3, 6, 9, 12, 15, 18, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months for

each of the first  monthly observations. Out-of-sample forecasts of ̂1+ ̂2+, and ̂3+ are obtained

by assuming that the factors follow a simple AR(1) process

̂ = + ̂−1 +   = 1 2 3 (14)

and by updating the estimates of  and  recursively. Forecasts of the -period ahead, -period rate are

then obtained from:11

̂+ = ̂1+ + ̂2+

∙
1− exp(−00609)

00609

¸
+ ̂3+

∙
1− exp(−00609)

00609
− exp(−00609)

¸
 (15)

Diebold and Li (2006) report an improvement over random walk forecasts at longer forecast horizons.

Additionally, Carriero, et al. (2006) also report some (limited) outperformance of Diebold and Li’s model

over the random walk for short horizons, even though they provide no formal statistical analysis of the

improvement.12 The mounting evidence of the predictive accuracy of Diebold and Li’s framework makes

it an important benchmark in our recursive forecasting exercise.

3.2. Affine and Essentially Affine Term Structure Models

Duffee (2002) shows that some specific members of the class of “essentially affine” models also can beat

random walk forecasts according to a simple Mean Square Forecast Error criterion, where the improvement

generally increases with the length of the forecast horizon. Even though Duffee (2002) does not test whether

the differences in forecasts are statistically significant, this is an important finding because it suggests that

“structural” asset pricing models of the yield curve may be able to pin down the dynamics of risk premia

11While not shown here, the time series of the Diebold-Li factors are very similar to the level, slope, and curvature factors

obtained from the first three principal components of these 18 zero-coupon bond yields.
12Carriero, et al. (2006) also find essentially no improvement in the forecasts when the model it is augmented with additional

economic variables, specifically, the CPI-inflation and unemployment rates.
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to such an extent that they produce useful and accurate predictions of future rates.13 We therefore briefly

review the structure and properties of affine dynamic term structure models, of which the essentially affine

class represents a special case. An Appendix presents additional details and provides technical details on

the estimation algorithms.

Given an  × 1 vector x collecting all relevant state variables (risk factors), an affine process for the
yield curve is one for which the conditional mean and variance of bond yields are linear affine functions

of x and for which also the short-term rate follows an affine process, () = 0 + δ0x. An affine term

structure model is then just a special diffusion Markov process,14

x = K
×

( θ
×1

− x
×1

)+ S
12


×
W
×1

[S
12
 ] =

q
 + ξ0x  = 1  (16)

whereW is a ×1 vector of independent Brownian motions and [S12 ] is the −th element on the main
diagonal of S

12
 . The state variables are mean reverting as long as the elements of K are positive. Also,

the larger they are, the faster is the rate of mean reversion. To price bonds in this framework, assume next

that the pricing kernelM has structure

M = −M−MΛ(x)
0W, (17)

where Λ ≡ Λ(x) is the  × 1 vector of prices of risk associated with each of the  risk factors. By

Ito’s lemma, we know that  lnM =
¡− − 1

2
Λ0Λ

¢
 −Λ0W, so that it easy to prove that W

Q
 =

WP
 +Λ and the physical representation of the stochastic process for the state vector is:

x = K(θ − x)− S12 Λ(x)+ S
12
 WP



[S
12
 ] =

q
 + ξ0x  = 1  (18)

The representation (18) is important to compute the moments implied by any parameter configuration,

including the vector of risk premiaΛ(x) and is featured in a quasi-maximum likelihood estimation (QMLE)

approach. At this point, the derivation of bond prices in the affine case under a discrete time representation

is straightforward (see the Appendix).

Within the general affine class, we can distinguish a number of cases that have received attention in

the asset pricing literature. In particular, two important cases are obtained depending on whether Λ(x)

is parameterized as either

Λ(x) = ( + B0x)12 (19)

13Here “structural” means that we fit to the data specific models of the relationship between the quantity of risk and the risk

premium. Although affine models are also useful to forecast the second moments of interest rates (and interesting trade-offs

exists between this goal and fitting the level and shape of the yield curve, see Duffee, 2002, for details), in this paper we focus

on their ability map predictions of future risk premia into prediction of future interest rates.
14(16) represents the stochastic process for the state vector under the risk-neutral measure, i.e., without any correction for

the price of risk factors. Implicitly, we assume all the necessary restrictions to ensure that the linear affine dynamics is well

defined, which requires that  + 0x is nonnegative for all  and all possible values of x, see e.g., Dai and Singleton (2000).
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( = 1 ) or

Λ(x) = 1( + B0x)12 + λ02

"(
1

(+B0x)12
inf( + B0x)  0

0 otherwise

#
x, (20)

where B0 is the -th row of the matrix B. For instance, Vasicek’s (1977) model is obtained when B = 0
( = 1 ) so that Λ(x) becomes a vector of constant prices of risk. Likewise, Cox, et al., (1985) is

obtained when  = 0 and B = ι ( = 1 ), so that the prices of risk are time-varying and simply

proportional to the risk factors. The completely affine case occurs when in (19)  = 0 ( = 1 ). The

models by Vasicek, Cox et al., and Duffie and Kan are all completely affine models, with Vasicek and Cox

et al., being particularly restrictive versions of the completely affine family. The essentially affine case of

Duffee (2002) consists of (20).

An important limitation of completely affine specification of Λ is that the temporal variation in the

instantaneous expected excess returns on -period zero coupon bonds () is determined entirely by the

volatilities of the state variables:

 = −B0S12 (x)Λ(x)

where B is an appropriate pricing vector determined in the absence of arbitrage opportunities (see the

Appendix for details). Moreover, the sign of each Λ(x) is fixed over time and determined by the sign

of the coefficients in B. Although this does not precluded  from changing sign over time–the sign of

 depends also on the sign and magnitude of the elements of B and S
12
 (x)–this represents a strong

limitation to the flexibility of excess returns to display the patterns that are typical of the data. The

essentially affine set up in (20) allows for variation in prices of risk independent of volatilities, the kind of

flexibility needed to fit the empirical behavior of excess bond returns.

In this paper we estimate and forecast interest rates using a few alternative canonical affine models. A

canonical model is one that is admissible (this means that all even moments are guaranteed to be positive),

econometrically identified, and maximally flexible within the affine family. Consider the case where there

are  ≥ 0 state variables (without loss of generality, the first  elements of x) driving the instantaneous
conditional variances of x. Then a benchmark () affine model in canonical form may be written

(under the risk neutral measure) as:15

x =

⎡⎢⎣ K 

×
O

×(−)
K

(−)×
K

(−)×(−)

⎤⎥⎦
⎛⎝⎡⎣ θ

×1
0

(−)×1

⎤⎦− x
⎞⎠ + (S(x))

12W K 
 θ  0 1 ≤  ≤ 

S =

⎡⎣ 0
×1
1

(−)×1

⎤⎦+
⎡⎢⎣ I

×
O

×(−)
÷

(−)×
O

(−)×(−)

⎤⎥⎦x ÷ ≥ O

 = 0 + δ0x  ≥ 0 + 1 ≤  ≤ (21)

15When  = 0 (a purely Gaussian model with constant second moments) K is simply required to be either upper or lower

triangular. When   0, additional conditions have to be added to achieve econometric identification.
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where θ ≥ 0 K ≤ 0, 1 ≤  ≤ , 1 ≤  ≤  ( 6= ). The block structure nature of S implies that only

the first  state variables impact the conditional variance of the entire vector x:

[S] =

(
 1 ≤  ≤ 

1 +
P

=+1 Ξ + 1 ≤  ≤
 (22)

In terms of estimation, we adopt Duffee’s (2002) QMLE method, which can be seen as a special case of

an under-identified GMM estimator when only two moment conditions are imposed. Assume that at each

month-end ,  = 1   , yields on  bonds are measured without error. These bonds have fixed times to

maturity 1 ...,  . Yields on  − other bonds are assumed to be measured with serially uncorrelated,

mean-zero measurement errors. As common in the literature, we impose structure on the joint distribution

of measurement errors and yields in order to derive the likelihood function of the data: measurement errors

collected in the ( −) × 1 vector ² are jointly normally distributed with constant covariance matrix
and density (²). At this point, stack the perfectly observed yields in the vector Y and the imperfectly

observed yields in the vector Y̌. Denote the parameter vector by θ. Because the distribution of Y+1

conditional on Y is

 (Y+1|Y) =
1¯̄̄

det(B̈0)
¯̄̄(x̂+1|x̂) (23)

(B̈ is a matrix defined in the Appendix and it will depend on the complete or essentially affine nature of

the model), the log-likelihood of observation  for Y̌ is (θ) = ln  (Y|Y−1) + ln(²). The estimated

parameter vector θ̂


 is chosen to solve

max


X
=1

(θ) = max


X
=1

"
1

|det(B̈0 )|
(x̂+1|x̂) + ln(²)

#
, (24)

where (x̂+1|x̂) follows a multivariate Gaussian distribution for which it is tedious but possible to derive
closed-form representations for the first and second conditional moments (see the Appendix).16

3.3. Naive Benchmarks

Finally, we also forecast the short-term rate using two models that are frequently used in the financial

forecasting literature. The simplest benchmark model is a random walk, where the month  yield on a

-maturity bond is used as the forecast of the month +  yield on a -maturity bond. We also consider

what Duffee (2002) calls “a more sophisticated benchmark,” where the forecast of the future short-term

rate is based on the slope of the yield curve. These forecasts are based on OLS regressions of

+ −  = 0 + 1(
5
 − 3 ) + + (25)

where 5 is the 5-year Treasury yield and 3 is the 3-month T-bill rate. The parameters of (25) are

recursively estimated with monthly updating to produce out-of-sample forecasts and forecast errors of the

short-term rate at the horizons considered here.
16Estimation has been performed by updating the Fortran code kindly made available by Greg Duffie.
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4. Data and Estimation Results for Econometric Benchmarks

The data are end-of-period monthly observations on continuously compounded yields on riskless pure

discount bonds for the U.S. The raw data are from Bloomberg. The riskless pure discount bond yields

were obtained using FORTRAN codes provided by Robert Bliss and Dan Waggoner based on Bliss (1997)

and Waggoner (1997). The yields were calculated for bonds with maturities of 1, 2, 3, 6, 9, 12, 15, 18, 24,

30, 36, 48, 60, 72, 84, 96, 108, and 120 months for the period January 1970 through December 2003 for

maturities between 1- and 72 months, and for slightly shorter samples in the case of maturities between

84 and 120 months. Table 1 reports summary statistics for our implicit zero coupon yields. As one would

expect, on average the term structure of US riskless rates has maintained a moderately positive slope, with

average nominal yields ranging from 6% at the short end to 7.9% at the back end. This finding also holds

with reference to median rates or if one uses a balanced sample common to all series. All the yield series

are clearly non-Gaussian and–even after first-differencing–appear to contain strong heteroskedasticity

patterns (square changes in interest rates are strongly serially correlated) and robust serial correlation,

especially at the shortest end of the yield curve.

Forecasts from the Diebold-Li model are obtained by estimating the three factors using all of the

available rates along the term structure, i.e., rates with maturities 1, 2, 3, 6, 9, 12, 15, 18, 24, 30, 36,

48, 60, 72, 84, 96, 108, and 120 months, of each month over the period January, 1972 - December, 1981.

-period ahead forecasts of each of the three factors,   = 1 2 3 are then obtained from (14) using

estimates of the factors over this initial sample period. These forecasts are then used to obtain predictions

of the 1- and 3-month Treasury rates using (15). The process is updated recursively to generate out-of-

sample forecasts of the 1-month T-bill rate for horizon of 1 and 2 months, and of the 3-month T-bill rate at

horizons of 3, 6, 9, 12, and 15 months. While not shown here, the estimated factors correspond very closely

to estimates of the level, slope, and curvature factors obtained from the first three principal components

obtained from the yield data and are comparable to the results reported by Diebold and Li (2006).17

Similarly to Litterman and Scheinkman (1991) and Duffee (2002), all of the affine models also assume

three underlying factors ( = 3). We estimate four different three factor models: a completely affine,

mean-reverting purely Gaussian model ( = 0   = 3); one completely affine model with  = 2 and

 = 3; one essentially affine model that is designed to capture volatility dynamics with high accuracy

( = 1   = 3); and one essentially affine Gaussian model that trades-off the ability to fit volatility

dynamics with the ability to induce rich time variation in bond yields ( = 0   = 3).18 As in Duffee

(2002), we assume that the bonds with no measurement error are those with maturities of 3 months, 2

years, and 5 years. The remaining maturities fill in the gaps in the term structure and are assumed to

17Detailed results are available from the Authors upon request.
18The completely affine model with  = 2 and  = 3 is selected over the case of  = 3 because, similarly to what reported

by Duffee (2002), this model fails to be rejected (using a standard overidentifying test) when compared to the corresponding

essentially affine model. The  = 0   = 3 essentially affine model is selected because of its good forecasting performance

documented in Duffee (2002).
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be measured with error. For all the models investigated, we follow Duffee (2002) and also entertain more

parsimonious, scaled-down specifications based on the following algorithm:

• first compute the (Wald) t-statistics for the unrestricted parameter estimates;

• set to zero all parameters for which the (robust) p-value exceeds 0.10;

• re-estimate the model under the second-state restrictions.

In the following, we report both in- and out-sample results for both unrestricted and restricted affine

models. Finally, we perform a recursive pseudo out-of-sample exercise with a block structure, in the sense

that parameter estimates are updated with bi-annual frequency, i.e., starting with 1972:01-1981:12, followed

by 1972:01-1983:12, etc., up to 1972:01-2001:12.19

Table 2 reports full-sample estimates for the simple  = 0 completely affine, mean-reverting three-factor

Gaussian model in which volatility fails to depend on x.
20 The table reports parameter estimates for both

an unrestricted model (apart from the restrictions implied by the canonical form) and for a model in which

all unrestricted coefficients with a first-round p-values (approximately) in excess of 0.1 have been forced to

zero, and the resulting, restricted model re-estimated by QMLE. For instance, in Table 2 initial unrestricted

estimation of the 19-parameter completely affine Gaussian model yields two parameter estimates (the [3,2]

element of K and the risk premium on the first factor, 11) with pseudo t-ratios below 1.66. Therefore,

columns 4-8 of Table 2 re-estimate the completely affine model after setting the two parameters to zero, with

the result of obtaining a more parsimonious, 17-parameter model.21 However, a standard likelihood ratio

test of the two restrictions imposed in columns 4-8 rejects the null that the restrictions are not penalized by

the resulting optimal likelihood function (the LR statistic is approximately 6.9, which yields a rather small

p-value of 0.03 under a 2
(2)
). This is an indication against imposing the constraints, even though the three

standard information criteria reported at the bottom of Table 2 signal that the restrictions may in principle

improve the out-of-sample forecasting performance of the model, as all the criteria substantially decline

when the two restrictions are imposed.22 Both the restricted and unrestricted models, with saturation

ratios (the number of observations available to estimate each of the parameters) of 386 and 431, seem to

be based on a sufficient number of observations to deliver reliable inferences.

Table 3 reports estimates for unrestricted and restricted versions of a richer, non-Gaussian completely

affine model with  = 2 Although the models in Tables 2 and 3 are non-nested and testing the case

19The full-sample 1972:01-2003:12 estimates are presented in what follows but actually never used in the recursive predictions.
20The canonical form for the completely affine 0(3) model implies K = 0, K lower triangular, ÷ = O, and Λ2 = O.

Also notice that the canonical model is written in a form that makes the  coefficients the negative of the unit prices of risk.
21Incidentally, when going from the unrestricted to the resticted ( = 0) affine model, we notice that two additional

parameters yield pseudo t-stats below 1.66. This suggests further simplications that have not been pursued here. However, in

general Tables 3-5 concerning the other affine-class models tend to be free of these problems.
22The three statistics are the Bayes-Schwartz, the Akaike, and the Hannan-Quinn information criteria. One should bear in

mind that these criteria trade-off in-sample fit with parsimony (hence, potential for out-of-sample predictive accuracy) and

that a declining information criterion is an indication of a better performing model.
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 = 0 vs. the case  = 2 remains difficult, Table 3 makes it obvious that a richer dependence of the

volatility matrix from the state vector does produce a superior in-sample fit, as shown by the fact that

the maximized log-likelihood function climbs up from -1386 in Table 1 to -1359 in Table 2 (from -1390 to

-1365 when p-value related restrictions are imposed).23 In fact, in the case of  = 2 a first-pass estimation

reveals that as many as 4 parameters of the unrestricted model generate p-values in excess of 0.1, leading

to the estimation of relatively parsimonious 20-parameter model (only one parameter in excess of the

unrestricted  = 0 Gaussian completely affine model in Table 2) that gives a rather impressive fit to the

data. Also in Table 3 the restrictions led by a pseudo p-value threshold of 0.1 are rejected by a likelihood

ratio test (the p-value is 0.02), although the two most parsimonious information criteria (Bayes-Schwartz

and Hannan-Quinn) record substantial declines when the 4 restrictions are imposed. Interestingly, three

restrictions have clear economic interpretation: the short term rate should not depend on the third risk

factor, the volatility of the third factor should not depend on the level of the term structure of interest

rates, and the first (level) factor fails to command a significant price of risk.

Tables 4 and 5 report the estimates of the two essentially affine specifications.24 In both cases the

saturation ratios remain well in excess of 200, meaning that there are always at least 200 observations on

Treasury yields to estimate each of the parameters implied by the affine models. In Table 4 the model is

Gaussian with  = 0 which means that the ability to fit the volatility dynamics of the state vector is rather

limited. As a result, the in-sample fit provided by an essentially affine, purely Gaussian model with  = 0

is only slightly superior to the fit of a completely affine model with  = 2. Because the essentially affine

model generally has more parameters to be estimated, this translates in higher (i.e., worse) values for the

information criteria (e.g., the Schwartz criterion goes from 1.29 in the unrestricted completely affine case

to 1.36 in the unrestricted essentially affine Gaussian case; the matching values under restricted estimation

are 1.27 and 1.33). Section 6 to follow checks whether this higher information criteria actually translate

into an inferior out-of-sample forecasting performance. The in-sample fit obtained is considerably better

in Table 5, where results for an essentially affine model with  = 1 (i.e., the first state variable is also

allowed to drive time variation in volatility for the entire state vector) are displayed. As a result, the

log-likelihood is now considerably higher than in Table 3 (e.g., from -1359 to -1258 in the unrestricted

case), even though this superior in-sample fit is only partially reflected by the information criteria: while

the Akaike and Hannan-Quinn criteria improve when going from the completely affine model with  = 2

to the essentially affine model with  = 1 this is not the case for the Schwartz criterion. As in Table 4,

the pseudo p-value-driven restrictions (5 restrictions in both cases) are rejected by the likelihood ratio test,

even though they systematically lead to lower (better) information criteria.

23Here the canonical form and absence of arbitrage imply the restrictions K1 = 0, K13 = K23 = 0 ÷33 = 0; K3 is non-
zero with no standard error, because 3 = 0.
24Also here some restrictions are implied by the absence of arbitrage and the canonical form. For instance, in Table 5 we

impose K12 = K13 = 0 Λ211 = Λ212 = Λ213 = 0 2 = 3 = 0, while K2 and K3 can be computed from the implied

estimates for 1 and K but they have no standard errors.
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Our qualitative findings confirm Duffee’s (2002) finding that models that are better able to pro-

duce time-varying volatilities have higher maximized log-likelihood (QML) values than models with time-

invariant yield volatilities–as the number of factors that affect volatilities increases from zero through

three, QML values increase monotonically. Based on the in-sample maximized log-likelihood values, the

additional flexibility offered by essentially affine models over completely affine models is important. This

is also partially confirmed by the performance of information criteria.

5. Forecasting Performance

In this Section, we systematically investigate the recursive (pseudo) out-of-sample forecasting performance

of the alternative models presented in Sections 2 and 3. For each model, we estimate/forecast the expected

1-month rate for 1-, 2-month horizons and the expected 3-month rates at 3-, 6-, 9-, 12-, and 15-month

horizons. Hence, in what follows all 1- and 2-month ahead forecasts refer to 1-month rates, while the 3, 6,

9, 12, and 15 month ahead forecasts are for 3-month rates. Of course, we focus on both short- and medium-

horizon forecasts of short-term rates, given our conjecture in Section 2 that the widespread rejections of

the EH reported in the literature may derive from the pervasive difficulty that market participants face

when they are called to form rational forecasts of future yields. For affine and essentially affine models

the 1-month rate is assumed to be measured with error and it seems sensible to investigate the recursive

predictive accuracy of linear affine models both with reference to rates that are assumed to be subject to

noise and those which are not. The Diebold-Li, affine, and OLS sloped-based forecasts are initialized using

monthly data for the period January 1972, though December 1981. Out-of-sample forecasts are generated

recursively for the period 1982:01-2003:12.25

5.1. Theoretical EH Forecasts

We first generate theoretical, EH-implied forecasts assuming that the risk premium is constant over the

entire sample period, 1972:01-2003:12. The estimates of the constant risk premia are ̂21 = 0149 ̂31 =

0282 ̂63 = 0238 ̂93 = 0353 ̂123 = 0469 ̂153 = 0601. These estimates are reasonable and, as one

might expect, increase at a decreasing rate as the term to maturity lengthens. The forecast errors under

the assumption that the risk premia are constant are very similar to those obtained from the random walk

model. This is illustrated in Figure 1, which shows the theoretical (solid lines) and random walk (dashed

lines) forecast errors for the 3-month T-bill rate at the 3-month and 15-month horizons, respectively (the

figures for the 1-month rate and all other horizons are qualitatively similar and therefore not shown). The

forecast errors are sometimes large in absolute value and, not surprisingly, the forecast errors are largest

in the early 1980s. Moreover, the absolute size of the forecast errors and their standard deviation tend

to increase monotonically as the forecast horizon lengthens. Of course these forecasts are identical –

25When   1 months, the pseudo out of sample evaluation period is 1982:01 - 2003:12− months.
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apart from a constant re-scaling – to those typical of the (implied) forward rate literature, where the risk

premium has been typically set to zero. Their visual similarity to random walk forecasts makes us speculate

that predicting future short-term rates in the US Treasury market may require investors substantial more

effort than the calculation of implied forward rates.

5.2. Time-Varying Risk Premiums

The assumption that the risk premium is constant is at odds with the massive rejections of the EH found in

the literature. However, with the exception of Dai and Singleton (2002) and Tzavalis and Wickens (1997),

whose approaches are flexible enough to account for nearly all of the time variation in the observed risk

premiums, time-varying-risk-premium explanations of the lack of empirical success of the EH have been

relatively unsuccessful (e.g., Hardouvelis, 1994; Rudebusch, 1995; Bekaert, et al., 1997; and Roberds and

Whiteman, 1999). We therefore proceed to compute forecasts by allowing for time variation in risk premia

using the methodology outlined in Section 2.

To investigate the effect of time variation in risk premia on the forecast errors, the EH-implied risk

premia are alternatively computed by assuming that the forecast errors average to zero over a rolling

window of  observations. It is obvious from (11) that the estimated risk premia are likely to vary

considerably when estimated over short samples. Several values of  were considered. While the degree of

time variation in the estimated risk premia was sensitive to the choice of  , the estimated forecast errors

were not. Consequently, the results are presented for  equal to ten months. Estimates of the time-varying

risk premiums for the 1-month rate at the 1- and 2-month horizons are presented in Figure 2 along with the

corresponding estimate of the constant risk premiums over the entire sample period (again, the figures for

the other horizons and for the 3-month rate are very similar to those shown here and all of the estimated

time-varying risk premiums are stationary). Interestingly, the risk premia decline below their full-sample

average during the period of the so called “great moderation”.

Figure 3 compares the forecast errors under the constant and time-varying risk premium assumptions

for the 3-month T-bill rate for the 3- and 15-month investment horizons, respectively. Figure 3 shows

that differences in the forecast errors are small at the 3-month horizon. The differences are larger at the

15-month horizon; however, as we discuss below, there is relatively little difference in their average forecast

performance. Hence, allowing for considerable variation in risk premia, i.e., the failure of the EH, appears

to have relatively little effect for the predictive power of the long-term rate.

Table 6 presents summary statistics for the monthly theoretical forecast errors – 

 ≡ + − ̂


+

where  is the maturity,  denotes a model, and  is forecast horizon – for all investment horizons and for

all of the models considered here. For comparability, these statistics are calculated using forecast errors over

the common out-of-sample period, 1982:01-2003:12. Panels A, B, and C report the forecasting performance

of the theoretical forecast with a constant risk premium and a time-varying risk premium ( = 10), and

the forecasts from the random walk model. Not surprisingly, the theoretical forecasts have practically zero
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means. The medians are small and positive at shorter horizons and small and negative at longer horizons.

The summary statistics for the forecast errors from the random walk model show that the mean forecast

errors are slightly negative at nearly all horizons, indicating a tendency of the random walk model to under-

predict the corresponding short-term rates (the exception is at the 3-month horizon where the 3-month

rate is over-predicted by the random walk model). Moreover, the under-prediction increases monotonically

as the investment horizon lengthens beyond three months. The similarity in summary statistics suggests a

high degree of correspondence between the theoretical and random walk forecasts.

Table 6 also presents standard summary measures of forecasting accuracy, i.e., the Mean Squared

Forecast Error (MSFE, and its square root, the RMSFE which is directly comparable to the scale and

mean of the predicted series), and the Mean Absolute Forecast Error (MAFE). A comparison of Panels A

and C show that theoretical and random walk forecasts are very similar. At  = 1, the random walk model

performs slightly better, with a RMSFE of 47 b.p. against 51 b.p. for the theoretical model and with a

MAFE of 30 b.p. vs. 31 b.p. for the theoretical model. The results are mixed for longer horizons. At

some horizons the theoretical models perform marginally better than the random walk model. At  = 6,

the theoretical model out-performs the random walk model by the RMSFE metric, but is out-performed

by the random walk model by MAFE. However, for horizons longer than six months, the theoretical model

with constant risk premium is superior to the random walk by both the RMSFE and MAFE metrics.

The impression from Figure 3, that there is little difference in the forecast from the theoretical mod-

els based on the constant and time-varying risk premiums assumptions is confirmed by a comparison of

forecasting performance of the theoretical model with constant risk premia with those with time-varying

risk premia reported in Panels A and B, respectively. In qualitative terms, the predictive accuracy of the

constant and time-varying risk premium models are similar in both the RMSFE and MAFE metrics. How-

ever, small differences in forecasting performance can be detected at different horizons. For  = 1 and 2,

modeling time-varying risk premiums model has a slight edge in forecasting accuracy by all three metrics.

At horizons of 3 and 6 months, the predictive performances of the two specification are virtually indistin-

guishable. For horizons of 9 months and longer, forecasts based on the constant risk premium assumption

have a modest predictive advantage. The relatively small differences in the forecasting performance of the

constant and time-varying risk premia models suggests that the effect of variation in the risk premium on

the forecast errors is modest relative to the effect of new information. That is, the forecast errors appear

to be dominated by news, which the market participants are unable to forecast.

5.3. Diebold and Li’s Forecasts

The forecast errors for the Diebold-Li model and the benchmark random walk model at the 3-month and

15-month ahead horizons, respectively, are presented in Figure 4. Also in this case, similar plots for 1-month

T-bill rates and/or for alternative forecast horizons gave qualitatively identical indications. The random

walk forecast errors closely track the Diebold-Li forecast errors at the 3-month horizon. The differences
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increase with the forecast horizon, however, they appear to be relatively modest even at the 15-month

horizon. This impression is confirmed by the statistics on the forecasting performance of the Diebold-Li

model presented in Panel D of Table 6. The Diebold-Li model performs relatively worse than the random

walk benchmark by all three forecast metrics at the 1- and 2-month horizons, but somewhat better at the

3-month horizon. The results are mixed for horizons beyond three months, with the Diebold-Li model

doing somewhat better than the random walk alternative by some metrics and worse by others. In general,

however, differences in the forecasting performance by RMSFE and MAFE metrics are small at horizons

of six months and longer.

A comparison of Diebold-Li model forecasts with the theoretical forecasts (either constant or time-

varying) yields a similar conclusion. Specifically, Diebold-Li forecasts are somewhat worse than the the-

oretical forecasts by the RMSFE and MAFE metrics at the 1- and 2-month horizons, somewhat better

than the theoretical forecasts at the 3-month horizon, and generally mixed at longer horizons, with the

difference typically being very small.

5.4. The OLS, Slope-Based Naive Model

Panel E of Table 6 presents the forecasting performance for the naive slope-based benchmark model sug-

gested by Duffee (2002) and popular with fixed income practitioners. The forecasting performance of this

model, presented in Panel E of Table 6, indicates that this model performed considerably worse than that

of any of the preceding models at all possible horizons. The relative performance of this model is partic-

ularly poor at short horizons, but improves as the forecast horizon lengthens. The improved performance

of the slope of the yield curve for forecasting the future short-term rate is consistent with Cochrane and

Piazzesi’s (2005) findings on the in-sample predictive power of forward rates for bond risk premia. The

poor performance of the slope of the yield curve relative to the Diebold-Li alternative is not surprising in

view of the fact that the Diebold-Li model contains considerably more information about the yield curve.

However, that neither of these models performs markedly better than the random walk benchmark (which

contain no yield curve information) suggests that information about the yield curve may not be particularly

useful for predicting the future short-term rate.

5.5. Completely Affine Models

Panels F-G of Table 6 report on the forecasting performance of completely affine models, when risk pre-

miums are simply a linear function of the variance of the price risk factors (here, three). To save space,

the results are reported only for a mixture of restricted and unrestricted affine models. Panels F and G

report the results for the unrestricted completely affine purely Gaussian model with  = 0 and for the

restricted (more parsimonious) completely affine model with  = 2 Similarly to Duffee’s (2002) results, the

out-of-sample forecasting performance of completely affine models is extremely disappointing. They sys-
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tematically outperform only the weak OLS, slope-based benchmark of panel E. Their predictive accuracy

is inferior to that of the random walk and, like the slope-based benchmark, very poor at short horizons.

For instance, at  = 1 (for 1-month rates), an unrestricted Gaussian affine model yields a RMSFE of 62

b.p. and a MAFE of 36 b.p. compared with 47 b.p. and 30 b.p., respectively, for the random walk speci-

fication. When restrictions are imposed that make the model more parsimonious, the results (unreported)

are essentially identical.

The results for the restricted completely affine model with  = 2, presented in Panel G, are qualitatively

similar those presented in Panel F. This model performs much worse than the random walk at short

horizons and only slightly better for investment horizons longer than 9 months.26 These results suggest

that the completely affine frameworks cannot yield a predictive performance that is comparable to either

the random walk or to the best EH-type forecasts. Figure 5 reports a visual impression for both sets of

forecasts and plots completely affine forecast errors in comparison to random walk forecast errors. Although

the differences never appear major–both when the forecast errors of the two completely affine models are

compared and when the comparison is extended to the random walk–it is clear that differences vs. the

random walk are modest and tend to favor the random walk benchmark over the structural models.

5.6. Essentially Affine Models

The forecasting results for the two essentially affine models estimated in this paper are presented in Panels

H and I of Table 6. The unrestricted essentially affine model forecasts are uniformly superior to those of the

restricted essentially affine alternative and the completely affine alternatives.27 The relative improvement in

forecasting performance is dramatic at short horizons, but appears to be only marginal at longer horizons.

It is interesting to note that the unrestricted essentially affine model does not fit particularly well in-

sample because the proposed structure for the dynamics in second moments remains rather rudimental.

Nevertheless, as Duffee (2002) has noted, this models is capable of fitting many types of shapes in the

term structure. This greater flexibility appears to be rewarded by a competitive out-of-sample forecasting

performance. Unlike the other models that utilize information about the shape of the term structure,

this model outperforms the random walk by both the RMSFE and MAFE metrics at  = 1; however, it

does not improve on the random walk benchmark’s forecasting performance at longer horizons. Particularly

interesting is the fact that there is little or no improvement in model’s performance over that of the Diebold-

Li model, which allows for considerably less flexibility in shape of the yield curve. Again, this suggests that

information about the shape of the yield curve is relatively uninformative for predicting future short-term

interest rates. Figure 6 provides a pictorial representation of forecast errors for the two essentially affine

models in Table 6. Because the unrestricted essentially affine model performs better than any of the other

models considered at the 1-month horizon, Figure 6 presents the forecast errors for 1-month rates at a

26Complete results for both restricted and unrestricted models are available from the Author(s) upon request.
27The performance of a restricted version of this model is largely similar and omitted to save space.

19



1-month horizon and as well as those for the 3-month rate at a 15-month horizon.

Overall, the results presented in Table 6 suggest that for the purposes of forecasting, completely affine

models are essentially useless.28 Even the simplest, most naive rule–a random walk–dominates the ex-

planatory power of completely affine models. A corollary is that we should not use completely affine models

to attempt to understand why the expectations hypothesis fails, because the models cannot reproduce this

failure. By contrast, forecasts from a purely Gaussian essentially affine model dominate naive forecasts

at least at short forecast horizons. However, for longer forecast horizons the superior performance of this

model over either the random walk or the theoretical EH-implied models is less clear.

6. Tests of Differences in Out-of-Sample Predictive Accuracy

There are at least two issues that need to be taken into account to determine whether any of the differences

in the forecasting performance noted above can be reliably exploited. The first problem is sampling

variation: in the presence of rather small differences between random walk vs. other model performances,

it is possible that our finding in favor of either EH-based or of affine-type, no-arbitrage frameworks may

be mostly due to pure chance. We therefore test for the statistical significance of differences between the

theoretical, the random walk, and the econometric model forecasts using the Diebold and Mariano (1995)

test. The second problem stems from the fact that the Diebold-Li and the affine econometric require

parameters to be estimated. Indeed, the affine models are richly parameterized. In contrast, the random

walk benchmark has no parameters to be estimated, while our EH-based forecasts are based on estimates

of a just a few moments (the risk premiums). A sensible procedure to test for the existence of statistically

significant differences in predictive accuracy should to take these differences into account. We accomplish

by implementing McCracken’s (2004) nonparametric test for non-nested models, which takes into account

the incremental variation in forecast errors due to parameter uncertainty.29 We also use the more familiar

Diebold and Mariano (1995) test.

The Diebold and Mariano (1995) (henceforth, DM) test is centered around the use of the statistic (for

a pair of models indexed as 1 and 2)

12 ≡ qd ()  (26)

where  is an average over  observations of the values taken by some differential loss function,  ≡
28The empirical rejection and poor forecasting performance of completely affine models is relatively unsurprising in the light

of the literature (e.g., see Singleton, 2006).
29When parameters are not known but must instead be estimated, West (1996) provides analytical tools that can be used to

construct tests of equal forecast accuracy between non-nested models. His results are similar to those in Diebold and Mariano

(1995) but require that the loss function used to measure forecast accuracy must be continuously differentiable. McCracken

(2000) extends the results of West (1996) to situations where the loss function need not be continuously differentiable (but the

expected loss is continuously differentiable). McCracken (2004) provides a method of accounting for the effects of estimation

error using numerical methods and without making strong assumptions about the observables or without having to derive the

functional form of certain derivatives analytically.

20



(
1
 )− (

2
 ) where (·) is a generic loss function, and  () is the sample variance of . The DM

statistic has an asymptotic standard normal distribution under the null hypothesis that [] = 0, which

corresponds to a null of no differential of predictive accuracy between a pair of models/forecasting frame-

works. Following standard practice, the variance of  is estimated using a heteroskedastic-autocorrelation

consistent estimator, d () = −1
∙
̂0 + 2

−1X−1
=1

( −)̂

¸
 (27)

where ̂ ≡ ( − )−1
P

=+1(− ̄)(−− ̄). Based on the findings of Harvey, et al. (1997) the modified
Diebold-Mariano test,

12 ≡
∙
 + 1− 2 + −1( − 1)



¸−12
12 (28)

is used. The MDM statistic corrects for size distortions associated with the DM statistic.30

West (1996) has shown that in general, when loss functions depend on estimated parameters, (27)

provides a valid estimate of the asymptotic variance of  only is special circumstances, e.g., when the

models are estimated consistently by OLS and the loss function is a squared function (i.e., when we

evaluate forecast accuracy using MSFE). In general, however, the structure of  () is

 () =  (̂) + 2(FB
0()) + FB ()B

0F0 (29)

where in our case of a recursive forecasting exercise,  = 1− ln(1+)  = 2[1− ln(1+

)],  = 264− (the number of recursive pseudo out-of-sample forecasts), and  = 120 (the training

sample used in estimation). F and B are matrices that depend on the data used in estimation as well as on

derivatives of the loss functions with respect to unknown parameters to be computed in correspondence to

the true but unknown population parameters.31 Finally,  denotes the time series of the scores generated

by each model, when estimation occurs by QML. McCracken (2004) proposes to estimateF without deriving

the functional form for the derivative of the loss function or making strong assumptions about the joint

distribution of the observables. The idea is that unknown derivatives can be approximated numerically by

using the finite difference method.

We consider two differential loss functions, the absolute forecast error and the squared forecast error.

Tables 7 and 8 present the test results for squared forecast error and absolute forecast error loss functions,

respectively. The numbers above the diagonal report the standard MDM test statistics and the corre-

sponding significance level in parentheses. The numbers below the diagonal report the West-McCracken

test statistics, again with the corresponding significance level in parentheses. The tests are reported for

1-, 6-, and 15-month horizon (the first exercise refers to 1-month T-bill rates, the latter two exercises to

3-month T-bill rates). Finally, to save space, we limit the exercises in this Section to 7 models, the two

30Harvey et al. (1997, 1998) also recommend using the critical values from the Student’s t distribution rather than those

from the normal distribution. The sample sizes used here are large enough, however, that the distinction is trivial.
31Exact definitions can be found in McCracken (2000, 2004).
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EH-implied forecast models, the random walk, Diebold and Li’s, and three representative affine models,

including the best performing essentially affine Gaussian with  = 0. For convenience, all instances where

the null hypothesis of equal predictive accuracy is reject with a p-value below 0.1 are in bold typeface.

Finally, for numbers above the main diagonal, a negative (positive) value of the test statistic implies that

the model in the row produces more (less) accurate prediction than the model in the column. For numbers

below the main diagonal, the interpretation is reverse: a positive (negative) value of the test statistic

implies that the model in the row produces more (less) accurate prediction than the model in the col-

umn. For example, the MDM test for the theoretical-time-varying-risk-premium row and the random-walk

column of Table 7, Panel A is 0.439, indicating that the random walk model produced a less accurate

forecast. Correspondingly, the value of the West-McCracken test statistic in the random-walk row and

the theoretical-time-varying-risk-premium column of Panel A is also positive, 0.377, indicating that the

theoretical time-varying risk premium model produced the superior forecast. Neither test statistic is sta-

tistically significant at any reasonable significance level, however. Hence, both tests indicate that null of

equal forecasting power cannot be rejected at the 1-month horizon using the squared forecast error loss

function.

While the tables report the test statistics for all pair-wise model comparisons, we focus on comparisons

of the other model with the random walk benchmark. The results in Table 7 indicate that none of the

models produce statistically significantly better forecast at the 1-, 6-, and 15-month horizons than the

random walk benchmark using the mean squared error metric. There are six instances when the null

hypothesis is rejected by the MDM test at one of the horizons considered using the squared forecast

error metric. Not surprisingly, the corresponding West-McCracken test statistics are uniformly smaller.

Moreover, there was no instance where the null hypothesis was rejected. Hence, this tests suggests that all

of the models had equal forecasting ability at all horizons using the square error forecast metric.

Table 8 reports the test results using the absolute forecast error metric. As was the case with the

squared forecast error metric, there was no instance where any of the other models produced a forecast

that was statistically significantly different from the forecasts from the random walk benchmark. There

were, however, three instances when one of the other models was statistically superior to another at the 0.10

percent significance level using the West-McCracken test. All of these occurred at the 1-month horizon.

The test results indicate that constant-risk-premium theoretical model was statistically superior to the

unrestricted essentially affine model, but inferior to the restricted essentially affine model. The test also

indicated that the Diebold-Li model was statistically superior to the restricted essentially affine model. Not

surprisingly, given the results in Table 6, the West-McCracken test indicates that the forecasting ability of

the unrestricted essentially affine model was superior to either the completely affine model or the restricted

essentially affine model, both at a very low significance level.

Of particular interest is the fact that the theoretical forecasts allowing for significant time variation in

the risk premiums were not statistically significantly different from those based on a constant risk premium
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at any horizon, using either metric, or either test. This result suggests that the forecast errors from these

theoretical models are dominated by response of rates to new information (i.e., “news”), which is essentially

unpredictable. From this perspective, the fact that none of the models are able to generate forecast which

dominate those from a random walk model is not surprising in that it suggests that the empirical failure of

the EH likely stems from the fact that the short-term rates are largely unpredictable beyond their current

level. As a result, single equation tests of the EH that are derived using the ex-post short-term rate as proxy

for the markets’ ex-ante expectation of the future short-term rate (2), could fail because this assumption

is greatly at odds with the market’s ability to forecast the future short-term rate. The results presented

here suggest that the best proxy for the markets’ ex-ante expectation of the future short-term rate is the

current short-term rate, not the short-term rate that actually materialized −periods in the future as (2)
counterfactually assumes. Hence, the empirical failure of the EH seems likely due to fact that interest rates

are essentially unpredictable rather than to massive time variation in risk premia.

7. Summary, Conclusions and Implications

This paper notes that conventional tests of the EH are based on two assumptions: that long-term rates are

equal to the average of the market’s expectation of the short-term rate over the holding period of the long-

term assets plus a constant risk premium and an assumption about the market’s expectation of the future

short-term rate. We investigate the possibility that the massive empirical rejections of the EH found in the

literature are due the latter assumption being inconsistent with the market’s true expectation generating

process, rather than to a failure of the EH per se. We do this by comparing the out-of-sample forecasting

performance of several interest rate forecasting models. We find that differences in forecasting performance

of the models considered appear to be relatively small. This is especially true at longer horizons. Moreover,

none of the models outperforms the simple random walk benchmark by all of the metrics and at all forecast

horizons. This finding is consistent with the forecasting performance of survey forecasts (e.g., Stark, 2010;

Mitchell and Pearce, 2007; and Greer, 2003).

It is also the case that our EH-consistent forecast, which incorporate no information about the term

structure of interest rates performs better than models which incorporate significant term structure infor-

mation, suggesting that information about the term structure is relatively unimportant for forecasting the

future interest rate. However, only in a few cases was the improvement in the predictive performance of the

EH-consistent forecasts statistically significant. Also, models that were flexible enough to fit yield curves

with a wide variety of shapes frequently performed worse than models allowed considerably less flexibility

in the shape of the yield curve; however, in no instance was the difference in performance statistically

significant. Finally, models that impose the no-arbitrage condition did not forecast significantly better

than models that did not.

It is interesting to note that performance differences between our EH-consistent forecast under the as-

sumption that the risk premium is constant over the sample period and the one that allowed for considerable
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variation in the risk premium were very small, with neither model consistently performing better than the

other. In no instance was the difference in the performance of these models statistically significant. Hence,

our analysis supports the findings of Kozicki and Tinsley (2005) that the ubiquitous empirical failure of

the EH may not due to time-variation in risk premia. Rather, the failure appears to be the consequence

of the failure of market participants to forecast short-term rates in the manner assumed in conventional

tests of the EH. The future behavior of short-term rates is determined by new information (i.e., news) that

appears to be essentially unpredictable. This not only explains why the spread between the long-term and

short-term rate is a relatively poor predictor of the future short-term rate, but why conventional tests of

the EH consistently reject it.

We tested for statistical differences in forecasting performance of all of the models using both the mod-

ified Diebold-Mariano test and a West-McCracken test. The latter test allows for parameter uncertainty,

but is computationally more burdensome. While relatively small in number, there were instances where

the modified Diebold-Mariano test and the West-McCracken tests yielded different qualitative conclusions.

Consistent with expectations, these differences involved comparisons of models with estimated parameters

and the results always went in the direction of making the rejection of the null hypothesis of equal pre-

dictive accuracy more difficult using the West-McCracken test. Consequently, there is a benefit to bearing

the additional costs associated with implementing the West-McCracken test.

Our conclusion that the empirical failure of the EH is likely due to the auxiliary assumption used to

derive the conventional test than to the EH gives some hope that the forward guidance policies of some

central banks may be successful. Indeed, there is evidence that the federal funds rate has recently become

more predictable, at least at short horizons (e.g., Lange, et al., 2003 and Poole, et al., 2002) since the Fed

began announcing its funds rate target in 1994. However, evidence by Andersson and Hofmann (2010),

Goodhart and Lim (2008), and Rudebusch (2007), suggest that forward guidance has not increased the

predictability of the policy rate beyond a month or two.

The finding here and elsewhere that the reaction to unpredictable news is dominant in determining

future short-term rates has deep implications for policymakers and financial analysts. If the EH is true,

the inability to predict the future short-term rate significantly beyond its current level would imply that the

long-term rate is equal to the short-term rate plus a constant risk premium. Such a relationship appears to

be inconsistent with the behavior of interest rates, however. Hence, this finding threatens the conventional

theory of the term structure of interest rates. The problem, of course, is that theorists have yet to come up

with a more appealing alternative. As Fuhrer (1996) has noted “The tendency to fall back on this paradigm

[the EH] is so strong because candidates to replace it are so weak.”32 The problem is the profession has

a theoretically acceptable theory of the term structure that is at odds with both empirical tests of it and

with extensive evidence that interest rates are extremely difficult to predict beyond their current level, but

no acceptable theory that can adequately account for the observed behavior of interest rates.

32Fuhrer (1996), p. 1183.
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Finally, we should note that despite efforts to implement a robust research design, there a number of

extensions that could be explored in the attempt to look for cases in which the evidence of predictability

in short-term rates may be stronger than what we have uncovered here. For instance, although our

econometric benchmarks are inherently multivariate and have employed information from the entire term

structure of interest rates, we have not explored the possibility that estimating and exploiting the existence

of cointegrating relationships may improve forecast accuracy (see e.g., Hall, et al., 1992). Additionally,

our econometric models have linked forecasts to (unobservable) features of the term structure. There is

voluminous work in finance on the presence of non-linear dynamics in the latent factors that characterize

the term structure (see, e.g., Ang and Bekaert, 2002; Bansal and Zhou, 2002; Engle and Ng, 1993; Hess

and Kamara, 2005) with applications to forecasting (e.g., Guidolin and Timmermann, 2009). There is also

an expanding literature on the possibility that macroeconomic factors may be suitable drivers for modeling

and forecasting riskless yields in addition to standard latent factors (see, e.g., Ang and Piazzesi, 2003;

Bekaert, Cho, and Moreno, 2010; Diebold et al. 2006; Favero et al., 2007; Wu, 2006; and Spencer, 2008).

Although our linear affine models may in principle capture the idea that US yield curves may contain

multiple, complex multi-factor structures that may lead to the possibility that long-term rates may be

useful in allowing the investors to extract the dynamics of the latent factors to forecast future short-term

rates, a latent factor strategy may offer additional payoffs also in terms of prediction accuracy.
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Appendix: Details on the Estimation of Models in the Essentially Affine Class

(Not for Publication)

Consider the affine term structure model

x = K
×

( θ
×1

− x
×1

)+ S
12


×
W
×1

[S
12
 ] =

q
 + ξ0x  = 1  (30)

whereW is a  × 1 vector of independent Brownian motions. When the pricing kernelM has structure

M = −M−MΛ
0
W (31)

(where Λ is the  × 1 vector of prices of risk), the physical measure representation of the stochastic
process for the state vector is

x = μP(x )+ S
12
 WP



μP(x ) = K(θ − x)− S12 Λ [S
12
 ] =

q
 + ξ0x  = 1  (32)

in completely affine case where

Λ(x) = ( + B0x)12 (33)

and

x = K(θ − x)− {Sλ1 + I−Λ2(x)}+ S12 WP


I− ≡
(
1 inf( + B0x))  0
0 otherwise

 = + 1  (34)
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in the essentially affine case, where:

Λ(x) = 1( + B0x)12 + λ02

"(
1

(+B0x)12
inf( + B0x)  0

0 otherwise

#
x. (35)

Here (·) denotes the operator that turns an ×1 vector into an × diagonal matrix. As customary, in
our work we use a normalization that sets the first  rows ofΛ2(x) to zero vectors, i.e., for the first  factors

the risk premia are indeed completely linear affine in x. As a result, when  =  , an essentially affine

model reduces to a completely affine one. However, when    , the essentially affine model introduces

the possibility that x affects expected excess returns both non-linearly through the terms I
−Λ2(x) and

linearly through the non-zero elements of λ1. Crucially, the signs of the premia corresponding to the−
non-volatility factors may now switch over time, adding additionally variability to the signs of the excess

returns.

From basic principles, in the absence of arbitrage opportunities, it must be that price of a bond + 1

periods to maturity is determined as +1
 = [M+1


+1]. Let’s conjecture that bond prices are log-

linear functions of the state:

− ln(
 ) =  +B

0
x ⇐⇒ 

 = exp
¡− −B0x

¢
 (36)

This means that since a zero-coupon bond with zero-to-maturity left has a value of one (0
 = 1), 0 = 0,

B0 = 0 
1
 = [M+1] and

exp
¡−1 −B01x¢ = 

(
exp

"
−
Ã
0+

X
=1



!
+Λ(x)ε+1

#)
= exp

"
−0 −

X
=1

+
1

2

X
=1

Λ2 (x)

#


(37)

which implies (by matching the coefficients) that

1 = 0 − 1
2

X
=1

21 B1 = δ − 1
2

X
=1

Λ̃2 (x)  (38)

where Λ̃2 (x) is the part of Λ
2
 (x) that only depends on x; obviously, Λ̃ (x) = B0x in the completely

affine case. In general, it is easy to recognize that a general set of recursive conditions obtains,

+1 = + 0+B
0
Kθ−

1

2

X
=1

(Λ2+2) B+1 = δ+B0(I −K)−
1

2

X
=1

(Λ̃2 (x)+B
2
s) (39)

where where s ≡ [e0 β0]. Clearly, higher compensations for risk Λ (x) and Λ̃ (x) ( = 1 ) imply
lower values of  and B and–provided that some conditions on state variables and parameters are

satisfied–lower bond prices and higher bond yields. The bond yields for a given maturity  turn out to

be themselves linear affine in x as

 =
1


ln

µ
1




¶
= −1


ln

 =
1


 +

1


B0x (40)

One implication is that–assuming the matrix with rows B0 is invertible for some set of  bond maturities

( = 1  )–then x can be expressed as a function of  bond yields measured in the market, so that

these  bond yields span the risks underlying the variation in the term structure.
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As far the estimation is concerned, we adopt Duffee’s (2002) QMLE method. Assume that at each

month-end ,  = 1   , yields on  bonds are measured without error. These bonds have fixed times to

maturity 1 ...,  . Yields on  − other bonds are assumed to be measured with serially uncorrelated,

mean-zero measurement errors.33 Stack the perfectly observed yields in the vector Y and the imperfectly

observed yields in the vector Y̌. Denote the parameter vector by θ. Given θ, Y can be inverted using

 =
1


 +

1


B0x  = 1  (41)

to form an implied state vector series x̂,

Y = ä + B̈
0

x̂ =⇒ x̂ =

³
B̈0

´−1
(Y − ä)  = 1  , (42)

where the generic elements of the vector ä are 
−1
  , and in the case of B̈ they are 

−1
 B . The

candidate parameter vector is required to be consistent with Y. This is enforced by requiring x̂ to be in

the admissible space for x, which is equivalent to requiring that the diagonal elements of S(x) be real.

Given x̂, implied yields for the other − bonds can be calculated. Stack them in Y̌. The measurement

error is ² = Ŷ − Y̌, where Ŷ collects the fitted values from

̂ =
1


 +

1


B0

³
B̈0

´−1
(Y − ä)  = + 1   (43)

The variance-covariance matrix of the measurement error is assumed to have the following time-invariant

Cholesky decomposition: [²²
0
] = CC

0. To compute the quasi-likelihood value, we assume that the one-

period-ahead conditional distribution of the state variables (x+1|x) is multivariate normal. The mean
and variance-covariance matrix of x+1 are known; thus, (x+1|x) is known. Then the distribution of
Y+1 conditional on Y is

 (Y+1|Y) =
1¯̄̄

det(B̈0)
¯̄̄(x̂+1|x̂) (44)

Also, we have assumed in the main text that the measurement error is jointly normally distributed with

distribution (²). The log-likelihood of observation  for Y̌ is then (θ) = ln  (Y|Y−1) + ln (²).

Stationarity is imposed by requiring that the eigenvalues of a characteristic matrix K= NDN−1 (see below
for the definition of N and D) are positive, allowing  (Y1|Y0) to be set equal to the unconditional
distribution of Y. The estimated parameter vector θ̂



 is chosen to solve

max


X
=1

(θ) = max


X
=1

"
1

|det(B̈0 )|
(x̂+1|x̂) + ln (²)

#
, (45)

where ² ∼  (0 CC0) and

x̂+1|x̂ ∼ 

Ã
N(I − −D(−))θ∗ +N−D(−)N−1x NΥ0N0 +N

Ã
X
=1

ΥN
−1x

!
N0
!
 (46)

33The recorded prices in the data sets may not be actual market transaction prices or the prices of bonds along the yield

curve may not have been recorded at precisely the same time. Alternatively, some have included measurement errors as a

result of the explicit recognition of the fact that the pricing model is an approximation and cannot literally fit all market

prices.
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The yields free of measurement error are picked to span as much of the term structure as possible. At

this point, it is tedious but possible to derive closed-form representations for the first and second condi-

tional moments of a state vector that follows the process (16). Assume that K can be diagonalized, or

K= NDN−1, where D is diagonal. The diagonal elements of D are denoted 1  . We follow Duffee’s

(2002) approach and compute the first and second conditional moments of a linear transformation of x.

The transformation is chosen so that the feedback matrix K is diagonal under the transformation. The

linear transformation is then reversed to calculate the conditional moments of x. Defining x
∗
 ≡ N−1x,

the dynamics of x∗ is

x∗ = (N
−1Kθ −N−1Kx)+N−1S(x)12W = D(θ

∗ − x∗ )+ S∗(x)12W (47)

where θ∗ ≡ N−1θ S∗(x)12 ≡ N−1S(x). We now calculate the first and second moments of x∗ . The
expectation of x∗ conditional on x

∗
 is given by:

[x∗ |x∗ ] = θ∗ + −D(−)(x∗ − θ∗) = (I − −D(−))θ∗ + −D(−)x∗  (48)

Here, if Z is a diagonal matrix, the diagonal matrix in which element ( ) equals  is denoted z; the

 -vector B· is column  of B. Given this conditional mean of x∗ , we reverse the transformation to express
the conditional mean of x :

[x |x] = N[x∗ |x∗ ] = N(I − −D(−))θ∗ +N−D(−)N−1x

As for the conditional variance of x , the matrix S
∗(x)S∗(x)0 is the instantaneous variance-covariance

matrix of the transformed state vector. We can write this as

S∗(x)S∗(x)0 = (α∗) +
X
=1

(B∗·)x∗ =G0 +

X
=1

Gx
∗
 (49)

where G0 ≡ (α∗) and the ×  matrices G ( = 1  ) are defined as (B
∗
·). Define the  ×

matrix F( ) ≡G0+
P

=1G[(x
∗
|x∗ )]. This matrix is the instantaneous variance-covariance matrix of

x∗, but evaluated at the expectation of x∗ (conditional on time  information) instead of the true value of

x∗. Fisher and Gilles (1996) show the conditional variance of x∗ can be written as

 [x∗ |x∗ ] =
Z 



−D(−)F( )−D(−) (50)

Substituting the expression for F( ) into this equation, integrating the resulting expression, and going

from  [x∗ |x∗ ] to the conditional variance of x , we obtain:

 [x |x] = N [x∗T|x∗t]N0 = NΥ0N0 +N

Ã
X
=1

Υx
∗


!
N0 =NΥ0N0 +N

Ã
X
=1

ΥN
−1x

!
N0 (51)

where the ×  matrices Υ ( = 0  ) depend on the horizon  −  and their expression can be found

in Duffee (2002).

The quasi-likelihood functions implied by the typical affine models tend to have a large number of local

maxima: similar quasi-likelihood values can be produced by very different interactions among the elements
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of the state vector. The most important reason for this is the lack of structure placed on the feedback

matrix Kθ. Another difficulty is that any feasible parameter vector must satisfy the requirement that the
diagonal elements of S

12
 are real for all , which requires that ̂ ≥ 0 for all  and  = 1  ; this implies

 restrictions on the parameter vector which are very difficult to handle through standard methods.

These problems led to implement the following maximization algorithm, similar to Duffee’s (2002):

• Step 1. Randomly generate parameters from a multivariate normal distribution with a diagonal

variance-covariance matrix. The means and variances are set to plausible values equal to the sample

estimates of means and variances of 3-month, 2-year, and 5-year Treasury yields.

• Step 2. Use x̂ = (B̈0)−1 (Y − ä) to calculate x̂ for all .

• Step 3. If the parameter vector is not feasible, return to step 1; otherwise proceed.

• Step 4. Use the simplex method to determine the parameter vector that maximizes the QML value.

• Step 5. Using the final parameter vector from Step 4 as a starting point, use numerical optimization
(Broyden, Fletcher, Goldfarb, Shanno’s algorithm) to make any final improvements to the QML

value.

This procedure is repeated until Step 5 is reached 2,000 times. For most of the models, there was little

improvement in the QML value after the first 50 to 60 iterations. For each of the models investigated,

we have also analyzed the effects of estimating more parsimonious specifications by first computing the

(Wald) t-statistics for the unrestricted parameter estimates, then setting to zero all parameters for which

the absolute t-statistics did not exceed a 1.66 approximate threshold, before finally re-estimating the

restricted model.

As far as forecasts are concerned, given an estimated parameter vector θ̂ associated with a particular

model, the implied state vector x̂ is given by inverting yields observed at time . The -period ahead

conditional mean [x̂+|x̂] can then be constructed. Given this expected state vector, expected -period
ahead bond yields and associated forecast errors can also be constructed. However, differently from Duffee

(2002), we forecast the entire term structure and not only the 3 maturities (3 months, 2 years, and 5

years) that we have assumed not to imply measurement errors in yields. Additionally, we perform a

recursive pseudo out-of-sample exercise with a block structure, in the sense that parameter estimates are

updated with bi-annual frequency, i.e., starting with 1972:01-1981:12, followed by 1972:01-1983:12, etc. up

to 1972:01-2001:12.
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Table 1 

Summary Statistics for Implicit Zero-Coupon Yields in the US Term Structure 
The table reports summary statistics for end-of-period monthly observations on continuously compounded yields on riskless pure discount bonds 
for the U.S. The raw data are from Bloomberg. The riskless pure discount bond yields were obtained using FORTRAN codes provided by Robert 
Bliss and Dan Waggoner based on Bliss (1997) and Waggoner (1997). The Sharpe ratio is computed with reference to the 1-month T-Bill. The 
Jarque Bera statistic is used to test the null that the level of bond yields is normally distributed. The Ljung-Box statistics (at 12 lags) test the 
presence of serial correlation in the first difference of yields and their squares. 

 
   ** indicates significance at size 1% or lower, * significance between 1 and 5%. 

Horizon in 
Months

Sample Mean Median
Standard 
Dev.

Term 
Premium

Sharpe Ratio 
(monhly)

Jarque‐
Bera

Ljung‐Box(12) 
First Diff.

Ljung‐Box(12) 
Squares

1 Jan. 1970 ‐ Dec. 2003 6.042 5.430 2.790 __ __ 88.44** 40.54** 189.7**

2 Jan. 1970 ‐ Dec. 2003 6.189 5.538 2.844 0.147 0.015 82.33** 43.87** 140.9**

3 Jan. 1970 ‐ Dec. 2003 6.318 5.690 2.890 0.276 0.028 76.67** 46.85** 142.0**

6 Jan. 1970 ‐ Dec. 2003 6.544 6.046 2.932 0.503 0.049 60.20** 54.74** 176.0**

9 Jan. 1970 ‐ Dec. 2003 6.648 6.152 2.902 0.606 0.060 48.59** 51.46** 166.2**

12 Jan. 1970 ‐ Dec. 2003 6.750 6.273 2.861 0.708 0.071 41.02** 49.27** 136.2**

15 Jan. 1970 ‐ Dec. 2003 6.864 6.394 2.823 0.822 0.084 36.76** 48.88** 119.3**

18 Jan. 1970 ‐ Dec. 2003 6.957 6.537 2.794 0.916 0.095 35.55** 47.06** 115.8**

24 Jan. 1970 ‐ Dec. 2003 7.052 6.668 2.730 1.010 0.107 37.74** 38.80** 129.2**

30 Jan. 1970 ‐ Dec. 2003 7.146 6.752 2.658 1.104 0.120 38.44** 31.65** 147.6**

36 Jan. 1970 ‐ Dec. 2003 7.244 6.814 2.604 1.202 0.133 39.73** 27.70** 152.1**

48 Jan. 1970 ‐ Dec. 2003 7.400 6.943 2.521 1.358 0.155 46.00** 23.25* 144.4**

60 Jan. 1970 ‐ Dec. 2003 7.508 7.040 2.459 1.466 0.172 48.83** 20.12 140.1**

72 Jan. 1970 ‐ Dec. 2003 7.607 7.184 2.420 1.565 0.187 47.75** 16.75 140.6**

84 Aug. 1971 ‐ Dec. 2003 7.726 7.311 2.431 1.684 0.200 39.09** 14.12 141.0**

96 Aug. 1971 ‐ Dec. 2003 7.783 7.386 2.386 1.741 0.211 41.12** 13.14 137.6**

108 Aug. 1971 ‐ Dec. 2003 7.826 7.496 2.333 1.784 0.221 43.39** 13.85 136.0**

120 Nov. 1971 ‐ Dec. 2003 7.879 7.522 2.282 1.837 0.232 43.77** 16.16 130.6**
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Table 2 

Full-Sample Estimates of a Purely Affine (Gaussian) Model 
The table reports QMLE estimates for a completely affine term structure model obtained from a common 
data sample that spans the interval 1972:01 – 2003:12. The estimation procedure assumes that nominal 
yields on 3-month, 2-year, and 5-year Treasury bonds are measured without error, while for all other 
maturities yields are measured with errors that have a joint i.i.d. Gaussian distribution with constant 
covariance matrix. Robust (sandwich-style) standard errors are reported in parenthesis. In the table, the 
restricted model is obtained from the first-stage restricted model after restricting to zero all parameters that 
have a first-stage p-value in excess of 0.10. Boldfaced coefficients are significant at a size of 5% or lower. 

 

Parameter Factor 1 Factor 2 Factor 3 Parameter Factor 1 Factor 2 Factor 3

0.0806 0.0359 0.0115 0.0536 0.0045 0.0091
(0.0113) (0.0151) (0.0056) (0.0033) (0.0058) (0.0049)

0 0 0 0 0 0
     

0.2853 0 0 0.2847 0 0
(0.0013)   (0.0010)  
‐0.7837 0.8771 0 ‐0.7883 0.8711 0
(0.1304) (0.0180)  (0.1109) (0.0133) 
‐0.0202 0.0735 0.0360 ‐0.0287 0 0.0432
(0.0051) (0.0850) (0.0009) (0.0043)  (0.0006)

1 1 1 1 1 1
     
0 0 0 0 0 0
     
0 0 0 0 0 0
     
0 0 0 0 0 0
     

‐0.0409 ‐0.4307 ‐0.3112 0 ‐0.2194 ‐0.4295
(0.0331) (0.1518) (0.0797)  (0.0890) (0.1162)

C'  0.00605 0 0 C'  0.00604 0 0
C'  0.00400 0.00311 0 C'  0.00399 0.00311 0
C'  0.00272 0.00287 0.00133 C'  0.00270 0.00289 0.00133
Number of free parameters: 19 Number of free parameters: 17
Number of observations: 7326 Number of observations: 7326
Saturation ratio: 385.6 Saturation ratio: 430.9
Log‐likelihood function: ‐1386.25 Log‐likelihood function: ‐1389.69

LR Test of restrictions: 6.888
p‐value: (0.032)

Schwartz information criterion: 1.2682 Schwartz information criterion: 1.2415
Akaike information criterion: 1.1796 Akaike information criterion: 1.1726
Hannan‐Quinn information crit.: 1.2146 Hannan‐Quinn information crit.:1.1998

Unrestricted Model Restricted Model

0
0.0555
(0.0314)

' 





K ' 

K ' 

' 



K ' 

K ' 

K ' 



' 

0.0776
(0.0346)





' ' 

K ' 



' 



0
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Table 3 

Full-Sample Estimates of a Completely Affine Heteroskedastic Model 
The table reports QMLE estimates for a completely affine term structure model obtained from a common 
data sample that spans the interval 1972:01 – 2003:12 and setting L = 2 in the canonical representation. The 
estimation procedure assumes that nominal yields on 3-month, 2-year, and 5-year Treasury bonds are 
measured without error, while for all other maturities yields are measured with errors that have a joint i.i.d. 
Gaussian distribution with constant covariance matrix. Robust (sandwich-style) standard errors are reported 
in parenthesis. In the table, the restricted model is obtained from the first-stage restricted model after 
restricting to zero all parameters that have a first-stage p-value in excess of 0.10. Boldfaced coefficients are 
significant at a size of 5% or lower. 

 

Parameter Factor 1 Factor 2 Factor 3 Parameter Factor 1 Factor 2 Factor 3

0.0576 0.0944 0.0138 0.0579 0.0879 0
(0.0029) (0.0449) (0.0111) (0.0019) (0.0229) 

0 0.1811 ‐1.5328 0 0.1745 ‐1.5395
 (0.0772)   (0.0814) 

0.1132 ‐0.1153 0 0.1325 ‐0.0965 0
(0.0041) (0.0495)  (0.0030) (0.0166) 
‐0.0593 0.2714 0 0 0.2489 0
(0.0360) (0.0084)   (0.0017) 
0.4560 ‐2.6808 0.9302 0.4375 ‐2.6621 0.9111
(0.2328) (1.3224) (0.0246) (0.1821) (1.2456) (0.0238)

1 1 1 1 1 1
     
1 0 0 1 0 0
     
0 1 0 0 1 0
     

0.0048 3.1872 0 0 2.1797 0
(0.0061) (0.8632)   (0.0485) 
‐0.0305 ‐0.0435 ‐0.1544 0 ‐0.1314 ‐0.1513
(0.0216) (0.0182) (0.0638)  (0.0715) (0.0639)

C'  0.00601 0 0 C'  0.00602 0 0
C'  0.00397 0.00311 0 C'  0.00398 0.00311 0
C'  0.00269 0.00289 0.00132 C'  0.00270 0.00289 0.00132
Number of free parameters: 24 Number of free parameters: 20
Number of observations: 7326 Number of observations: 7326
Saturation ratio: 305.3 Saturation ratio: 366.3
Log‐likelihood function: ‐1359.23 Log‐likelihood function: ‐1365.28

LR Test of restrictions: 12.10
p‐value: (0.017)

Schwartz information criterion: 1.2904 Schwartz information criterion1.2658
Akaike information criterion: 1.1722 Akaike information criterion: 1.2063
Hannan‐Quinn information crit.: 1.2190 Hannan‐Quinn information cri1.1673

 

'  ' 

'  ' 

'  ' 

K '  K ' 

K '  K ' 

 

 

 

K '  K ' 

Unrestricted Model Restricted Model

0
0.0238

0
0.0225

(0.0095) (0.0092)
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Table 4 

Full-Sample Estimates of an Essentially Affine (Gaussian) Model 
The table reports QMLE estimates for a completely affine term structure model obtained from a common 
data sample that spans the interval 1972:01 – 2003:12 and setting L = 0 in the canonical essentially affine 
representation. The estimation procedure assumes that nominal yields on 3-month, 2-year, and 5-year 
Treasury bonds are measured without error, while for all other maturities yields are measured with errors 
that have a joint i.i.d. Gaussian distribution with constant covariance matrix. Robust (sandwich-style) 
standard errors are reported in parenthesis. In the table, the restricted model is obtained from the first-stage 
restricted model after restricting to zero all parameters that have a first-stage p-value in excess of 0.10. 
Boldfaced coefficients are significant at a size of 5% or lower. 

Parameter Factor 1 Factor 2 Factor 3 Parameter Factor 1 Factor 2 Factor 3

0.0501 0.0415 0.0573 0.0529 0.0524 0
(0.0029) (0.0167) (0.0464) (0.0017) (0.0191) 

0 0 0 0 0 0
     

0.3831 0 0 0.3787 0 0
(0.0061)   (0.0017)  
‐0.4631 2.7282 0 ‐0.4459 2.7285 0
(0.1269) (0.0667)  (0.0659) (0.0430) 
‐0.1854 ‐0.4056 0.0899 ‐0.1555 0 0.0925
(0.0747) (1.0612) (0.0025) (0.0247)  (0.0012)

1 1 1 1 1 1
     
0 0 0 0 0 0
     
0 0 0 0 0 0
     
0 0 0 0 0 0
     

‐0.2914 ‐0.3583 ‐0.3478 ‐0.2678 ‐0.3257 ‐0.3114
(0.1506) (0.1284) (0.0885) (0.1479) (0.1376) (0.0851)
‐0.3753 0.6533 ‐0.0332 ‐0.2432 0.6715 0
(0.1800) (0.2887) (0.0197) (0.1918) (0.2417) 
0.3870 ‐0.9091 ‐0.0348 0.2942 ‐0.7947 0
(0.1343) (0.3701) (0.0277) (0.1197) (0.4089) 
0.3103 0.5415 ‐0.0466 0.2001 0.4524 0
(0.1163) (0.2494) (0.0368) (0.1153) (0.1766) 

C'  0.00604 0 0 C'  0.00605 0 0
C'  0.00400 0.00304 0 C'  0.00400 0.00311 0
C'  0.00271 0.00288 0.00131 C'  0.00271 0.00289 0.00132
Number of free parameters: 28 Number of free parameters: 23
Number of observations: 7326 Number of observations: 7326
Saturation ratio: 261.6 Saturation ratio: 318.5
Log‐likelihood function: ‐1338.4 Log‐likelihood function: ‐1374.31

LR Test of restrictions: 71.82
p‐value: (0.000)

Schwartz information criterion: 1.3619 Schwartz information criterion: 1.3322
Akaike information criterion: 1.1864 Akaike information criterion: 1.1944
Hannan‐Quinn information crit.: 1.2548 Hannan‐Quinn information crit.: 1.2489

 

 

Unrestricted Model Restricted Model

0
0.1220 0

0.0163
(0.0337) (0.0037)
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Table 5 

Full-Sample Estimates of an Essentially Affine Model 
The table reports QMLE estimates for a completely affine term structure model obtained from a common 
data sample that spans the interval 1972:01 – 2003:12 and setting L = 1 in the canonical essentially affine 
representation. The estimation procedure assumes that nominal yields on 3-month, 2-year, and 5-year 
Treasury bonds are measured without error, while for all other maturities yields are measured with errors 
that have a joint i.i.d. Gaussian distribution with constant covariance matrix. Robust (sandwich-style) 
standard errors are reported in parenthesis. In the table, the restricted model is obtained from the first-stage 
restricted model after restricting to zero all parameters that have a first-stage p-value in excess of 0.10. 
Boldfaced coefficients are significant at a size of 5% or lower. 

 

Parameter Factor 1 Factor 2 Factor 3 Parameter Factor 1 Factor 2 Factor 3

0.0579 0.0083 0.0018 0.0500 0 0
(0.0035) (0.0069) (0.0014) (0.0008)  
0.1672 ‐1.4098 0.6548 0.1648 ‐1.4026 0.6515
(0.0765)   (0.0758)  
0.0322 0 0 0.0319 0 0
(0.0003)   (0.0003)  
‐0.2715 0.4939 3.4962 ‐0.0833 0.4990 3.4932
(0.0343) (0.0534) (1.4856) (0.0104) (0.0506) (0.6633)
0.1261 ‐0.1571 1.5956 0.1272 ‐0.1606 1.5927
(0.0217) (0.0356) (0.0676) (0.0209) (0.0340) (0.0648)

1 1 1 1 1 1
     
0 0 0 0 0 0
     

5.5344 0 0 5.3229 0 0
(0.2951)   (2.7017)  
0.1566 0 0 0.2394 0 0
(0.0062)   (0.1162)  
‐0.0654 ‐4.0354 ‐0.1124 ‐0.0647 ‐3.9742 ‐0.1067
(0.0362) (2.2802) (0.0518) (0.0365) (2.1835) (0.0518)

0 0 0 0 0 0
     

41.7737 ‐0.0530 3.9253 5.5606 0 0.1135
(23.6237) (0.0737) (2.3251) (1.2671)  (0.0796)
‐0.0320 0.0072 ‐0.9415 ‐0.0132 0 0
(0.0150) (0.1127) (3.1850) (0.0004)  

C'  0.00605 0 0 C'  0.00604 0 0
C'  0.00407 0.00298 0 C'  0.00406 0.00302 0
C'  0.00277 0.00279 0.00131 C'  0.00276 0.00282 0.00133
Number of free parameters: 31 Number of free parameters: 26
Number of observations: 7326 Number of observations: 7326
Saturation ratio: 236.3 Saturation ratio: 281.8
Log‐likelihood function: ‐1257.68 Log‐likelihood function: ‐1292.31

LR Test of restrictions: 69.26
p‐value: (0.000)

Schwartz information criterion: 1.2958 Schwartz information criterion: 1.2651
Akaike information criterion: 1.1283 Akaike information criterion: 1.1272
Hannan‐Quinn information crit.: 1.1946 Hannan‐Quinn information crit.: 1.1818

 

 

Unrestricted Model Restricted Model

0
0.0280 0

0.0213
(0.0149) (0.0112)
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Table 6 

Summary Statistics for Monthly Forecast Errors 
The table shows summary statistics for monthly theoretical forecast errors for a range of models and 
forecast horizons. T-Bills at the 1- and 3-month maturities are considered. For comparability, these 
statistics are calculated using forecast errors over the common out-of-sample period, 1982:01-2003:12. 
Panels A and B report the forecasting performance of the theoretical forecast with a constant risk premium 
and a time-varying risk premium (computed using a rolling window of P = 10), respectively. MSFE and 
RMSFE are the mean and root-mean squared forecast errors, respectively. MAFE is the mean absolute 
forecast error. 

 

   

Statistic h=1 h=2 h=3 h=6 h=9 h=12 h=15

Mean ‐0.001 0.000 0.009 0.002 ‐0.003 ‐0.008 ‐0.012
Median 0.111 0.194 0.337 0.231 0.178 0.007 ‐0.166
Max. 0.996 0.890 1.613 2.038 2.789 3.678 3.340
Min. ‐3.817 ‐6.766 ‐5.796 ‐5.657 ‐5.369 ‐5.423 ‐4.800
S.D. 0.510 0.764 0.758 1.136 1.367 1.556 1.729

MSFE 0.259 0.581 0.605 1.287 1.866 2.435 3.037
RMSFE 0.509 0.762 0.778 1.134 1.366 1.561 1.743
MAFE 0.307 0.448 0.559 0.802 1.016 1.185 1.360

Mean 0.023 0.045 0.236 0.099 0.005 ‐0.081 ‐0.169
Median 0.057 0.034 0.210 0.069 0.037 ‐0.124 ‐0.269
Max. 2.038 2.729 3.463 3.797 3.483 4.331 4.573
Min. ‐2.819 ‐5.007 ‐4.037 ‐4.445 ‐4.288 ‐4.622 ‐4.206
S.D. 0.484 0.735 0.778 1.133 1.389 1.603 1.799

MSFE 0.234 0.540 0.659 1.288 1.921 2.566 3.252
RMSFE 0.484 0.735 0.812 1.135 1.386 1.602 1.803
MAFE 0.306 0.452 0.548 0.801 1.028 1.214 1.395

Mean ‐0.040 ‐0.078 0.113 ‐0.025 ‐0.120 ‐0.206 ‐0.294
Median ‐0.019 ‐0.038 0.120 ‐0.034 ‐0.143 ‐0.275 ‐0.374
Max. 2.406 1.996 1.993 2.800 3.630 3.998 4.790
Min. ‐2.745 ‐5.012 ‐4.042 ‐5.479 ‐5.191 ‐4.441 ‐4.576
S.D. 0.471 0.691 0.783 1.134 1.385 1.580 1.777

MSFE 0.223 0.481 0.623 1.282 1.924 2.529 3.233
RMSFE 0.472 0.694 0.789 1.132 1.387 1.590 1.798
MAFE 0.302 0.440 0.566 0.824 1.046 1.241 1.433

Mean ‐0.227 ‐0.362 ‐0.170 ‐0.307 ‐0.400 ‐0.485 ‐0.572
Median ‐0.182 ‐0.257 ‐0.137 ‐0.287 ‐0.252 ‐0.449 ‐0.497
Max. 1.481 1.124 1.556 1.826 2.441 3.020 3.779
Min. ‐3.414 ‐5.729 ‐4.759 ‐5.710 ‐5.422 ‐4.649 ‐4.541
S.D. 0.471 0.684 0.736 1.095 1.334 1.522 1.707

MSFE 0.273 0.596 0.568 1.289 1.933 2.541 3.229
RMSFE 0.523 0.772 0.754 1.135 1.390 1.594 1.797
MAFE 0.334 0.491 0.537 0.844 1.054 1.249 1.442

1‐month rate 3‐month rate

Panel D ‐ Diebold and Li's Errors

Panel A ‐ Theoretical Forecast Errors (constant risk premium)

Panel B ‐ Theoretical Forecast Errors (time‐varying risk premium)

Panel C ‐ Random Walk Errors
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Table 6 [continued] 

Summary Statistics for Monthly Forecast Errors 

 

 

Statistic h=1 h=2 h=3 h=6 h=9 h=12 h=15

Mean ‐0.074 ‐0.153 ‐0.201 ‐0.332 ‐0.411 ‐0.495 ‐0.578
Median ‐0.023 ‐0.112 ‐0.144 ‐0.237 ‐0.384 ‐0.582 ‐0.580
Max. 2.013 3.084 1.862 2.751 3.128 3.822 4.513
Min. ‐4.984 ‐5.078 ‐6.289 ‐5.490 ‐5.905 ‐4.646 ‐4.471
S.D. 0.687 0.954 1.046 1.259 1.455 1.628 1.823

MSFE 0.475 0.930 1.130 1.689 2.276 2.886 3.643
RMSFE 0.689 0.964 1.063 1.300 1.509 1.699 1.909
MAFE 0.436 0.637 0.730 0.959 1.180 1.374 1.561

Mean ‐0.051 ‐0.113 ‐0.160 ‐0.290 ‐0.367 ‐0.449 ‐0.530
Median 0.010 ‐0.068 ‐0.086 ‐0.205 ‐0.384 ‐0.481 ‐0.574
Max. 1.525 3.151 1.850 2.285 3.269 3.694 4.045
Min. ‐5.211 ‐5.020 ‐5.761 ‐5.415 ‐5.377 ‐4.470 ‐4.628
S.D. 0.617 0.861 0.958 1.208 1.389 1.553 1.735

MSFE 0.382 0.751 0.941 1.537 2.056 2.603 3.277
RMSFE 0.618 0.866 0.970 1.240 1.434 1.613 1.810
MAFE 0.364 0.555 0.638 0.888 1.106 1.288 1.471

Mean ‐0.048 ‐0.089 ‐0.135 ‐0.262 ‐0.335 ‐0.413 ‐0.490
Median 0.014 0.047 ‐0.025 ‐0.135 ‐0.321 ‐0.388 ‐0.426
Max. 1.510 3.311 2.010 2.204 3.032 3.388 3.713
Min. ‐5.351 ‐4.987 ‐5.880 ‐5.378 ‐5.496 ‐4.376 ‐4.497
S.D. 0.626 0.889 0.981 1.221 1.394 1.555 1.740

MSFE 0.392 0.795 0.978 1.554 2.048 2.578 3.256
RMSFE 0.626 0.892 0.989 1.246 1.431 1.606 1.804
MAFE 0.367 0.582 0.666 0.907 1.114 1.285 1.473

Mean ‐0.021 ‐0.094 ‐0.141 ‐0.272 ‐0.349 ‐0.432 ‐0.515
Median 0.026 ‐0.026 ‐0.015 ‐0.170 ‐0.306 ‐0.467 ‐0.525
Max. 1.606 2.625 1.519 2.347 2.601 3.580 3.898
Min. ‐3.246 ‐5.921 ‐5.122 ‐5.366 ‐5.384 ‐4.890 ‐4.485
S.D. 0.458 0.783 0.880 1.172 1.359 1.521 1.703

MSFE 0.209 0.619 0.792 1.443 1.961 2.492 3.152
RMSFE 0.458 0.787 0.890 1.201 1.400 1.579 1.776
MAFE 0.282 0.480 0.558 0.848 1.060 1.249 1.431

Mean ‐0.058 ‐0.137 ‐0.184 ‐0.314 ‐0.391 ‐0.473 ‐0.554
Median 0.012 ‐0.043 ‐0.090 ‐0.219 ‐0.388 ‐0.508 ‐0.566
Max. 1.535 3.537 2.236 2.225 3.099 3.423 3.736
Min. ‐5.452 ‐4.958 ‐5.882 ‐5.243 ‐5.498 ‐4.366 ‐4.486
S.D. 0.635 0.890 0.982 1.215 1.391 1.552 1.739

MSFE 0.405 0.809 0.994 1.569 2.081 2.624 3.319
RMSFE 0.637 0.899 0.997 1.253 1.442 1.620 1.822
MAFE 0.371 0.567 0.661 0.908 1.119 1.301 1.489

Panel E ‐ Slope‐Based Benchmark Errors

Panel F ‐ Unrestricted Completely Affine Gaussian Model (A0(3))

Panel G ‐ Restricted Completely Affine Model (A2(3))

Panel H ‐ Unrestricted Essentially Affine Gaussian Model (A0(3))

Panel I ‐ Restricted Essentially Affine Gaussian Model (A1(3))
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Table 7 

Tests of Equal Predictive Accuracy: Squared Forecast Error Loss 
The table presents test statistics for two types of equal predictive accuracy tests. The numbers above the main diagonal report the standard 
modified Diebold-Mariano test and the corresponding significance level in parentheses. The numbers below the diagonal report the West-
McCracken test statistic, again with the corresponding significance level in parentheses. The tests are performed for 1-, 6-, and 15-month horizon 
(the first exercise refers to 1-month T-bill rates, the latter two exercises to 3-month T-bill rates). All instances where the null hypothesis of equal 
predictive accuracy is reject with a p-value below 0.1 are in bold typeface. For numbers above the main diagonal, a negative (positive) value of the 
test statistic implies that the model in the row produces more (less) accurate prediction than the model in the column. For numbers below the main 
diagonal, the interpretation is that a positive (negative) value of the test statistic implies that the model in the row produces more (less) accurate 
prediction than the model in the column. 

 

 
  

Panel A ‐ horizon: 1 month
Theoretical 
(constant risk 
premium)

Theoretical 
(time‐varying 
risk premium)

Random Walk Diebold and Li

Unrestricted 
Completely Affine 

Gaussian A0(3)

Unrestricted 
Essentially Affine 

Gaussian A0(3)

Restricted Essentially 

Affine A1(3)

0.421 0.567 ‐0.545 ‐1.930 1.338 ‐1.877
(0.674) (0.571) (0.586) (0.054) (0.181) (0.061)

0.341 0.439 ‐0.974 ‐1.298 0.830 ‐1.335
(0.733) (0.660) (0.330) (0.194) (0.407) (0.182)
0.406 0.377 ‐1.216 ‐1.364 0.443 ‐1.392
(0.685) (0.706) (0.224) (0.173) (0.658) (0.164)
‐0.401 ‐0.513 ‐0.428 ‐1.341 3.338 ‐1.381
(0.688) (0.608) (0.669) (0.180) (0.001) (0.167)
‐0.739 ‐0.370 ‐0.319 ‐0.580 1.845 ‐1.494
(0.460) (0.712) (0.750) (0.562) (0.065) (0.135)
0.290 0.476 0.376 1.278 1.333 ‐1.807
(0.772) (0.634) (0.707) (0.201) (0.183) (0.071)
‐0.689 ‐0.355 ‐0.304 0.546 ‐1.317 ‐1.312
(0.492) (0.722) (0.761) (0.585) (0.188) (0.190)

Theoretical (constant risk premium)

Theoretical (time‐varying risk premium)

Random Walk

Restricted Essentially Affine A1(3)

Unrestricted Completely Affine Gaussian A0(3)

Unrestricted Essentially Affine Gaussian A0(3)

Diebold and Li
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Table 7 [continued] 

Tests of Equal Predictive Accuracy: Squared Forecast Error Loss 
 

 

 

  

Panel B ‐ horizon: 6 months
Theoretical 
(constant risk 
premium)

Theoretical 
(time‐varying 
risk premium)

Random Walk Diebold and Li

Unrestricted 
Completely Affine 

Gaussian A0(3)

Unrestricted 
Essentially Affine 
Gaussian A0(3)

Restricted Essentially 
Affine A1(3)

‐0.001 0.018 ‐0.009 ‐1.363 ‐1.167 ‐1.600
(0.999) (0.986) (0.993) (0.173) (0.243) (0.110)

‐0.002 0.021 ‐0.004 ‐0.811 ‐0.451 ‐0.932
(0.999) (0.983) (0.997) (0.418) (0.652) (0.351)
0.018 0.023 ‐0.042 ‐1.144 ‐0.623 ‐1.243
(0.986) (0.982) (0.966) (0.253) (0.533) (0.213)
‐0.010 ‐0.004 ‐0.041 ‐1.655 ‐0.956 ‐1.982
(0.992) (0.997) (0.967) (0.098) (0.339) (0.048)
‐0.516 ‐0.510 ‐0.469 ‐0.511 1.170 ‐0.783
(0.606) (0.610) (0.639) (0.609) (0.242) (0.434)
‐0.530 ‐0.356 ‐0.400 ‐0.407 0.565 ‐1.793
(0.596) (0.722) (0.689) (0.684) (0.572) (0.073)
‐0.603 ‐0.553 ‐0.468 ‐0.659 ‐0.589 ‐0.762
(0.547) (0.581) (0.640) (0.510) (0.556) (0.446)

Random Walk

Diebold and Li

Theoretical (constant risk premium)

Theoretical (time‐varying risk premium)

Unrestricted Completely Affine Gaussian A0(3)

Unrestricted Essentially Affine Gaussian A0(3)

Restricted Essentially Affine A1(3)

Panel C ‐ horizon: 15 months
Theoretical 
(constant risk 
premium)

Theoretical 
(time‐varying 
risk premium)

Random Walk Diebold and Li

Unrestricted 
Completely Affine 

Gaussian A0(3)

Unrestricted 
Essentially Affine 
Gaussian A0(3)

Restricted Essentially 
Affine A1(3)

‐0.726 ‐0.504 ‐0.450 ‐0.470 ‐0.272 ‐0.563
(0.468) (0.615) (0.653) (0.639) (0.785) (0.573)

‐0.559 0.038 0.042 ‐0.043 0.184 ‐0.108
(0.576) (0.970) (0.967) (0.966) (0.854) (0.914)
‐0.405 0.036 0.012 ‐0.210 0.386 ‐0.317
(0.686) (0.972) (0.990) (0.833) (0.700) (0.751)
‐0.373 0.042 0.010 ‐0.219 0.503 ‐0.810
(0.709) (0.967) (0.992) (0.826) (0.615) (0.418)
‐0.390 ‐0.040 ‐0.203 ‐0.205 1.134 ‐0.395
(0.697) (0.968) (0.839) (0.837) (0.257) (0.693)
‐0.252 0.163 0.337 0.435 0.616 ‐1.930
(0.801) (0.871) (0.736) (0.663) (0.538) (0.054)
‐0.435 ‐0.104 ‐0.292 ‐0.662 ‐0.323 ‐0.772
(0.664) (0.917) (0.770) (0.508) (0.745) (0.440)

Theoretical (constant risk premium)

Theoretical (time‐varying risk premium)

Random Walk

Unrestricted Essentially Affine Gaussian A0(3)

Restricted Essentially Affine A1(3)

Diebold and Li

Unrestricted Completely Affine Gaussian A0(3)
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Table 8 

Tests of Equal Predictive Accuracy: Absolute Forecast Error Loss 
The table presents test statistics for two types of equal predictive accuracy tests. The numbers above the main diagonal report the standard 
modified Diebold-Mariano test and the corresponding significance level in parentheses. The numbers below the diagonal report the West-
McCracken test statistic, again with the corresponding significance level in parentheses. The tests are performed for 1-, 6-, and 15-month horizon 
(the first exercise refers to 1-month T-bill rates, the latter two exercises to 3-month T-bill rates). All instances where the null hypothesis of equal 
predictive accuracy is reject with a p-value below 0.1 are in bold typeface. For numbers above the main diagonal, a negative (positive) value of the 
test statistic implies that the model in the row produces more (less) accurate prediction than the model in the column. For numbers below the main 
diagonal, the interpretation is that a positive (negative) value of the test statistic implies that the model in the row produces more (less) accurate 
prediction than the model in the column. 

 

 
  

Panel A ‐ horizon: 1 month
Theoretical 
(constant risk 
premium)

Theoretical 
(time‐varying 
risk premium)

Random Walk Diebold and Li

Unrestricted 
Completely Affine 

Gaussian A0(3)

Unrestricted 
Essentially Affine 

Gaussian A0(3)

Restricted Essentially 

Affine A1(3)

0.060 0.287 ‐1.847 ‐2.667 2.079 ‐2.947
(0.952) (0.774) (0.065) (0.008) (0.038) (0.003)

0.062 0.225 ‐1.319 ‐2.114 1.491 ‐2.265
(0.950) (0.822) (0.187) (0.035) (0.136) (0.023)
0.274 0.216 ‐2.164 ‐2.496 1.886 ‐2.636
(0.784) (0.829) (0.031) (0.013) (0.059) (0.008)
‐1.540 ‐0.554 ‐0.716 ‐1.434 3.763 ‐1.715
(0.124) (0.580) (0.474) (0.151) (0.000) (0.086)
1.569 ‐1.477 ‐1.534 ‐0.636 4.080 ‐1.448
(0.112) (0.140) (0.125) (0.525) (0.000) (0.148)
1.689 0.439 1.204 1.593 2.467 ‐4.118
(0.091) (0.661) (0.229) (0.111) (0.014) (0.000)
‐1.739 ‐1.466 ‐1.540 ‐1.651 ‐1.492 ‐2.460
(0.082) (0.143) (0.124) (0.099) (0.136) (0.014)

Unrestricted Completely Affine Gaussian A0(3)

Random Walk

Diebold and Li

Theoretical (constant risk premium)

Theoretical (time‐varying risk premium)

Unrestricted Essentially Affine Gaussian A0(3)

Restricted Essentially Affine A1(3)



45 
 

Table 8 [continued] 

Tests of Equal Predictive Accuracy: Absolute Forecast Error Loss 

 

 

  

Panel B ‐ horizon: 6 months
Theoretical 
(constant risk 
premium)

Theoretical 
(time‐varying 
risk premium)

Random Walk Diebold and Li

Unrestricted 
Completely Affine 

Gaussian A0(3)

Unrestricted 
Essentially Affine 
Gaussian A0(3)

Restricted Essentially 
Affine A1(3)

0.018 ‐0.350 ‐0.567 ‐1.137 ‐0.745 ‐1.430
(0.985) (0.727) (0.570) (0.256) (0.456) (0.153)

0.019 ‐0.321 ‐0.412 ‐1.011 ‐0.557 ‐1.241
(0.985) (0.749) (0.681) (0.312) (0.577) (0.215)
‐0.317 ‐0.288 ‐0.326 ‐1.106 ‐0.438 ‐1.407
(0.751) (0.774) (0.744) (0.269) (0.662) (0.159)
‐0.418 ‐0.351 ‐0.300 ‐0.960 ‐0.105 ‐1.609
(0.676) (0.726) (0.764) (0.337) (0.916) (0.108)
‐0.509 ‐0.533 ‐0.573 ‐0.612 1.609 ‐1.338
(0.611) (0.594) (0.567) (0.541) (0.108) (0.181)
‐0.503 ‐0.439 ‐0.374 ‐0.107 1.331 ‐2.549
(0.615) (0.661) (0.709) (0.915) (0.183) (0.011)
‐0.498 ‐0.540 ‐0.554 ‐0.713 ‐0.501 ‐1.564
(0.618) (0.589) (0.580) (0.476) (0.616) (0.118)

Theoretical (constant risk premium)

Theoretical (time‐varying risk premium)

Random Walk

Unrestricted Essentially Affine Gaussian A0(3)

Restricted Essentially Affine A1(3)

Diebold and Li

Unrestricted Completely Affine Gaussian A0(3)

Panel C ‐ horizon: 15 months
Theoretical 
(constant risk 
premium)

Theoretical 
(time‐varying 
risk premium)

Random Walk Diebold and Li

Unrestricted 
Completely Affine 

Gaussian A0(3)

Unrestricted 
Essentially Affine 
Gaussian A0(3)

Restricted Essentially 
Affine A1(3)

‐0.428 ‐0.880 ‐0.733 ‐0.899 ‐0.682 ‐1.036
(0.669) (0.379) (0.463) (0.369) (0.496) (0.300)

‐0.362 ‐0.406 ‐0.352 ‐0.561 ‐0.304 ‐0.648
(0.717) (0.685) (0.725) (0.575) (0.761) (0.517)
‐0.483 ‐0.349 ‐0.102 ‐0.698 0.033 ‐0.849
(0.629) (0.727) (0.919) (0.485) (0.974) (0.396)
‐0.458 ‐0.317 ‐0.101 ‐0.509 0.236 ‐1.238
(0.647) (0.752) (0.919) (0.611) (0.813) (0.216)
‐0.463 ‐0.438 ‐0.530 ‐0.442 1.552 ‐0.824
(0.644) (0.662) (0.596) (0.659) (0.121) (0.410)
‐0.451 ‐0.277 0.033 0.231 0.991 ‐2.593
(0.652) (0.782) (0.974) (0.817) (0.322) (0.010)
‐0.456 ‐0.449 ‐0.540 ‐0.809 ‐0.503 ‐1.575
(0.648) (0.654) (0.589) (0.419) (0.615) (0.115)
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Figure 1 

Forecast Error Series: Comparing EH-Implied (with Constant Risk Premia) and Random Walk Models 
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Figure 2 

Implied Constant and Rolling-Window (10-month) EH Estimates of the Risk Premium, 1- and 2-month T-Bills 
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Figure 3 

Forecast Error Series: Comparing EH-Implied (with Time-Varying Risk Premia) and Random Walk Models 
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Figure 4 

Forecast Error Series: Comparing EH-Implied (with Time-Varying Risk Premia) and Random Walk Models 
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Figure 5 

Forecast Error Series: Comparing Completely Affine Term Structure and Random Walk Models 
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Figure 6 

Forecast Error Series: Comparing Essentially Affine Term Structure and Random Walk Models 
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