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Abstract

I use the monetary version of the neoclassical growth model developed by Aruoba,

Waller and Wright (2008) to study the properties of the model when there is exogenous

growth. I �rst consider the planner�s problem, then the equilibrium outcome in a mon-

etary economy. I do so by �rst using proportional bargaining to determine the terms

of trade and then consider competitive price taking. I obtain closed form solutions

for the balanced growth path of all variables in all cases. I then derive closed form

solutions for the transition paths under the assumption of full depreciation and, in the

monetary economy, a non-stationary interest rate policy.
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1 Introduction

The e¤ect of in�ation on economic growth is a classic issue in monetary economics. Early

contributions by Tobin (1965) and Sidrauski (1967a,1967b) gave us insights as to how in�a-

tion could deter (or stimulate) economic growth. The RBC literature revived the neoclassical

growth model and made it the workhorse of modern macroeconomics. This gave rise to a re-

newed interest in studying the e¤ects of in�ation on growth with notable work being done by

Cooley and Hansen (1989), Gomme (1993) and Ireland (1994). In all of these models, money

is �forced�into the neoclassical growth model, via the assumption of cash-in-advance. Thus,

while the real side of these models has well-understood microfoundations, the monetary side

does not.

During this same time period, tremendous progress was made understanding the micro-

foundations of money. Starting with the seminal work of Kiyotaki and Wright (1989, 1993),

search theoretic models of money provided deep insights on the role of money as a medium

of exchange. These models aided us in understanding how the value of money is a¤ected by

information frictions, matching frictions and pricing protocols such as bargaining �features

that are absent from the standard neoclassical growth model. As a result, substantial work

has been done trying to integrate modern monetary theory with mainstreammacroeconomics

so we would have a better understanding of how in�ation a¤ects capital accumulation and

growth. Research along these lines has been done by Shi (1999), Aruoba and Wright (2003),

Menner (2006) Aruoba, Waller and Wright (2008), Aruoba and Chugh (2008) and Berentsen,

Rojas-Breu and Shi (2009).

My objective here is to contribute to this growing literature. I do so by providing ana-

lytical results on steady-state growth and transitional dynamics in the Aruoba, Waller and

Wright (AWW) model of money and capital. Whereas AWW focuses mainly on the quan-

titative aspects of in�ation on capital accumulation and growth, in this paper I focus on

analytical properties of the model.

The AWW framework combines a monetary search sector with the neoclassical growth

model. However, the AWW paper does not have growth nor does it address the conditions

needed for balanced growth. Thus, in this paper, I add exogenous labor enhancing technolog-

ical change to the AWWmodel and determine the necessary conditions for balanced growth.

I then obtain closed form analytical solutions for the steady state capital to labor ratio for:

1) the planner allocation, 2) the monetary equilibrium with proportional bargaining and 3)

the monetary equilibrium with price taking. I then study the transition dynamics of the

model under the assumption of full depreciation of capital. For the planner allocation, the

saving rate is constant, the capital-labor ratio converges monotonically to its steady state
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value and hours are constant along the transition path. For the monetary economy, given a

constant interest rate policy, this is not the case �hours vary along the transition path which

makes the saving rate vary as well. I then consider a particular non-stationary policy for

the nominal interest rate. Under this policy, the nominal interest adjusts to the growth rate

of real wages �if wage growth is excessively high, the nominal interest is below its steady

state value. This policy keeps hours worked constant and equal to its steady-state value

along the transition path. This is consistent with the planner�s desired behavior for hours

along the transition path. With this policy, I am able to obtain closed form solutions for the

transition paths under both pricing mechanisms. These solutions involve a constant saving

rate, constant hours along the transition path and monotone convergence of the capital-labor

ratio to its steady state value.

2 Environment

The environment is essentially that of AWW. A [0; 1] continuum of agents live forever in

discrete time. Following LW, trade occurs in two separate subperiods. In the �rst subperiod

trade occurs in a decentralized fashion, DM for short, while in subperiod 2, trade occurs

in a perfect competitive centralized market, denoted the CM. In the DM, there is a double

coincidence problem and private trading histories are private information, i.e., agents are

anonymous.

As in AWW, there are two assets available to households, capital and money. Capital is

assumed to be non-portable in the DM so buyers must search for sellers. So capital cannot

be used as a medium of exchange and claims to such capital can be costlessly counterfeited

just as IOU�s can be counterfeited. Thus, money has a role even when capital is a storable

factor of production.

In the CM there is a general good produced using labor H and capital K that can be

used for consumption or investment. Production occurs according to the aggregate produc-

tion function where Yt = F (Kt; ZtHt) where F is the technology and Zt is a labor/e¤ort

augmenting technology factor that evolves according to the process Zt = (1 + �)Zt�1. We

also have Yt=Zt = F (Kt=Zt; Ht). Capital is assumed to depreciate at rate 0 � � � 1.
In the DM, each period with probability � an agent can consume but not produce, while

with the symmetric probablity he can produce but not consume. With probability 1�2� he
is a nontrader �he neither produces nor consumes and gets a utility payo¤ of zero. Due to

symmetry in the measure of buyers and sellers, I assume that there is a matching technology

that randomly assigns one buyer to one seller. Sellers in the DM can produce output qt using

their own e¤ort e and capital k using a the CRTS technology f(kt; Ztet). Sellers produce
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where their capital is located so they have access to their capital, even though buyers do

not. We then have qt=Zt = f(kt=Zt; et).

Instantaneous utility for everyone in the CM is U(x) � Ah, where x is consumption

and h labor. Preferences are separable in consumption and leisure. In the DM, with

probability � you are a buyer and enjoy utility u(q), and with probability � you are a

seller and get disutility ` (e), where q is consumption and e labor. The utility functions

u and U have the usual monotonicity and curvature properties and u (0) = 0. Solving

qt=Zt = f(ktZt; et) for et = f�1(qt=Zt; kt=Zt), we get the utility cost of producing q given k �

` (e) = ` [f�1(qt=Zt; kt=Zt)] � c (qt=Zt; kt=Zt). Monotonicity and convexity imply this latter

function has the properties cq; cqq > 0, ck < 0 and ckk > 0, and cqk < 0 since fkfee < fefek

holds when k is a normal input. Agents discount across periods at rate � = (1 + �)�1 where

� is the time rate of discount.

The money stock is given byMt and evolves according to the processMt = Mt�1. Agents

receive a lump-sum transfer of cash, �M , in the CM. In an earlier version of the paper, I

included exogenously determined government spending and taxes; they are excluded here to

minimize clutter and focus on how trading frictions and bargaining a¤ect the steady-state

allocation and dynamics. For notational simplicity, period t + 1 is denoted +1; and so.

Agents discount between the CM and DM at rate � but not between the DM and CM.

3 Planner Allocation

Consider the planner�s problem in this economy where agents are treated symmetrically and

the planner can dictate quantities traded. The planner�s problem is

J(K) = max
q;X;H;K+1

�
�u(q)� �c

�
q

Z
;
K

Z

�
+ U(X)� AH + �J(K+1)

�
(1)

s:t: X = F (K;ZH) + (1� �)K �K+1

Eliminating X and di¤erentiating, the �rst order conditions are

q : u0(q) = cq
�
q
Z
; K
Z

�
1
Z

H : A = U 0(X)FH(K;ZH)Z

K+1 : U 0(X) = �J 0(K+1)

(2)

Also, using J 0(K) = U 0(X)[FK(K;ZH) + 1� �]� �ck
�
q
Z
; k
Z

�
1
Z
, we have

U 0(X) = �U 0(X+1)[FK(K+1; Z+1H+1) + 1� �]� ��ck

�
q+1
Z+1

;
K+1

Z+1

�
1

Z+1
: (3)
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So the equilibrium allocation solves

u0(q) = cq

�
q

Z
;
K

Z

�
1

Z
(4)

A = U 0(X)FH(K=Z;H)Z (5)

U 0(X) = �U 0(X+1)[FK(K+1=Z+1; H+1) + 1� �]� ��ck

�
q+1
Z+1

;
K+1

Z+1

�
1

Z+1
(6)

X = ZF (K=Z;H) + (1� �)K �K+1 (7)

Two comments are in order. First, if � = 0; then q = 0 and the model collapses to the

standard neoclassical growth model. Second, if capital is not productive in the DM, then

the model dichotomizes as in Aruoba and Wright (2003) �the steady evolution of K;X;H

and Y can be determined independently using (5)-(7) while (4) detemines q=Z.

Consider the following functional forms:

F (K;ZH) = K� (ZH)1�� 0 < � < 1

U(X) = B
X1�" � 1
1� "

" > 0 or U(X) = B lnX for " = 1

u(q) =
(q + b)1�� � b1��

1� �
0 < � < 1 or u(q) = ln

�
q + b

b

�
for � = 1

c

�
q

Z
;
k

Z

�
=

� q
Z

� � k
Z

�1� 
 � 1

) cq

�
q

Z
;
k

Z

�
1

Z
=
 

Z

� q
k

� �1
) ck

�
q

Z
;
k

Z

�
1

Z
= �( � 1)

Z

� q
k

� 
Note that without bargaining, we do not need u (q) to go through the origin which occurs

when b > 0: So set b = 0 and use u(q) = q1���1
1�� . Hence, (4)-(7) become

X" =
(1� �)B

A

�
K

ZH

��
Z (8)

q�� =
 

Z

�
K

q

�1� 
(9)�

X+1

X

�"
= �

"
�

�
K+1

Z+1H+1

���1
+ 1� �

#
+ �� ( � 1)

X"
+1

BZ+1

�
q+1
K+1

� 
(10)

X

ZH
=

�
K

ZH

��
+ (1� �)

K

ZH
� Z+1H+1

ZH

K+1

Z+1H+1

(11)
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3.1 Steady State

Conjecture a steady state with balanced growth and constant aggregate hours H+1 = H for

all t. This implies we have a constant value of capital per e¢ ciency labor unit, K̂ = K=ZH,

and all real variables grow at the rate 1 + �.

Using (8) and (11) yields

K =
�
(1� �)BA�1

�1=" K̂1��+�="

1� (� + �) K̂1��
Z1="

whereK > 0 if [1= (� + �)]
1

1�� > K̂. This implies thatK grows at gross rate (1 + �)1=". With

constant hours and Z growing at rate 1 + � we need " = 1 or log utility in the CM. This is

standard in the neoclassical growth model when preferences are separable over consumption

and leisure. So impose this. Steady-state hours and consumption are then giving by

H =
(1� �)BA�1

1� (� + �) K̂1��

X = (1� �)BA�1K̂�Z

From (9) we obtain

q =

8<: 1 �(1� �)BA�1
� �1 " K̂

1� (� + �) K̂1��

# �1
Z 

9=;
1

 +��1

q+1
q

= (1 + �)
 

 +��1

q+1
K+1

=

(
1

 

�
1

(1� �)BA�1

�� "
1� (� + �) K̂1��

K̂

#�
Z
1��

) 1
 +��1

The growth rate of q equals 1+ � when � = 1 which also makes q+1=K+1 constant in steady

state. Hence, we need log preferences in the DM to have balanced growth in DM production.

Impose this from here on. Note that dq=dK̂ > 0.
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Using (8), (10) and (11) with " = � = 1, we obtain the planner�s choice of K̂ and H:

K̂p =

8<: �� + ��
�
 �1
 B

�
1 + �� � (1� �) + (� + �)��

�
 �1
 B

�
9=;

1
1��

(12)

Hp = (1� �)BA�1

241 + �� � (1� �) + (� + �)��
�
 �1
 B

�
1 + �� � (1� �)� (� + �)��

35 (13)

q̂p � q

Z
=

�
1

 

� 1
 �
(1� �)BA�1

� �1
 

"
K̂p

1� (� + �) K̂1��
p

# �1
 

(14)

So we have a balanced growth path with K;X and q all growing at gross rate 1 + �. For

� > 0 and  > 1, capital has additional value for producing in the DM so the steady-state

capital per e¢ ciency unit of labor is higher than in the standard neoclassical growth model.

Steady state hours worked in the CM are also higher.

3.2 Dynamics

To obtain some analytical results on the transitional dynamics, let � = 1. From (9)

q

K
=

�
Z

 K

�1= 
while (8) and (11) yield

K+1 =

�
1� (1� �)BA�1

H

�
K� (ZH)1�� : (15)

We can then write the Euler equation as

K+1 =
1

H

�
��

H+1

H
+ ��

�
 � 1
 

�
(1� �)A�1

�
K�Z1��H1�� (16)

Conjecture that hours are constant for all t along the transition path. Combining (15)

and (16) gives us the planner�s choice of hours

Hp =
(1� �)BA�1

1� ��

�
1 + ��

�
 � 1
 B

��
:

With full depreciation, the planner keeps hours at the steady state value. For � > 0 and

 > 1; hours are higher along the transition path than in the standard neoclassical growth
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model. It also implies that investment (CM consumption) is a higher (lower) fraction of

output with transitional dynamics

K+1 =

24�� + ��
�
 �1
 B

�
1 + ��

�
 �1
 B

�
35K� (ZH)1��

X =

24 1� ��

1 + ��
�
 �1
 B

�
35K� (ZH)1��

and the transition path for K̂ is given by

K̂+1 =
1

1 + �

24�� + ��
�
 �1
 B

�
1 + ��

�
 �1
 B

�
35 K̂�

If � = 0 then we have the standard transition path for capital in the Solow model . Thus,

the additional productivity of capital in the DM not only generates a higher steady-state

capital stock per e¢ ciency unit of labor, but also a higher rate of investment and more rapid

growth in the transition to the steady-state.

4 Monetary Economy

In the monetary economy, �rms hire labor and capital to produce output which is sold in

the CM at the monetary price p. Goods and input markets are perfectly competitive. Pro�t

maximization implies rt = FK(Kt=Zt; Ht) and wt = F (Kt=Zt; Ht)Zt, where r is the rental

rate, and w is the real wage. Constant returns implies equilibrium pro�ts are 0. Firms do

not operate in the DM but agents can use their capital and e¤ort to produce output.

Let W (m; k; Z) and V (m; k; Z) be the value functions of agents in the CM and DM

respectively when holding m units of money, k units of capital given the aggregate state Z.

Begining with the CM, we have

W (m; k; Z) = max
x;h;m+1;k+1

fU(x)� Ah+ �V (m+1; k+1; Z+1)g

s.t. x = wh+ (1 + r � �) k � k+1 + �M +
m�m+1

p
.
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Eliminating h using the budget equation, we have the �rst order conditions

x : U 0(x) =
A

w

m+1 :
A

pw
= �Vm (m+1; k+1; Z+1) (17)

k+1 :
A

w
= �Vk (m+1; k+1; Z+1) :

and the envelope conditions,

Wm(m; k; Z) =
A

pw
(18)

Wk(m; k; Z) =
A (1 + r � �)

w
: (19)

In the DM market, we have

V (m; k; Z) = �Vb(m; k; Z) + �Vs(m; k; Z) + (1� 2�)W (m; k; Z) (20)

with

Vb(m; k; Z) = u(qb) +W (m� db; k; Z) (21)

Vs(m; k; Z) = �c
�
qs
Z
;
k

Z

�
+W (m+ ds; k; Z) ; (22)

where qb and db are the quantities of goods acquired and money spent by buyers in the DM,

while qs and ds are the quantities of goods produced and money earned by sellers.

Using (18), we have

V (m; k; Z) = �

�
u(qb)� db

A

pw
� c

�
qs
Z
;
k

Z

�
+ ds

A

pw

�
+W (m; k; Z):

Di¤erentiating yields

Vm(m; k; Z) = �

�
u0
@qb
@m

� A

pw

@db
@m

�
+ �

�
�cq

@qs
@m

+
A

pw

@ds
@m

�
+

A

pw

Vk(m; k; Z) = �

�
�cq
Z

@qs
@k

� ck
Z
+
A (1 + r � �)

w

@ds
@k

�
+�

�
u0
@qb
@k

� A (1 + r � �)

w

@db
@k

�
+
A (1 + r � �)

w
:

In order to solve (17), we must evaluate these derivatives. To do that we need to describe
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how the terms of trade are determined in the DM. One possibility is pricing taking. Another

is bargaining.

4.1 Proportional Bargaining

Suppose agents are randomly matched in a bilateral fashion in the D with each buyer be-

ing randomly paired with a seller. In the search theoretic models of money, bargaining has

traditionally been used to determine the terms of trade in bilateral trades, with Nash bar-

gaining being the standard. However, as Aruoba, Rocheteau and Waller (2007) emphasize,

in the LW framework, Nash bargaining generates non-monotonic surpluses for buyers. Thus

ine¢ ciencies occurring under the Friedman rule are due to this property of the bargaining

solution rather than a holdup problem as suggested by LW.

To avoid this problem, I will consider proportional bargaining as the way in which terms

of trade are determined. Under proportional bargaining, the buyer�s gains from trade is a

�xed share, �, of the trade surplus:

u (q)� A

pw
d = �

�
u (q)� c

�
q

Z
;
k

Z

��
.

Imposing d = m we have

A

pw
m = (1� �)u (q) + �c

�
q

Z
;
k

Z

�
and

@q

@m
=

1

(1� �)u0 (q) + �cq
�
q
Z
; k
Z

�
1
Z

A

pw
> 0

@q

@k
=

��ck
�
q
Z
; k
Z

�
1
Z

(1� �)u0 (q) + �cq
�
q
Z
; k
Z

�
1
Z

> 0:

We have

Vm(m; k; Z) = �
A

pw

�
�
u0 (q)� cq

�
q
Z
; k
Z

�
1
Z

�
(1� �)u0 (q) + �cq

�
q
Z
; k
Z

�
1
Z

+
A

pw

Vk(m; k; Z) = ��ck
�
q

Z
;
k

Z

�
1

Z

(1� �)u0 (q)

(1� �)u0 (q) + �cq
�
q
Z
; k
Z

�
1
Z

+
A (1 + r � �)

w
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An equilibrium allocation solves

U 0(X) =
A

FH(K;ZH)
(23)

A

pw
= �

A

p+1w+1

24 ��
h
u0 (q+1)� cq

�
q+1
Z+1

; k+1
Z+1

�
1

Z+1

i
(1� �)u0 (q+1) + �cq

�
q+1
Z+1

; k+1
Z+1

�
1

Z+1

+ 1

35 (24)

U 0(X) = �U 0(X+1) [1 + FK(K+1; Z+1H+1)� �] (25)

���ck
�
q+1
Z+1

;
k+1
Z+1

�
1

Z+1

(1� �)u0 (q+1)

(1� �)u0 (q+1) + �cq

�
q+1
Z+1

; k+1
Z+1

�
1

Z+1

X = F (K;ZH) + (1� �)K �K+1: (26)

4.1.1 Steady State

Along the balanced growth path, hours are constant and X; K+1 and q grow at a rate 1+�.

Conjecture that real balances M=p also grow at the rate 1 + � implying

1 + � = (1 + �) (1 + �) :

It then follows that the nominal interest satis�es

1 + i = (1 + �) (1 + �) (1 + �) .

Using the functional forms above, conjecture there is a constant value of K̂ = K=ZH along

the balanced growth path. Then (23) and (26) yield

X = (1� �)BA�1K̂�Z

K = (1� �)BA�1

"
K̂

1� (� + �) K̂1��

#
Z

H =
(1� �)BA�1

1� (� + �) K̂1��
:

With K̂ = K=ZH and letting b! 0; (24) yields

i =
��
h
u0 (q+1)� cq

�
q+1
Z+1

; K+1

Z+1

�
1

Z+1

i
(1� �)u0 (q+1) + �cq

�
q+1
Z+1

; K+1

Z+1

�
1

Z+1

11



Note that if i = 0; then for any 0 < � � 1 we have

u0 (q+1) = cq

�
q+1
Z+1

;
K+1

Z+1

�
1

Z+1

which is the e¢ cient quantity given the current capital stock K+1. This is consistent with

the results in Aruoba, Rocheteau and Waller (2007) �under the Friedman rule, proportional

bargaining generates the e¢ cient quantity of goods traded in the DM even though buyers

do not get the entire trade surplus. In short, there is no holdup problem on buyers at the

Friedman rule. Note, even though q+1 is e¢ cient, it is not equal to the planner�s choice of

q+1 unless K+1 is the same as the planner choice. As we show below, this is not the case due

to the hold-up problem on capital discussed in AWW.

Solving for q+1 yields

q+1 =

�
�� � (1� �) i

� (i+ �)

� 1
 +��1

"
(1� �)BK̂A�1

1� (� + �) K̂1��

#  �1
 +��1

Z
 

 +��1
+1

Again, q grows at 1+� when � = 1; i.e., utility is log in the DM. Also note that for q+1 > 0;

we need
��

1� �
> i

For a given value of �; q+1 = 0 at a �nite in�ation rate. In short the monetary equilibrium

collapses. In what follows, I assume this condition holds.

The steady state has

K̂b =

24 �� + (1� �)2 �
�
 �1
 B�

� �
��
1�� � i

�
1 + �� � (1� �) + (1� �)2 (� + �)�

�
 �1
 B�

� �
��
1�� � i

�
35

1
1��

Hb =
(1� �)BA�1

h
1 + �� � (1� �) + (� + �) (1� �)2 �

�
 �1
 B�

� �
��
1�� � i

�i
1 + �� � (1� �)� (� + �)��

q̂b �
�
�� � (1� �) i

� (i+ �)

� 1
 

"
(1� �)BA�1K̂b

1� (� + �) K̂1��
b

# �1
 

Note that even if the FR holds i = 0, we do not replicate the planner allocation since

1� � � 1: The reason is that 1� � appears in front of the second term of the numerator and
denominator on the RHS. This is capturing the holdup problem on capital. Thus, while the

FR eliminates the holdup problem on money, there is still a holdup problem on capital.
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4.1.2 Dynamics

To obtain analytical results, again assume � = 1. We then have

q+1
Z+1

=

8<: 1

� 

241� � + �� � (1 + i) (1� �)
�
K̂�
+1=K̂

�
�

(1 + i)
�
K̂�
+1=K̂

�
�
� 1 + �

359=;
1= �

K+1

Z+1

� �1
 

and

K̂+1 =
1

1 + �

(
�� +

(1� �)

AH+1

�

�
 � 1
 

��
1� �

�

�"
1� � (1� �)� (1 + i) (1� �)

K̂�
+1

K̂�

#)
K̂�

K̂+1 =
1

1 + �

H

H+1

�
1� (1� �)B

AH

�
K̂�

These two equations can be combined to obtain a non-linear equation for H+1 as a function

of H and K̂.

As with price taking consider a non-stationary interest rate policy given by

1 + i =
1� � (1� �)� �

1� �
(1 + �)

w

w+1

where � is a constant and satis�es �� � �. When wages grow at the balanced path growth

rate, we have i = ����
1�� � 0 with the Friedman rule corresponding to �� = �. As I will show

shortly, this policy has the e¤ect of keeping hours worked in the CM constant along the

transition path, just as the planner would choose. One way of thinking about this policy is

that it aims at employment stability.

It then follows that the transition paths for K̂+1 and H+1 are given by:

K̂+1 =
1

1 + �

�
�� +

(1� �)

AH+1

�

�
 � 1
 

��
1� �

�

�
�

�
K̂�

K̂+1 =
1

1 + �

H

H+1

�
1� (1� �)B

AH

�
K̂�:
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Conjecture that hours are constant along the transition path. Then we have

K̂+1 =
1

1 + �

24�� + �
�
 �1
 B

� �
1��
�

�
�

1 + �
�
 �1
 B

� �
1��
�

�
�

35 K̂�

H =
(1� �)BA�1

h
1 + �

�
 �1
 B

� �
1��
�

�
�
i

1� ��

q

Z
=

�
� (1� �)

� (� � �)

�1= �
K̂H

� �1
 

Under this policy the transition path for K̂+1 is monotone. Note that even at the Fried-

man rule � = �� the transition paths do not mimic the planner allocation due to the hold-up

problem on capital. Thus, the holdup problem on capital leads to a lower steady state K̂;

lower investment along the transition path and thus a lower growth rate of the economy for

K̂ < K̂b.

4.2 Price taking

As shown in AWW, price taking eliminates the holdup problems on both buyers and sellers.

This leaves the time cost of holding money as the only remaining friction. In this section,

I consider price taking in order to see how the model behaves in the absence of holdup

problems. Assume that agents trade anonymously in a competitive market in the DM and

take the market price ~p parametrically. The buyer�s problem is

Vb(m; k; Z) = max
qb;d

u(qb) +W (m� d; k; Z)

s.t. ~pqb = d and d � m

while the seller�s problem becomes

Vs(m; k; Z) = max
qs
�c
�
qs
Z
;
k

Z

�
+W [m+ ~pq; k; Z] :

It is easy to show that the buyer�s constraint d � m is binding in equilibrium, and so

q =M=~p. The seller�s choice satis�es cq
�
qs
Z
; k
Z

�
1
Z
= ~pA=pw. In equilibrium we have

@qs
@m

=
@ds
@m

=
@qb
@k

=
@db
@k

=
@ds
@k

= 0

@qb
@m

=
1

~p
;
@db
@m

= 1

14



So,

Vm(m; k; Z) = �
u0(q)

~p
+ (1� �)

A

pw

Vk(m; k; Z) = ��ck
�
qs
Z
;
k

Z

�
1

Z
+
A (1 + r � �)

w
:

We now have

A

pw
= �

A

w+1p+1

24� u0(q+1)

cq

�
q+1
Z+1

; K+1

Z+1

�
1

Z+1

+ 1� �

35 (27)

U 0(X) = �U 0(X+1) [FK(K+1; H+1) + 1� �]� ��ck

�
q+1
Z+1

;
K+1

Z+1

�
1

Z+1
(28)

U 0(X) =
A

ZFH(K;ZH)
(29)

X +K+1 = F (K;ZH) + (1� �)K: (30)

A monetary equilibrium is a sequence of quantities fX;K+1; H; qg solving (27)-(30) given an
initial capital stock K0 and money stock M0:

4.2.1 Steady state

Along the balanced growth path, hours are constant and X; K+1 and q grow at a rate 1+�.

Conjecture that real balances M=p also grow at the rate 1 + � implying

1 + � = (1 + �) (1 + �) :

It then follows that the nominal interest satis�es

1 + i = (1 + �) (1 + �) (1 + �) .

As with the planner, (28) and (30) yield

X = (1� �)BA�1K̂�Z (31)

K =
(1� �)BA�1K̂

1� (� + �) K̂1��
Z (32)

H =
(1� �)BA�1

1� (� + �) K̂1��
(33)
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From (27) we have

i

�
=
u0(q+1)� cq

�
q+1
Z+1

; K+1

Z+1

�
1

Z+1

cq

�
q+1
Z+1

; K+1

Z+1

�
1

Z+1

:

So i = 0 generates the e¢ cient quantity of goods in the DM. All that remains to determine

is whether i = 0 generates the planner�s choice for K+1. Rewriting this expression we get

q

Z
=

�
�

 (i+ �)

� 1
 

"
(1� �)BA�1K̂

1� (� + �) K̂1��

# �1
 

:

Using this expression as well as (29) in the Euler equation we obtain the equilibrium values

of K̂ and H in the monetary economy with price taking:

K̂m =

24 ��
�
1 + i

�

�
+ ��

�
 �1
 B

�
[1 + �� � (1� �)]

�
1 + i

�

�
+ (� + �)��

�
 �1
 B

�
35

1
1��

Hm = (1� �)BA�1

241 + �� � (1� �) + (� + �)��
�
 �1
 B

�
�
i+�

1 + �� � (1� �)� (� + �)��

35 :
Compared to the planner allocation (12) and (13) we have K̂m < K̂p and Hm < Hp for

any i > 0. Furthermore, we have dK̂m=di < 0 and dHm=di < 0. We have K̂p = K̂m if i = 0

or

� =
1

(1 + �) (1 + �)
� 1:

So at the Friedman rule, de�ation must be greater than the time rate of discount �it must

also account for growth to the real return to capital.

Finally we have

q̂m =
qm
Z
=

�
�

 (i+ �)

� 1
 

"
(1� �)BA�1K̂m

1� (� + �) K̂1��
m

# �1

Since K̂m = K̂p at i = 0; we have q̂m = q̂p at the Friedman rule. Intuitively, in�ation acts as

a tax on DM consumption which reduces the equilibrium value of q: This in turn lowers the

marginal value of capital and agents accumulate less capital and work fewer hours.
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4.2.2 Dynamics

Set � = 1: The Euler equation and intra-temporal condition are given by

K̂+1 =
1

1 + �

24�� + �2�

�
 � 1
 

�
1

K̂�
+1

K̂�
(1 + i)� 1 + �

(1� �)

AH+1

35 K̂�

K̂+1 =

�
H � (1� �)BA�1

1 + �

�
K̂�

H+1

Combining these two equations gives us a non-linear dynamic equation in H+1 in term

of H and K̂�. So the dynamical system

[AH � (1� �)B]

�
H � (1� �)BA�1

1 + �

��
K̂� (1 + i)

=

�
�2�

�
 � 1
 

�
(1� �) + [AH � (1� �)B] (1� �)

�
H�
+1

+��AH+1

�
H � (1� �)BA�1

1 + �

��
K̂� (1 + i)� (1� �)��AH�+1

+1

K̂+1 =
1

1 + �

H

H+1

�
1� (1� �)BA�1

H

�
K̂�

determines the paths of H+1 and K̂+1 as a function of current H and K̂.

Consider a non-stationary monetary policy along the transition path. One such policy is

K̂�
+1

K̂�
(1 + i)� 1 + � = 


where 
 � � is some constant. It then follows that current interest rates satisfy

1 + i = (
 + 1� �)
K̂�

K̂�
+1

:

Manipulate this expression to write it in terms of real wages

1 + i = (
 + 1� �)
w

w+1
(1 + �)

If real wages converge to the balanced growth rate, then this policy rule converges to the

value i = 
 � �. If 
 = �, this policy rule generates the Friedman rule along the balanced

growth path. As shown above, such a policy keeps hours constant along the transition path,

just as the planner would choose.
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Under this non-stationary interest rate policy we have

K̂+1 =
1

1 + �

24�� + ��
�
 �1
 B

�
�



1 + ��
�
 �1
 B

�
�



35 K̂�

H =
(1� �)BA�1

1� ��

�
1 + ��

�
 � 1
 B

�
�




�
q

Z
=

�
�

 


�1= �
K̂H

� �1
 
:

Under this policy rule, the transition path for K̂ is monotone. It mimics the planner�s

transition path but at a slower growth rate when 
 > �. What does this policy do? It

adjusts the interest rate such that the cost of acquiring money in t and t+1, i.e., the growth

rate of real wages, is una¤ected by the transition to the steady state. If real wages are going

to grow unusually fast, then it is cheaper to acquire a unit of money in t + 1 than acquire

a unit of money in t and carry it to t + 1. Hence the demand for money would fall along

with its real value. To counter this, the policy above lowers i to improve the value of money

when wage growth is excessively high. To see this in more detail, from (27) we have

K�
+1Z

1��
+1 H��

+1

K�Z1��H�� (1 + �) (1 + �)� 1 = �

24 u0(q+1)

cq

�
q+1
Z+1

; K+1

Z+1

�
1

Z+1

� 1

35 :
The RHS is the marginal liquidity value of money. The LHS is the marginal cost of holding

money from t to t + 1: Under the proposed policy, the LHS is constant. Thus, q+1 adjusts

to equate the marginal liquidity value to this constant cost of holding money along the

transition path.

5 Conclusion

This paper contributes to our analytical understanding of the role of matching frictions,

bargaining and money on growth dynamics. Whereas AWW focus on numerical analysis, I

am able to derive analytical results that provide additional insight for the numerical results

obtained in AWW. The bene�t of this analysis is that it provides clear and simple intuition

for how bargaining, random matching and changes in the nominal interest rate a¤ect the

steady state-capital labor ratio, consumption and short-run growth rates of the economy.
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