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Abstract

Monetary policy has signi�cant but overlooked e¤ects on entry and exit of �rms.

We study optimal monetary stabilization policy in a DSGE model with microfounded

money demand and endogenous �rm entry. Due to a congestion externality a¤ecting

�rm entry, the optimal policy deviates from the Friedman rule in all states even though

all prices are fully �exible. In contrast to previous Ramsey model with �exible price,

our calibration exercises suggest that the model can generate a high volatility of the

nominal interest rate which is a direct consequence of policy actions to control entry.

�The paper has bene�tted from comments by participants at several seminar and conference presentations
in particular Sanjay Chugh, Allen Head and Huberto Ennis. We thank the Federal Reserve Banks of
Cleveland, Minneapolis and St. Louis, CES in Munich and the Kellogg Institute at the University of Notre
Dame for research support.
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1 Introduction

There is a rapidly growing macroeconomic literature that investigates the role of endogenous

�rm entry and exit on business cycle �uctuations.1 Studying entry behavior in a macroecon-

omy is important for several reasons. First, a key business cycle fact, as shown by Bilbiie,

Ghironi and Melitz (2006), is that net �rm entry is strongly procyclical and leads GDP.2

Second, entry creates an extensive output margin that can amplify and propagate aggregate

shocks. Moreover, as recently demonstrated by Jaimovich and Floetotto (2008), the ampli-

�cation e¤ects of shocks via entry are quantitatively important. Third, using a monetary

VAR Bergin and Corsetti (2008) document that monetary policy has a signi�cant e¤ect on

�rm entry.

Based on this line of reasoning, �rm entry may be an important factor for monetary

policy. This is not just a theoretical concern. For example, the recent housing bubble in the

U.S. is widely believed to have been associated with an excessive amount of new construction

of houses and retail development suggesting that there was too much entry from a social point

of view. As a result, many economists believe that the Federal Reserve should have raised

the nominal interest rate to deter entry of builders and developers into the housing and

commercial property markets.

The notion that there was �too much entry from a social point of view�suggests that

there are entry externalities that individual �rms to not take into account with their entry

or exit decisions. The main contribution of this paper is to study optimal monetary stabi-

lization policy in a DSGE model, when entry creates �congestion�that a¤ects the trading

opportunities for other �rms. This externality causes aggregate output to be ine¢ cient and

monetary policy is designed to move output closer to the �rst-best allocation. Changes in

aggregate output can be achieved via the intensive margin (output per producer) or the

extensive margin (entry and exit of producers). At �rst glance, one may think it is irrelevant

which margin is used but this is not the case. Suppose the central bank wants output to

expand. If producers have convex costs of production, then it would be optimal to increase

the number of producers to lower the marginal cost of producing this additional output.

The basic framework is that of Lagos and Wright (2005) where informational frictions

1See Jaimovich (2006, 2007), Jaimovich and Floetotto (2008), Bilbiie, Ghironi and Melitz (2006, 2007),
Bergin and Corsetti (2008), Kim (2006), Mancini-Gri¤oli and Elkhoury (2006), Lewis (2008a, 2008b) and
Fujiwara (2007). Earlier works on this topic include Chatterjee and Cooper (1993) and Devereaux, Head
and Lapham (1996).

2They �nd that the correlation between net �rm entry at time t and quarterly real GDP at t+1 is
approximately 0.5 using HP �ltered data. Using a VAR approach, Bergin and Corsetti (2008) �nd that
the correlation is between 0.53 and 0.73. Using simple detrending methods, Chatterjee and Cooper (1993)
estimate it at 0.5.
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make money essential as a medium of exchange.3 We then modify the model in several

ways. First, we assume that producers make an entry decision that requires paying a fee

every period. Second, we carefully model the existence of a credit market that allows agents

to borrow and lend money. Third, we introduce a variety of well-de�ned shocks, such as

productivity and preference shocks, that generate consumption risk for households. Due to

the informational frictions that give rise to money, households are unable to perfectly insure

themselves against these shocks. This gives rise to a welfare improving role for monetary

policy that works by adjusting the nominal interest rate in response to shocks. Optimal

policy is determined by choosing a set of state-contingent nominal interest rates to maximize

the expected lifetime utility of the agents subject to the constraints of being an equilibrium.

Finally, we consider three pricing protocols �competitive pricing, monopoly pricing and price

posting �in the market where money is essential as a medium of exchange. This allows us to

see how optimal monetary policy changes as a result of the di¤erent pricing mechanisms. An

important feature of our model is that there is a role for stabilization policy in the absence

of sticky prices.

Borrowing from Rocheteau and Wright (2005), we assume that upon entering the market,

a producer is able to trade with some probability, which may not be one. In short, he may

be shut out of the market despite having paid the entry cost. We then study optimal

stabilization under two assumptions regarding this trading probability. In one case, we

assume that this trading probability is independent of the number of producers in the market.

In the second case, we assume that the probability of trading is decreasing in the number

of entering producers. This is intended to capture the idea that as more producers enter

congestion occurs making it harder to trade and earn pro�ts.4

Our basic results concerning the optimal stabilization policy are as follows. With a �xed

probability of trading, the optimal monetary policy is to run the Friedman rule and set the

nominal interest rate to zero in all states. This is true for all three pricing protocols. When

the trading probability depends on aggregate entry, a congestion externality arises that makes

entry ine¢ ciently high. Thus, the central bank �nds it optimal to raise interest rates above

zero in all states in order to reduce entry even though it lowers average consumption. Once

again, this is true for all pricing protocols. In short, the zero lower bound is never a binding

3Most stabilization policy analysis has been done using the canonical New Keynesian model, which has
sticky prices. In these models, in the absence of nominal rigidities, monetary policy is ine¤ective since money
is neutral. An important contribution of this paper is to show that the informational frictions that give rise
to a medium of exchange role for money allow for a welfare improving role of stabilisation policy even when
all prices are fully �exible.

4This type of matching externality is common in monetary search models. Examples include Shi (1997),
Lagos and Rocheteau (2005), Aruoba, Rocheteau and Waller (2007) and Berentsen, Rocheteau and Shi
(2007).
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constraint in our model. The key to implementing the desired allocation is to manipulate the

relative price of goods across markets by choosing state-dependent nominal interest rates.

A �nal issue that we address with our model is the volatility of the nominal interest rate.

The reason for this is as follows. In Ramsey models of the type studied by Chari and Kehoe

(1999), for certain preferences, the Friedman rule is optimal for all shocks, so the volatility

is zero. Aruoba and Chugh (2007) have shown that even if the Friedman rule is not optimal,

the volatility of the nominal interest under the optimal policy is still very small. In contrast,

New Keynesian models tend to have the nominal interest rate being too volatile compared

to the data. For example, Khan, King and Wolman (2003) show that the optimal policy

requires a very volatile interest rate. They explain this �nding that with sticky prices the

relative price distortion is minimized by setting the expected in�ation rate to zero. This

leads the optimal nominal interest rate to track the real interest rate which moves with the

aggregate shocks. This has led New Keynesian to add a lagged interest rate into the Taylor

rule to induce interest rate smoothing.

This dramatic contrast as to how the nominal interest rate should respond to shocks

suggests we quantify the volatility of the nominal interest rate in our model as well. In

particular, since none of the aforementioned models have entry, it is interesting to know how

endogenous entry a¤ects the volatility of the nominal interest rate. Towards this end, we

calibrate our model to study the volatility of the nominal interest rate. The key quantitative

question we address is the following: If the shock processes in our model are constructed

to match the actual behavior of GDP, how does the optimal nominal interest rate behave

in our model compared to the data? We �nd the following. If the shocks are �demand

side� in nature (i.e., preference shocks), then our model generates very little volatility of

the nominal interest rate. Alternatively, if productivity shocks are the only shock, then our

model generates a volatility of the interest rate that is larger than in the data. These results

suggest the following. First, congestion externalities provide a propagation mechanism for

productivity shocks to induce substantial interest rate volatility in Ramsey models. Second,

a combination of supply and demand shocks are needed to generate the volatility of the

nominal interest rate observed in the data.

Our framework for studying stabilization is substantially di¤erent than the existing liter-

ature on endogenous entry. Jaimovich and Floetotto (2007) use a prototypical real business

cycle, hence there is no role for monetary policy. All of the others papers in this area are

based on New Keynesian sticky price models while our basic framework displays fully �exible

prices. Nevertheless, we show that money is non-neutral and that there is a role for stabiliza-

tion policy. Furthermore, many of the papers simply look at the e¤ects of monetary shocks

�they do not study optimal monetary policy. Of those that do study optimal policy, Bergin
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and Corsetti (2008) and Bilbiie, Ghironi and Melitz (2007) do so for a simple class of inter-

est rate rules with a single productivity shock. Bergin and Corsetti (2008) consider a model

where entry enlarges the set of goods available to households. The households have a love

for variety, so that enlarging the set of goods can have a positive externality on household

utility. As mentioned above, we di¤er from their approach in several dimensions. However,

the most important di¤erence is that our entry congestion imposes a negative externality

on other market participants. As such, our model captures episodes where there was �too

much entry from a social point of view�as suggested by many observers of the recent events

in the housing and commercial property markets. Finally, Lewis�s (2008b) is also closely

related to our work in that she derives the optimal monetary policy using a primal Ramsey

approach in a cash-in-advance model. She �nds that the Friedman rule is optimal, hence

there is no stabilization role for monetary policy. Also, there is also no quantitative analysis

in her work. Finally, we address other issues, such as the zero lower nominal bound on

interest rates, that these papers do not. We have also studied optimal stabilization in an

earlier paper, Berentsen and Waller (2008), but the focus of that paper was the use of price

level targeting as a monetary policy strategy to control in�ation expectations. Furthermore,

we did not study endogenous entry, di¤erent pricing protocols or conduct any quantitative

analysis.

The paper proceeds as follows. In Section 2 we describe the environment and derive

the �rst-best allocation. In Section 3 we present the agents�decision problems. Section 4

contains the central bank�s maximization problem and the optimal monetary policy for each

pricing protocol. Section 5 contains our quantitative analysis and Section 6 concludes.

2 The Environment

Time is discrete and continues forever.5 In each period three perfectly competitive markets

open sequentially. The �rst market is a competitive credit market and the third market is a

competitive goods markets. The second market is also a goods market for which we study

various market structures. There is a continuum of two types of agents, called households

and sellers. They di¤er in terms of when they produce and consume as follows. All agents

can produce and consume a perishable good in the last market. In the second market

households can consume but not produce and sellers can produce but not consume. We

5The environment combines elements of Lagos and Wright (2005) and Berentsen, Camera and Waller
(2007). The Lagos-Wright framework provides a microfoundation for money demand while keeping the dis-
tribution of money balances analytically tractable. Berentsen, Camera and Waller (2007) introduce �nancial
intermediation into the Lagos-Wright framework.
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assume that all trades in the second market are anonymous ruling out trade credit. Since all

agents are anonymous and there is a double coincidence problem, sellers require immediate

compensation. So households must pay with money in market 2 generating an essential role

for money.

The instantaneous utility of a household at date t is

U bt = �(xt)� yt +  tu(q
b
t ) (1)

where xt is consumption and yt production in the last market.6 The quantity qbt is a house-

hold�s consumption in the second market and  � 0 is a preference parameter. We assume
u0 > 0, u00 < 0, u0(0) = +1 and u0(1) = 0. Furthermore, we assume the coe¢ cient of

relative risk aversion, Ru � �qu00=u0, is constant and less than one.7 In the last market the
utility function satis�es �0 > 0, �00 < 0, �0(0) =1 and there is a x� such that �0(x�) = 1.

The instantaneous utility of a seller at date t is

U st = �(xt)� yt � (1=�t) c (qt) (2)

where xt is consumption and yt is production in the last market while qt is production in the

second market. Production disutility satis�es c0; c00; c000 � 0 and c (0) = c0 (0) = 0. Denote

the elasticity of marginal cost as Rc � qc00=c0. The parameter � is a productivity parameter

measured in utility terms with higher values of � being associated with higher productivity

and thus lower marginal utility costs of production. The discount factor across dates is

� = 1= (1 + r) 2 (0; 1) where r is the time rate of discount.

2.1 Credit market

At the beginning of a period all households receive a preference shock  t 2 f0; "g with " > 0.
The probability that  t = " is 1=2 meaning there is an equal probability that a household

wants to consume or not in market 2.8 We call households that consume buyers and those

that do not non-buyers. These preference shocks generate an ex-post ine¢ ciency since non-

buyers are holding idle balances while buyers are cash constrained. As in Berentsen, Camera

and Waller (2007) this ine¢ ciency generates a welfare improving role for a credit market

6As in Lagos and Wright (2005), these assumptions allow us to get a degenerate distribution of money
holdings at the beginning of a period. The di¤erent utility functions � (�)and u (�) allow us to impose technical
conditions such that in equilibrium all agents produce and consume in the last market.

7This restriction on preferences is not necessary for competitive pricing but is needed for interior solutions
under monopolistic pricing.

8We have also allowed this number to be di¤erent than 1=2 and to make it random. However, it added
very little to the analytical and quantitative results. Thus we chose 1=2 to simplify notation.
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where households can borrow or lend money at the nominal interest rate i.

Whereas goods trade is anonymous, we assume the existence of a record-keeping technol-

ogy over �nancial transactions, i.e., �nancial trading histories are not private information.

In all models with credit, default is a serious issue. To focus on optimal stabilization, we

simplify the analysis by assuming that some mechanism exists that ensures repayment of

loans in the third market.9 One can show that due to the quasi-linearity of preferences in

market 3 there is no gain from multi-period contracts. Furthermore, since the states are

revealed prior to contracting, the one-period nominal debt contracts that we consider are

optimal.

2.2 Shocks

To study the optimal response to shocks, we assume that �t and "t are stochastic. The

random variable �t has support [�; �], 0 < � < � < 1, and "t has support ["; "], 0 <
" < " < 1. Let !t = (�t; "t) 2 � be the state in market 1, where � = [�; �] � ["; "]
is a closed and compact subset on R2

+. We allow for the shocks to be serially correlated.

Let 
t = f!t; !t�1; :::g denote the history of the aggregate state up through period t. For
notational simplicity let dF (!tj
t�1) � dF (�tj
t�1) dF ("tj
t�1) denote the conditional
density function of !t where dF (!tj
t�1) = f (!tj
t�1) d!t. For discussion purposes, we
label "t as a �demand�shock, while a shock to �t is referred to as a �supply�shock.

2.3 Free entry and search frictions

In order to capture the fact that �rm entry and exit �uctuates over the business cycle, we

assume that entry is endogenous and costly for sellers. At the beginning of every period

after observing the shock, sellers have to pay the cost � > 0 in terms of disutility to enter

the second market.10 The set of potential �rms is denoted F . Let S � F denote the set

of sellers that pay the utility cost � to enter the second market. We assume that the set

of potential sellers F is so large that S � F . Let s denote the measure of S. The set of
households is denoted by H whose size is normalized to 2. Let B � H denote the set of

households with e = " (the buyers), where b = 1 is the measure of B.
We introduce search frictions along the lines of Rocheteau and Wright (2005) who assume

that not all �rms that pay the �xed utility cost can trade in market 2. That is, paying �

9In Berentsen, Camera and Waller (2007) we derive the equilibrium when the only punishment for
strategic default is exclusion from the �nancial system in all future periods.

10Assuming a �xed utility cost � is standard in the labor search literature (e.g. Pissarides 2000, Rogerson,
Shimer and Wright 2005) or in the money search literature (e.g. Rocheteau and Wright 2005).
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means entry into the group S of �rms that try to enter market 2. Only ~S � S suceed. Denote
� (s) the probability of trading in market 2 for a �rm that has paid the utility cost. Then,

� (s) s is the measure of ~S. We impose the usual assumptions on � (s), namely �0 (s) � 0,
�00 (s) � 0, � (s) � 1, � (0) = 1, and � (1) = 0.11 Finally, denote �� � s�0 (s) =� (s) < 0

as the elasticity of � (s). As is standard in the search literature, we assume this elasticity is

constant with ��� < 1.
With �0 (s) < 0 a �rm entering the set S generates a negative trading externality that

the optimal policy must take into account. There are precedents for such macro externalities

in the literature. For example, in endogenous entry/search models where the terms of trade

are determined by bargaining, there may be too many buyers or sellers relative to the social

optimum depending on the bargaining weight. In these models, deviating from the Friedman

rule may be optimal to improve the extensive margin.12 The restriction that��� < 1 ensures
that this congestion externality is not too large.

2.4 Monetary Policy

We assume a central bank exists that controls the supply of �at currency. We denote the

gross growth rate of the money supply as  (
t), implying Mt (
t) =  (
t)Mt�1 where

Mt (
t) denotes the quantity of money per household in market 3 in period t: We allow

the gross growth rate, and thus Mt (
t), to depend on the entire history of the economy.

The central bank implements its policy by providing state contingent lump-sum injections

of money to the households. Let � 1 (
t)Mt�1 and � 3 (
t)Mt�1 denote the state contingent

cash injections in markets 1 and 3 where  (
t) = 1 + � 1 (
t) + � 3 (
t).

The precise sequence of action after the shocks are observed is as follows. First, the

monetary injection � 1 (
t)M�1 occurs. Then, households move to the credit market where

non-buyers ( = 0) lend their idle cash and buyers ( = ") borrow money. Buyers and

sellers then move on to market 2 and trade goods. In the third market all �nancial claims

are settled and the central bank injects � 3 (
t)Mt�1 units of money per household.

11As argued by Rocheteau and Wright (2005), the probability of trading � (s) has a natural meaning in
matching models with bilateral meetings. It�s the probability of having a match. In competitive environments
it still captures search frictions by assuming that although there is a competitive market not all �rms get
the chance to trade in this market. It can be derived from the following constant returns to scale matching
function m (b; s) = b�s1�� with 0 < � < 1, where b is the measure of buyers and s the measure of sellers.
Then, since b = 1, the matching probability of sellers satis�es � (s) = min[1;m (b; s) =s] = min

�
1; s��

�
:

12See Shi (1997), Lagos and Rocheteau (2004), Rocheteau and Wright (2005), Berentsen, Rocheteau and
Wright (2007), and Aruoba, Rocheteau and Waller (2007).
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2.5 First-best allocation

Our welfare criterion is given by

V =
1X
t=0

�tWt (
t�1) (3)

where

Wt (
t�1) =

Z
�

Z
H[F

f� [xt (j)]� y (j)g djdF (!tj
t�1)

�
Z
�

Z
S
�djdF (!tj
t�1)

+

Z
�

�Z
B
"tu
�
qbt (j)

�
dj �

Z
~S
(1=�t) c [qt (j)] dj

�
dF (!tj
t�1)

where for each t, the quantities qbt (j)j2B are the consumption quantities of all households

with e = " (the buyers) and qt (j)j2 ~S are the production quantities of all �rms that pay the

entry cost and are able to enter market 2, while xt (j)j2H[F are the consumption quantities

of all household and all �rms in market 3 and yt (j)j2H[F are the production quantities of

all households and all �rms in market 3.

An e¢ cient allocation is de�ned as paths for qbt (j)j2B, qt (j)j2 ~S , xt (j)j2H[F , yt (j)j2H[F ,

and st that maximizes V. In the Appendix we show that the �rst-best allocation is a

symmetric, stationary list

�
x� (!) ; qb� (!) ; q� (!) ; s� (!)

	
!2�

that is independent of history and satis�es �0 [x� (!)] = 1, qb� (!) = � [s� (!)] s� (!) q� (!),

and qb� (!) and s� (!) solve

"u0
�
qb (!)

�
= (1=�) c0 [q (!)] (4)

� = � [s (!)] (1 + ��) (1=�) fc0 [q (!)] q (!)� c [q (!)]g (5)

where q (!) is a seller�s production and qb (!) a buyer�s consumption in market 2, and x (!)

is consumption in market 3. Note that x� (!) is not history dependent �it only depends on

the current realization of the aggregate state. The planner faces no intertemporal trade-o¤s

and so he simply chooses the quantities that maximize welfare state by state for all t. This

implies that the history of the shock process is irrelevant for the e¢ cient allocation.

We also show in the Appendix that the �rst-best allocation exists and is unique. Fur-
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thermore, comparative statics on (4)-(5) shows that q� (!) is increasing in all of the shocks,

while s� (!) is increasing in " but is ambiguous in �.13

Example 1 To help illustrate how our model works we use a common example throughout
the paper. The functional forms are "u

�
qb (!)

�
= "qb (!)1��, c [q (!)] = q (!)� =�, � (s) = s��

with � > 1 > � � 0 and the entry cost is � = 1. When � = 0 there is no congestion

externality. With these assumptions, the planner�s allocation is given by

q� (!) =
�
��+�
��1

���
�(�+�)� � "��

s� (!) =
�
��1
��+�

�(��1+�)�
�(1��)� � "��:

where � � [(�� 1 + �) � + ��]�1. From this example, we see that q� (!) is increasing in both

shocks. We also have s� (!) increasing in " as well as � shocks when � < 1. Thus, the

planner wants entry to be procyclical. Note also that as � ! 1, costs become linear, pro�ts

go to zero and its optimal to have one seller produce for the entire market since entry is

costly.

Why does the planner want entry to be procyclical? Consider an increase in ". This

implies that households want to consume more and it is optimal to let them consume more.

The planner can achieve this higher level of output by increasing the amount of goods

produced by each seller, i.e., increase q (!), or by having more �rms enter and produce,

i.e., increase s (!). With increasing marginal costs of production, the planner chooses to

alleviate higher production costs on each individual �rm by having more entry even though

it is costly. Hence, the optimal response to an " shock is to increase both the intensive and

extensive margins for output. A similar argument holds for the other shock.

3 Monetary allocation

Let p3t (
t) be the time t nominal price of goods in market 3 and thus �t (
t) � 1=p3t (
t)
is the goods price of money. We study equilibria where end-of-period real money balances

are history invariant

�t (
t)Mt (
t) = �t�1 (
t�1)Mt�1 (
t�1) ; 8 
: (6)

13If the productivity shock a¤ects the entry cost in the same way as the cost function, then s� (!) is
increasing in � as well.
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We refer to it as a stationary equilibrium. This implies that in a stationary equilibrium

�t�1 (
t�1) =�t (
t) =  (
t). In what follows, we look at a representative period t and

work backwards from the third to the �rst market to examine the agents� choices. For

notational ease, variables corresponding to the next period are indexed by +1, and variables

corresponding to the previous period are indexed by �1.

3.1 The third market

In the third market households consume x, produce y, and adjust their money balances

taking into account cash payments or receipts from the credit market. If a household has

net borrowing of ` units of money, then he repays (1 + i) ` units of money.

Consider a stationary equilibrium. Let V1(m;
; t) denote a household�s expected lifetime

utility at the beginning of market 1 with m money balances and history ! in period t. Let

V3 (m;
; t; `) denote a household�s expected lifetime utility from entering market 3 in period

t with m money and ` loans with history 
. For notational simplicity in this section we

suppress the dependence of the value functions on time.

Bellman�s equation for a household is

V3 (m;
; `) = max
x;y;m+1

f� (x)� y + �E [V1 (m+1;
+1)j
]g (7)

s.t. x+ �m+1 = y + � [m+ � 3 (
)M�1]� � (1 + i) `

where m+1 is the money taken into period t + 1 given the history 
. Rewriting the budget

constraint in terms of y and substituting into (7) yields

V3 (m;
; `) = � [m+ � 3 (
)M�1 � (1 + i) `]
+max
x;m+1

f� (x)� x� �m+1 + �E [V1 (m+1;
+1)j
]g :

The �rst-order conditions are �0 (x�) = 1, meaning x� is constant and

��+ �E [V m
1 (m+1;
+1)j
] = 0 (8)

where the superscript denotes the partial derivative with respect to the argument m. Thus,

V m
1 is the marginal value of taking an additional unit of money into the �rst market in period

t+1. Since the choice of m+1 is independent of m, all households enter the following period

with the same amount of money.
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The envelope conditions are

V m
3 (m;
; `) = �; V `

3 (m;
; `) = �� (1 + i) : (9)

As in Lagos and Wright (2005) the value function is linear in wealth.

Let W1 (�;
) ; � 2 f0; 1g ; denote a seller�s expected lifetime utility at the beginning of
market 1 given 
. If � = 1, the seller has paid the entry cost � and if � = 0 he has not. Note

that we have also taken into account that sellers bring no money into market 1. Since sellers

do not participate in the �rst market, we have W1 (�;
) = W2 (�;
). Let W3 (m;
) denote

a sellers�s expected lifetime utility from entering market 3 with m units of money given 
.

Bellman�s equation for a seller is

W3 (m;
) = max
x;y

f� (x)� y + �E [W1 (�+1;
+1)j
]g

s.t. x = y + �m:

Rewriting the budget constraint in terms of y and substituting into the objective function

yields

W3 (m;
) = �m+max
x
f� (x)� x+ �E [W1 (�+1;
+1)j
]g : (10)

The �rst-order condition is �0 (x�) = 1. The envelope condition for a seller is

W 0
3 (m;
) = �: (11)

As was the case for households, the value function is linear in m.

3.2 The second market

There are 3 types of agents in the second market: buyers (b), non-buyers (o) and sellers (s).

Let V2 (m;
; `; j) denote the value function of a household of type j = b; o. Let qb and q,

respectively, denote the quantities consumed by a buyer and produced by a seller and let p

be the nominal price of goods.

Since non-buyers neither consume or produce, the Bellman equation for this household

is simply V2 (m;
; `; o) = V3 (m;
; `). The one for a buyer household is

V2 (m;
; `; b) = max
qb

"u
�
qb
�
+ V3

�
m� pqb;
; `

�
s.t. pqb � m:
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Using (9) the buyer�s �rst-order condition can be written as

�q = "u0
�
qb
�
� �p; ! 2 �; (12)

where �q is the multiplier on the buyer�s budget constraint. If the budget constraint is

not binding, then "u0
�
qb
�
= �p. If it is binding, then "u0

�
qb
�
> �p and the buyer spends

all of his money, i.e. pqb = m. In the �rst case, the buyer equates the marginal rate of

substitution between market 2 goods and market 3 goods to the relative price of goods in

the two markets.14 In the latter case, the agent is at a �corner�.

The marginal value of a loan is the same for all households and so

V `
2 (m;
; `; j) = � (1 + i)�; (13)

for j = b; o. Using the envelope theorem and equations (9) and (12), the marginal values of

money for j = b; o are

V m
2 (m;
; `; b) = "u0

�
qb
�
=p (14)

V m
2 (m;
; `; o) = �: (15)

We now describe the entry behavior of the sellers in market 2. The Bellman equation for

a seller who has paid the entry cost is

W2 (1;
) = � (s)max
q
f� (1=�) c (q) +W3 (pq;
)g+ [1� � (s)]W3 (0;
) (16)

subject to the pricing protocol which we discuss below. The term pq is the money receipts

from selling output.

The Bellman equation for a seller who does not pay the entry cost isW2 (0;
) =W3 (0;
).

At the beginning of the period, sellers observe the current state and the representative seller

chooses to enter market 2 with probability � (
) taking as given the entry choices of other

sellers. Let N denote the measure of potential sellers. Then, since we focus on symmetric
equilibria, he expects a measure s (
) = � (
)N of sellers entering, where �(
) is the

entering decision of all other sellers. De�ne

D [� (
)N] � W2 (1;
)�W2 (0;
)� � (17)

14The MRS between the two markets is "u0
�
qb (!)

�
=�0 [x (!)] : But from the optimization problem in

market 3, �0 [x (!)] = 1 for all !.
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Equation (17) is the expected gain from entering the market. The optimal choice of � satis�es

� (
) = 1 if D [� (
)N] > 0
� (
) = 0 if D [� (
)N] < 0
� (
) 2 [0; 1] otherwise

We look for symmetric Nash equilibria where all sellers choose the same entry probability

� (
). Moreover, the value(s) of �(
) that sustain a symmetric Nash equilibrium are de�ned

as follows:
�(
) = 1 if D(N) � 0
� (
) = 0 if D(0) � 0
D [� (
)N] = 0 otherwise

Throughout the paper we focus on equilibria where D [� (
)N] = 0 in all states.15 Using

the expressions for W2 (1;
), W2 (0;
) and (10) we then obtain the free entry condition

� = � (s) [�pq � (1=�) c (q)] : (18)

where the RHS is expected pro�ts. Note that we have suppressed the dependence of s and

q on ! for notational convenience. Since the entry cost has to be paid each period, only

current pro�ts enters into (18). Free entry requires that expected pro�ts in market 2 equal

the entry cost. Revenue after history 
, measured in utility, is given by �pq where p is the

nominal price of goods in market 2 and � is the real price of money in the last market, while

costs in utility are � (1=�) c (q). Note that �p = p=p3 is the relative price of goods across

markets 2 and 3.

3.3 The credit market

A household who has m money at the opening of the �rst market has expected lifetime

utility

E [V1 (m;
)] =

Z
�

[V2 (m;
; `; b) + V2 (m;
; `; o)] dF (!j
�1) : (19)

Once trading types are realized, a household of type j = b; o solves

max
`
V2 (m;
; `; b) s:t: 0 � m:

15This simply requires that the measure of potential sellers is su¢ ciently large so that in no state all of
them wants to enter. This is a standard assumption in the labor search literature.
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The constraint means that money holdings cannot be negative. The �rst-order condition is

V m
2 (m;
; `; b) + V `

2 (m;
; `; b) + � (j) = 0

where � (j) is the multiplier on the households�s non-negativity constraint. It is obvious

that households with  = " will become borrowers while those with  = 0 become lenders.

Consequently, we have � (b) = 0 and � (o) > 0.

Using (13)-(15), the �rst-order conditions can be written as

"u0
�
qb
�
= �p (1 + i) (20)

� (o) = i�: (21)

Using the envelope theorem and equations (12), (20), and (21), the marginal value of money

satis�es

E [V m
1 (m;
)j
�1] =

Z
�

�
"u0
�
qb
�
=p
�
dF (!j
�1) : (22)

noting that 
 = f!;
�1g : Di¤erentiating (22) shows that the value function is concave in
m. Use (8) lagged one period to eliminate E [V m

1 (m;
)j
�1] from (22). Then, divide the

resulting expression by ��1 and rewrite to get

1 = �

Z
�

"u0
�
qb
�

 (
) p�
dF (!j
�1) : (23)

3.4 Pricing protocols

We now discuss three pricing protocols: competitive pricing, state contingent monopoly

pricing and non-state contingent monopoly pricing. We refer to this last pricing protocol as

posting. For each pricing protocol, we have

qb = � (s) sq for all !: (24)

For competitive pricing this is simply the market clearing condition in market 2.

For monopoly pricing this equation also holds because we assume a matching process that

allocates [� (s) s]�1 buyers to each seller. The bene�ts of this matching rule are threefold.

First, the �rst-best allocation described in Section 3 is replicated if the monopoly pricing

distortion is eliminated. Second, in search-theoretic models of money, bilateral matching

creates monopoly power for both buyers and sellers in the bargaining process. This matching

rule with monopoly pricing eliminates the monopsony power of the buyer and is consistent
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with the pricing frictions in New Keynesian models. Third, the allocation is easily compared

to the �exible price allocation since the only di¤erence is the pricing mechanism.16

Competitive pricing With price taking, a seller�s maximization problem in market 2 is

max
q
f� (1=�) c (q) +W3 (pq;
)g

Using (9), the �rst-order condition yields the pricing equation

p =
(1=�) c0 (q)

�
: (25)

We can then combine (20) and (25) to get an expression for the interest rate

1 + i =
"u0 [� (s) sq]

(1=�) c0 (q)
: (26)

State contingent monopoly pricing With state contingent monopoly pricing, since

seller faces [� (s) s]�1 buyers, the maximization problem is

max
q;p

f� (1=�) c (q) +W3 (pq;
)g

s:t: "u0 [� (s) sq] = p� (1 + i)

where the constraint is the buyer�s �rst-order condition for consumption. The solution yields

the pricing equation17

p =
(1=�) c0 (q)

� (1�Ru)
: (27)

We can then combine (20) and (27) to get an expression for the interest rate

1 + i =
(1�Ru) "u0 [� (s) sq]

(1=�) c0 (q)
. (28)

Non-state contingent monopoly pricing We now assume that sellers must set the

price before the realization of the current state, !. However, they can use the information

on the history of the aggregate state up to time t � 1, 
�1, in forming their expectations
16This assumption is simply made to compare the allocation with monopoly pricing to one with compet-

itive pricing. For this reason, we ignore issues involving 1 < � [s (
)] s (
).
17Given our simple approach to generating monopoly power, the gross markup is given by (1�Ru)�1,

which is constant. Since the data suggest the markup is countercyclical, we will clearly be unable to match
this stylized fact. Changing the matching function such that the markup depends negatively on entry, as in
Jaimovich and Floettoto (2007) would be an interesting extension.
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of future pro�ts. They commit to produce whatever is demanded in state ! at the posted

price, p (
�1). However, upon seeing the shock they can choose to enter and try to sell at the

posted price. With this last assumption, no seller will experience negative expected pro�ts

in equilibrium.18 The seller�s maximization problem is

max
p(
�1)

Z
�

(
� (
)� [s (
)] fW3 [p (
�1) q (
) ;
]� (1=�) c [q (
)]g

+ f1� � (
)� [s (
)]gW3 (0;
)

)
dF (!j
�1)

s:t: "u0 f� [s (
)] s (
) q (
)g = p (
�1)� (
) [1 + i (
)] for all !:

where demand in each state satis�es the buyer�s �rst-order condition for consumption, i.e.

it satis�es the above constraints. The �rst-order condition for p yields the pricing equation

p (
�1) =

Z



�[s(
)]s(
)q(
)(1=�)c0[q(
)]dF (!j
�1)

(1�Ru)

Z



�(
)�[s(
)]s(
)q(
)dF (!j
�1)
: (29)

where we have taken into account that in a symmetric equilibrium � (
) = s (
) =N. Equa-
tion (29) then replaces p in (23). We can then combine (20) and (29) to get an expression

for the interest rate

1 + i (
) =
(1�Ru)"u0f�[s(
)]s(
)q(
)g

Z



�(
)�[s(
)]s(
)q(
)dF (!j
�1)

�(
)

Z



�[s(
)]s(
)q(
)(1=�)c0[q(
)]dF (!j
�1)
: (30)

4 Optimal stabilization

We now derive the optimal stabilization policy in symmetric stationary monetary equilib-

rium. To study this problem we pursue the primal approach to the Ramsey problem where

the central bank chooses the quantities xt, yt, qbt , qt; st to maximize (3) subject to the free

entry condition (18), the relevant pricing protocol and the resource constraints. In the ap-

pendix we show that these quantities can be implemented with history dependent injections

� 1 (
) and � 3 (
) that satisfy it � 0 and (23). With competitive pricing the pricing protocol
is (25), with state-contingent monopoly pricing it is (27), and with non-state contingent

monopoly pricing it is (29). It should be clear that in all cases xt = x� and yt is determined

by the households budget constraint once all of the other quantities are chosen. Finally,

18For this case, we have in mind restaurants who print their menus in advance but upon seeing the state
of the economy can choose to open or not.
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from (24) qbt is determined once we have qt and st. So the central bank�s problem reduces to

choices of qt and st.

Proposition 1 Consider the case of competitive pricing. The constrained optimal allocation
is stationary and depends only on the current state !. With �0 [s (!)] = 0, i (!) = 0,

q (!) = q� (!) and s (!) = s� (!) for all states. With �0 [s (!)] < 0, i (!) > 0, q (!) < q� (!)

and s (!) > s� (!) for all states.

The allocation is stationary and only depends on the current state in both cases despite

the persistence of the shocks. The reason is that the only equation for which the persis-

tence of the shocks matters is the money demand equation (23). Given its optimal choices

fq (!) ; s (!)g!2� the central bank then chooses  (
) to ensure (23). Thus, any information
content provided by the persistence of the shocks is o¤set by choosing the stochastic in�ation

rate appropriately.

With �0 [s (!)] = 0, the Friedman rule replicates the �rst-best allocation. This can be

seen by noting that from (20) when i (!) = 0, q (!) = q� (!). Moreover, (39) replicates (5) at

q (!) = q� (!). The intuition is that with �0 [s (!)] = 0 so there is no congestion externality

and the only friction is the cost of holding money across periods. Under the Friedman rule

the agents get compensated for these costs and so agents perfectly self-insure against all

shocks. Consequently, there are no welfare gains from stabilization policies.19 Note that

Proposition 1 also holds in a model where the number of sellers is exogenously given.

With �0 [s (!)] < 0 the central bank never chooses i (!) = 0. The reason is the conges-

tion externality. Sellers ignore how their entry lowers the expected pro�ts of other sellers.

Consequently, in equilibrium there are too many sellers and the aggregate entry cost s (!)�

is too high relative to the social optimum. To see why a deviation from the Friedman rule is

optimal assume that the central bank sets i (!) = 0, which generates the e¢ cient quantity

q (!) = q� (!) in all states. Now consider a reduction in s (!) when i (!) = 0. By mar-

ginally reducing s (!), q (!) is also marginally reduced but the �rst-order welfare loss from

doing so is zero. The reduction in q (!) reduces expected pro�ts for �rms and thus entry

declines. This produces a �rst-order gain in welfare from reducing s (!)�. This is achieved

by increasing i (!) above zero.

Although the argument above does not require i (!) > 0 for all states, nevertheless it is

optimal to do so. The reason is that the central bank wants to smooth consumption across

19Ireland (1996) derives a similar result in a model with nominal price stickiness. He �nds that at the
Friedman rule there is no gain from stabilizing aggregate demand shocks. For the same reason, Khan, King
and Wolman (2003) �nd that with �exible prices the Friedman rule is optimal, although it cannot achieve
the �rst-best allocation because of monopolistic distortion in the price setting.
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states. Intuitively, consider two states !; !0 2 � with i (!) = 0 implying q (!) = q� (!) and

i (!0) > 0 implying q (!0) < q� (!0). Then, the �rst-order loss from decreasing q (!) is zero

while there is a �rst-order gain from increasing q (!0). This gain can be accomplished by

increasing i (!) and lowering i (!0). Thus, the central bank�s optimal policy is to set i (!) > 0

for all states.

We �nd this result interesting because it is very reminiscent of the view that the Federal

Reserve kept interest rates �too low for too long�from 2003-2005. In short, this argument

implies the Fed should have raised interest rates to choke o¤ entry into the housing and

commercial property markets. It is important to note that this argument requires some type

of congestion externality to make entry ine¢ cient. Entry per se is not enough.

Lastly, the central bank�s optimal interest rate policy has di (!) =dq (!) being of the same

sign as dRc (!) =dq (!), where Rc is the elasticity of the marginal cost function. Thus,
for a constant elasticity marginal cost function, we have di (!) =dq (!) = 0 and the central

bank perfectly smooths interest rates. The central bank moves the nominal interest rate in

a countercyclical fashion when dRc (!) =dq (!) > 0 and in a pro-cyclical manner when the

opposite is true.

Example 2 Using our assumed functional forms, the central bank�s optimal allocation is
given by

qc (!) =
�
�+�
��+�

��� �
1
1+�

���
q� (!) < q� (!)

sc (!) =
�

1
1+�

�(1��)� � �+�
�

���
s� (!) > s� (!)

ic (!) = �(��1)
�+�

> 0:

This example illustrates the basic insight of the model. When entry is endogenous, too much

entry occurs. To reduce entry, the central bank in�ates in order to drive up nominal interest

rates. This lowers consumption of market 2 goods and lowers pro�ts for sellers. Expected

lower pro�ts reduces entry by sellers. Since Rc (!) = � � 1 for these functional forms, the
optimal nominal interest rate is constant across states. Note also that when the entry cost

is constant, i.e. when � = 0, then qc (!) = q� (!), sc = s� and ic (!) = 0. Again, the central

bank wants entry to be procyclical.

We next consider the case of state-contingent monopoly pricing.

Proposition 2 Consider the case of state contingent monopoly pricing. The constrained
optimal allocation is stationary and depends only on the current state !. With �0 (s) = 0,
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i (!) = 0, q (!) < q� (!) and s (!) > s� (!) for all states. With �0 (s) < 0, i (!) > 0,

q (!) < q� (!) and s (!) > s� (!) for all states.

With monopoly pricing and �0 (s) = 0, the Friedman rule is again optimal. However, the

�rst-best allocation cannot be achieved since the monopoly pricing distortion causes q (!) to

be ine¢ ciently low and s (!) to be ine¢ ciently high in all states

With endogenous entry, once again, due to the entry externality, the central bank pushes

up interest rates to reduce pro�ts and thus entry. As with competitive pricing, entry is

higher than the social optimum. Also, production is lower than q� and qc.

Example 3 Using our assumed functional forms, the central bank�s optimal allocation is
given by

qsm (!) =
�

��1
��1+�

���
(1� �)(�+�)� qc (!) < qc (!) < q� (!)

ssm (!) =
�
��1+�
��1

�(��1+�)�
(1� �)(1��)� sc (!)

ism (!) = �(��1)
�+�

= ic (!)

Note that when the entry cost is constant � = 0, qsm (!) < q� (!), ssm 6= sc = s� and

ism (!) = 0. State-contingent monopoly pricing causes market 2 consumption and entry to

be ine¢ cient. Entry can be higher or lower than is socially optimal but it is procyclical.

Finally, we study the case of non-state-contingent monopoly pricing.

Proposition 3 Consider the case of non-state contingent pricing. In this case, central bank
replicates the optimal allocation that occurs under state contingent monopoly pricing.

Why is the central bank able to replicate the posting allocation? Posting simply imposes

a constraint on the behavior of p in market 2. However, the central bank only cares about

the relative price � (!) p (!) between market 2 and market 3. As long as that is �exible, the

central bank can replicate the state-contingent monopoly price allocation.

Implementation In the appendix, we derive implementation schemes for each pricing

protocol that supports the desired allocation when �0 [s (!)] < 0. The schemes are not

unique since the transfers are nominal injections and the central bank only cares about

the relative transfers across states. For illustration, one transfer scheme under competitive
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pricing is given by

1 + � 1 = �

Z



"u0[qb(!)]qb(!)
qb(!L)c0[q(!L)]q(!L)

f (!j!L;
�2) d!

1 + � 1 (
) = f(!j!�1;
�2)
f(!j!L;
�2) (1 + � 1)

� 3 (
) = (1 + � 1)
f(!j!�1;
�2)
f(!j!L;
�2)

n
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

o
and stochastic in�ation rate

 (
) = (1 + � 1)
f(!j!�1;
�2)
f(!j!L;
�2)

qb(!L)c
0[q(!L)]=�L

qb(!)c0[q(!)]=� :

where 
�1 = f!�1;
�2g. The key thing to note is that the in�ation rate is state-dependent
and serially correlated. The reason for the serially correlation is as follows. The optimal

allocation associated with state ! does not depend on 
�1. However, 
�1 contains infor-

mation about the future state ! and this a¤ects agents�demand for real balances at time

t� 1, as is shown by (23). In order to o¤set any informational value history has on current
money demand, the central bank o¤ers a menu of state-contingent transfers that makes the

real value of money constant regardless of 
�1. Note that for general shock processes, the

central bank must promise a sequence of transfers for all possible histories. This seems to

be an unrealistic implementation policy in practice. However, if the shocks are Markovian,

then the central bank�s transfers only need to be conditioned on the current and previous

state �a much simpler set of transfers to implement.

How does the implementation scheme above work? The injection 1 + � 1 pins down the

in�ation rate in the lowest production state ("L, nL and �L). In this state, demand for goods

is at its lowest level and production costs are at their highest value. Then in states where

higher production is desired the central bank alters its injection scheme across markets as

demand for goods increases or costs fall in such a way that it generates changes in real

balances in market 1.

To make this point more concrete, assume the the only shock is the marginal utility shock

" and it is iid. Then the scheme above reduces to

1 + � 1 = 1 + � 1 (") = �

Z



"u0[qb(")]qb(")
qb("L)c0[q("L)]q("L)

f (") d"

� 3 (") = (1 + � 1)
n
qb("L)c

0[q("L)]
qb(")c0[q(")] � 1

o
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and stochastic in�ation rate

 (") = (1 + � 1)
qb("L)c

0[q("L)]
qb(")c0[q(")] :

Under this scheme, the central bank injects the same amount of cash in market 1 regardless

of the size of the " shock. However, qb (!) and q (!) are increasing in ". To engineer higher

consumption and production as " increases, the central bank promises to reduce the market

3 injection and thus the in�ation rate of market 3 prices. This means money is more valuable

in market 3 and raises its price, �. This induces sellers in market 2 to lower their price of

goods in market 2, thereby increasing real balances in market 2. Hence, by promising to

alter future monetary injections based on today�s observed shock, the central bank can alter

the real value of money today.

5 Quantitative Analysis

Since our focus is on optimal policy, we want to know whether our model can replicate the

behavior of the nominal interest rate in the data. Table 1 reports some statistical properties

of GDP, NBI and nominal interest rates during the period 1950-1993. All variables are

reported as percentage deviations from an HP trend with smoothing parameter 1600. NBI

is new business incorporations.20 GDP is real GDP and the nominal interest rate is the

3-Month Treasury Bill Secondary Market Rate.

Table 1: Summary Statistics, 1950:1 to 1993:4.

GDP NBI i

Standard Deviation 0:017 0:058 0:224

Quarterly Autocorrelation 0:816 0:796 0:798

Correlation Matrix GDP 1 0:321 0:473

NBI 1 0:01

i 1

NBI is much more volatile than GDP and has a positive correlation with GDP. The nominal

interest rate is positively correlated with GDP and is more than 10 times more volatile than

20New business incorporations is taken from the Survey of Current Business (November, 1994). The data
series starts in 1948 and was discontinued in 1996.
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GDP and about four times as volatile as NBI. Finally, there is little correlation between the

nominal interest rate and NBI.

It is perhaps surprising that real GDP and the nominal interest rate are positively cor-

related. However, this is what our model suggests if central banks optimally respond to

technology and preference shocks. For example, a positive productivity shock leads to more

entry which the central bank might want to temper by raising the nominal interest rate. As

a consequence, output, entry and the nominal interest rate increase.

5.1 Parameters and targets

We calibrate the model to match US data choosing the model period to be one quarter

with the pricing protocol being state-contingent monopoly pricing. For the calibration, we

need to choose values and functional forms for (i) households preferences f"u(q); � (x)g, (ii)
technology f(1=�) c(q), k (s)g, and (iv) policy i.
For the utility function in the third market we choose � (x) = A ln (x). We set the utility

function for goods traded in the market 2 to belong to the CRRA family

u(qb) = (1� �)�1
�
qb
�1��

:

We set c(q) to satisfy

c(q) =
('+ q)1+� � '1+�

1 + �
:

where ' � 0. Finally, we assume that the probability of a sale is � (s) = s�� implying

k (s) = �=� (s) = �s�:

With these functional forms, we have to identify the parameters (A; �; �; '; �; �). We

use the following data: average mark-up, ��, average money demand, �L, average nominal

interest rate, �{, and the ratio of entry cost to per capita gdp, ��. Over the period from

1950-1993, average annual money demand L = M=(PY ) is approximately �L = 0:05, where

M is currency demand M0, and the average nominal interest on the 3-Month Treasury Bill

Secondary Market Rate is �{ = 0:05. As pointed out by Jaimovich and Floetotto (2008),

estimates of markups in value added tend be from 1.2 to 1.4, while markups in gross output

lie between 1.05 and 1.15. We set the gross output markup to be �� = 1:1. Djankov et al

(2002) estimates the cost of starting a new business for the US to be �� = 0:017 (as a fraction

of GDP per capita in 1999).

We are missing two targets to pin down, � and A. To �ll this gap we simply report the
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results for three values of �, namely �� = 0:4, 0:8, and 1:2, and for A = 1:8. The reason

that we only report results for A = 1:8 is that the volatility of the nominal interest rate

is little a¤ected by A. Table 2 lists the identi�cation restrictions and the identi�ed values

of the parameters. In the Appendix we detail the calibration procedure which uses these

restrictions to compute the parameter values listed in Table 2.

Table 2. Calibration and parameter values

Targets �{ �L �� �� �� �A

0:05 0:05 1:1 0:017 0:8 1:8

Parameters � � ' � � A

0:82 4:02 1:61 0:019 0:8 1:8

The choice of � is a¤ecting the volatility of the nominal interest rate because � represents

the congestion externality where a higher � means more congestion. A change in A a¤ects

mainly � where an increase in A decreases �. The intuition is that the choice of A determines

the relative size of market 2 to market 3. An increase in A, ceteris paribus, makes market

3 larger. To compensate for this increase, � needs to decrease in order to make market 2

larger. Overall, our various experiments with di¤erent values of A had no quantitatively

important e¤ects the volatility of the nominal interest rate.

5.2 Model implication for interest rate

To derive the model�s prediction for the behavior of the interest rate we need to specify

processes for � and ". To avoid negative values, let � � ea and " � ee. For the non-

stochastic steady state equilibrium we assume that a = e = 0, implying � = 1 and " = 1.

We assume that � and " follow two independent AR(1) processes with persistence parameters

�� (�") and noise ��;t (�";t) which are distributed N (0; �
2
�) [N (0; �

2
")].

We conduct two experiments. First, we assume that the economy is hit by productivity

shocks only. For this purpose, we calibrate the AR(1) process for � such that the model�s

real gdp matches the autocorrelation and the standard deviation of real GDP in the data.

This yields the following process for �t:21

ln�t = 0:814748 � ln�t�1 + ��;t �2� = 0:0689506 (31)

21The autocorrelation and the standard deviation of the AR(1) process for � depend on the values of �
and A. However, the e¤ects are small and we therefore only report �a and �� for � = 0:8 and A = 1:8.
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Our second experiment is to assume that the economy is hit by demand shocks only.

In this case, we calibrate the AR(1) process for " such that the model�s real gdp matches

the autocorrelation and the standard deviation of real GDP in the data. This yields the

following process for "t:22

ln "t = 0:813505 � ln "t�1 + �";t �2" = 0:00189196: (32)

For each experiment, we then either use (31) or (32) to generate 100,000 observations of

� or ", throwing away the �rst 10,000 observations. We then use the free entry condition

and the central bank�s �rst-order conditions to solve for st (�t; "t) and qt (�t; "t).23 The series

for st (�t; "t) is the simulated NBI. We then insert st (�t; "t) and qt (�t; "t) into the model�s

expressions for GDP (derived in the appendix) and the interest rate:

GDPt = 4
n
(1=�t)c

0 [qt (�t; "t)] st (�t; "t)� [st (�t; "t)] qt (�t; "t) =(1� �) + Â
o

(33)

it =
"t [st (�t; "t)� [st (�t; "t)] qt (�t; "t)]

��

(1=�t) ['+ qt (�t; "t)]
� = (1� �)

� 1: (34)

This gives us 90,000 simulated observations of GDP, NBI and i. The standard deviations of

the simulated data is reported in Table 3 for three values of �.

Table 3: Results

GDP NBI i

Data 0:017 0:058 0:224

Model � � = 0:4 0:018 0:091 0:476

� = 0:8 0:017 0:089 0:519

� = 1:2 0:017 0:089 0:565

Model " � = 0:4 0:018 0:09 0:035

� = 0:8 0:018 0:09 0:072

� = 1:2 0:018 0:09 0:108

The most interesting result of Table 3 is that if productivity shocks were the sole shock,

the model predicts that the nominal interest rate should be much more volatile than it is

in the data �about 2.5 times more volatile (for � = 0:8). The opposite is true if demand

22Note also that in order to match the volatility of real GDP the standard deviation of the productivity
shocks is required to be much larger than the one of the demand shock (see (31) or (32)).

23The two equations are found in the Appendix as equations (59) and (60).
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shocks were the only ones hitting the economy �the model�s nominal interest rate is about

3 times less volatile (for � = 0:8) than in the data. Note that the volatility of the nominal

interest rate is increasing in � since the congestion externality is increasing in � (recall that

at � = 0 there is no congestion externality). Finally, simulated NBI is more volatile than in

the data. All these results are robust to changes in A.

The intuition for the high volatility of the nominal interest rate in response to productivity

shocks and the low volatility in response to demand shocks is as follows. A productivity

shock lowers marginal cost which, holding the number of �rms constant, increases expected

pro�ts. Consequently, more �rms attempt to enter market 2. Due to the entry externality,

the central bank raises interest rates to dampen demand which reduces pro�ts. This tends

to keep aggregate output stable but requires large interest rate movements. In contrast,

holding entry constant, a demand shock increases expected pro�ts to a lesser extent since

each �rm must produce additional output at a higher marginal cost. Since pro�ts increase

less, entry responds to a lesser extent, and so the central bank does not need to increase the

nominal interest rate as much.24 Consequently, the central bank is much more aggressive in

changing interest rates in response to productivity shocks than to demand shocks.

To check this intuition, we have changed the model so that the productivity shocks

a¤ect the entry costs too, i.e., entry costs are now counter-cyclical and given by (1=�t)�.

This speci�cation does not change the calibrated parameters of the model since in the non-

stochastic steady state �t = 1. With this speci�cation, when productivity is high, entry costs

are low, which lowers the marginal welfare cost of the entry externality, (1=�t)�0 [s (!t)]�,

for any given value of s (!t). Hence, the central bank is more tolerant of entry and is less

willing to raise interest rates to choke o¤ pro�ts and entry. This can be seen in Table 4 by

the much higher volatility of �rm entry and the lower volatility of the nominal interest rate

in the row labelledModel ~� relative to the original speci�cation labelledModel �.25 This
results suggest that entry and the structure of entry costs may be an important source of

volatility in standard Ramsey problems when search frictions are included.

Table 4: Productivity a¤ects entry cost

24Note also that with demand shocks it is optimal to have more �rms to satisfy the higher demand for
goods. In contrast, with productivity shocks, fewer �rms are needed to produce a given quantity of output.

25Recall that the volatilities are reported for � = 0:8 and A = 1:8. For � = 0:4 the volatility of the interest
rate drops even below the observed one of 0:224 to 0:198.

26



GDP NBI i

Data 0:017 0:058 0:224

Model � 0:017 0:089 0:519

Model ~� 0:018 0:535 0:425

As a robustness check, we have also calibrated the model to M1 instead of M0. The

basic results are unchanged. The volatility of the nominal interest rate is much larger with

shocks to productivity than with demand shocks. In contrast to our baseline calibration,

the volatility of the interest rate is too low for both productivity and demand shocks. The

interest rate volatility obtained from productivity shocks is roughly one have of the observed

volatility. The one obtained with demand shocks is about 20 times smaller.

6 Conclusion

In this paper we have constructed a dynamic stochastic general equilibrium model where

money is essential for trade and there is endogenous �rm entry. The optimal policy involves

having procyclical entry, which matches the stylized facts. If there are congestion external-

ities from entry, then deviating from the Friedman rule is optimal. This result appears to

be consistent with the view that the Fed did not do enough in 2003-2005 to deter excessive

amounts of new construction. In the absence of these externalities, implementing a version

of the Friedman rule is optimal. Our quantitative exercises are enlightening since they sug-

gest that interest rates should have been much more volatile if productivity shocks were the

only source of aggregate uncertainty and much smoother if preference shocks were the main

aggregate shock.

There are many extensions of this model that would be interesting to pursue. For exam-

ple, how would the optimal policy be a¤ected if repayment of loans were endogenous? In

particular, does the risk of default alter stabilization? Given the events of 2007-2009, the

role of default on stabilization policy appears to be an important issue. Furthermore, we

have assumed that the shocks are known to the central bank. An interesting question is

what is the optimal policy if the central bank has imperfect information about the nature of

the aggregate shocks? How would the existence of inside money a¤ect the equilibrium and

optimal policy. For example, would inside money act as an automatic stabilizer, eliminating

the need for the central bank to stabilize the economy?

Finally, the state contingent optimal policy of our model requires the central bank observe

the current aggregate state. In reality, the central bank might only have imperfect knowledge

about the state of the economy. It is therefore of interest to investigate whether simple rules
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such as a non-state-contingent interest rate rule can get the economy close to the second

best allocation. In preliminary work, we have calculated the welfare gains from the optimal

stabilization rule relative to two simple rules: a constant interest rate rule and a policy that

yields a constant aggregate output. The welfare loss of following a simple constant interest

rate rule is only about 0.00012% of consumption. In contrast, the welfare loss of a policy

that yields a constant aggregate output is about 0.55% of consumption. We are planning to

explore the welfare implications of optimal stabilization policy in future research.
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Appendix

First-best allocation The planner chooses the allocation

At �
h
qbt (j)j2B ; qt (j)j2 ~S ; xt (j)j2H[F ; yt (j)j2H[F

i
and the measures of sellers st for each period. The quantities qbt (j)j2B are the consumption

quantities of all households with e = " (the buyers) and qt (j)j2 ~S are the production quantities

of all �rms that pay the entry cost and are able to enter market 2, while xt (j)j2H[F are the

consumption quantities of all household and all �rms in market 3 and yt (j)j2H[F are the

production quantities of all households and �rms in market 3. The planner is constrained

that the allocation has to be feasible. In the second and third markets, respectively, for each

state ! 2 
 and each date t, this requires thatZ
B
qbt (j) dj �

Z
~S
qt (j) dj (35)Z

H[F
xt (j) dj �

Z
H[F

yt (j) dj: (36)

An e¢ cient allocation is de�ned as paths for qbt (j)j2B ; qt (j)j2 ~S ; xt (j)j2H[F ; yt (j)j2H[F , and

st that maximize (3) subject to (35) and(36) and an initial aggregate state !0. One can easily

show that it is optimal to treat all agents of the same type equally. Moreover, using (35) it

is straightforward to show that the planner allocation yieldsZ
�

Z
H[F

[� (xt)� yt] dF (!tj
t�1) =
Z
H[F

� (x�)� x�

which is not state contingent so we can ignore this term in (3). Accordingly, the Lagrangian

of the planner problem is

Lp =

Z
�

�
"tu
�
qbt
�
� � (st) stc (qt) =�t

	
dF (!tj
t�1)

�
Z
�

st�dF (!tj
t�1) + �t
�
� (st) stqt � ntq

b
t

�
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The FOCs for this problem after simpli�cations are

0 = "tu
0 �qbt�� �t

0 = �t � c (qt) =�t

0 = � (st) (1 + �
�) [c0 (qt) qt � c (qt)] =�t � �

0 = � (st) stqt � qbt

for all t. It is clear from these FOC that the optimal allocation is independent of 
t�1 and

stationary for all ! 2 �, implying that, for a given state !, xt = x (!), yt = y (!), qbt = qb (!),

qt = q (!) for all t. Furthermore, an interior solution for st requires ��� < 1, which we have
assumed.

De�ne k [s (!)] � �=� [s (!)] with k0 (s) > 0. To prove existence and uniqueness of the

�rst-best allocation, we can rearrange (4)-(5) as follows

"u0 f� [s (!)] s (!) q (!)g
c0 [q (!)] =�

� 1 = 0 (37)

k [s (!)]� (1 + ��) fc0 [q (!)] q (!)� c [q (!)]g =� = 0 (38)

(37) is strictly decreasing function in [s (!) ; q (!)] space. It approaches in�nity as s (!)

approaches zero and approaches zero as s (!) goes to in�nity. If k0 [s (!)] > 0, (38) is strictly

increasing in [s (!) ; q (!)] space. Morover, at s (!) = 0 there exists a �nite q (!) > 0 that

solves

k [s (!)]� (1 + ��) (1=�) fc0 [q (!)] q (!)� c [q (!)]g = 0:

Hence, a unique solution [s� (!) ; q� (!)] exists. If � [s (!)] = �, (38) is independent of s (!)

implying that for � < +1, a unique solution [s� (!) ; q� (!)] exists.
Proof of Propositions 1. The proof involves three steps. We �rst derive the solution

to the central bank problem. We then demonstrate that the solution satis�es i (!t) � 0.

Finally, we show that there exists a transfer scheme � 1 (
) and � 3 (
) that implements the

central bank allocation for each 
 and satis�es (23).

First step. The central bank allocation has to satisfy two constraints. The �rst con-
straint is the entry condition (18), which holds in each state. The second constraint is

the pricing equation (25), which also holds in each state. We can use (18) to eliminate

pt (
t)�t (
t) from (25) to get

k (s) = [c0 (qt) qt � c (qt)] =�t: (39)
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The central bank then maximizes (3) subject to (39). Using (36) it is straightforward to

show that the optimal policy yieldsZ
�

Z
H[F

[� (xt)� yt] dF (!tj
t�1) =
Z
H[F

� (x�)� x�

which is not state contingent or dependent on monetary policy so we can ignore this term

in (3). Consequently, using (24), the central bank�s problem reduces to

V =

1X
t=0

�t
Z
�

�
"tu
�
qbt
�
� � (st) stc (qt) =�t

	
dF (!tj
t�1)

�
1X
t=0

�t
Z
�

� (st) stk (st) dF (!tj
t�1)

The Lagrangian is

Lc =
1X
t=0

�t
Z
�

�
"tu
�
qbt
�
� � (st) stc (qt) =�t

	
dF (!tj
t�1)

�
1X
t=0

�t
Z
�

� (st) stk (st) dF (!tj
t�1)

+
1X
t=0

�t
Z
�

�t
�
� (st) stqt � qbt

�
dF (!tj
t�1)

+
1X
t=0

�t
Z
�

�̂t fk (st)� [c0 (qt) qt � c (qt)] =�tg dF (!tj
t�1)

where �t and �̂t � st� (st)�t is the time t Lagrangian multiplier for state !t. Then for all t

the central bank�s allocation satis�es

0 = "tu
0 �qbt�� (1 + �tRc) c0 (qt) =�t (40)

0 = "tu
0 �qbt� qt � c (qt) =�t � k (st)� (1 + ��)�1 (1� �t) stk

0 (st) (41)

0 = k (st)� [c0 (qt) qt � c (qt)] =�t (42)

0 = qbt � � (st) stqt (43)

where (40) and (41) are the �rst-order conditions for qt and st respectively. Note that there

are no terms involving past or future values, in (40)-(42) so the allocation is stationary.

Hence, as with the planner, the central bank faces no intertemporal trade-o¤s and so for

each aggregate state ! we have qt = q (!) and st = s (!). For notational convenience we now
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drop the dependence of q and s on ! with the understanding that they are state dependent.

Use (40) and (42) to write (41) as follows

� =
sk0 (s)

Rc (1 + ��) c0 (q) q=�+ sk0 (s)
(44)

Note that � < 1. Using (44) to replace � in (40), q and s satisfy

"u0 [� (s) sq]

(1=�) c0 (q)
� 1 =

Rcsk0 (s)

Rc (1 + ��) (1=�) c0 (q) q + sk0 (s)
(45)

k (s) = [c0 (q) q � c (q)] =�: (46)

In (s; q) space, (45) approaches in�nity as s approaches zero and it approaches zero as s goes

to in�nity. If k0 (s) > 0, (46) is strictly increasing and q � 0 solves k� [c0 (q) q � c (q)] =� = 0

at s = 0. Hence, a solution (s; q) exists. If k0 (s) = 0, then k (s) = k, (46) is independent

of s implying that for k < +1, a solution (s; q) exists. If (45) is strictly decreasing in (q; s)
space, the equilibrium is unique.

Comparing these two expressions to the �rst-best allocation (37)-(38), it is straightfor-

ward to show that q < q�.

We now prove that s � s�. Suppose that the CB is constraint to implement s�. Then, q

solves

k (s�)� [c0 (q) q � c (q)] =� = 0: (47)

Let qc denote the value of q that solves (47) and let sc � s�. From (38), it is clear that

qc < q�. Now let the CB choose q and s. Assume - contrary to the claim in the Proposition

- that the optimal allocation satis�es s < sc � s�. Then, from (47), q < qc. It is evident

that the allocation (q; s) has lower welfare than (qc; sc) since q < qc < q� and s < sc = s�.

Thus, in any competitive equilibrium s � s�.

Second step. From (26) we have 1 + i = "u0[�(s)sq]
c0(q)=� . Hence, using (45) yields

i =
Rcsk0 (s)

Rc (1 + ��) c0 (q) q=�+ sk0 (s)

Consequently, if k0 (s) > 0, i > 0 in all states. If k0 (s) = 0, i (!) = 0 in all states. Note

that if sk0 (s) =k (s) = � and qc0 (q) =c (q) = � > 1 are constants, then Rc = � � 1 and the
free entry condition reduces to k (s) = (� � 1) c (q) =�. It then follows that i is constant and
given by

i =
� (� � 1)

(1 + ��) � + �
:
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Third step. We now show that a set of transfers � 1 (
) and � 3 (
) exists that implement
the CB allocation and satisfy (23). Using (24) and (25), we can write (23) as follows:

1 = �

Z
�

�
�"u0 f� [s (!)] s (!) q (!)g

 (
) c0 [q (!)]

�
dF (!j
t�1) : (48)

We �rst consider the case k0 (s) = 0. In this case, (48) reduces to

1 = �

Z
�

1

 (
)
dF (!j
t�1) = �

Z
�

1

1 + � 1 (
) + � 3 (
)
dF (!j
t�1) :

It is clear that any set of transfers � 1 (
) and � 3 (
) that satis�es  (
) = 1+� 1 (
)+� 3 (
) =

� for all 
 implements the central bank allocation.

Consider next the case k0 (s) > 0. Assume that the transfers are such that the agents

have just enough money to buy qb (!) = � [s (!)] s (!) q (!) in each state, i.e. p (
) qb (!) =

M�1 [1 + � 1 (
)]. From the pricing equation (25) we can write this expression as follows

qb (!) c0 [q (!)] =� = � (
)M�1 [1 + � 1 (
)] . (49)

Let z � � (
)M (
) = � (
)M�1 [1 + � 1 (
) + � 3 (
)]. Using (49) we get

z = qb (!) c0 [q (!)] =�+ � (
)M�1� 3 (
) : (50)

We have one degree of freedom for the choice of � 3 (
). Assume the central bank conditions

the transfers on the t and t� 1 shocks for any 
�2. We then have � 3 (
) = � 3 (!; !�1;
�2).

Consider the state !L = (�L; "L) and set � 3 (!L; !L;
�2) = 0. This pins down the real stock

of money z = qb (!L) c
0 [q (!L)] =�L. This implies  (!L; !L;
�2) = 1 + � 1 (!L; !L;
�2)

which remains to be determined. Return to this later. Now, using the value of z in (50) for

!�1 = !L yields

� 3 (!; !L;
�2) = [1 + � 1 (!; !L;
�2)]
n
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

o
which gives us the realized money growth rate

 (!; !L;
�2) = [1 + � 1 (!; !L;
�2)]
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=�

and from the money demand equation we get

1 = �

Z
�

"u0[qb(!)]qb(!)
qb(!L)c0[q(!L)]=�L

f(!j!L;
�2)
1+�1(!;!L)

d!: (51)
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This equation imposes a restriction on the choice of the vector f� 1 (!; !L)g!2� : One such
vector choice is � 1 (!; !L) = � 1 for all !. This pins down � 1 (!L; !L) and requires

� 1 = �

Z
�

"u0[qb(!)]qb(!)
qb(!L)c0[q(!L)]=�L

f (!j!L;
�2) d! � 1

Now consider an arbitrary !�1: Again we obtain

� 3 (!; !�1;
�2) = [1 + � 1 (!; !�1;
�2)]
n
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

o
which gives us the following

 (!; !�1;
�2) = [1 + � 1 (!; !�1;
�2)]
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=�

and the money demand equation is

1 = �

Z
�

�
"u0[qb(!)]qb(!)

qb(!L)c0[q(!L)]=�L

�
f(!j!�1;
�2)
1+�1(!;!�1)

d!: (52)

Thus, for both (51) and (52) to hold as it does for !L we must have

1 + � 1 (!; !�1;
�2) =
f (!j!�1;
�2)
f (!j!L;
�2)

[1 + � 1 (!; !L;
�2)] 8!; !�1

This pins down every transfer as a function of � 1 (!; !L;
�2). Thus, for � 1 (!; !L;
�2) = � 1

we have the transfer scheme

1 + � 1 (
) =
f (!j!�1;
�2)
f (!j!L;
�2)

(1 + � 1)

� 3 (
) = (1 + � 1)
f(!j!�1;
�2)
f(!j!L;
�2)

n
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

o
and stochastic in�ation rate

 (
) = (1 + � 1)
f(!j!�1;
�2)
f(!j!L;
�2)

qb(!L)c
0[q(!L)]=�L

qb(!)c0[q(!)]=� :

The remaining endogenous variables are then

� (
) = qb(!L)c
0[q(!)]=�

M�1(1+�1)
f(!j!�1;
�2)
f(!j!L;
�2) p (
) =M�1

(1+�1)f(!j!�1;
�2)
qb(!)f(!j!L;
�2) :

Proof of Propositions 2. The proof follows along the lines of the proof of Proposition 1.
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First step. The central bank allocation has to satisfy two constraints. The �rst con-
straint is the entry condition (18), which holds in each state. The second constraint is the

pricing equation (27), which also holds in each state. We can use (18) to eliminate p� from

(27) to get

k (st) =
�
c0 (qt) qt (1�Ru)�1 � c (qt)

�
=�t: (53)

Notice the appearance of the markup (1�Ru)�1, which is absent from (39).

The optimal allocation solves

0 =
"tu

0 �qbt�
(1=�t) c0 [qt (!t)]

� 1� �t
Rc +Ru

1�Ru
(54)

0 = "tu
0 �qbt� qt � c (qt) =�t � k (st)� (1� �t) (1 + �

�)�1 stk
0 (st) (55)

0 = k (st)�
�
c0 (qt) qt (1�Ru)�1 � c (q)

�
=�t (56)

0 = qbt � st� (st) qt (57)

Note that for Ru = 0 (54) - (56) and (40)-(42) are identical. Again, because there are no

terms involving past or future values, the solution to (54)-(56) is independent of t and 
 so

it is therefore stationary. Use (54) and (56) to write (55) as follows

� =
Ru (1 + ��) c0 (qt) qt=�t + (1�Ru) stk

0 (st)

(Rc +Ru) (1 + ��) c0 (qt) qt=�t + (1�Ru) stk0 (st)
: (58)

Use (58) to replace � in (54). Then, q and s solve

"u0 f[s� (s) =n] qg
c0 (q) =�

� 1 =
�
Rc+Ru

1�Ru
� h Ru(1+��)c0(qt)qt=�t+(1�Ru)stk0(st)

(Rc+Ru)(1+��)c0(qt)qt=�t+(1�Ru)stk0(st)

i
(59)

k (s)�
�
c0 (q) q (1�Ru)�1 � c (q)

�
=� = 0: (60)

Comparing these two expressions to the �rst-best allocation (37)-(38), it is straightforward

to show that q < q�. To establish that s � s� we can replicate the same proof as in the case

of competitive pricing above.

Second step. Since (41) and (55) are identical and � < 1, we can replicate the proof of
step 2 of Proposition 2 one for one.

Third step. We now show that a set of transfers � 1 (
) and � 3 (
) exists that implement
the CB allocation and satisfy (23). Using (24) and (27), we can write (23) as follows:

1 = � (1�Ru)

Z
�

"u0 f� [s (!)] s (!) q (!)g
 (
) (1=�) c0 [q (!)]

dF
�
!j
�1

�
(61)
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We �rst consider the case k0 (s) = 0. Since (1�Ru) "u0 f� [s (!)] s (!) q (!)g = (1=�) c0 [q (!)]
under the central bank�s allocation, (61) reduces to

1 = �

Z
�

1

 (
)
dF (!tj
t�1) = �

Z
�

1

1 + � 1 (
) + � 3 (
)
dF (!tj
t�1) :

It is clear that any set of transfers � 1 (
) and � 3 (
) that satis�es  (
) = 1+� 1 (
)+� 3 (
) =

� for all ! = � implements the central bank allocation.

Consider next the case k0 (s) > 0. Assume that the transfers are such that the agents

have just enough money to buy qb (!) in each state, i.e. p (
) qb (!) = M�1 [1 + � 1 (
)].

From the pricing equation (27), we can write this expression as follows

(1�Ru)�1 qb (!) c0 [q (!)] =� = � (
)M�1 [1 + � 1 (
)] . (62)

Since z = � (
)M�1 [1 + � 1 (
) + � 3 (
)], using (49) we get (50). As before, assume the

central bank mainly conditions the money growth rate on the shocks at t and t�1: Consider
the state !L = (�L; "L) and set � 3 (!L; !L) = 0. Thus, z = (1�Ru)�1 qb (!L) c

0 [q (!L)] =�L

is the real stock of money. We then have

(1�Ru)�1 qb (!L) c
0 [q (!L)] =�L = � (
)M�1 [1 + � 1 (
) + � 3 (
)] :

Using this expression and (62) we can obtain � 3 (!; !L) as a function of � 1 (!; !L)

� 3 (!; !L;
�2) = [1 + � 1 (!; !L;
�2)]
n
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

o
: (63)

The realized money growth satis�es

 (!; !L;
�2) = [1 + � 1 (!; !L;
�2)]
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� (64)

Then, replace  (!; !L;
�2) in (48) to get

1 = � (1�Ru)

Z
�

qb(!)"u0[qb(!)]
qb(!L)c0[q(!L)]=�L

f(!j!L;
�2)
1+�1(!;!L;
�2)

d! (65)

This equation imposes a restriction on the vector f� 1 (!; !L;
�2)g!2�. However, there are
many choices that are consistent with this equation. One particular choice is � 1 (!; !L;
�2) =
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� 1. In which case we have the transfer scheme

� 1 = � (1�Ru)

Z
�

qb(!)"u0[qb(!)]
qb(!L)c0[q(!L)]=�L

f (!j!L;
�2) d! � 1;

� 3 (!; !L;
�2) = (1 + � 1)
n
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

o
:

Now pick an arbitrary state !�1. Once again we obtain

� 3 (!; !�1;
�2) = [1 + � 1 (!; !�1;
�2)]
n
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

o
 (!; !�1;
�2) = [1 + � 1 (!; !�1;
�2)]

qb(!L)c
0[q(!L)]=�L

qb(!)c0[q(!)]=�

and the money demand equation

1 = � (1�Ru)

Z
�

qb(!)"u0[qb(!)]
qb(!L)c0[q(!L)]=�L

f(!j!�1;
�2)
1+�1(!;!�1;
�2)

d! (66)

Again for the money demand equations (65) and (66) to hold we must have

1 + � 1 (!; !�1;
�2) = (1 + � 1)
f (!j!�1;
�2)
f (!j!L;
�2)

which implies the in�ation rate is given by

 (
) = (1 + � 1)
f(!j!�1;
�2)
f(!j!L;
�2)

qb(!L)c
0[q(!L)]=�L

qb(!)c0[q(!)]=�

and the price of money and the price of goods are stochastic and satisfy

� (
) = f(!j!L;
�2)qb(!)c0[q(!)]=�
f(!j!�1;
�2)(1�Ru)M�1(1+�1)

; p (
) =M�1
(1+�1)f(!j!�1;
�2)
qb(!)f(!j!L;
�2) :

Proof of 3. In this proof we show that it is optimal and feasible to implement the same

allocation as for state-contingent monopoly pricing. The central bank allocation has to

satisfy the entry condition (18) and the pricing equation (29). Let �̂ (
t) � � (
t) p (
t�1) ;

which is the relative price between market 2 and market 3 goods. Since at time t, p (
t�1) is

a predetermined variable, the central bank can a¤ect this relative price by changing � (
t)

via policy. Then rewrite (29) asZ
�

� (st) stqt

h
�̂t (1�Ru)� c0 (qt) =�t

i
dF (!tj
t�1) = 0:
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The central bank now chooses qb, q, s and �̂ to maximize

Lp =
1X
t=0

�t
Z
�

�
"tu
�
qbt
�
� � (st) stc (qt) =�t

	
dF (!tj
t�1)

�
1X
t=0

�t
Z
�

stk (st) dF (!tj
t�1)

+
1X
t=0

�t
Z
�

�t
�
stqt � qbt

�
dF (!tj
t�1)

+

1X
t=0

�t
Z
�

�̂t

n
k (st)�

h
�̂tqt � c (qt)

i
=�t

o
dF (!tj
t�1)

+
1X
t=0

�t�t

Z
�

� (st) stqt

h
�̂t (1�Ru)� c0 (qt) =�t

i
dF (!tj
t�1)

where �̂t = �t� (st) st is the Lagrange multiplier for (18) and �t is the one for (29). Since we

know stqt = ntq
b
t in equilibrium we can eliminate q

b
t and simply choose qt, st and �̂t for all t.

The optimal allocation then solves

The �rst-order conditions for qt, st and �̂t reduce to

0 = "tu
0 [(� (st) stqt)]� c0 (qt) =�t � �t

�
Ru +Rc

1�Ru

�
c0 (qt) =�t (67)

�t

h
�̂t �

c0(qt)=�t
1�Ru

i
= "tu

0 [(� (st) stqt)] qt � c0 (qt) =�t � k (st)� stk
0 (st) (1� �t) (68)

0 = k (st)� �̂tqt + c (qt) =�t: (69)

If the central bank enacts a policy such that the relative price is given by

�̂ (
) � � (
) p (
�1) =
c0 [q (!)] =�

1�Ru
(70)

then (67) - (69) reduce to (54) - (56). Furthermore, this choice also satis�es the pricing

equation (29). Consequently, the central bank chooses the same allocation as with state-

contingent monopoly pricing.

Implementation: The central bank wants to replicate the state-contingent monopoly
pricing allocation. Hence, the optimal quantities come from the solution to that problem.

All that remains to be determined is how to implement it with non-state contingent pricing.

Consider the case k0 (s) > 0. Assume that the transfers are such that the agents have just

enough money to buy q (!) in each state. This implies the aggregate money stock must

purchase total nominal output in market 2, i.e. M�1 [1 + � 1 (
)] = p (
�1) q
b (!). From (70)

41



we have

� (
)M�1 [1 + � 1 (
)] = (1�Ru)�1 qb (!) c0 [q (!)] =�. (71)

We also have z = � (
)M�1 [1 + � 1 (
) + � 3 (
)]. Using (71) we get

z = (1�Ru)�1 qb (!) c0 [q (!)] =�+ � 3 (
)� (
)M�1: (72)

As before, assume the central bank only conditions the money growth rate on the last two

shocks for any 
�2. Denote � (
) = � (!; !�1;
�2). Consider the state !L = (�L; "L) and

set � 3 (!L; !L) = 0. Thus from (72) we have

z = (1�Ru)�1 qb (!L) c
0 [q (!L)] =�L

This pins down the real stock of money. It then follows from the buyer�s budget constraint

that

1 + � 1 (!; !L;
�2) = [1 + � 1 (!L; !L;
�2)]
qb (!)

qb (!L)

In short, with p (
�1) �xed, nominal spending has to rise as qb (!) increases, meaning the

nominal injection in market 1 must also rise regardless of what happens in market 3. We can

then solve for � 3 (!; !L) as before to obtain (63). Using the expression above in (63) yields

� 3 (!; !L;
�2) = [1 + � 1 (!L; !L;
�2)]
n
c0[q(!L)]=�L
c0[q(!)]=� � qb(!)

qb(!L)

o
so

 (!; !L;
�2) = [1 + � 1 (!L; !L;
�2)]
c0 [q (!L)] =�L
c0 [q (!)] =�

:

Using this expression and (70) in (23) we obtain

1 = � (1�Ru)

Z
�

"u0[qb(!)]
c0[q(!L)]=�L

f(!j!L;
�2)
1+�1(!L;!L;
�2)

d!: (73)

This places a restriction on � 1 (!L; !L;
�2) given by

� 1 (!L; !L;
�2) = � (1�Ru)

Z
�

"u0[qb(!)]
c0[q(!L)]=�L

f (!j!L;
�2) d! � 1:

This gives us all of the transfers for !�1 = !L:
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Now consider any state !�1. We get

� 3 (!; !�1;
�2) = [1 + � 1 (!; !�1;
�2)]
h
qb(!L)c

0[q(!L)]=�L
qb(!)c0[q(!)]=� � 1

i
 (!; !�1;
�2) = [1 + � 1 (!; !�1;
�2)]

qb(!L)c
0[q(!L)]=�L

qb(!)c0[q(!)]=� :

Then from (70) in (23) we get

1 = � (1�Ru)

Z
�

qb(!)"u0[qb(!)]
qb(!L)c0[q(!L)]=�L

f(!j!�1;
�2)
1+�1(!;!�1;
�2)

d! (74)

In order for (73) and (74) to hold we must have

[1 + � 1 (!; !�1;
�2)] = [1 + � 1 (!L; !L;
�2)]
qb(!)f(!j!�1;
�2)
qb(!L)f(!j!L;
�2)

This pins down � 1 (!; !�1) as a function of � 1 (!L; !L) for all !�1: Thus the implementation

scheme

� 1 (!L; !L;
�2) = � (1�Ru)

Z
�

"u0[qb(!)]
c0[q(!L)]=�L

f (!j!L;
�2) d! � 1

� 1 (!; !�1;
�2) = [1 + � 1 (!L; !L;
�2)]
qb(!)f(!j!�1;
�2)
qb(!L)f(!j!L;
�2) � 1

� 3 (!; !�1;
�2) = [1 + � 1 (!L; !L;
�2)]
f(!j!�1;
�2)
f(!j!L;
�2)

h
c0[q(!L)]=�L
c0[q(!)]=� � qb(!)

qb(!L)

i
and the subsequent in�ation rates

 (!; !L;
�2) = [1 + � 1 (!L; !L;
�2)]
c0 [q (!L)] =�L
c0 [q (!)] =�

8!

 (
) =  (!; !L;
�2)
f (!j!�1;
�2)
f (!j!L;
�2)

allow the CB to implement the state-contingent monopoly pricing allocation even though

there is price posting. We can then solve for the equilibrium prices

� (
) = qb(!)c0[q(!)]=�
M�1[1+�1(!;!�1;
�2)](1�Ru) p (
�1) =M�1

[1+�1(!L;!L;
�2)]f(!j!�1;
�2)
qb(!L)f(!j!L;
�2) :

Calibration procedure Here we show how we calibrate the parameters (A; �; �; '; �; �).

We can calibrate � directly from the mark-up target �� and the money demand target �L as

43



follows. The model�s mark-up is

� =
(p2y2)�2 + (p3y3)�3

p2y2 + p3y3

where �j is the mark-up in market j, p2y2 is the nominal output in market 2 and p3y3 is

nominal output in market 3. The mark-up in market 3 is �3 = 0, and in market 2 it is

�2 = (p2=p3) = [(1=�)c
0 (q)]. Then, �2 = 1= (1� �) since the seller�s �rst-order condition is

p2=p3 = (1=�)c
0 (q) =(1� �). Consequently, the mark-up satis�es

� =
p2y2

p2y2 + p3y3

1

1� �

Note that in market 2 in each quarter the total stock of money is spent which implies that

M = p2y2. Then, since the model�s money demand satis�es L = M= [4 (p2y2 + p3y3)] =

p2y2= [4 (p2y2 + p3y3)] we have

� = 1� 4
�L

��
(75)

where we have replaced the model�s money demand L with our money demand target �L and

� with ��. So far we have determined the parameter � from (75). We next show how we

pin down the remaining parameters (A; �; '; �; �). We �rst derive an expression for money

demand L. Nominal quarterly output in market 2 can be written as

p2y2 = p2s� (s) q = p3(1=�)c
0 (q) s� (s) q=(1� �):

Nominal quarterly output in market 3 is p3Â where Â = (2 + })A since the measure of

buyers is normalized to 2, the measure of �rms is }, and both consume x� = A. Without

loss in generality, we can pick any } > s. A di¤erent value of } only changes A. In what

follows we, therefore, are looking for the set of parameters
�
Â; �; �; '; �; �

�
. Then, aggregate

output p2y2 + p3y3 per quarter measured in units of market 3 goods is

(1=�)c0 (q) s� (s) q=(1� �) + Â:

Finally, by setting the model�s money demand equal to the money demand target we get

�L =
(1=�)s� (s) qc0 (q) = (1� �)

4
h
s� (s) q(1=�)c0 (q) = (1� �) + Â

i : (76)

We next derive an expression for the cost of starting a new business as a fraction of per
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capita GDP. Since the measure of households is 2, the model�s cost of starting a new business

as a fraction of per capita GDP is 2�=
h
(1=�)c0 (q) s� (s) q= (1� �) + Â

i
, and so

�� =
2�

s� (s) q(1=�)c0 (q) = (1� �) + Â
(77)

where �� = 0:017 is our target.26 To determine the endogenous quantities q and s we use the

entry condition

s =
�
(1=�)

�
(1=�) c0 (q) q (1� �)�1 � (1=�) c (q)

�	1=�
: (78)

and the buyer�s �rst-order condition

(1� �) "u0 [(s=n) q]

(1=�) c0 (q)
= 1 +�{: (79)

(78) and (79) can be simultaneously solved to yield the functions q̂ = q (�; '; �; �) and

ŝ = s (�; '; �; �). Substituting q̂ and ŝ into the maximization problem of the central bank

yields
"u0[(ŝ=n)q̂]
(1=�)c0(q̂) � 1 =

(Rc+�)[(1=�)c0(q̂)q̂�+(1��)ŝk0(ŝ)]
(1��)[(1=�)c0(q̂)q̂(Rc+�)+(1��)ŝk0(ŝ)] ; (80)

into (76) yields

�L =
(1=�)ŝ� (ŝ) q̂c0 (q̂)

4
h
ŝ� (ŝ) q̂(1=�)c0 (q̂) + (1� �) Â

i ; (81)

and into (77) yields

�� =
(1� �) 2�

ŝ� (ŝ) q̂(1=�)c0 (q̂) + (1� �) Â
(82)

The equations (80)-(82) can be used to solve for three of the �ve yet undetermined

parameters
�
Â; �; '; �; �

�
. In order to do so we guess values for Â and � and then solve

(80)-(82) for �
�
Â; �

�
, �
�
Â; �

�
and '

�
Â; �

�
. We then use

h
Â; �; �

�
Â; �

�
; '
�
Â; �

�
; �
�
Â; �

�
; �
i

to simulate the model. The Mathematica �les for the calibration available by request.

26Note the following. First, 4
h
(1=�)c0 (q) s� (s) q= (1� �) + Â

i
is annual GDP. The measure of households

is normalized to 1 so 4
h
(1=�)c0 (q) s� (s) q= (1� �) + Â

i
is also per capita GDP. Second, the cost of a new

business � has to be paid each quarter. Hence, the annual cost of operating a new business is 4 � � which
explains why the numerator is (1=�)c0 (q) s� (s) q= (1� �) + Â.
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