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Abstract

We propose a sectoral–shift theory of aggregate factor productivity for a
class of economies with AK technologies, limited loan enforcement, a con-
stant production possibilities frontier, and finitely many sectors producing
the same good. Both the growth rate and total factor productivity in these
economies respond to random and persistent endogenous fluctuations in the
sectoral distribution of physical capital which, in turn, responds to persis-
tent and reversible exogenous shifts in relative sector productivities. Surplus
capital from less productive sectors is lent to more productive ones in the
form of secured collateral loans, as in Kiyotaki–Moore (1997), and also as
unsecured reputational loans suggested in Bulow–Rogoff (1989). Endogenous
debt limits slow down capital reallocation, preventing the equalization of risk–
adjusted equity yields across sectors. Economy–wide factor productivity and
the aggregate growth rate are both negatively correlated with the dispersion
of sectoral rates of return, sectoral TFP and sectoral growth rates. If sec-
tor productivities follow a symmetric two–state Markov process, many of our
economies converge to a limit cycle alternating between mild expansions and
abrupt contractions. We also find highly periodic and volatile limit cycles in
economies with small amounts of collateral.
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1 Introduction

National income accounting exercises conducted by Klenow and Rodriguez-Clare

(1997), Hall and Jones (1999) and Chari, Kehoe, and McGrattan (2007) unanimously

conclude that total factor productivity is of cardinal importance for both long-run

growth and business cycles, including economic depressions. Klenow and Rodriguez-

Clare, for example, find that at least 50% of the variation in output per worker in

a sample of over 40 countries is attributable to differences in TFP. There is less

agreement about the source of productivity differentials. Suggestions range widely

from differences in broadly defined social infrastructure advocated by Hall and Jones,

to technology adoption barriers proposed by Parente and Prescott (1999), to the

labor market frictions studied in Lagos (2006).

This paper is a theoretical investigation of how credit market frictions limit cap-

ital mobility and slow down the movement of resources from temporarily less to

temporarily more productive sectors, and more generally, from temporarily low to

temporarily high valuations. We are pushed in this direction by much evidence con-

necting poor economic performance with capital misallocation. Chari et al. (2007)

find that financial frictions, defined as “efficiency wedges” which distort the alloca-

tion of intermediate inputs among firms,1 account for 60-80% of the US output drop

in the 1929-1933 depression and the 1979-1982 recession, and also for 73% of the

variance in detrended U.S. output from 1959 to 2004. Eisfeldt and Rampini (2006)

point out that capital reallocation among U.S. firms–defined as sales and acquisition

of property, plant and equipment–makes up nearly 25% of total investment on aver-

age. Finally, there are strong indications that macroeconomic volatility is connected

with the dispersion of both sectoral productivities and sectoral rates of return on

capital.2

1Intermediate inputs are misallocated because they are purchased on credit by producers who

face different borrowing costs. Interestingly, Chari et al. find very little explanatory power in

“investment wedges”, that is, in time–varying distortions to the economy–wide cost of capital.
2See Eisfeldt and Rampini (2006) on the countercyclical dispersion of capital productivity among

firms and on the sectoral dispersion of TFP; Loungani, Rush, and Tave (1990) and Brainard and

Cutler (1993) on the countercyclical dispersion of stock market returns across sectors; Diebold and

Yilmaz (2008) on the correlation between the volatilities of stock market returns and GDP growth
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Lilien (1982) was an early advocate of the importance of sectoral shocks for overall

economic activity in an empirical study that connected the aggregate unemployment

rate with the cross-sectional dispersion of sectoral employment. More recently, Phe-

lan and Trejos (2000) argue in a model with labor–search frictions that sectoral

reallocations are quantitatively important for business cycle dynamics. This paper

puts Lilien’s idea to work in a growth model with financial frictions and looks at

the consequences for productivity and capital accumulation. It is this emphasis on

sectoral shocks and productivity which separates our work from earlier literature on

financial frictions as a cause of macroeconomic volatility.3

We describe sectoral shifts as idiosyncratic technology shocks in a class of simple

economies populated by identical infinitely-lived households and consisting of finitely

many sectors that produce the same consumption good. Capital is the only input in

production which means that we focus on the misallocation of investment and ignore

potentially larger problems stemming from imperfectly functioning labor markets.

Sectoral technologies are assumed to be AK with random idiosyncratic productivities

and a constant aggregate production possibility frontier, that is, a fixed value for the

maximal idiosyncratic productivity. We ignore declining and expanding industries,

assuming instead that all sectoral shocks are temporary and reversible.

An ideal economy of this type without any financial frictions would exploit its un-

changing aggregate production possiblities to the fullest by moving all physical

capital instantly to the most productive sector, and delivering to its population

a constantly growing stream of aggregate output and individual consumption. In

what follows, surplus capital from less productive sectors is in the form of collateral

loans, as suggested by Kiyotaki and Moore (1997), secured by an exogenous fraction

λ ∈ [0, 1] of the borrower’s total resources, and also in the form unsecured reputa-

tional loans, as in Bulow and Rogoff (1989), which punish defaulters with perpetual

exclusion from future borrowing. Both types of loans require endogenous debt limits

which rule out default when asset markets are complete. When these limits bind,

in a sample of 40 countries.
3Prominent examples are Kiyotaki and Moore (1997) on collateral constraints as a propagator

and amplifier of aggregate technology shock; Matsuyama (2007) on the interplay between borrower

net wealth, debt limits and investment; and Aghion, Banerjee, and Piketty (1999) on how restricted

participation in credit markets contributes to macroeconomic volatility.
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they slow down capital reallocation and prevent rates of return on capital from

reaching equality across all sectors.

Generous debt limits are typical outcomes for economies with abundant collateral,

that is, a relatively high value of λ, and with a shared belief among debtors that

substantial lines of unsecured credit will continue to be available in the future. Any

deterioration in the amount of collateral or in the expected flow of future unsecured

credit will tighten current debt limits and impede the flow of capital from lower to

higher valuations.

Low capital mobility tends to spell trouble in the class of economies studied in

this paper. At one extreme, high values of the collateral parameter λ guarantee

perfect capital mobility which, in turn, ensures a unique, rapid and socially desirable

balanced growth path. At the other extreme, complete financial autarky, that is,

a combination of no collateral and no unsecured lending, leads to macroeconomic

disaster. The unique outcome in this case is slow, inefficient and highly volatile

growth with strong history dependence.

In between the two extremes of perfect mobility and no mobility lie the relevant

cases of modest collateral and unsecured lending. Secured lending by itself tends

to generate periodic limit cycles as the distribution of equity shifts in response to

persistent changes in relative factor productivities. TFP and the aggregate growth

rate do well when most equity is “in the right hands” of highly productive firms,

less well when most equity is owned by low–productivity firms. Lower values of

the collateral parameter λ typically reduce the average growth rate, increase its

dispersion and raise the periodicity of the limit cycle.

Cyclical behavior need not occur if unsecured lending is available to productive firms.

Socially desirable balanced growth paths are still open to economies with modest

collateral and substantial lines of unsecured credit. The downside of this situation

is that unsecured lending is a fragile multiple equilibrium based on the borrower’s

“reputation”, that is, the willingness to repay a current loan. This willingness,

in turn, rests on the borrower’s faith that unsecured credit will continue to be

available in the future. Any event that shakes this faith (more precisely, any event

that reduces expected future debt limits for all borrowers) will gradually reduce

reputational borrowing until it vanishes altogether.
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The rest of the paper is organized as follows. The next section gives a dramatized

preview of results by contrasting an economy of perfect capital mobility with the

the worst-case scenario of financial autarky or zero capital mobility. Section 3 de-

scribes a more general class of economies with financial frictions. Stationary Markov

equilibria are defined in Section 4 and described in Section 5 for economies with se-

cured loans only. Section 6 looks at the dynamics of lending when both secured

and unsecured loans are traded. Section 7 presents some numerical examples con-

necting macroeconomic aggregates with collateral availability and sectoral shocks.

Extensions are discussed in Section 8 and conclusions are summarized in Section 9.

2 An Example: Financial Autarky

As a first step towards understanding the importance of financial markets for ag-

gregate factor productivity, consider a simple stochastic AK economy which is a

special case of the more general model discussed in subsequent sections. There are

two sectors i = 1, 2, each represented by an infinitely–lived producer with logarith-

mic utility of consumption and common discount factor β. Both sectors produce

the same consumption/investment good by means of linear technologies with time–

varying capital productivity. There are two aggregate states of the world (s = 1, 2)

with transition probabilities

π(s+|s) =

{

π ∈ [0, 1] if s+ = s ,

1 − π if s+ 6= s .

The representative producer in sector i has access to a linear technology transforming

capital input into output with sectoral productivity

Ai
s =

{

A > 0 if i = s ,

zA if i 6= s ,

with 0 < z < 1. Because of logarithmic utility and linear returns to savings, each

producer’s saving rate is constant at β. In the absence of financial frictions, less

productive households lend out all their savings to the most productive ones. Hence

output growth is flat at βA.

4



At the other extreme to frictionless financial markets stands the scenario of financial

autarky. Here output growth depends critically on the distribution of wealth between

sectors. We denote by x ∈ [0, 1] the wealth share of the productive sector, by (Y, K)

the vector of current aggregate output and capital, and by (Y+, K+) the future value

of that vector.

Aggregate output and future capital satisfy

Y = AK[x + z(1 − x)], K+ = βY. (1)

The future value of the wealth share x+ equals the ratio of the efficient producer’s

capital tomorrow divided by the future value of aggregate capital K+. This yields

the following stochastic law of motion for the wealth share

x+ =

{

f(x; z) ≡ x/[x + z(1 − x)] w. prob. π ,

1 − f(x; z) = z(1 − x)/[x + z(1 − x)] w. prob. 1 − π .
(2)

Equation (2) is graphed in Figure 1. From equation (1), we conclude that aggregate

factor productivity:

• includes a correction x + z(1 − x) < 1 due to financial frictions;

• is lower when sectoral productivities are more dispersed, that is, for small

values of z; and

• fluctuates in response to changes in the distribution of wealth between po-

tential “borrowers” and “lenders”, that is, between more productive and less

productive sectors.

It is easy to check that the aggregate growth rate

Y+/Y = βA[z + (1 − z)x+]

fluctuates when the wealth distribution changes, even though the aggregate produc-

tion possibilities frontier is stationary. In a cross section of economies indexed on

the value of z, the growth rate would be positively correlated with z and, therefore,

negatively correlated with the dispersion of sectoral TFP’s.
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Figure 1: Transition maps for the wealth share under financial autarky.

From the viewpoint of economic theory, the most interesting feature of the law of

motion in equation (2) is what it says about the stochastic process of macroeconomic

aggregates (factor productivity, the distribution of wealth and the rate of growth)

in an economy with no credit market and no capital mobility. All of these stochastic

processes turn out to be complex, as one may guess from Figure 1; they visit a

countable infinity of states and attain no ergodic distribution. The following result

is proved in the Appendix.

Proposition 1: Let π ∈ (0, 1).

(a) For any initial value x0 ∈ (0, 1), the wealth share variable xt is a Markov chain

on the countably infinite asymptotic set

{

f(x0; z
n), f(1 − x0; z

n)
∣

∣

∣
n ∈ Z

}

,

where Z = {n = 0,±1,±2, . . .} is the set of all integers.
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(b) The dynamics of aggregate growth and total factor productivity are not ergodic.

This result stands in stark contrast to the equilibrium outcome of the corresponding

economy with perfect capital mobility where factor productivity and aggregate out-

put growth are constant. We turn now to a more general environment with active

asset markets.

3 The environment

Consider a growth model in discrete time t = 0, 1, 2, . . . with a finite number of

agent types (sectors) indexed i ∈ I = {1, 2, . . . , I} and productivity states s ∈ S =

{1, 2, . . . , S}. Each sector comprises a continuum of agents with equal size. All

agents produce the same good which is available for consumption and investment

purposes. Their common preferences over consumption streams are represented by

an additively separable expected utility function

E0(1 − β)
∞

∑

t=0

βt ln[c(st)] ,

where st = (st, . . . , s0) ∈ S1+t is the state history in period t, and the initial state

s0 is given. The productivity state follows a Markov process with transition prob-

ability from s to s+ equal to π(s+|s). In state s an agent of type i can convert

capital into gross output (“resources”) with linear technology y = Ai
sk. Resources y

include current output and undepreciated capital which can be costlessly converted

into the single consumption/investment good in the next period. In particular, cap-

ital investment is not producer–specific. The simplification that all agents produce

the same good isolates the impact of sectoral shocks on capital reallocation while

abstracting from relative price effects.

We assume that the economy’s production possibility frontier is constant at A ≡

maxi∈I Ai
s for all s ∈ S. Though we do not need to impose that agent types are

in some way symmetric, it simplifies the exposition to assume that every agent has

access to the technological frontier sometimes and that there is always a unique most

productive sector:
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(A1) Every agent operates the technological frontier sometimes; that is, for each i

there exists s such that Ai
s = A.

(A2) Not more than one agent type operates the technological frontier; that is, for

each s there is exactly one i such that Ai
s = A.

(A3) No state is trivial; that is, every s ∈ S is in the support of the unique invariant

state distribution.

Throughout this paper we focus on stationary Markov equilibria where all endoge-

nous variables depend only on the current state vector of the economy, denoted

σ ≡ (x, s) ∈ Σ ≡ [0, 1]I × S, where x = (x1, . . . , xI) is the distribution of wealth

shares across agent types.

Each period, the less productive agents lend out capital to the more productive

agents at the gross interest rate R(σ) that prevails in the credit market. An exoge-

nous fraction λ ∈ [0, 1] of each agent’s resources is pledgeable collateral which can

be seized by creditors in the event of default. The value of λ is constant and com-

mon for all producers; it depends on technological factors like the collaterizability

of income and wealth, as well as on creditor rights and other aspects of economic

institutions.4 Timing within each period is as follows. First the productivity state

is realized; second the credit market opens and agents decide about consumption,

investment, borrowing and lending; third, agents produce, borrowers redeem their

debt, and everyone carries their wealth into the next period.

Borrowers may choose to default at the end of the period. Any agent who does

so loses the collateral share of his resources to creditors and is banned from any

unsecured borrowing in all future periods. A defaulting agent is still allowed to

lend, however, and also retains full access to secured loans. Since no uncertainty

is resolved during debt contracts (that is, borrowing and debt redemption happen

within the same period), there exist default–deterring debt limits, defined similarly

as in the pure–exchange model of Alvarez and Jermann (2000). These limits are

the highest values of debt that will prevent default. In the absence of collateral

4If resources are split into output and undepreciated capital according to y = Ak = Ãk+(1−δ)k,

a more general expression for collateral would be λ0Ãk + λ1(1 − δ)k. Our simplifying assumption

is that collaterizability of output and capital is the same, λ0 = λ1.
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(λ = 0), our enforcement mechanism resembles the one discussed by Bulow and

Rogoff (1989) and Hellwig and Lorenzoni (2008) who consider unsecured loans and

assume that defaulters are denied excess to future loans but are still allowed to

accumulate assets. With λ > 0, secured borrowing is feasible and sometimes, but

not always, borrowing limits go beyond an agent’s collateral capacity and sustain a

higher flow of credit. Borrowing above one’s collateral is an unsecured loan founded

on a producer’s desire to maintain a record of solvency and of continued access to

future unsecured loans.

We denote the endogenous constraint on borrower i’s debt–equity ratio by θi(σ).

Whenever the cost of capital R(σ) is strictly below borrower i’s marginal product

Ai
s, this producer will borrow up to his debt limit, and the leveraged equity return

will be R̃i(σ) = Ai
s + θi(σ)[Ai

s −R(σ)]. On the other hand, if agent i’s productivity

is below or equal to the capital yield R(σ), this agent’s equity return is simply

R̃i(σ) = R(σ). A defaulting agent, who has only access to secured (collateral) loans,

faces a maximal debt–equity ratio θi
c(σ) = λAi

s/[R(σ)−λAi
s], and his equity return is

R̃i
c(σ) = Ai

sR(σ)(1−λ)/[R(σ)−λAi
s] when R(σ) < Ai

s, and R̃i
c(σ) = R(σ) otherwise.

It is worth noting that intra–period credit is the only traded asset in this economy.

If agents were to trade insurance or contingent claims against next period’s produc-

tivity state, these security markets would not open. This immediately follows from

the observation that every agent’s marginal utility of wealth ω is proportional to

1/ω, regardless of the agent’s productivity state, so all agents’ security demands are

proportional to their wealth. That in turn implies that trade of insurance securities

must be zero in equilibrium. We also do not consider a stock market distinct from

the loan market. In particular, all shares in other agents’ technologies are equivalent

to loans and are subject to default.

The assumption of logarithmic utility implies that all agents consume a fraction 1−β

of wealth, and that the expected utility of a productive borrower with end–of–period

wealth ω can be expressed in the form ln(ω) + V i(σ), where V i(σ) is end–of–period

utility of agent i with unit wealth when the current state is σ = (x, s).5 Similarly,

5These assertions follow from the observation that agent i’s flow budget constraint takes the

form ωi = R̃i(σ)(ωi

− − ci) where ci is consumption and ωi (ωi

−) is agent i’s wealth at the end of

the current period (the previous period, respectively).
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if agent i had defaulted in this or in some earlier period, his utility is expressed as

ln(ω) + V i
c (σ) if end–of–period wealth is ω and V i

c (σ) denotes end–of–period utility

of a unit–wealth agent of type i who has access to secured loans only.

4 Stationary Markov equilibrium

A stationary Markov equilibrium is a list of functions
[

θi(σ), R(σ), R̃i(σ), R̃i
c(σ), vi(σ), X i(σ)

]

i∈I,σ∈Σ
. (3)

The first four objects on that list are respectively the debt–equity limits on solvent

agents, the cost of capital, and the equity returns for solvent and bankrupt agents.

The functions vi(σ) = V i(σ) − V i
c (σ) define the “penalty of default” for agent i,

that is, the difference between the continuation utilities from solvency and default.

Finally, the maps xi
+ = X i(σ) : Σ → [0, 1] connect this period’s state vector (x, s)

with next period’s wealth share for every agent i. Let X = (X i)i∈I : Σ → [0, 1]I be

the collection of these maps.

In equilibrium, debt limits are the largest values that will deter default when any

borrower with equity E is indifferent between solvency and default:

ln
[

R̃i(σ)E
]

+ V i(σ) = ln
[

(1 − λ)Ai
s[1 + θi(σ)]E

]

+ V i
c (σ) .

Here, the right–hand side is expected utility of the defaulting agent i who leaves

the default period with unpledged wealth (1 − λ)Ai
s[1 + θi(σ)]E. This equality is

conveniently equivalent to

θi(σ) =
(evi(σ) − 1 + λ)Ai

s

(1 − λ)Ai
s − evi(σ)[Ai

s − R(σ)]
. (4)

Equation (4) shows that the maximum default–free debt–equity ratio is increasing

in the penalty of default vi(σ) and in the collateral share λ. Debt–equity ratios are

also decreasing in the interest rate, and equation (4) gives a lower bound on the

equilibrium interest rate: the debt-equity ratio of borrower i tends to infinity when

R(σ) approaches Ai
s[1−(1−λ)e−vi(σ)] from above. Intuitively, when the interest rate

is low, some borrowers never opt for default. Thus their demand for loans becomes

infinite which cannot be compatible with credit–market equilibrium.
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Equation (4) shows that θi(σ) is larger than the secured borrowing limit θi
c(σ) =

λAi
s/[R(σ) − λAi

s] for all positive default penalties vi(σ) > 0; it reduces to θi
c(σ) if

vi(σ) = 0. In the following, we refer to an equilibrium with vi(σ) = 0 for all i ∈ I

and σ ∈ Σ as one of secured borrowing; an equilibrium where vi(σ) > 0 for at least

some i ∈ I and σ ∈ Σ has secured and unsecured borrowing: here debt–equity limits

are based on collateral and reputation.

With aggregate capital K, agent i’s equity is xiK. The supply of credit comes

from all agents with productivity Ai
s ≤ R(σ), and because agents with Ai

s = R(σ)

are indifferent between lending and borrowing at market rate R(σ), the aggregate

supply of credit per unit of aggregate capital is a step function, expressed as the

correspondence

CS(σ) =

[

∑

i:Ai
s<R(σ)

xi ,
∑

i:Ai
s≤R(σ)

xi

]

.

Similarly, the demand for credit per unit of capital is the correspondence

CD(σ) =

[

∑

i:Ai
s>R(σ)

θi(σ)xi ,
∑

i:Ai
s≥R(σ)

θi(σ)xi

]

,

and the credit market is in equilibrium if

CS(σ) ∩ CD(σ) 6= ∅ . (5)

As we saw earlier, for any interest yield R(σ), the equity return of agent i is

R̃i(σ) = max
{

Ai
s + θi(σ)

[

Ai
s − R(σ)

]

, R(σ)
}

, (6)

while the equity return of a producer with access to secured borrowing is

R̃i
c(σ) = max

{

Ai
sR(σ)(1 − λ)
R(σ) − λAi

s

, R(σ)
}

. (7)

Agent i’s wealth share changes from xi to

xi
+ = X i(σ) =

R̃i(σ)xi

∑

j∈I

R̃j(σ)xj
, σ = (x1, . . . , xI , s) . (8)

To understand this expression, suppose that total wealth is one unit today; then

agent i’s wealth next period is β times the numerator of (8) while total wealth is β

times the denominator of (8).
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Expected utilities satisfy recursive equations

V i(x, s) = (1−β) ln(1−β)+β
∑

s+∈S

π(s+|s)

{

ln
[

βR̃i[X(x, s), s+]
]

+V i
[

X(x, s), s+

]

}

.

(9)

Note again that V i denotes expected utility of solvent agent i with unit wealth.

In the current period, this agent consumes c = 1 − β, and so the first term on the

right–hand side is the utility of current consumption; the other terms are discounted

future payoffs. In the next period, the distribution of wealth changes from x to

x+ = X(x, s) and the productivity state changes from s to s+ with probability

π(s+|s); the agent saves a fraction β of his unit wealth, ending the period with

wealth ω+ = βR̃i(x+, s+) and utility ln(ω+) + V i[x+, s+].

For an agent who has opted for default in some earlier period, the recursive equation

in V i
c is nearly identical to (9); all that changes is that the equity returns R̃i are

replaced by the defaulter’s lower returns R̃i
c. By subtracting those equations from

(9), we obtain recursive equations in the default penalties vi(σ) = V i(σ) − V i
c (σ):

vi(x, s) = β
∑

s+∈S

π(s+|s)

{

ln
R̃i[X(x, s), s+]

R̃i
c[X(x, s), s+]

+ vi
[

X(x, s), s+

]

}

. (10)

Definition: A stationary Markov equilibrium is a list of functions specified in (3)

which satisfies equations (4)–(8) and (10) for all σ = (x, s) ∈ Σ and i ∈ I.

In a stationary Markov equilibrium, the state vector σ is also a sufficient statistic

for the growth rate that connects aggregate current resources Y with last period’s

resources Y−. In particular, current aggregate capital K equals saving βY−, and

current resources are the sum of resources across all agent types:

Y = K
∑

i∈I

xiR̃i(σ)

= βY−

{

R(σ) +
∑

i:Ai
s>R(σ)

[Ai
s − R(σ)]xi[1 + θi(σ)]

}

.

The growth factor is

Y
Y−

= β
{

R(σ) +
∑

i:Ai
s>R(σ)

[Ai
s − R(σ)]xi[1 + θi(σ)]

}

≤ βA .
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This expression has an upper bound βA achieved when no capital is misallocated.

Before we analyze stationary Markov equilibria in detail for some special cases, we

state two general results. One of them says that an equilibrium with no unsecured

borrowing always exists. In particular,

Proposition 2: There exists a unique equilibrium in which all borrowing is secured.

This result generalizes earlier findings by Bulow and Rogoff (1989) and Kehoe and

Levine (1993) who showed that financial autarky is an equilibrium in economies

where all borrowing is unsecured. Indeed, it is easy to check that vi(σ) = 0 together

with R̃i(σ) = R̃i
c(σ) and θi(σ) = θi

c(σ) satisfy all equilibrium equations except

market clearing for any given interest rate R(σ). Existence and uniqueness of the

market–clearing interest rate is proven in the appendix.

What is the intuition for the equilibrium without unsecured borrowing? If there

are no unsecured loans, there is no penalty of default, and therefore no borrower is

permitted to borrow in excess of collateral. And conversely, when debt–equity limits

just reflect collateral constraints, a good credit record is worthless because there

is no default penalty. Section 5 characterizes the secured borrowing equilibrium

completely for a symmetric economy with two agent types and two states.

Our second result says that a first–best allocation can only be an equilibrium if

there is enough collateral. Specifically, λ ≥ (I − 1)/I is a necessary and sufficient

condition to support the first best with secured borrowing at the symmetric initial

wealth distribution xi = 1/I, i ∈ I. Here returns are equalized, R̃i = A, and

the secured borrowing constraint is large enough to shift all capital to the most

productive sector in every state.

Can the first best also be supported by secured and unsecured borrowing when

λ < (I − 1)/I? Put differently, is there a first–best equilibrium where unsecured

borrowing exists? In line with earlier results by Bulow and Rogoff (1989) and Hellwig

and Lorenzoni (2008), the answer to this question is no. Unsecured borrowing cannot

support first–best allocations. The intuition for this result is as follows. In a first best

allocation, the capital cost (the interest rate) equals the capital return of borrowers.

Hence there is no leverage gain, so that access to loans has no value for borrowers.
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In turn, every borrower would default on an unsecured loan, no matter how small

it is. These findings are summed up in

Proposition 3: When λ ≥ (I − 1)/I, the secured–borrowing equilibrium gives

rise to a first best allocation for some initial distribution of wealth. Conversely,

when λ < (I − 1)/I, no first best allocation can be an equilibrium with secured and

unsecured borrowing.

The inequality λ ≥ (I−1)/I is stringent, requiring collateral to be a large proportion

of available resources, that is, gross national product plus undepreciated capital. In

spite of Proposition 3, we will see in Section 6 that unsecured borrowing can still

sometimes support production–efficient allocations, particularly in economies with

very patient agents and large productivity differences between sectors.

To explore equilibrium with binding constraints in more detail, we focus for the

remainder of this paper on the symmetric two–agent, two–state special case of our

general environment. In particular, Ai
s = A if i = s, and Ai

s = zA if i 6= s, for i ∈

{1, 2} and s ∈ {1, 2}, where z < 1 is a measure of the productivity differential. Both

types are equally likely to operate the frontier technology, where π is the probability

that any state s = 1, 2 does not change from one period to the next. In this

symmetric economy, stationary Markov equilibria are also symmetric. Therefore,

the only relevant state variable is the share of wealth owned by the borrowing agents

(short “borrower wealth”), to be denoted x ∈ [0, 1]. The wealth distribution is thus

(x, 1 − x) if s = 1 and (1 − x, x) if s = 2. Current rates of return and debt limits

depend on borrower wealth x alone, and the productivity state s matters only for

the transitional dynamics of borrower wealth.
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5 Secured borrowing

In the equilibrium with secured borrowing the debt–equity ratio is θ = λA/[R−λA]

and the market–clearing loan yield can be readily obtained as

R(x) =















zA if x ≤ 1 − λ
z ,

λA
1 − x if x ∈ [1 − λ

z , 1 − λ] ,

A if x ≥ 1 − λ .

When borrower wealth is below 1−λ/z, credit demand is so low that the equilibrium

interest rate makes unproductive lenders indifferent between production and lend-

ing. The economy is production inefficient because it misallocates its capital stock.

When borrower wealth exceeds this threshold, all capital flows to the more produc-

tive agents and the economy becomes production efficient. For x < 1−λ, borrowers

are still debt constrained and enjoy a higher equity yield than do lenders. Consump-

tion growth rates are higher for borrowers which makes the economy consumption

inefficient. Full efficiency in period t is attained only when borrower wealth ex-

ceeds 1 − λ. In what follows, we assume throughout that λ < z so that production

inefficiency remains a possibility.

The transitional dynamics of borrower wealth is described by two maps. Next

period’s borrower wealth is x+ = X0(x) when the productivity state is unaltered

and it is x+ = X1(x) = 1 − X0(x) when the productivity state changes. Using

the above expressions for R(x), θ(x) = λA/[R(x) − λA], and the borrowers’ equity

return R̃(x) = A + θ(x)[A − R(x)], we obtain

X0(x) =
R̃(x)x

R̃(x)x + R(x)(1 − x)
=



















(1 − λ)x
(1 − z)x + z − λ

, x ≤ 1 − λ
z ,

1 − λ , x ∈ [1 − λ
z , 1 − λ] ,

x , x ≥ 1 − λ .

Figure 2 shows the two maps X0 and X1 in three generic situations. It becomes

evident from these graphs that the stochastic dynamics of borrower wealth must

settle down on the bounded interval [λ, 1−λ] or [1−λ, λ]. Moreover, the asymptotic

dynamics must be a stochastic cycle with finite support. The precise statement,

which is proved in the Appendix, is
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Proposition 4: In the equilibrium with secured borrowing and for any π ∈ (0, 1)

and λ > 0, the dynamics of wealth xt enters a finite stochastic cycle (xn)N
n=1, with

probability one as t → ∞. The cycle has the following features.

(a) Economies with ample collateral λ ≥ 1/2 converge to a cycle with two states

x2 = 1 − x1 ∈ [1 − λ, λ]. Production is efficient, debt constraints do not bind,

and aggregate output and individual consumption grow at the constant rate βA.

(b) Economies with medium collateral λ ∈ [z/(1 + z), 1/2) also converge to a cycle

with two states and x1 = λ < x2 = 1 − λ. Production is again efficient and

aggregate growth is constant at βA. However, individual consumption and

wealth growth rates are volatile, and borrowers are constrained in a fraction

1 − π of periods. Specifically, agent i’s consumption growth in state st is βA

if st = st−1, βAλ/(1 − λ) if i 6= st 6= st−1, and βA(1 − λ)/λ if i = st 6= st−1.

(c) Economies with small collateral λ < z
1 + z converge to a cycle with generically

N = 2m states, with m ≥ 2. In 2m − 3 of these states, aggregate growth

is lower than βA. Cycles are typically asymmetric with booms lasting longer

than recessions. The number of states is a weakly decreasing function of λ,

and m → ∞ as λ → 0.

Figure 2 illustrates the three possibilities stated in the proposition. In (a), the

typical first–best equilibrium is a cycle where borrower wealth fluctuates between

two states which means that every agent’s wealth share is constant. Any initial

wealth distribution must enter such a cycle with probability one in finitely many

periods. In (b), the stochastic cycle again has only two states, but now one of them

has constrained borrowers; no capital is misallocated and production is efficient in

all periods. And graph (c) shows an example of a cycle with six states, with no

misallocation of capital in three of them, and some misallocation in the other three.

The red lines indicate the possible transitions between these states.

An implication of this analysis is that the dispersion of output growth is magnified

when the collateral share falls. This is again evident from Figure 2(c): the support

of the invariant cycle becomes the larger, the smaller the value of λ is. Lower values

of collateral not only reduce the trend growth rate, they also lead to a more complex
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Figure 2: Asymptotic cycles with secured borrowing.

and dispersed distribution of growth rates around trend. In fact, in the limit where

λ → 0 the economy does not even have a finite limit cycle but is instead described

by a stochastic process on a countably infinite state space, as discussed earlier in

Proposition 1.
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6 Secured and unsecured borrowing

Equilibria with unsecured borrowing are not easy to describe analytically in any

degree of generality. Nonetheless, it is possible to derive a few insightful results for

some special cases where the asymptotic wealth dynamics settles down to a finite

state space. One such case is the deterministic economy (π = 0), the other is an

economy permitting simple production–efficient stochastic cycles with two states.

We explore these simpler equilibria in this section.

The deterministic economy admits a steady state with binding constraints where

borrower wealth is stable at some x. The wealth share of either type thus periodically

alternates between x and 1− x. This is in stark contrast to the stochastic economy

where equilibria are typically cyclical and the only possible steady state is a first

best outcome with unconstrained borrowers achievable only if λ ≥ 1/2. For λ < 1/2,

borrower wealth must fluctuate permanently in a stochastic economy.

One obvious steady state in the deterministic model is the one without unsecured

borrowing. Although Proposition 4 requires π > 0, it is straightforward to extend

the result to the deterministic case as follows. The deterministic economy has a

unique steady state x with secured borrowing which is (i) first best when λ ≥ 1/2;

(ii) production efficient and consumption inefficient when z/(1 + z) ≤ λ < 1/2; and

(iii) production inefficient when λ < z/(1 + z). In Figure 2 these steady states are

at the intersection of the 45o line with the map X1(.).

For a deterministic economy with secured and unsecured borrowing, we prove the

following result in the Appendix.6

Proposition 5: Let π = 0. Then there is a threshold value λ̂ ≤ z − β2

1 − β2 such that

(a) If β ≤ z, there is one steady state with secured borrowing and no steady state

with secured and unsecured borrowing.

(b) If β > z and λ ∈ [λ̂,
β

1 + β
), there is a steady state with secured and unsecured

borrowing which coexists with the steady state with secured borrowing.

6The Appendix gives additional results on stochastic cycles in economies with efficient produc-

tion and inefficient consumption; see Proposition 7.
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(c) If β > z > β2 and λ ∈ (λ̂,
z − β2

1 − β2 ), there is a third steady state with secured and

unsecured borrowing which coexists with the two other steady states of (b).

To interpret these results, the inequality β ≤ z simply says that the gains from credit

market participation are not high enough to support an equilibrium with unsecured

borrowing. Part (a) extends the well–known result of Kehoe and Levine (1993) that

intertemporal financial autarky or, in our setting, secured borrowing is the only equi-

librium when agents are too impatient or when income fluctuations are too small.

Conversely, says part (b), when β > z unsecured borrowing is feasible but now col-

lateral may not exceed the threshold β/(1+β). If the collateral value is larger than

that number, the gain from borrowing above collateral is too small to prevent bor-

rowers from defaulting. Put differently, secured borrowing alone supports efficient

allocations with low leverage, so that extended credit limits add very little value.

Part (c) establishes a strong form of equilibrium multiplicity. In these situations,

one steady state turns out to be production efficient whereas the other two steady

states are production inefficient. The explanation for equilibrium multiplicity is a

dynamic complementarity in the endogenous borrowing limits. Borrowers’ expecta-

tions of future credit market conditions affect their incentives to default today, and

this in turn takes an impact on their current borrowing limits. If future constraints

are tight, the payoff from solvency is modest; agents place a low value on the strat-

egy of participating in credit markets, and their default penalty is low. In this case,

current default–deterring debt limits must be low. Conversely, expectations of loose

constraints in the future make participation more valuable, lessen default incentives

and ease current constraints.

When agents are sufficiently patient, so that z ≤ β2, the assumptions in part (c)

are not valid. Then the deterministic economy has a unique steady state with

secured and unsecured borrowing, coexisting with the inferior steady state without

unsecured borrowing. Figure 3 shows how steady–state loan yields vary with the

collateral parameter λ when z ≤ β2.

The deterministic economy also permits an analysis of the local dynamics around

the steady states. Whenever there exists a unique steady state with unsecured

borrowing, it is locally determinate, whereas the secured–borrowing steady state is
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Figure 3: Steady state loan yields with secured borrowing (Rc) and with secured

and unsecured borrowing (R∗) when z < β2.

locally indeterminate. In particular, there is a continuum of dynamic equilibria in

which the value of unsecured loans vanishes asymptotically. Again, this result is

explained by the dynamic complementarity between endogenous credit constraints

which may trigger a self–fulfilling collapse of the market for unsecured loans: when

market participants expect credit constraints to tighten rapidly, the value of repu-

tation would shrink over time until only secured loans are traded. Such equilibria

are mathematically similar to hyperinflationary equilibria in overlapping–generation

models of fiat money but do not require the existence of an unproductive financial

asset.

Proposition 6: Let z < β2 and λ < β/(1 + β).

(a) The steady state with secured borrowing (θc, xc) is locally indeterminate. Par-
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ticularly, there is a continuum of equilibria (θt, xt) such that θt → θc and xt

converges to a cycle with period two around xc.

(b) The steady state with secured and unsecured borrowing is locally determinate.

The stochastic economy cannot have a steady state unless it is the first best, and

cycles with unsecured borrowing are too complex to describe analytically. Numeri-

cally we find that the qualitative features of the transition maps for borrower wealth

are much like the ones shown in Figure 2, with the only difference that the cycles

do not have finite support, as they do in Figure 2(c).

However, there are still situations where the economy has a stochastic cycle of order

two which is production efficient, like the one shown in Figure 2(b). Paralleling

Proposition 5, what is necessary for such cycles is that z is small relative to β:

agents must be patient enough and their productivity must fluctuate sufficiently so

that exclusion from unsecured borrowing is a severe enough punishment. In fact,

production–efficient cycles may even exist when there is no collateral at all. The

Appendix gives more details about production–efficient cycles.

7 Numerical examples

For a fuller description of stochastic cycles, especially ones that exhibit some misal-

location of capital, we use value function iteration to isolate stationary Markov equi-

libria with reputational borrowing. Specifically, for arbitrary initial default penalties

for agent 1 v1
0(., 1) > 0 and v1

0(., 2) > 0,7 we calculate constraints and interest rates

for all x using the equilibrium conditions (4)–(7) and the wealth iteration maps (8).

The results are then substituted in the right–hand side of (10) to calculate new

default penalties v1
1(., 1) and v1

1(., 2), and so on. Our previous results on equilibrium

multiplicity imply that this map cannot be a global contraction, so one cannot expect

a definitive proof that equilibrium exists. We find, however, that these iterations

converge fast, and we are able to identify the theoretical equilibria in the special

7Because of symmetry, default penalties for agent 2 are simply v2(x, 1) = v1(x, 2) and v2(x, 2) =

v1(x, 1).
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cases analyzed in previous sections. We conjecture that the iteration procedure

generally converges to the determinate equilibrium whenever there is equilibrium

multiplicity. In the deterministic economy π = 0, for example, we know that the

secured–borrowing equilibrium is determinate whenever no other equilibrium exists,

and indeterminate otherwise (Proposition 6). Numerically we find indeed that value

function iteration converges to the determinate equilibrium.

For a plausible benchmark parameterization, we study how aggregate growth and

volatility depend on the model parameters and how they qualitatively correlate with

the sectoral dispersions of equity returns and total factor productivities. It is not the

purpose of this exercise to conduct a full–blown quantitative analysis; that would

require a much more detailed model incorporating labor and some other features

discussed in the next section. We fix the three parameters A = 1.08, β = 0.96 and

π = 0.9 so that annual growth in the first–best economy is at 3.7% and sectoral

productivity shifts are rather persistent with a mean duration of 10 years. We then

explore how the features of the economy change when we vary the key parameters

λ and z.

Figure 4 shows the result of the parameter variation as λ goes from zero to 1/2

when z is fixed at 0.85. From Proposition 4 follows that the economy is production

efficient (so aggregate growth is constant at βA) when λ ≥ z/(1 + z) ≈ 0.46 and

this outcome is achieved by secured borrowing which is the unique equilibrium. As

the collateral share λ falls below that value, the growth rate decreases and becomes

more volatile. When λ falls below 0.41, secured borrowing ceases to be the unique

equilibrium. Now another equilibrium with both secured and unsecured borrowing

emerges which has higher and more stable output growth than the pure–collateral

equilibrium. For lower values of λ, the differences between these equilibria are sub-

stantial. For instance at λ = 0.2, the collapse of unsecured lending would trigger

a fall in output growth from about 3.5% to less than 0.5%, and the standard de-

viation of output growth would rise from just 0.5% to over 4%. A further notable

observation is that a reduction in the collateral share λ has opposite effects in equi-

libria with and without unsecured borrowing. At the pure–collateral equilibrium, a

lower value of λ clearly leads to lower and more volatile growth since less capital is

shifted to the most productive sectors. However, when we add unsecured borrow-
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ing, less collateral makes the potential exclusion from unsecured loans more harmful

and thereby relaxes credit limits; hence growth increases slightly and becomes less

volatile.

l l

E(g)
s(g)

Figure 4: Mean and standard deviation of growth as λ varies from 0 to 0.5 where

A = 1.08, β = 0.96, π = 0.9 and z = 0.85. The secured–borrowing equilibrium is

shown by the red (dashed) curve, and the equilibrium with secured and unsecured

borrowing is blue (solid). E(g) and σ(g) are calculated as sample averages for a

time series of 50,000 periods.

Figure 5 shows the result of a similar simulation when λ is fixed at 0.2 and z varies

from 0.6 to 1.0. Clearly, when z is close to one, the economy is almost first best

and growth is constant at βA ≈ 1.037. For values of z above 0.94, there is a unique

equilibrium with secured borrowing; a second equilibrium with unsecured borrowing

emerges for a larger productivity spread between the two sectors. Interestingly, unse-

cured borrowing permits a more efficient allocation of capital when the productivity

difference between the two sectors is larger. Indeed, the equilibrium with secured

and unsecured borrowing achieves a production efficient allocation of resources for

values of z below 0.67.

At the benchmark parameter values with λ = 0.2 and z = 0.85 we also calculate

equity return dispersion as the spread between sectoral equity returns, measured

by the weighted standard deviation between R̃1
t and R̃2

t where weights are the cor-

responding wealth shares. At the “good” equilibrium with secured and unsecured
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Figure 5: Mean and standard deviation of growth as z varies from 0.6 to 1 where

A = 1.08, β = 0.96, π = 0.9 and λ = 0.2. The secured–borrowing equilibrium is

shown by the red (dashed) curve, and the equilibrium with secured and unsecured

borrowing is blue (solid). E(g) and σ(g) are calculated as sample averages for a

time series of 50,000 periods.

borrowing, we find that this measure averages around 5.4% and has a standard de-

viation of 7%, the same order of magnitude as the stock–market dispersion indices

reported in Loungani, Rush, and Tave (1990) (Fig. 1). The correlation coefficient

between equity–return dispersion and gt is -0.80, which is in line with the evidence

listed in the introduction. Growth is low when capital is misallocated in which case

the dispersion between sectoral equity returns is large. Figure 6 shows time series

for the growth rate of aggregate resources and for the dispersion of equity returns

for a simulation of 50 periods at the benchmark parameter values.

In accordance with results of Eisfeldt and Rampini (2006) (Table 3), our model

further produces countercyclicality of TFP dispersion across sectors. Using the

standard deviation of sectoral factor productivities A and zA, weighted by their

relative output shares, as a measure of TFP dispersion, we find a mean dispersion of

2.5%, a standard deviation of 4.1% and a contemporaneous correlation with growth

of -0.96.
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Figure 6: Simulated equilibrium with secured and unsecured borrowing at parame-

ters A = 1.08, β = 0.96, π = 0.9, z = 0.85 and λ = 0.2: Growth rate (solid, blue)

and dispersion of equity returns (dashed, red), both as deviations from their mean.

8 Extensions

8.1 Sector–specific labor

The absence of any input from labor is the biggest abstraction in our model, but

its impact is quantitative rather than qualitative. A quick remedy, along the lines

suggested by Kiyotaki and Moore (2008) and Kocherlakota (2009), would replace

our AK technologies with standard neoclassical constant return ones of the form

Y = Ai
sF (Ki

s, N
i
s). Each sector would be populated with one unit of immobile

labor. Labor will consume its marginal product and all saving would still be done

by capitalists i ∈ I who hire labor at a competitive wage wi
s and face a competitive

yield on each unit of capital, that is,

Ri
s = max

N≥0

{

Ai
sF (1, N) − wi

sN
}

.
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Finally, pledgeable collateral will be an exogenous fraction λ of capital income rather

than of all income, and long–term growth can be added by endowing sectoral pro-

ductivity shocks with a common trend. We expect this extension to be relatively

straightforward provided that labor is completely immobile.

8.2 Irreversible investment

Unsurprisingly, each of the two sectors is considerably more volatile than the aggre-

gate economy. Because every stochastic cycle must enter some occasional periods of

production efficiency, output in any sector falls occasionally to zero. This circum-

stance prevents a meaningful calculation of sector growth rates. Further, it appears

to be a strong abstraction to assume that all gross resources can, in the extreme,

move between sectors from one period to the next. To deal with these limitations, it

seems a sensible extension to augment the model by some sector specificity (invest-

ment irreversibility).8 For simplicity, suppose that a constant fraction of resources

is sector specific and cannot be employed in the other sector, and let Ψ < 1 be the

share of resources which is usable in both sectors. Then the only change to the

model is that the expression for credit supply CS(σ) is multiplied by the factor Ψ,

and all other equations remain unchanged. It is important to emphasize, however,

that now even the first–best economy involves fluctuations of aggregate output, as

resources move sluggishly between sectors when the productive state changes.

In the numerical example, suppose that 90 percent of capital is sector specific (Ψ =

0.1). For the benchmark parameter values with λ = 0.2 and z = 0.95, mean growth

falls from 2.1% (at Ψ = 1) to 1.4% (at Ψ = .1) whilst its standard deviation

increases from 1.3% to 1.9%. The growth rate of either sector, however, has a

standard deviation of about 9.6%, five times larger than the standard deviation

of aggregate growth. In line with the evidence discussed in the introduction, the

dispersion between sector growth rates is countercyclical; its correlation coefficient

with aggregate growth is -0.36.

8An alternative variation would be heterogeneity of final goods: if the two goods produced are

not perfect substitutes and essential for consumers, sectoral shifts induce relative price changes

which prevent that all resources are shifted to one sector.
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8.3 Sectoral comovement

Another feature of the cycles characterized in the previous sections is that growth

rates in the two sectors are negatively correlated. As an implication, either one sector

is pro–cyclical and the other is counter–cyclical or both sectors are acyclical. The

evidence however strongly supports comovement of virtually all two–digit industries

with aggregate output (see e.g. Christiano and Fitzgerald (1998)). In the previous

example, the absence of comovement is an artefact of the two–sector, two–state

specification, where business cycles are exclusively driven by sectoral productivity

shifts between two constant productivities A and zA. When technologies are in some

way correlated with the sectoral productivity shifts, comovement follows easily. This

is relatively simple when the technology frontier is volatile, but is also possible with

a constant frontier. To see this in an extension of the model which retains perfect

symmetry between sectors, suppose that the technology parameter z attains one of

two values zc and zn, depending on whether the sectoral state changes or not. That

is, “change of states” has zt = zc when st 6= st−1, and “no change of states” has zt =

zn when st = st−1. This extension thus has two sectors and four productivity states

(st, st−1) ∈ {1, 2}2. In the numerical example with the same benchmark parameter

values, we find that there is comovement (i.e. positive correlations between aggregate

growth and growth rates of each sector) if zc = 0.99 > zn = 0.95 (and Ψ = 0.9).

Alternative mechanisms are possible which can generate comovement for aggregate

shocks to A or to the collateral share λ which are correlated with sectoral shifts.

8.4 Other loan enforcement mechanisms

Reputational loans in our model are supported by perpetual exclusion of defaulting

agents from all borrowing in excess of collateral. Alternative punishment mecha-

nisms are conceivable and have been explored in the literature, mostly in economic

environments without production. A much more powerful enforcement of credit ar-

rangements is obtained when defaulters can be shut out of all intertemporal trade

(borrowing and lending) as is the case in the models of Kehoe and Levine (1993) and

Alvarez and Jermann (2000). In their pure–exchange models with zero collateral it

is well known that first–best allocations can be implemented with unsecured loans
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provided that all agents share a common high discount factor and have sufficiently

large income variability (see also Azariadis and Kaas (2007)). Similar results can

also be obtained for our model; the only change in the model’s equilibrium equations

is that the defaulters’ equity returns R̃i
c(x, s) in equations (10) must be replaced by

the autarkic returns Ai
s. In the two–agent, two–state special case without collateral,

it is straightforward to show that there is a first–best equilibrium at the symmetric

wealth distribution iff

ln 1
z ≥

(1 − β)(1 + β − 2βπ)
β(1 − π)

ln 2 .

Thus the first best is an equilibrium if the productivity differential is sufficiently

large or if agents are sufficiently patient.

On the other hand, one can also think of weaker punishment scenarios in our model.

For example, defaulting agents may be shut out of unsecured credit for a finite

number of periods before they regain unlimited access to unsecured loans. Alter-

natively, defaulters may sometimes evade punishment and have a positive chance

of obtaining unsecured loans. Both mechanisms are rather straightforward exten-

sions of our model. Shortened punishment periods and lower detection probabilities

tighten debt limits considerably and thereby contribute to lower growth and higher

aggregate TFP volatility.

9 Conclusions

This paper outlines a financial theory of aggregate factor productivity which con-

nects the sectoral allocation of capital with sectoral productivity shocks and credit

market frictions. We emphasize frictions arising from insufficient collateral for se-

cured loans and from the limited enforcement of unsecured loans. Both of these lead

to endogenous debt limits which slow down the reallocation of surplus capital from

less productive to more productive sectors, and prevent the equalization of sectoral

productivities and sectoral rates of return.

Our model is consistent with much empirical evidence suggesting that economy-

wide factor productivity and economic growth are both negatively correlated with

the dispersion of sectoral stock returns, the dispersion of sectoral TFP’s, and the
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dispersion of sectoral growth rates. If we reinterpret “sectors” to be individual firms,

then our results are also consistent with recent work by Hsieh and Klenow (2007)

who find that industry productivity dispersion is negatively correlated with industry

productivity in a panel that includes data from the U.S., China and India. Alterna-

tively, if we index countries by the fraction of collateral assets to total resources, our

results are in line with Diebold and Yilmaz (2008) who find that macroeconomic

volatility is positively correlated with stock market volatility in a cross section of

countries.

A clear example of macroeconomic volatility is the one that, as of this writing, is

gripping developed economies throughout the world. Its symptoms are a substantial

fall in economic activity and unusually steep reductions in asset prices and the

volume of credit. For example, seasonally adjusted weekly averages of all commercial

paper issued in the United States fell from $170bn for all of 2007 to just about $100bn

for the week ending June 12, 2009. The seasonally adjusted stock of all commercial

paper outstanding dropped by 20% in the six months following November 30, 2008.

Our model offers a simple explanation for such episodes of rapid disintermediation.

We interpret them as transitions from a well—intermediated, socially desirable and

fragile state with plenty of unsecured credit to a poorly–intermediated, less desirable

but asymptotically stable state in which all loans are collateralized. The impulse for

this transition is widespread skepticism about the ability of financial intermediaries

to continue the provision of unsecured credit at the volume needed to support the

socially desirable equilibrium. An equivalent interpretation of the movement from

the good to the bad state is that it is triggered by a “sunspot” variable, similar to

the bubble bursting equilibrium considered by Kocherlakota (2009). We conjecture

that bubbles on financial assets are equivalent to unbacked private debt in our

environment, as they are in the pure–exchange model of Hellwig and Lorenzoni

(2008).
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Appendix

Proof of Proposition 1:

(a) Let g(x; z) ≡ 1 − f(x; z) and define (fn, gn) to be the n–order iterates of the

maps (f, g), where (f 0(x; z), g0(x; z)) = (x, x) and (f 1, g1) = (f, g). Then one easily

shows

fn(x; z) = f(x; zn) for all n ≥ 0 ,

g2(x; z) = x ,

g[f(x; z); z] = g(x; z2) ,

f [g(x; zn); z] = g(x; zn−1) for all n ≥ 1 ,
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for all z ∈ [0, 1]. For any initial value x0 ∈ (0, 1), we can easily show by induction

that xt is a Markov chain on the asymptotic set
{

x0, f(x0; z
n), f(1 − x0; z

n), 1 − x0, g(x0; z
n), g(1 − x0; z

n) for n ≥ 1
}

.

However, x0 = f(x0; z
n) for n = 0, 1 − x0 = g(x0; z

n) for n = 0. In addition,

g(x; zn) = f(1 − x; z−n) for all x and n ≥ 1. Therefore the set of asymptotic states

consists of the list in Proposition 1 if we allow n to be any integer.

(b) Follows from the fact that the set of asymptotic states depends on the initial

value x0. 2

Proof of Proposition 2:

It remains to show existence and uniqueness of a market–clearing interest rate R =

R(σ) with secured borrowing for any σ = (x, s). For any R > λA ≥ λAi
s, collateral

debt limits are θi
c(R) =

λAi
s

R − λAi
s

. Debt limits are decreasing in the interest rate,

and so is the demand for credit CD(σ); it is a downward–sloping function with

finitely many upward jumps at R = Ai
s, it is zero at R ≥ A and it tends to infinity

as R → λA. On the other hand, the supply of credit CS(σ) is a weakly increasing

step function which is zero at R = 0 and finite at R ≥ A. Because of these features,

there exists a unique market–clearing interest rate for any σ. 2

Proof of Proposition 3:

A candidate first–best equilibrium has stable wealth shares x∗ = (xi∗)i∈I and an

interest factor equal to the frontier productivity, R(x∗, s) = A for all s ∈ S. With

secured borrowing (vi = 0), the debt limits then follow from (4) as θi(x∗, s) =

λ/(1−λ) for all i ∈ I and s ∈ S. In every productive state s, there is by assumption

(A2) a unique agent i(s) using the frontier technology. Because of (A3), no state

is trivial, hence credit market equilibrium requires that for any s ∈ S, agent i(s)’s

maximum demand for credit does not exhaust credit supply of all other agents:

λ
1 − λ

xi(s)∗ ≥
∑

j 6=i(s)

xj∗ = 1 − xi(s)∗ , s ∈ S ,

which is λ ≥ 1 − xi(s)∗ for all s. By assumption (A1), every agent has access to

the frontier technology in at least one state. Thus the first best is an equilibrium
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with secured borrowing iff λ ≥ 1 − xi∗ for all i ∈ I. For this to be true at some

distribution of wealth xi∗, it must hold in particular at the symmetric distribution of

wealth, xi∗ = 1/I. Therefore, the condition λ ≥ (I −1)/I is necessary and sufficient

for the first best to be an equilibrium with secured borrowing for some distribution

of initial wealth.

Now suppose that λ < (I − 1)/I and suppose that there is a first–best equilibrium

with secured and unsecured borrowing at stable wealth distribution x∗ = (xi∗)i∈I

and interest yields R(x∗, s) = A, s ∈ S. But then from (6) and (7), R̃i(x∗, s) =

R̃i
c(x, s) = A for all i ∈ I and s ∈ S, and from (10) follows that vi(x∗, s) = 0 for all

(i, s). But this in connection with (4) implies again that all borrowing is secured, so

debt limits are θi(x∗, s) = λ/(1−λ), and the credit market cannot be in equilibrium,

as seen above. 2

Proof of Proposition 4:

Parts (a)–(b) follow simply from inspection of Figure 2 (a) and (b). To prove (c),

it is useful to note the following features of the maps X0(x) and X1(x). For any

x ≤ 1 − λ/z, it holds that X1X1(x) = x and that X0X1(x) = 1 − x.

Again it is clear from the graph that the minimum and maximum elements of the

asymptotic invariant set are x = λ and x = 1 − λ. Let ℓ ≥ 1 be the unique number

such that Xℓ−1
0 (λ) < 1−λ/z and Xℓ

0(λ) ≥ 1−λ/z and suppose the last inequality is

strict (a generic feature). Obviously then, Xk
0 (λ), k = 1, . . . , ℓ are also elements of

the asymptotic invariant set. Further elements are the ℓ wealth states X1X
k
0 (λ) for

k = 0, . . . , ℓ − 1, which are all in the interval (λ, 1 − λ/z] and which are generically

different from the other elements. Note that X1X
ℓ
0(λ) = λ is not a new element of

the asymptotic invariant set. To see that there are no further elements, note that

any further iteration from X1X
k
0 (λ) can only lead either to X1X1X

k
0 (λ) = Xk

0 (λ) or

to X0X1X
k
0 (λ) = 1 − Xk

0 (λ) = X1X
k−1
0 (λ) which are both already elements of the

asymptotic invariant set. Hence the asymptotic invariant set comprises λ, 1 − λ,

Xk
0 (λ) for k = 1, . . . , ℓ and X1X

k
0 (λ) for k = 0, . . . , ℓ − 1, which are 2ℓ + 2 = 2m

elements with m = ℓ + 1 ≥ 2. Of these, exactly the three [1 − λ, Xℓ
0(λ) and

X1(λ) = 1− λ/z] are not smaller than the threshold 1− λ/z and have growth rates

at βA − 1. All other states have growth rates below βA − 1. 2
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Proof of Proposition 5:

Without loss of generality, set A = 1 to simplify notation. Consider first a production–

efficient steady state x with debt–equity constraint θ = (1 − x)/x and interest rate

R ∈ (z, 1). x is a steady state if x = X1(x) = R(1 − x), and hence x = R/(1 + R),

θ = 1/R, R̃ = 1 + θ(1−R) = 1/R, and R̃c = R(1− λ)/(R− λ). Let v and w be the

default penalties for borrowing and lending agents (of both types) in steady state.

From (10) follows that v and w satisfy

v = βw , (11)

w = β
{

ln
[

R̃
R̃c

]

+ v
}

. (12)

Hence,

v =
β2

1 − β2 ln
(

R̃
R̃c

)

=
β2

1 − β2 ln
(

R − λ
R2(1 − λ)

)

.

On the other hand, (4) implies that

v = ln
[

(1 − λ)(1 + R)
]

. (13)

From these two equations follows that the steady–state interest rate must solve

(1 − λ)1/β2

R2(1 + R)(1−β2)/β2

= R − λ . (14)

Moreover, unsecured borrowing requires that v > 0 which, from (13), implies that

R > Rc ≡ λ/(1 − λ), where Rc is the interest rate with secured borrowing which

is always a solution of equation (14). Another solution R∗ > Rc exists provided

that the slope of the LHS at Rc is smaller than one. This turns out to be the case

if and only if λ < β/(1 + β). Now R∗ indeed constitutes an equilibrium provided

that R∗ > z and R∗ < 1. The latter inequality follows if LHS>RHS at R = 1. But

this turns out to be equivalent to λ < 1/2 which follows from λ < β/(1 + β). The

first inequality is true either if Rc ≥ z (which is the same as λ ≥ z/(1 + z)) or if

LHS<RHS at R = z. This last inequality is expressed as

(z − λ)β2

1 − λ
> z2β2

(1 + z)1−β2

. (15)

This inequality becomes an equality at λ = z/(1 + z), and the left–hand side is

decreasing in λ > λ0 ≡ (z − β2)/(1 − β2) and increasing in λ < λ0. When z ≥ β,
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λ0 ≥ z/(1 + z) holds, and hence (15) is violated for any λ ≤ z/(1 + z); hence there

is no steady state with unsecured borrowing in this case. When z < β, there must

be a threshold λ̃ < λ0 where (15) holds with equality. Hence, with λ̂ = max(0, λ̃),

there exists a steady state with unsecured borrowing for any λ ∈ [λ̂, β/(1 + β)).

Next consider a production–inefficient steady state where R = z, R̃ = 1 + θ(1 − z)

and R̃c = z(1 − λ)/(z − λ), and again let v be the stationary penalty of default for

a borrowing agent. Now (11) and (12) can be expressed as

v =
β2

1 − β2 ln
(

[1 + θ(1 − z)](z − λ)
z(1 − λ)

)

,

and (4) becomes

v = ln
[

(1 − λ)(1 + θ)
1 + θ(1 − z)

]

. (16)

Equating the two yields an equation in the debt–equity ratio,

1 + θ =
(

1 − λ/z
)

β2

1−β2
(

1 + θ(1 − z)
1 − λ

)
1

1−β2

. (17)

Here, the debt–equity ratio with secured borrowing θc = λ/(z − λ) solves this equa-

tion. Another solution θ∗ corresponds to an equilibrium with unsecured borrowing

only if θ∗ > θc, and such a solution exists iff the slope of the RHS at θc is smaller

than one. This is the case iff

λ < λ0 =
z − β2

1 − β2 .

The solution θ∗ > θc indeed gives rise to a production–inefficient equilibrium at

R = z if θ∗ < (1 − x∗)/x∗ at the stationary borrower share x∗ which satisfies

x = X1(x) =
z(1 − x)

[1 + θ∗(1 − z)] + z(1 − x)
,

or

(1 − z)(1 + θ∗)x2 + 2zx − z = 0 .

Clearly this quadratic has a unique solution x∗ ∈ (0, 1) for any θ∗ > 0. Now

θ∗ < (1 − x∗)/x∗ when x∗ < 1/(1 + θ∗) which is the case if the quadratic is positive

at x = 1/(1 + θ), which in turn is equivalent to θ∗ < 1/z. This condition is fulfilled

whenever in (17) the LHS is smaller than the RHS at θ = 1/z. But this inequality
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is equivalent to (15) again. Because the LHS in (15) is increasing in λ ∈ [0, λ0], the

inequality is satisfied for all λ ∈ (λ̂, λ0). Hence

λ̂ < λ <
z − β2

1 − β2

is a necessary and sufficient condition for a production inefficient steady state equi-

librium with secured and unsecured borrowing. 2

Proof of Proposition 6:

In the deterministic economy, the dynamic versions of the steady–state equations

(11) and (12) can be simplified to

vt = β2 ln
(

R̃t+2

R̃c
t+2

)

+ β2vt+2 . (18)

Suppose first that the economy is production inefficient in all periods. Then, Rt = z,

R̃c
t = z(1 − λ)/(z − λ), and from (4) follows

R̃t =
(1 − λ)z

1 − λ − evt(1 − z)
.

Substitution into (18) yields

vt = β2 ln
(

z − λ
1 − λ − evt+2(1 − z)

)

+ β2vt+2 .

Note that vt is a forward–looking (jump) variable. Hence, the steady state v = 0 is

locally indeterminate iff dvt/(dvt+2)|v=0 > 1. But this condition turns out to be the

same as

λ >
z − β2

1 − β2 ,

which follows from z < β2. Hence, there is an infinity of equilibria with vt → 0 (and

thus θt → θc). In the limit, the dynamics of borrower wealth becomes

xt+1 =
(1 − xt)(z − λ)

z − λ + xt(1 − z)
= X1(xt) ,

which satisfies xt+2 = X2
1 (xt) = xt. Hence, in all these equilibria, wealth converges

to a cycle of periodicity two (where one of these “cycles” is the secured–borrowing

steady state).
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Next consider a production–efficient economy. Here θt = (1 − xt)/xt, and from (4)

follows

Rt =
1 − e−vt(1 − λ)

1 − xt
, R̃t = 1 − λ

evtxt
, R̃c

t =
[1 − e−vt(1 − λ)](1 − λ)

1 − e−vt(1 − λ) − λ(1 − xt)
.

Substitution into (18) yields

vt = β2 ln
(

1 − e−vt+2(1 − λ) − λ(1 − xt+2)
[evt+2 − 1 + λ]xt+2

)

+ β2vt+2 . (19)

The dynamics of borrower wealth is

xt+1 =
Rt(1 − xt)

Rt(1 − xt) + R̃txt

= 1 − e−vt(1 − λ) .

Substitution into (19) gives

vt = β2 ln
(

1 − e−vt+2(1 − λ) − λ(1 − λ)e−vt+1

[evt+2 − 1 + λ][1 − e−vt+1(1 − λ)]

)

+ β2vt+2 .

Using ϕt = evt , this equation is more conveniently expressed as

ϕt =

[

ϕt+1(ϕt+2 − 1 + λ) − λ(1 − λ)ϕt+2

(ϕt+2 − 1 + λ)(ϕt+1 − 1 + λ)

]β2

. (20)

A steady state is a solution of

ϕ(1−β2)/β2

=
ϕ − 1 + λ2

(ϕ − 1 + λ)2 . (21)

One solution is ϕ = 1 which (under appropriate conditions) gives rise to a steady

state with secured borrowing. A steady state with secured and unsecured borrowing

must be a solution with ϕ > 1. Again ϕt is a forward–looking jump variable; hence

a steady state is locally determinate if both eigenvalues of the backward dynamics

(20) have modulus less than one, and a steady state is locally indeterminate if at

least one eigenvalue has modulus larger than one. It is straightforward to calculate

the determinant and trace of the Jacobian at the steady state:

D = − dϕt

dϕt+2
=

β2λ(1 − λ)2

(ϕ − 1 + λ)(ϕ − 1 + λ2)
,

T =
dϕt

dϕt+1
= −

β2(ϕ − 1)(1 − λ)2

(ϕ − 1 + λ)(ϕ − 1 + λ2)
.
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At a steady state with secured borrowing (ϕ = 1), D > 1 if and only if λ < β/(1+β).

Hence, this steady state is indeterminate whenever there is another one with secured

and unsecured borrowing. Such a steady state is determinate, provided that D < 1

and D + T > −1. At λ = 0, D = 0 and T > −1 requires that ϕ > 1 + β2. Since

ϕ = (ϕ − 1)−β2/(1−β2), this inequality is true provided that

1 + β2 < (β2)−β2/(1−β2) ,

which is true for all β2 ∈ (0, 1). When λ increases, it can be shown numerically

that both D(λ) and D(λ) + T (λ) increase (where ϕ(λ) > 1 adjusts to solve (21)),

regardless of the value of β. Moreover D(λ) converges to 1 and T (λ) converges to zero

when λ → β/(1 + β) (and ϕ(λ) → 1). Therefore D(λ) < 1 and D(λ) + T (λ) > −1

are satisfied for any λ ∈ [0, β/(1+ β)), and hence the steady state with secured and

unsecured borrowing is locally determinate. 2

Stochastic equilibrium cycles

Proposition 7: A production–efficient cycle with secured and unsecured borrowing:

(a) Does not exist for any λ if z is large, that is, if

z ≥
β(1 − π)
1 − βπ

.

(b) Exists for intermediate λ and small z, that is, if

λ ∈
[

λ,
β(1 − π)

1 + β − 2βπ

)

and z <
β(1 − π)
1 − βπ

,

for some threshold λ which equals zero whenever z falls below another threshold

z < β(1 − π)/(1 − βπ).

Part (a) says that production efficient cycles with unsecured borrowing cannot exist

if agents are too impatient or if productivity fluctuations are too small. Part (b) says

the opposite: sufficiently large productivity fluctuations give rise to a production–

efficient equilibrium which also requires collateral to be neither too large nor too
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small. For example, if collateral is large enough, production efficient (or even first

best) allocations are achieved by secured borrowing alone; a good credit reputation

is then worthless. And when collateral is too small, any equilibrium with unsecured

borrowing must involve some states of production inefficiency. But when z is smaller

than threshold z, unsecured loans can support production–efficient allocations even

in the complete absence of collateral.

Proof:

A production–efficient cycle of order two has a support at x1 < x2 where x1 applies

if the productive state changes (st 6= st−1), and x2 applies if the state stays the

same. The corresponding default penalties for borrowers and lenders in these two

situations are denoted vj , wj, j = 1, 2. The cycle has the following features:

• the allocation is first best at x = x2, i.e. R2 = A and

θ2 = ev2 + λ − 1
1 − λ

≥ 1 − x2
x2

.

• the allocation is production–efficient but not first–best at x = x1, so that

θ1 = (1 − x1)/x1 and

R1 = Aev1 + λ − 1
ev1(1 − x1)

∈ (zA, A) .

Again simplify notation by setting A = 1. Because the economy is first–best at x2,

X0(x2) = x2 and X1(x2) = 1 − x2. Hence x1 = 1 − x2. At x = x1, rates of return

are

R1 = ev1 + λ − 1
ev1(1 − x1)

< R̃1 = 1 − λ
x1e

v1 .

If the productive state is unaltered, borrower wealth must thus increase from x1 to

x2, which implies

X0(x1) = R̃1x1

R̃1x1 + R1(1 − x1)
= e−v1(1 − λ) = x2 = 1 − x1 ,

and therefore x1 = 1 − e−v1(1 − λ).
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The recursive equations in default penalties are

v1 = βπv2 + β(1 − π)w1 ,

w1 = βπw2 + β(1 − π)
[

ln(R̃1/R̃
c
1) + v1

]

,

v2 = βπv2 + β(1 − π)w1 ,

w2 = βπw2 + β(1 − π)
[

ln(R̃1/R̃
c
1) + v1

]

.

From these follows v1 = v2 = v, w1 = w2 = w, and

v = C ln
(

R̃1

R̃c
1

)

= C ln
(

ev + λ − 1 − λev(1 − x1)
(ev + λ − 1)x1e

v

)

= C ln
(

ev − 1 + λ2

(ev + λ − 1)2

)

, (22)

with

C ≡
β2(1 − π)2

(1 − β)(1 + β − 2πβ)
.

Equation (22) has a solution v > 0 (necessary for unsecured borrowing) provided

that λ2 + 2λC − C < 0, which is equivalent to

λ <
β(1 − π)

1 + β − 2βπ
≡ λ1 . (23)

To make sure that this is indeed a production–efficient equilibrium, it must be

verified that R1 ∈ [z, 1) and that θ2 ≥ (1 − x2)/x2. It is easy to show that the

last condition holds with equality. R1 < 1 is fulfilled provided that ev < 2(1 − λ).

But at ev = 2(1 − λ) the RHS of (22) is zero; thus the equilibrium ev must be

smaller than 2(1 − λ). Hence it remains to check that R1 ≥ z. This is true iff

ev ≥ (1−λ)(1+ z) which is valid either if λ ≥ z/(1+ z) or if RHS≥LHS in equation

(22) at ev = (1 − λ)(1 + z). Hence, R1 ≥ z iff

λ ≥ z
1 + z or Φ(λ) ≡

(z − λ)C

(1 − λ)1+C ≥ z2C(1 + z) . (24)

The last condition holds with equality at λ = z/(1 + z) and Φ has a maximum at

λ̃ = z(1 + C) − C. It is straightforward to verify that λ ≥ λ1 iff z/(1 + z) ≥ λ1 iff

z ≥ β(1 − π)/(1 − βπ). Hence, if z exceeds this threshold, there is no λ satisfying

both (23) and (24), and hence there cannot be a production–efficient cycle with
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secured and unsecured borrowing, which proves part (a). Conversely, when z <

β(1 − π)/(1 − βπ), there is a unique λ̂ < λ such that the second condition in (24)

holds with equality. In that case, any λ ∈ [λ̂, λ1) gives rise to a production–efficient

cycle with secured and unsecured borrowing, which proves part (b). Finally, the

lower bound λ̂ is non–positive provided that the second condition in (24) holds at

λ = 0 which is the same as

1 ≥ zC(1 + z) .

This condition is the same as z ≤ z for another threshold z(β) which converges to

one when β → 1 (C → ∞). 2
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