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Abstract

The profession has been longing for closed-form solutions to consumption functions under

uncertainty and borrowing constraints. This paper proposes an analytical approach to solving

general-equilibrium bu¤er-stock saving models with both idiosyncratic and aggregate uncer-

tainties as well as liquidity constraints. It is shown analytically that an individual�s optimal

consumption plan follows the rule of thumb: Consumption is proportional to a target level of

wealth, with the marginal propensity to consume dependent on the state of the macroeconomy.

I apply this method to address two long-standing puzzles in general equilibrium: the "excess

smoothness" and "excess sensitivity" of consumption with respect to income changes. Some of

my �ndings sharply contradict the conventional wisdom.

Keywords: Bu¤er Stock Saving, Borrowing Constraints, Consumption Puzzles, Excess Smooth-

ness, Excess Sensitivity, Permanent Income Hypothesis.

JEL Codes: D91, E21.

�I thank Alex Michaelides, Steve Zeldes, and Pengfei Wang for comments, and George Fortier and Luke Shimek for
research assistance. The usual disclaimer applies. Correspondence: Yi Wen, Research Department, Federal Reserve
Bank of St. Louis, St. Louis, MO, 63104. Phone: 314-444-8559. Fax: 314-444-8731. Email: yi.wen@stls.frb.org.

1



1 Introduction

Postwar aggregate U.S. data show that lagged output growth signi�cantly predicts consumption

growth, and the standard deviation of consumption growth is only about half of that of GDP

growth. However, the canonical optimizing consumption model with a quadratic utility function,

constant interest rate, and stochastic labor income predicts that consumption growth is independent

of lagged income changes and should be more volatile than labor-income growth if aggregate income

growth has positive serial correlation (as the data suggest it does). Thus, aggregate consumption

growth has been described as exhibiting two puzzles: it is both "excessively sensitive" to lagged

(or predictable) income changes (Flavin, 1981) and "excessively smooth" relative to current income

growth (Deaton, 1987; and Campbell and Deaton, 1989).

Although the quadratic utility function is too stylized, its implications are more general (see,

e.g., Hall, 1978). Hence, this special model has served as the modern-day reincarnation of Fried-

man�s (1957) permanent income hypothesis (PIH) that consumption is determined by permanent

income rather than by current income. Despite its intuitive appeal, the simple PIH model has en-

countered some empirical anomalies (such as the aforementioned two puzzles), which has triggered

the growth of a vast literature to seek for resolutions.1

Chief modi�cation of the canonical PIH model to resolve the two aforementioned puzzles is the

bu¤er-stock saving model (e.g., Deaton, 1991; Carroll, 1992), which modi�es the simple PIH model

to allow for precautionary saving motives (due to a positive third derivative of the utility function),

impatience (due to heavy discounting of the future), and borrowing constraints (due to imperfect

�nancial markets). However, the modi�ed model inherits two crucial features of the canonical PIH

model: constant interest rate and exogenous labor income. Such a partial-equilibrium framework

has served as the workhorse of modern dynamic consumption theory.2

Can bu¤er-stock saving quantitatively explain the smoothness of aggregate consumption and

its correlation with lagged aggregate income? According to a recent study by Ludvigson and

Michaelides (2001), the answer is "no". Ludvigson and Michaelides (2001) use a calibrated heterogeneous-

agent bu¤er-stock model to show that aggregate consumption growth is as volatile as aggregate

income and it is not predictable by lagged income growth. Even assuming that consumption could

not react immediately to current changes in income growth because of information frictions, the

1An incomplete list includes Campbell and Deaton (1989), Campbell and Mankiw (1989, 1990), Carroll (1992, 1994,
1997), Carroll and Kimball (1996, 2001), Christiano, Eichenbaum, and Marshall (1991), Deaton (1987, 1991, 1992),
Ermini (1993), Flavin (1981, 1985), Gali (1991), Hayashi (1987), Ludvigson and Michaelides (2001), Michaelides
(2002), Pischke (1995), Sommer (2007), Quah (1990), and Zeldes (1989a, 1989b).

2See, e.g., the literature servey by Carroll (2001).

2



volatility of consumption growth would still be about 90% of that of income growth, far above the

estimated value of 0:48 in the U.S. data. Hence, their analysis suggests that modern consumption

theories are inadequate and incapable of explaining the two anomalies of aggregate consumption

behaviors.

Ironically, the real-business-cycle (RBC) literature has long predicted that aggregate consump-

tion and its growth rate are very smooth relative to aggregate income and output growth under

aggregate technology-level shocks (see, e.g., Kydland and Prescott, 1982; King, Plosser, and Rebelo,

1988). The RBC literature argues that such predictions are precisely what the PIH would imply.

Yet despite the popularity of the RBC literature, virtually no research has set out to formally

investigate whether standard general-equilibrium RBC models can explain the two well-established

consumption puzzles quantitatively.3 It is well known that under shocks to the level of technology,

RBC models generate very smooth consumption both at the level and at the growth rate. However,

it is much less clear what may happen when shocks originate from the growth rate of technology

(which may be serially correlated) instead from the level. This provides the �rst motivation of this

paper: to investigate whether stochastic changes in the growth rate of technology can lead to the

two consumption puzzles in general equilibrium. The results also serve as a reference point for my

analysis of heterogeneous-agent bu¤er-stock models.

But there is a reason for the bu¤er-stock literature to maintain the assumptions of constant

interest rate and exogenous labor income even when the focus of the analysis is on the relationship

between aggregate consumption and aggregate income: computational costs. Despite these extreme

assumptions, the standard bu¤er-stock literature still has to rely on numerical computational meth-

ods to solve for individuals�decision rules of consumption and savings before aggregation (see, e.g.,

Deaton, 1991; and the literature survey by Carroll, 2001). The computational di¢ culty is com-

pounded in general-equilibrium models when the interest rate and labor income are endogenous and

time varying (see, e.g., Krusell and Smith, 1998). This computational challenge provides the second

motivation of this paper: to provide an analytically tractable method to solve a heterogeneous-agent

bu¤er-stock model in general equilibrium. Analytical tractability is a great virtue because it makes

the model�s economic mechanisms transparent and comparative statistics easy to conduct.4

My analysis yields three major �ndings: (i) The excess-smoothness and excess-sensitivity puz-

zles are exaggerated by the consumption literature. In general equilibrium with endogenous interest

rate and labor income (in spite of serially correlated shocks to the growth rate of technology), aggre-

3The only exception I am aware of is Michener (1984). Michener clearly pointed out that the apparent failure of the
PIH has to do with the assumption of a constant interest rate. However, Michener used a RBC model with 100 percent
depreciation of capital and considered only the excess sensitivity puzzle. As will become clear in the next section,
this special model cannot explain the excess smoothness puzzle. Also, Michener did not consider technology-growth
shocks.

4As noted by Carroll and Kimball (2001, p.1), "A drawback to numerical solutions ... is that often it is di¢ cult to
determine why results come out the way they do." In the case of no borrowing constraints and an extremely simpli�ed
form of labor-income uncertainty, tractable models are obtained by Toche (2005) and Carroll and Toche (2009).
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gate consumption growth is signi�cantly less volatile than output growth even without borrowing

constraints; namely, its standard deviation is only about 70% of that of output growth, not more

volatile than output as predicted by partial-equilibrium consumption models. In addition, general-

equilibrium theory predicts that current-period consumption growth should be positively correlated

with lagged income growth when income growth is serially correlated (as it is in the data). However,

discrepancies between theory and data still exist and are surprisingly robust to parameter values.

Hence, although the puzzles are exaggerated, a general-equilibrium model with endogenous interest

rate and labor supply cannot completely desolve them with empirically plausible parameter values.

(ii) Borrowing constraints can signi�cantly reduce the volatility of consumption growth relative to

income growth if the degree of heterogeneity (or consumption inequality) is su¢ ciently large; but it

does not improve the predictive power of lagged income for future consumption growth. This is in

contrast to the �ndings of Ludvigson and Michaelides (2001) based on partial-equilibrium analysis

where they argue that borrowing constraints are not very e¤ective in both reducing consumption-

growth volatility and raising consumption sensitivity to lagged income. (iii). Habit formation is

very e¤ective in both reducing the relative volatility of consumption growth and increasing the

sensitivity of consumption to lagged income growth. However, habit formation tends to "over-kill"

the sensitivity puzzle: with mild degrees of habit formation the model predicts that the correlation

between consumption growth and lagged income growth is twice as strong as it is in the data.

In other words, under habit formation the data exhibit "excess insensitivity" rather than "excess

sensitivity" of consumption towards predictable income changes. This is in contrast to the �ndings

of the literature (e.g., Michaelides, 2002). All of the above results are obtained analytically in this

paper without resorting to complicated numerical computation methods such as that in Krusell

and Smith (1998).

Two simplifying strategies allow me to solve a heterogeneous-agent general-equilibrium bu¤er-

stock model analytically. First, the idiosyncratic shocks are i:i:d:, orthogonal to aggregate uncer-

tainty, and come from preferences rather than from labor income. But the analytical tractability

carries through and the results remain similar if the idiosyncratic uncertainty is from wealth-income

instead.5 Second, and more importantly, the utility function is linear for leisure and labor-supply

decisions are made before observing the idiosyncratic shocks. These simplifying strategies make

the expected marginal utility of an individual�s consumption and the cuto¤ value for target wealth

independent of idiosyncratic shocks. With these properties, closed-form decision rules for individu-

als�consumption and saving plans can be obtained. After aggregating individual decision rules by

the law of large numbers, the aggregate variables form a system of non-linear dynamic equations

as in a representative-agent model. Hence, traditional solution methods available in the RBC liter-

5See the Appendix.
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ature can be applied to solving the model�s equilibrium saddle-path, given the distribution of the

idiosyncratic shocks. The impulse response functions to aggregate shocks and second (or higher)

moments of the model can then be computed analytically following the RBC literature (e.g., the

method of King, Plosser, and Rebelo, 1988).6

These simplifying strategies have some costs,7 but the payo¤ is signi�cant: They not only make

the model analytically tractable with closed-form solutions for individuals�decision rules (despite

a time-varying interest rate), but also reduce the computational costs down to the level of solving

a representative-agent RBC model. In addition, the mechanisms of bu¤er-stock saving become

transparent and we obtain all the essential insights of the bu¤er-stock saving theory, such as that

the accumulation of wealth follows a target strategy (Deaton, 1991) and that individuals opt to

save excessively so as to be well-insured against uncertainty (Aiyagari, 1994; Carroll, 1997; Krusell

and Smith, 1998).

The reason general-equilibrium models generate smoother consumption growth than income

growth is that technology growth increases the marginal product of capital, which drives up the real

interest rate and hence the marginal propensity to save, rather than raising the marginal propensity

to consume as a canonical PIH model would predict under a constant interest rate. Borrowing

constraints can further reduce consumption-growth volatility not because they prevent consumption

from adjusting freely when the constraints bind, but rather because they raise the precautionary

saving motive and enhance the bu¤er-stock role of savings. Consequently, consumption becomes

less sensitive to shocks. For the same reason, bu¤er-stock saving does not increase the sensitivity of

current consumption growth towards changes in lagged income because under precautionary-saving

motives, agents opt to save excessively so that they are very well self-insured against uncertainty. As

a result, consumption is not any more sensitive to past income than it would be without borrowing

constraints.

The rest of the paper is organized as follows. Section 2 presents a standard frictionless RBC

model as a control model (reference point). It is shown that under serially correlated shocks to

aggregate technology growth (i.e., to the source of permanent income), the model exhibits both

the "excess smoothness" puzzle and the "excess sensitivity" puzzle, albeit to a signi�cantly less

degree than claimed in the consumption literature. It is also shown that endogenous labor supply

is irrelevant for these results; hence, a constant interest rate assumed in the consumption literature

is crucial for causing the discrepancies. Section 3 introduces borrowing constraints and uninsurable

idiosyncratic risks into the control model and shows how to solve analytically for individuals�

6 If the depreciation rate of capital stock is 100 percent, then closed-form solutions for the aggregate variables can
also be obtained for the general-equilibrium bu¤er-stock model by pencil and paper.

7One of the costs is that the elasticity of labor supply is not a free parameter. Another is that the wealth
distribution is degenerate under idiosyncratic preference shocks. However, the distribution of consumption and
savings are not degenerate. The degenerate wealth distribution can be avoided by considering wealth shocks (see the
Appendix).
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optimal consumption and saving plans as functions of the aggregate variables. Impulse responses

to technology-growth shocks and second moments of the model�s growth rates are also computed

analytically using the log-linearization method. Section 4 analyzes the e¤ects of habit formation in

a heterogeneous-agent bu¤er-stock model. Section 5 concludes the paper. In the Appendix, I also

illustrate how to solve a general-equilibrium bu¤er-stock model analytically when the idiosyncratic

shocks do not originate from preferences but from wealth-income. This also serves as a robustness

check to the results in Section 3.

2 The Control Model

The control model is a standard and perhaps the simplest version of the real-business-cycle (RBC)

model of Kydland and Prescott (1982). There are two sources of uncertainty in the model: shocks to

the level of technology and to the growth rate of technology. Therefore, the model is not stationary

in the level but stationary in the growth rate. To solve the model, we �rst transform the economy

into one without growth by a proper normalization and derive decision rules around the steady

state. We then uncover the growth dynamics of the original model around its long-run balanced

growth path by an inverse transformation.

There is a unit mass of continuum of identical households who, taking as given the market real

interest rate and real wage, choose sequences of consumption (C), savings (S), and labor supply (N)

to maximize expected life-time utility, E0
P1
t=0 �

t flogCt � aNtg, subject to the budget constraint

Ct+St+1 � (1+rt)St+WtNt, where r is the real interest rate andW the real wage. The population

is constant over time. Leisure enters the utility linearly to re�ect indivisible labor (Hansen, 1985;

Rogerson, 1988). The linearity simpli�es the analysis of our heterogeneous-agent bu¤er-stock model

in the next section. Without loss of generality, assume a = 1.

There is also a unit mass of continuum of identical �rms producing output according to the

constant-returns-to-scale technology, Yt = AtK�
t (ZtNt)

1��, where At denotes a stationary process

of shocks to total factor productivity (TFP) and Zt a non-stationary process of labor-augmenting

technology. Labor augmenting technology grows over time according to Zt = (1 + gt)Zt�1, where

gt is a stochastic growth rate with mean �g � 0. When �g = 0, the dynamic e¤ects of gt and At

are identical if gt is i:i:d: and At is a random walk without drift. The laws of motion for the two

driving processes are given by

logAt = �A logAt�1 + "At (1)

gt � �g = �g (gt�1 � �g) + "gt: (2)

The capital stock is accumulated according to Kt+1 = (1 � �)Kt + It, where � is the depreciation
rate and I investment. Firms behave competitively; with perfect capital markets the factor prices
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are thus determined by marginal products: Wt = (1� �) YtNt and rt + � = �
Yt
Kt
.

In the absence of uncertainty, the model has a unique constant balanced growth path, along

which the variables fCt;Kt+1; St+1;Wtg all grow at the rate 1 + �g. Hence, we can transform the

model into a stationary one by scaling it down by Z�1. In order for the transformed capital stock

to remain as a state variable that does not respond to changes in Z in period t, we scale the model

by Z�1t�1, instead of Z
�1
t . Using lower-case letters to denote the transformed variables, xt � Xt

Zt�1
, a

representative household�s problem becomes

maxE0

1X
t=0

�t flog ct � aNtg

subject to

ct + (1 + gt)st+1 � (1 + rt)st + wtNt: (3)

The production function becomes

yt = Atk
�
t N

1��
t (1 + gt)

1�� : (4)

The law of motion for capital becomes (1 + gt)kt+1 = (1 � �)kt + it. Factor prices become wt =

(1� �) ytNt and rt + � = �
yt
kt
. The transformed model has a unique steady state where all variables

are constant in the absence of aggregate uncertainty.

In general equilibrium, capital market clearing implies st = kt; hence, the household budget

constraint becomes

ct + (1 + gt)kt+1 � (1� �)kt = yt; (5)

which is also the aggregate resource constraint. The optimal consumption level must satisfy the

Euler equation,

(1 + gt)u
0
c(t) = �Et (1 + rt+1)u

0
c(t+ 1); (6)

where u0c is the marginal utility of consumption.

In the steady state, the Euler equation and the budget constraint imply the optimal capital-

output ratio and consumption-output ratio,

k

y
=

��

1 + �g � �(1� �) (7)

c

y
= 1� (�g + �) ��

1 + �g � �(1� �) ; (8)

respectively. The saving rate is simply (�g + �) ky , which is the modi�ed golden rule. The real interest

rate is given by 1 + r = 1+�g
� .
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Notice that the steady-state saving rate positively depends on the growth rate: @
@�g

h
(�g + �) ky

i
=

(1��)(1��)
[1+�g��(1��)]2 > 0. This implication contradicts the conventional wisdom based on simple PIH

models. The conventional wisdom argues that forward-looking consumers should save less in a fast-

growing economy because they know they will be richer in the future than they are today. Such an

argument is based implicitly on the assumption that the real interest rate (or the marginal product of

capital) is constant and not a¤ected by growth. However, productivity growth raises the marginal

product of capital and hence the demand for loanable funds. Therefore, in a standard general-

equilibrium growth model with endogenous interest rate, faster growth induces higher saving. This

important theoretical implication was applied by Chen, Imrohoroglu, and Imrohoroglu (2006) to

explain Japan�s high saving rate.

Also notice that the steady-state saving rate is independent of the form of the utility functions.

That is, even if the utility function is quadratic as in the canonical PIH model, the steady-state

saving rate is still given by equation (7) in general equilibrium. This also implies that the growth

dynamics of the model around the steady state are the same regardless of the utility function, as

long as the elasticity of the marginal utility of consumption, @u
0
c

@c
c
u0c
, is calibrated to the same value.

On the other hand, the Euler equation (6) indicates that the marginal utility of consumption follows

a random walk if the interest rate is constant or exogenous. Therefore, the "excess smoothness"

puzzle and the "excess sensitivity" puzzle are not special features of the quadratic utility function

adopted in the canonical PIH model, but the consequence of the exogenously �xed interest rate.

This point is very important for understanding the results below.

With the log utility function in consumption, it is well known that when � = 1 this model has

closed-form solutions for dynamic equilibrium, which are characterized by the linear rules:

ct = (1� ��) yt (9)

(1 + gt) kt+1 = ��yt: (10)

Notice that these closed-form decision rules are obtained regardless of the labor-supply decisions.

With a linear function in leisure, we have the �rst-order condition,

ct = wt = (1� �)
yt
Nt
; (11)

so optimal labor supply is given by

Nt =
1� �
1� �� 2 (0; 1): (12)

These decision rules will serve as a reference point for the bu¤er-stock saving model in the next

section.
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When � 6= 1, the dynamic equilibrium of the transformed model can be solved by standard

methods such as the log-linearization method of King, Plosser, and Rebelo (1988). Using circum�ex

to denote percentage deviations of a variable from its steady state value, x̂t � log xt � log �x, the
decision rules of the model can be characterized by the following system of linear equations with a

state-space representation:

q̂t+1 =M q̂t +R�t+1 (13)

x̂t = Hq̂t; (14)

where q̂ =
�
k̂ Â ĝ

�0
is a vector of the state variables, � =

�
"A "g

�0
is a vector of innovations,

and x̂ is a vector of endogenous variables under interest, such as consumption, labor, investment,

output, and so on. Notice that log (1 + gt)� log (1 + �g) � gt � �g � ĝt.
Using � to denote the �rst-di¤erence operator, the growth rate of x̂ is given by �x̂; the system

in (13) and (14) can then be expressed in a new state-space form in growth rates:

�q̂t+1 =M�q̂t + ~R

�
�t+1
�t

�
(15)

�
�t+1
�t

�
=

�
0 0
1 0

��
�t
�t�1

�
+

�
1
0

�
�t+1 (16)

�x̂t = H�q̂t; (17)

where 1 is a 2 � 2 identity matrix and ~R is an accordingly adjusted matrix. By the de�nition

xt � Xt
Zt�1

, the growth rate of a transformed variable (�x̂t) and its counterpart of the original

untransformed variable (�X̂t) satisfy the relationship �x̂t = �X̂t� ĝt�1� �g. Thus, the de-meaned
growth rate of the untransformed variables are given by

�X̂t � �g = �x̂t + ĝt�1: (18)

Hence, the solution to the transformed model as in system (15)-(17) implies a solution to the growth

rates of the corresponding untransformed model through the inverse transform (18). The impulse

responses of the growth rates of the untransformed variables and their second moments can thus

be easily obtained analytically as shown in the technical appendix of King, Plosser, and Rebelo

(1988).8

Following the standard RBC literature, we set the time period to be a quarter, the time dis-

counting factor � = 0:98,9 capital depreciation rate � = 0:025; capital�s income share � = 0:4; the
8The law of motion in (16) is useful because it makes the forecasting errors in the state-space presentation i:i:d:

instead of moving-average processes.
9We choose � = 0:98 rather than � = 0:99 so as to compare the control model with the bu¤er-stock model with

impatience. The predictions with � = 0:99 are very similar and are also reported.
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average quarterly technology growth rate �g = 0:01, and the persistence of shocks �g = 0:23 and

�A = 0:9.
10 Since the dynamics of the model under transitory TFP shocks are well known in the

literature, we focus on the e¤ects of shocks to the growth rate of technology, gt. Figure 1 shows the

impulse responses of the growth rates of aggregate output (�Ŷt), consumption (�Ĉt), investment

(�Ît), and labor (�N̂t) to a 1 percent increase in gt. The dashed lines in each window represent

the unit impulse of ĝt.

Figure 1. Impulse Responses to Technology Growth (Control Model).

A selected set of second moments predicted by the model and its U.S. counterpart are reported

in Table 1, where the model�s predictions under di¤erent parameter values are also reported as a

comparative statistic analysis.11 The �rst column reports the standard deviation of the growth rates

of the major variables in the model relative to that of output (�x�y ), where x = fc; i; ng represents

10�g = 0:23 is the value used by Ludvigson and Michaelides (2009) and is also consistent with the U.S. data based
on the growth rate of the Solow residual. The qualitative results of this paper do not hinge on this particular value.
11The U.S. data are quarterly real GDP, real �xed non-residential investment, real consumption of nondurables

and services, and total private nonfarm employment. The sample is 1947:1-2009:1. The data source is BEA.

10



the variables in consideration; the second column reports the contemporaneous correlations of the

growth rates of these variables with output growth (cor(xt; yt)); the third column reports the

correlations of the current growth rates of the variables with lagged output growth (cor(xt; yt�1)),

which is also the measure of sensitivity we adopt in this paper; and the last column reports the

�rst-order autocorrelations of growth rates (cor(xt; xt�1)).

Based on the impulse responses in Figure 1 and the statistics reported in Table 1, the model�s

predictions for growth dynamics match those of the U.S. data qualitatively well in many dimensions.

First, the model is able to enhance the serial correlation of the exogenous shocks to technology

growth. For example, the �rst-order autocorrelation of output growth is 0:4, more than 70%

stronger than that of the driving process. Investment growth and labor growth are even more

strongly autocorrelated (with autocorrelation of 0:55 and 0:58, respectively). This is in sharp

contrast to the case of technology-level shocks, in which case standard RBC models are not able to

enhance the persistence of shocks (see, e.g., Cogley and Nason, 1995; and Rotemberg and Woodford,

1996).

Second, the model also predicts that investment growth and labor growth both lag output

and consumption growth by about one quarter. The kink in the impulse responses of investment

becomes even more visible if we set capital�s income share � = 0:3. One of the criticisms of the RBC

theory is its inability to explain such a lead-lag relationship among the growth rates of aggregate

output, consumption, investment, and labor (see, e.g., Cochrane, 1994; Wen, 2007). But it is now

clear that such criticisms are ill based because the literature has mainly considered only technology-

level shocks instead of technology-growth shocks when addressing these issues. Because the model

generates delayed responses in investment growth and labor growth, lagged income growth predicts

these variables as well as in the data.

Table 1. Predicted Second Moments (Control Model)

�c=�y cor(ct; yt�1)

U.S. Data 0.51 0.28

Model 1 (� = 0:4) 0.68 0.15
Model 2 (� = 0:2) 0.81 0.13
Model 3 (� = 0:6) 0.59 0.21
Model 4 (� = 0:9) 0.67 0.31
Model 5 ( = 1010) 0.72 0.14
Model 6 (� = 1) 1.00 0.58

Third and most importantly, the model predicts two of the most well-known stylized facts of

the business cycle: consumption growth is less volatile but investment growth is more volatile than
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output growth; and these growth rates comove over the business cycle. Since this prediction is

related to the two aforementioned consumption puzzles, we will postpone the discussions to later

paragraphs.

A surprising and dramatic failure of this simple RBC model is its prediction of the volatility of

labor relative to output. The standard deviation of employment growth relative to output growth

is 0:77 in the data but 0:44 in the model. This is puzzling given that the RBC literature (e.g.,

Hansen, 1988) argues that indivisible labor helps to signi�cantly raise labor�s volatility to match

that of output. The problem is again rooted in the source of shocks. Under technology-level

shocks, labor is volatile when it is indivisible; but under technology-growth shocks, labor is no

longer volatile because the incentive for supplying labor is reduced when the changes in income are

permanent (growth shocks means permanent changes in the income level). Hence, the labor market

anomaly of the RBC theory cannot be resolved by indivisible labor, contradicting the argument of

Hansen (1988).

Let�s now turn to the two consumption puzzles. For the U.S. economy (�rst row in Table 1),

the relative volatility of consumption growth to GDP growth is 0:51 and the correlation between

consumption growth and lagged output growth is 0:28. The model predicts that consumption

growth is about 0:7 times volatile as output growth and its correlation with lagged output growth

is 0:15 (see Model 1 in Table 1). Thus, the model performs much better than the canonical PIH

model in explaining consumption dynamics in the data. However, the excess smoothness and

the excess sensitivity puzzles remain and they are surprisingly robust to parameter values, as the

following discussions show.

There are two features that di¤erentiate the general-equilibrium model from the simple PIH

model: endogenous interest rate and elastic labor supply.12 However, an elastic labor supply is

not important in generating the di¤erence between the two models. For example, let the period-

utility function be replaced by u(c;N) = logCt � aN1+
t and let the elasticity of labor supply ( 1 )

approach zero so that labor becomes constant (e.g., let  = 1010); then the standard deviation

of consumption growth is still about 72% of that of income growth and the sensitivity measure

remains essentially unchanged (see Model 5 in Table 1). Therefore, the fundamental reason for

consumption growth to be less volatile than income growth in the RBC model is mainly because

of the endogenous interest rate. The interest rate is procyclical under technology shocks; thus,

a higher growth rate of productivity will induce a higher saving rate, dampening its impact on

consumption growth. Alternatively, the interest rate is the price of current consumption in terms

of future consumption; although individuals take the price as given, their collective action in raising

current consumption in responding to a higher permanent income will increase the interest rate,

12As noted earlier, the speci�c form of the utility function is irrelevant for dynamics around the steady state.
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which in turn will discourage current consumption. Such an important interest-rate channel is

missing in partial-equilibrium models. However, endogenizing the interest rate does not completely

eliminate the two puzzles identi�ed by the consumption literature. This discussion also makes

it clear that changing the elasticity of the labor supply in the model does not help resolve these

puzzles.

For the same reason (i.e., the general-equilibrium e¤ects), the volatility of consumption growth

is sensitive to the capital�s income-share parameter �, which a¤ects the rate of returns to savings

via the marginal product of capital. When � is small, the interest rate (or return to investment) is

low; hence, the marginal propensity to consume is high and consumption is more volatile (see, e.g.,

Model 2 in Table 1 where the ratio of the standard deviation of consumption growth to income

growth is 0:81 when � = 0:2). The opposite happens when � is large. A larger value of � not only

reduces the volatility of consumption but also increases the sensitivity of consumption to lagged

income. This is so because more savings make consumption growth more sustainable and thus

more persistent, rendering it more predictable by history. For example, when � increases from

0:4 to 0:6 (Model 3 in Table 1), the sensitivity measure cor(ct; yt�1) increases from 0:15 to 0:21

while the autocorrelation of consumption growth also increases from 0:17 to 0:29. This appears

to be consistent with the analysis of Campbell and Deaton (1989) that the "excess smoothness"

puzzle and the "excess sensitivity puzzle" are intrinsically related and they re�ect the two sides of

the same coin. That is, a smoother consumption path implies a higher serial correlation, hence a

greater sensitivity to history (such as lagged income). Thus, it appears that increasing capital�s

share may resolve the two puzzles. Unfortunately, it cannot. Model 3 in Table 1 indicates that even

if � = 0:6, which implies a capital�s share far larger than that in the U.S. economy, the relative

volatility measure is still 0:59 and the sensitivity measure is still 0:21, signi�cantly di¤erent from

the data (0:51 and 0:28, respectively).

As the consumer becomes less patient (i.e., as � decreases), the relative volatility of consumption

growth declines and the sensitivity increases. However, assuming a low value of � does not eliminate

the excess smoothness puzzle. For example, even when � = 0:9, which implies that the steady-

state capital to output ratio is only one quarter of that in the U.S. economy, the relative standard

deviation of consumption growth is still 0:67 (only slightly below the benchmark of 0:68), although

the sensitivity measure rises to 0:31 (matching the data well).

The predictions under a large depreciation rate of capital are perhaps the most counter-intuitive

in light of Campbell and Deaton�s (1989) analysis (e.g., Model 6 in Table 1). When � = 1, consump-

tion growth is as volatile as income growth yet its correlation with lagged income growth becomes

even stronger �instead of weaker, as Campbell and Deaton�s (1989) analysis would indicate. This

suggests that the excess smoothness puzzle and the excess sensitivity puzzle may not necessarily
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go hand in hand.

When � = 1, both investment and consumption in the model becomes completely proportional

to output, as in equations (9) and (10). This implies that capital is no longer a stock variable but

a �ow variable. This has two consequences. First, since the capital stock is permanent income

and since consumption follows permanent income, when the capital stock becomes volatile, so does

consumption. Second, shocks to technology growth can be very e¤ectively propagated over time

through savings and capital accumulation when � = 1: a 1% increase in output can translate to a 1%

increase in the next-period capital stock, which in turn can translate into an �% increase in future

output.13 This implies that the autocorrelation of the growth rates of all variables in the model

(except labor) is strong and is given by � = 0:4 even in the absence of any serial correlations in the

shock process. This implies that both the volatility and the autocorrelation of consumption growth

are very large: consumption growth is now just as volatile as income growth and the sensitivity

measure is 0:58, an extremely high value. This result contradicts the belief of Campbell and Deaton

(1989) about the link between smoothness and sensitivity because their belief is based on just one

sample and they hold a partial-equilibrium perspective. In general equilibrium, permanent income

is essentially the capital stock and consumption tracks the capital stock closely. So when � is

close to zero, permanent income (the capital stock) is extremely smooth relative to current income

(output) because it is the sum of past investment, whereas output is directly a¤ected not only by

labor but most importantly by technology shocks. Hence, consumption as a function of permanent

income is not only far soother than output, but also far less predictable by output. The opposite

happens when � becomes large.

To sum up, the above analysis shows that the excess smoothness and excess sensitivity puzzles

are exaggerated by the existing literature. In general equilibrium, where labor income and, espe-

cially, the real interest rate are endogenous, consumption growth is not as volatile as predicted by

the simple PIH model and it is correlated with past income growth, albeit not as strongly as in

the data. Thus, the anomalies are less severe than claimed. Nonetheless, the two puzzles remain

and are quite robust to parameter values. In the next section we investigate whether borrowing

constraints can help resolve them.

3 Bu¤er-Stock Saving with Borrowing Constraints

In this model households are indexed by i 2 [0; 1] and are each subject to idiosyncratic preference
shocks �t(i) in every period. These shocks are orthogonal to aggregate shocks, the support of � is

[�L; �H ] with �H > �L > 0, and the cumulative distribution function of the shocks, F (�), is common

13Whereas in the case of � = 0:025, a 1% increase in investment can translate only into 0:025% increase in the
next-period capital stock because the changes in a �ow variable has little impact on a stock variable.
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to all households. Di¤erent draws of the preference shocks imply di¤erent optimal consumption

and saving plans for a household. Hence, consumers are heterogeneous. A key assumption is that

households must choose labor supply in the beginning of each period before observing their idiosyn-

cratic preference shocks in that period. This assumption together with the linear leisure function

imply that wealth distribution across households is degenerate. This dramatically simpli�es the

computation of general equilibrium because we do not have to keep track of the distribution of

wealth of each individual in the state space. However, the distributions of consumption and sav-

ings are not degenerate; hence, individual consumption and aggregate consumption are not the

same in the model. All aggregate shocks are realized in the beginning of each period before all

decisions are made in that period. The model thus contains the control model as a special case

when the distribution of �(i) becomes degenerate.14

Applying the same transformation as in the control mode, household i�s problem is to solve

maxE0

1X
t=0

�t f�t(i) log ct(i)�Nt(i)g

subject to

ct(i) + (1 + gt)st+1(i) � (1 + rt)st(i) + wtNt(i) (19)

st+1(i) � 0; (20)

where the second inequality is a simple form of borrowing (or liquidity) constraint.15 Denoting

f�(i); �(i)g as the Lagrangian multipliers for constraints (19) and (20), respectively, the �rst-order
conditions for fc(i); n(i); s(i)g are given, respectively, by

�(i)

c(i)
= �(i) (21)

1 = wtE
i
t�(i) (22)

(1 + gt)�t(i) = �Et(1 + rt+1)�t+1(i) + �t(i); (23)

where the expectation operator Ei denotes expectations conditional on the information set of time

t excluding �t(i). Hence, equation (22) re�ects the fact that labor supply nt(i) must be made before

the idiosyncratic taste shocks (and hence the value of �t(i)) are realized. By the law of iterated

14This technique of obtaining analytical solutions in heterogeneous-agent models with borrowing constraints is
based on my other works on inventory theory and money demand theory (Wen, 2008, 2009a, and 2009b). Similar
techniques are also applied by Wang and Wen (2009) to models with heterogeneous �rms. The following analysis
closely follows this literature.
15My analytical method is not limited to log utility. The only problem is how to deal with balanced growth when

the leisure function is linear.
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expectations and the orthogonality assumption of aggregate and idiosyncratic shocks, equation (23)

can be written as

(1 + gt)�t(i) = �Et (1 + rt+1)
1

wt+1
+ �t(i); (24)

where 1
w is the marginal utility of consumption in terms of labor.

The decision rules for an individual�s consumption and savings are characterized by a cuto¤

strategy, taking as given the aggregate environment (such as interest rate and real wage). Consider

two possible cases:

Case A. �t(i) � ��t . In this case the urge to consume is low. It is hence optimal to save

so as to prevent possible liquidity constraints in the future. So st+1(i) � 0, �t(i) = 0 and the

shadow value of good �t(i) = �Et
1+rt+1

(1+gt)wt+1
. Equation (21) implies that consumption is given by

c(i) = �(i)
h
�Et

1+rt+1
(1+gt)wt+1

i�1
. De�ning

x(i) � (1 + rt)st(i) + wnt(i) (25)

as the wealth (cash in hand) of household i, the budget identity (19) then implies (1 + gt) st+1(i) =

xt(i)� �(i)
h
�Et

1+rt+1
(1+gt)wt+1

i�1
. The requirement st+1(i) � 0 then implies

�(i) �
�
�Et

1 + rt+1
(1 + gt)wt+1

�
xt(i) � ��t ; (26)

which de�nes the cuto¤ ��. Notice that the cuto¤ is independent of i because wealth x(i) is

determined before the realization of �t(i) and all households face the same distribution of idiosyn-

cratic shocks. This property simpli�es the computation of the general equilibrium of the model

tremendously.

Case B. �t(i) > ��t . In this case the urge to consume is high. It is then optimal not to

save, so st+1(i) = 0 and �t(i) > 0. By the resource constraint (19), we have ct(i) = xt(i),

which by equation (26) implies c(i) = ��t

h
�Et

1+rt+1
(1+gt)wt+1

i�1
. Equation (21) then implies that the

shadow value is given by �t(i) =
�t(i)
��t

h
�Et

1+rt+1
(1+gt)wt+1

i
: Since �(i) > ��, equation (24) implies

�t(i) =
h
�Et

1+rt+1
wt+1

i h
�(i)
�� � 1

i
> 0. Notice that the shadow value of goods (the marginal utility of

consumption), �(i), is higher under case B than under case A because of the binding borrowing

constraint.

The above analyses imply that the expected shadow value of goods, Ei�(i), and hence the

optimal cuto¤ value ��, is determined by the following asset-pricing equation for savings based on
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(22):

1

wt
=

�
�Et

1 + rt+1
(1 + gt)wt+1

�
R(��t ); (27)

where

R(��t ) �
"Z

�(i)���
dF (�) +

Z
�(i)>��

�(i)

��
dF (�)

#
(28)

measures the extra rate of return to savings due to the liquidity value of the bu¤er stock (i.e.,

a liquidity premium). Equation (27) can be compared with equation (6). The left-hand side

of equation (27) is the utility cost of saving one more unit of liquidity. The right-hand side is

the expected gains of such an investment, which takes two possible values. The �rst is simply the

discounted next-period marginal utility of investment (�Et
1+rt+1

(1+gt)wt+1
) in the case of low consumption

demand (�(i) � ��), which has probability
R
�(i)��� dF (�). The second is the e¤ective rate of return

to investment adjusted by the marginal utility of consumption ( �t(i)��t

�
�Et

1+rt+1
(1+gt)wt+1

�
) in the case

of high demand (�(i) > ��), which has probability
R
�(i)>�� dF (�). The optimal cuto¤ �

� is chosen

so that the marginal cost equals the expected marginal gains. Hence, savings play the role of a

bu¤er stock and the rate of return to liquidity is determined by the real interest rate plus a liquidity

premium, (1 + r)R(��), rather than just by 1 + r. Notice that R(��) > 1 as long as �� lies in the

interior of the support [�L; �H ].

An alternative interpretation of R > 1 is that a saving decision is to exercise an option; the

option value of one dollar exceeds one because it provides liquidity in the case of the urge to consume.

The optimal level of the bu¤er stock is always such that the probability of stockout (being liquidity

constrained) is strictly positive (
R
�(i)>�� dF (�) > 0), so that the option value always exceeds one.

The cuto¤ strategy implies that the optimal level of wealth (cash in hand) in period t is deter-

mined by a "target" policy given by xt(i) = ��t
h
�Et

1+rt+1
(1+gt)wt+1

i�1
, which speci�es that wealth (total

past savings plus labor income) is set to a target level that is independent of �(i) but depends on

the distribution of �(i). Such a target policy was also derived implicitly by Deaton (1991) under

idiosyncratic labor-income shocks in a partial-equilibrium bu¤er-stock model with a constant in-

terest rate and inelastic labor supply. This target policy here implies that individual labor supply

will always adjust so that the wealth level meets its target (recall x(i) = (1 + r)s(i) + wn(i)).

Utilizing equation (27), the decision rules of household i are summarized by

xt(i) = wtR(�
�
t )�

�
t (29)

ct(i) = wtR(�
�
t )�min f�(i); ��t g (30)
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(1 + gt)st+1(i) = wtR(�
�
t )�max f��t � �(i); 0g : (31)

Notice that ct(i) + (1 + gt)st+1(i) = xt(i). Because of the Leontief functional form, an individual�s

consumption function is very concave (as noted by Deaton, 1991). These decision rules imply

that consumption increases one-for-one with wealth for �� < �(i): c(i) = x(i). Beyond the point

�� � �(i), the marginal propensity to consume out of wealth is reduced and becomes less than one:

c(i) = �(i)
�� x(i). Since di¤erent individuals have di¤erent �(i), their turning points are also di¤erent.

More importantly, aggregate shocks will a¤ect the distribution of consumption and savings across

households by a¤ecting the cuto¤ ��t .

Aggregation. Denoting c �
R
c(i)di, s �

R
s(i)di, N �

R
N(i)di, and x �

R
x(i)di and

integrating the household decision rules over i by the law of large numbers, the aggregate variables

are given by

(1 + rt)st + wtNt = wtR(�
�
t )�

� (32)

ct =
D(��t )

��t
[(1 + rt)st + wtNt] (33)

(1 + gt)st+1 =
H(��t )

��t
[(1 + rt)st + wtNt] ; (34)

where

D(��) �
Z
�(i)���

�(i)dF (�) +

Z
�(i)>��

��dF (�) > 0 (35)

H(��) �
Z
�(i)���

[�� � �(i)] dF (�) > 0 (36)

and the functions satisfy D(��) +H(��) = ��, @D@�� = 1� F > 0, and
@H
@�� = F > 0.

Partial-Equilibrium Analysis. Aggregate consumption and savings are related to aggregate

wealth according to the following relationships:

ct =
D(��t )

��t
xt (37)

(1 + gt)st+1 =

�
1� D(�

�
t )

��t

�
xt; (38)

where D(�
�
t )

��t
< 1 is the aggregate marginal propensity to consume (MPC). Aggregate MPC is less

than one because only a fraction of households have MPC equal to one and the rest have MPC

less than one due to a binding borrowing constraint. Notice that @MPC
@�� = (1�F )���D

��2
< 0 because
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(1� F ) �� = D�
R
�(i)��� �(i)dF (�) according to (35). This suggests that a rise in the cuto¤ �

� will

lower the marginal propensity to consume and increase the marginal propensity to save.

Suppose the economy is in a steady state, which is de�ned as the situation without aggregate

uncertainty. Hence, the cuto¤ �� is determined by the relation (27),

�(1 + r)R(��) = 1 + �g: (39)

Because @R
@� < 0, the cuto¤ �� positively depends on the interest rate. That is, a higher interest

rate implies a lower propensity to consume and a stronger saving motive. For simplicity, assume

�g = 0. Equation (38) implies that the wealth level is given by

x = (1 + r) s+ wn =
wn

1� (1 + r) (1�MPC) :

Further assume that r � 0, then the wealth level is approximately given by wn
MPC ; hence, con-

sumption is given by c � wn. That is, consumption is approximately as volatile as labor income
in a partial-equilibrium bu¤er-stock model. This result is independent of the degree (distribution)

of heterogeneity and explains the �ndings of Ludvigson and Michaelides (2001) that borrowing

constraints do not help resolve the excessive smoothness puzzle. However, if the interest rate is

endogenous, then the implications are entirely di¤erent, as we show next.

General-Equilibrium Analysis. Under perfect competition, factor prices are determined

by marginal products, rt + �t = � ytkt and wt = (1 � �) ytNt . Market clearing implies st+1 = kt+1

and
R
Nt(i) = Nt. The constant-returns-to-scale property of the production function implies xt =

yt + (1� �) kt. The aggregate household resource constraint implies the aggregate goods-market
clearing condition,

ct + (1 + gt) kt+1 � (1� �)kt = Atk�t N1��
t (1 + gt)

1�� : (40)

A general equilibrium is de�ned as the sequence fct; yt; Nt; kt+1; wt; rt; ��t g, such that all households
maximize utility subject to their resource and borrowing constraints, �rms maximize pro�ts, all

markets clear, the law of large numbers holds, and the set of standard transversality conditions

are satis�ed.16 The equations needed to solve for the general equilibrium are (27), (33), (34), (40),

and the factor price equations given by �rms��rst-order conditions with respect to fk;Ng. The
aggregate model has a unique steady state. The aggregate dynamics of the model can be solved by

log-linearizing the aggregate model around the steady state and then applying the method outlined

in the previous control-model section to �nd the stationary saddle paths of the growth rates.

16For example, a transversality condition in this model is limt!1 �
t kt+1
wt

= 0, where 1
w
is the shadow value of

capital (marginal utility of consumption).

19



In the special case of � = 1, the model has closed-form solutions for aggregate dynamics. In

this special case, we have xt = yt and

ct =
D(��t )

��t
yt (41)

(1 + gt) kt+1 =
H(��t )

��t
yt (42)

Nt = (1� �)R(��t )��t : (43)

Since w = (1� �) yN , utilizing equation (27), we get

H(��t ) = ��EtR(�
�
t+1)�

�
t+1; (44)

which suggests that ��t = �� for all t (i.e., a constant) is a solution and labor supply is thus �xed

over time. Once the distribution of �t(i) is given, the constant �� can then be solved by equation

(44) and we then have H(�
�)

�� = ��R(��). Substituting this into (41)-(43) gives ct = [1� ��R(��)] yt
and (1 + gt) kt+1 = [��R(��)] yt, which are comparable to (9) and (10) in the control model and

di¤er only by the liquidity premium R.17 Clearly, regardless of the distribution of �, borrowing

constraints do not matter for the model�s aggregate dynamics if � = 1. In such a case, aggregate

consumption will always be as volatile as aggregate income because the marginal propensity to

consume is constant. This special case clearly does not match the U.S. data.

Steady State. The system of equations determining the model�s steady state include

1 + �g = �(1 + r)R(��) (45)

c = wR(��)D(��) (46)

(1 + �g) k = wR(��)H(��) (47)

c+ (�g + �) k = y; (48)

where w = (1� �) yN , r + � = � yk , and y = k�N1�� (1 + �g)1��. This system of seven equations

uniquely solves for the seven endogenous variables fc; k;N; y; w; r; ��g in the steady state.
Notice that, as long as the probability of a binding borrowing constraint is strictly positive (i.e.,

1�F (��) > 0), or the fraction of borrowing constrained population is not zero, then we must have
R(��) > 1. In this case equation (45) implies that the real interest rate is less than the golden-rule

rate implied by equation (6) in the control model. That is, precautionary motives under borrowing

constraints induce households to over save, resulting in dynamic ine¢ ciency. This con�rms the

17When the variance of the distribution for � is degenerate, we have R(��) = D(��) = 1 and �� = [1� ��]�1, so
the bu¤er-stock model reduces completely to the representative-agent RBC model.

20



�ndings of Aiyagari (1994). The distance, jR(��) � 1j, can thus be used as a measure of dynamic
ine¢ ciency. The model becomes dynamically e¢ cient when R(��) = 1, which is then identical to

an RBC model without borrowing constraints. As will be shown shortly, when the variance of �t(i)

approaches zero, we must have R(��) approach one; so borrowing constraints will cease to bind in

the limit and the model reduces to the control model.

In the steady state, equation (45) implies that the output-capital ratio must satisfy (1 + �g) =

�
�
1� � + � yk

�
R(��). Equations (46) and (47) imply the consumption-capital ratio, ck = (1 + �g)

D
H .

Substituting this consumption-capital ratio into the resource constraint (48) gives another equation

for the output-capital ratio: (1 + �g) DH +�g+� =
y
k . Putting these two restrictions for output-capital

ratio together gives the following implicit equation to uniquely solve for the cuto¤ value:

1 + �g

R(��)
= �

�
1� � + �

�
�g + � + (1 + �g)

D(��)

H(��)

��
: (49)

Because @R(�
�)

@�� < 0, the left-hand side (LHS) increases monotonically with �� and has its maximum

equal to LHS(�H) = 1+ �g and minimum equal to LHS(�L) = (1 + �g)
�L
E� < 1+ �g, where E� is the

mean. On the other hand, because @(D=H)
@�� = (1�F )H�FD

H2 = H�F��
H2 = �

hR
���� �(i)dF

i
=H2 < 0,

the right-hand side (RHS) decreases with �� with its maximum equal to in�nity at �� = �L because

D(�L) = �L and H(�L) = 0, and with its minimum given by �
h
1� � + �

�
�g + � + (1 + �g) E�

�H�E�

�i
.

Hence, as long as

1 + �g > �

�
1� � + �

�
�g + � + (1 + �g)

E�

�H � E�

��
; (50)

a unique interior solution for �� exists. Condition (50) is satis�ed if agents are su¢ ciently impatient

(i.e., with � small enough) and the distribution of � is not degenerate (i.e., �H > E�).

With the cuto¤ value �� determined, the capital-output ratio and consumption-output ratio are

then given by

k

y
=

��R(��)

1 + �g � �(1� �)R(��) (51)

c

y
= 1� (�g + �) ��R(��)

1 + �g � �(1� �)R(��) ; (52)

respectively, which di¤er from those in the control model (7 and 8) by the liquidity premium

R(��) > 1. These ratios become identical to those in the control model when the borrowing

constraint no longer binds (i.e., R(��) = 1 when Pr [�(i) > ��] = 0).
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Calibration and Impulse Responses. To facilitate quantitative analysis, we assume the

idiosyncratic shocks �(i) follow the Pareto distribution, F (�) = 1 � ���, with � > 1 and the

support � 2 (1;1). With the Pareto distribution, we have

R(��t ) = 1 +
1

� � 1�
��� (53)

D(��) =
�

� � 1 �
1

� � 1�
�1�� (54)

H(��) = �� � �

� � 1 +
1

� � 1�
�1��: (55)

As in the control model, we set the time period to be a quarter of a year, and � = 0:98; � = 0:025,

and � = 0:4. We choose a degree of heterogeneity by setting the shape parameter � = 1:5 as

our benchmark value.18 The impulse responses of the model to a 1% increase in the growth rate

of labor-augmenting technology gt, with persistence �g = 0:23, are shown in Figure 2 (where

the dashed lines represent the impulses of gt). The �gure shows that the impulse responses of the

heterogeneous-agent bu¤er-stock model are qualitatively similar to those in the representative-agent

control model. Quantitatively, however, there are important di¤erences.

Under the calibrated parameter values, the steady-state capital-output ratio is 8:657 in the

bu¤er-stock model and is 7:193 in the control model. Hence, the saving rate has increased by about

0:20% because of borrowing constraints. The probability for the borrowing constraint to bind is

1 � F (��) = ���� = 0:005, or half of 1%. This is not surprising given the analysis of Krusell and
Smith (1998). That is, rational individuals take into consideration the borrowing constraints and

opt to save aggressively so as to reduce the probability of binding constraints. With � close to 1

(which is the well-known Zipf distribution), say � = 1:05, the precautionary saving motive becomes

even stronger because the degree of uncertainty is much greater. As a result, the probability of a

binding borrowing constraint is further reduced to 0:0018, and the steady-state capital-output ratio

is now about 20, nearly three times higher than that in the control model. This is an extraordinary

amount of savings and indicates how borrowing constraints a¤ect people�s saving behaviors under

uncertainty.

18The variance of the Pareto distribution is a decreasing function of �. The empirical literature based on distrib-
utions of income and wealth typically �nds � 2 (1:1; 3:5) or centered around 1:5 � 2:5 (see, e.g., Wol¤, 1996; Fermi,
1998; Levy and Levy, 2003; Clementi and Gallegati, 2005; and Nirei and Souma, 2007). Hence, � = 1:5 is within the
empirical estimates. However, other values of � will also be studied.
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Figure 2. Impulse Responses to Technology Growth (Bu¤er-Stock Model).

Table 2 reports the predicted second moments of the bu¤er-stock model under the calibrated

parameter values (Model 1 in Table 2). With borrowing constraints, the relative volatility of

consumption growth has declined to 0:61, a more than 10% reduction compared with a value of

0:68 in the control model. The sensitivity measure has also increased from 0:15 to 0:16, albeit an

insigni�cant amount. As in the control model, increasing capital�s income share (�) will increase

both the smoothness and sensitivity of consumption (Model 3 in Table 2); but the discrepancies

between the model and data cannot be completely eliminated.

Most notably, when the degree of idiosyncratic uncertainty is further increased (say � = 1:15),

then the bu¤er-stock saving model is able to perfectly match the excess smoothness of the data

(see Model 5 in Table 2 where the predicted relative volatility of consumption growth is 0:51).

However, this has little e¤ect on the excess sensitivity puzzle. On the other hand, a combination

of strong borrowing constraints and impatience (i.e., � = 1:25 and � = 0:92 as in Model 6 in Table

2), the model can resolve both puzzles perfectly: the relative volatility of consumption growth is

0:50 and its correlation with lagged income growth is 0:27. However, the cost is that the implied
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capital-output ratio is too low, about 6:3 (this number is around 10 in the data). We can also show

that the model�s dynamics converge to those of the control model when borrowing constraints are

relaxed by increasing the shape parameter in the Pareto distribution (�). For example, when � = 3

(Model 7 in Table 2), there is virtually no di¤erence between the predictions of the bu¤er-stock

model and those of the representative-agent model (Model 1 in Table 1).

Table 2. Predicted Second Moments (Bu¤er-Stock Model)

�c=�y cor(ct; yt�1)

U.S. Data 0.51 0.28

Model 1 (� = 0:4) 0.61 0.16
Model 2 (� = 0:2) 0.66 0.13
Model 3 (� = 0:6) 0.56 0.21
Model 4 (� = 0:9) 0.58 0.31
Model 5 (� = 1:15) 0.51 0.15
Model 6 (� = 1:25; � = 0:92) 0.50 0.27
Model 7 (� = 3:0) 0.68 0.15

The reason that borrowing constraints can signi�cantly increase the smoothness of consumption

growth relative to income growth is not mainly because consumers are unable to borrow when

income growth rises, but rather because rational consumers have a much stronger incentive to

save so as to relax future borrowing constraints.19 This result di¤ers from that in Ludvigson

and Michaelides (2001), where they show that borrowing constraints cannot signi�cantly reduce

the volatility of consumption relative to income and are thus not e¤ective in resolving the excess

smoothness puzzle.

4 Habit Formation

Michaelides (2002) shows that habit formation is very e¤ective in resolving both the excess smooth-

ness puzzle and the excess sensitivity puzzle.20 However, Michaelides�analysis is carried out in the

traditional partial-equilibrium framework with a constant interest rate. It is therefore interesting

to extend his analysis to general equilibrium to see if his results are robust. To make the general-

equilibrium model with habit formation analytically tractable, we assume external habit rather

than internal habit.
19This forward-looking precautionary saving behavior is also noted by Zelds (1989b).
20Articles proposing habit formation as a possible resolution to consumption puzzles also include Deaton (1992)

and Sommer (2007), among others.
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By a similar transformation as in the previous sections, household i�s objective function can be

written as

maxE0

1X
t=0

�t
�
�t(i) log

�
ct(i)�

�

1 + gt�1
ct�1

�
�Nt(i)

�
;

where 1 + gt�1 =
Zt�1
Zt�2

, subject to (19) and (20). The �rst-order conditions for fn(i); s(i)g are the

same as before but that for c(i) is replaced by

�(i)

c(i)� �
1+gt�1

ct�1
= �(i): (56)

Because lagged consumption is taken as parametric by individuals, it does not change the way

the decision rules are derived in the previous section. Hence, the decision rules of household i are

summarized by

ct(i) = wtR(�
�
t )�min f�(i); ��t g+

�

1 + gt�1
ct�1 (57)

(1 + gt)st+1(i) = wtR(�
�
t )�max f��t � �(i); 0g (58)

xt(i) = wtR(�
�
t )�

�
t +

�

1 + gt�1
ct�1; (59)

where the the liquidity premium, R(��), is the same as in (27) and (28). These decision rules are

similar to those in the previous section except the consumption and the target-wealth level both

have an additional term, �
1+gt�1

ct�1. This shows that habit formation makes consumption history-

dependent and raises the target wealth level by an amount determined by that history. That is, the

optimal plan for wealth accumulation is again a target policy as before but with the target level

also depending on the average living standard of other households in the economy (ct�1). This

suggests a higher saving rate than the case without habit formation.

These decision rules imply that the relationship between consumption and wealth is given by

ct(i) = xt(i)

�
min f�(i); ��t g

��

�
+

�

1 + gt�1
ct�1

�
max f�� � �(i); 0g

��

�
:

Thus, habit formation signi�cantly alters the growth dynamics of consumption in the following

sense: When �� � �(i), we have ct(i) = xt(i) as in the case without habit; namely, the marginal

propensity to consume is one. However, when �� > �(i), we have ct(i) = xt(i)
�(i)
�� +

�
1+gt�1

ct�1
����(i)
�� .

In this latter case, although the marginal propensity to consume is less than one (because �(i)�� < 1),

consumption is also raised by the term, �
1+gt�1

ct�1
h
maxf����(i);0g

��

i
> 0, which positively depends
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on the value of � . This implies that the stronger the degree of habit formation, the smoother the

consumption. Hence, the growth rate of consumption is less volatile with habit formation than

without. Also, because habit formation increases the serial correlation in consumption growth, it

will also enhance the sensitivity of current-period consumption growth towards changes in lagged

income.

The aggregated decision rules are given by

ct = wtR(�
�
t )D(�

�
t ) +

�

1 + gt�1
ct�1 (60)

(1 + gt)st+1 = wtR(�
�
t )H(�

�
t ) (61)

xt = (1 + rt)st + wNt = wtR(�
�
t )�

� +
�

1 + gt�1
ct�1; (62)

where the functions D(��) and H(��) are the same as in (35) and (36). In general equilibrium,

st = kt, xt = yt + (1� �) kt; hence, aggregate consumption and savings are related to aggregate
output according to the following relationships:

ct =
D(��t )

��t
(yt + (1� �) kt) +

�
1� D(�

�)

��

�
�

1 + gt�1
ct�1 (63)

(1 + gt)kt+1 =

�
1� D(�

�
t )

��t

�
(yt + (1� �) kt)�

�
1� D(�

�)

��

�
�

1 + gt�1
ct�1; (64)

where, as before, D(�
�
t )

��t
is the aggregate MPC with MPC < 1 and @MPC

@�� < 0.

Steady State. The system of equations determining the steady state of the habit-formation

model is the same as in (45)-(48) except the consumption function is replaced by

c =
1

1� �
1+�g

wR(��)D(��): (65)

As in the previous section, the output-capital ratio must satisfy (1 + �g) = �
�
1� � + � yk

�
R(��).

Equations (65) and (61) imply the steady-state consumption-capital ratio, ck =
(1+�g)
1� �

1+�g

D
H . These

relationships together with resource constraint (48) give the following implicit equation to solve for

the cuto¤ value that is analogous to (49):

1 + �g

R(��)
= �

"
1� � + �

 
�g + � +

(1 + �g)

1� �
1+�g

D(��)

H(��)

!#
: (66)
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Because @(D=H)
@�� < 0, the right-hand side implies that, everything else equal, the larger the value

of � , the higher the cuto¤ ��. With the cuto¤ value �� determined, the capital-output ratio and

consumption-output ratio are then given by

k

y
=

��R(��)

1 + �g � �(1� �)R(��) (67)

c

y
= 1� (�g + �) ��R(��)

1 + �g � �(1� �)R(��) ; (68)

respectively, which di¤er from those in the previous bu¤er-stock model only because the values

of �� in the two models are di¤erent. In particular, since �� is larger with habit formation, the

capital-output ratio is lower (because @R@� < 0). That is, habit formation reduces the rate of saving.

The reason can be seen from equation (??). A higher degree of habit formation (�) raises the level

of consumption by (i) increasing the relative weight of the habit stock in the consumption function

and (ii) decreasing the marginal propensity to consume (mpc = D(��)
�� ) out of wealth (y+(1� �) k).

This suggests that habit formation does not necessarily enhance the positive link between growth

and saving, in sharp contrast to the analysis of Carroll, Overland, and Weil (2000) in a model with

constant marginal product of capital.

Calibration and Impulse Responses. As a benchmark value, we set � = 0:4. The rest of

the parameters are set at the same values as in the previous model; that is, � = 0:98; � = 0:4;

� = 0:025; � = 1:5, and �g = 0:01. The impulse responses are shown in Figure 3 (where the dashed

lines represent the impulses of gt). The most notable di¤erence in Figure 3 compared with Figure

2 is that consumption growth (top left window) is much smoother than before.

The predicted second moments of the habit-model are reported in Table 3. The e¤ects of habit

formation in reducing consumption volatility and enhancing its sensitivity to lagged income is

obvious from the table. When � = 0:4 (Model 1 in Table 3), the standard deviation of consumption

relative to output matches the U.S. data almost perfectly. At the same time, the sensitivity measure

is also increased remarkably to 0:50. However, habit formation tends to over-kill the sensitivity

puzzle: In comparison with the model, the data exhibit excess insensitivity rather than excess

sensitivity of consumption to lagged income. When � = 0:2 (Model 2 in Table 3), the excess

insensitivity problem is less severe, but the e¤ect on consumption volatility is weakened.
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Figure 3. Impulse Responses to Technology Growth (Habit Model).

A perfect match on both dimensions can be achieved with the help of a tightened borrowing

constraint. For example, when � = 1:25 and � = 0:15 (Model 3 in Table 3), the relative volatility of

consumption growth is the same as in the data (0:51) and the sensitivity measure is also close to the

data (0:29). In the meantime, the implied capital-output ratio is 10:6, matching the data almost

perfectly. This reinforces the previous two basic �ndings: (i) borrowing constraints are e¤ective in

resolving the excess smoothness puzzle but not for the excess sensitivity puzzle; (ii) habit formation

is very e¤ective in resolving the excess smoothness puzzle but it generates an excess insensitivity

puzzle. Therefore, a proper combination of these two factors can e¤ectively eliminate both puzzles.

The reason that habit formation has a much stronger relative force in raising the sensitivity of

consumption than in reducing its volatility is that, as habit level rises, output also become much

less volatile through the reduction in labor supply (under the well-known intertemporal substitution

e¤ect) and much more serially correlated. Hence, this leads to a signi�cant increase in its power to

predict future consumption growth. However, this tends to over-kill the excess sensitivity puzzle:

The bottom row in Table 3 (RBC model) shows that in the absence of borrowing constraints, habit
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formation alone (� = 0:5) can resolve the excess smoothness puzzle (�c=�y = 0:51) but creates an

excess insensitivity puzzle (cor(ct; yt�1) = 0:56 in the model but 0:28 in the data).

Table 3. Predicted Second Moments (Habit Model)

�c=�y cor(ct; yt�1)

U.S. Data 0.51 0.28

Model 1 (� = 0:4) 0.50 0.50
Model 2 (� = 0:2) 0.55 0.33
Model 3 (� = 1:25; � = 0:15) 0.51 0.29
RBC with Habit (� = 0:5) 0.51 0.56

5 Conclusion

This paper provides an analytical approach to inspecting bu¤er-stock saving behavior in general

equilibrium under borrowing constraints. My approach greatly simpli�es the analysis and reduces

the computational costs. Consequently, the mechanisms of bu¤er-stock saving become more trans-

parent even with a time-varying interest rate and endogenous labor income. The methodology

is applied to addressing two long-standing puzzles in consumption theory: the "excess smooth-

ness" and "excess sensitivity" of consumption growth with respect to income growth. My analysis

shows: (i) In contrast to the analysis of Campbell and Deaton (1989), the PIH is not per se the

root of the puzzles, but the assumption of a constant (or exogenous) interest rate is; consequently,

the excess smoothness and excess sensitivity of consumption growth have been exaggerated. (ii)

Borrowing constraints are able to resolve the excess-smoothness puzzle if the degree of idiosyn-

cratic uncertainty is strong enough; but it is not able to solve the excess-sensitivity puzzle. (iii)

Habit formation is very e¤ective in eliminating the excess-smoothness puzzle but it "over-kills" the

excess-sensitivity puzzle. In this regard, habit formation creates an "excess insensitivity" puzzle.

However, a combination of weak habit formation and strong borrowing constraints can resolve both

puzzles simultaneously.
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Appendix
This appendix shows that my methodology to solving bu¤er-stock saving models analytically is

neither restricted to idiosyncratic preference shocks nor relies on a degenerate wealth distribution.

Here I give an example by considering a multiplicative shock to individuals�wealth-income (or cash

in hand), x(i) = (1 + rt) st(i) + wNt(i). In the model, household i solves

maxE

1X
t=0

�t flog ct(i)�Nt(i)g

subject to

ct(i) + (1 + gt) st+1(i) � "t(i) [(1 + rt) st(i) + wNt(i)] (69)

st+1(i) � 0; (70)

where "(i) is an idiosyncratic i:i:d: shock with support " 2 ["L; "H ] and the cumulative distribution
function F ("). Denoting f�(i); �(i)g as the Lagrangian multipliers for constraints (69) and (70),
respectively, the �rst-order conditions for fc(i); n(i); s(i)g are given, respectively, by

1

c(i)
= �(i) (71)

1 = wtE
i
t"t(i)�(i) (72)

(1 + gt)�t(i) = �Et(1 + rt+1)"t+1(i)�t+1(i) + �t(i); (73)

where the expectation operator Ei denotes expectations conditional on the information set of time

t excluding "t(i). Hence, equation (72) re�ects the fact that labor supply nt(i) must be made before

the idiosyncratic wealth shocks (and hence the value of �t(i)) are realized. By the law of iterated

expectations and the orthogonality assumption of aggregate and idiosyncratic shocks, equation (73)

can be written (by using 72) as

(1 + gt)�t(i) = �Et (1 + rt+1)
1

wt+1
+ �t(i): (74)

Similar to the previous analysis, the decision rules for an individual�s consumption and savings

are characterized by a cuto¤ strategy where the cuto¤ is de�ned by "�. Consider two possible cases:

Case A. "t(i) � "�t . In this case the wealth level is high. It is hence optimal to save so as to

prevent possible liquidity constraints in the future when wealth may be low. So st+1(i) � 0, �t(i) =

0, and the shadow value of good �t(i) = �Et
1+rt+1

(1+gt)wt+1
. Equation (71) implies that consumption is

given by c(i) =
h
�Et

1+rt+1
(1+gt)wt+1

i�1
. De�ning

x(i) � (1 + rt)st(i) + wnt(i) (75)
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as the wealth (cash in hand) of household i in the absence of the idiosyncratic shock, the budget

constraint (69) then implies (1 + gt) st+1(i) = "t(i)xt(i) �
h
�Et

1+rt+1
(1+gt)wt+1

i�1
. The requirement

st+1(i) � 0 then implies

"t(i) �
1

xt(i)

�
�Et

1 + rt+1
(1 + gt)wt+1

��1
� "�t ; (76)

which de�nes the cuto¤ "�. Notice that the cuto¤ is independent of i because wealth x(i) is deter-

mined before the realization of "t(i) and all households face the same distribution of idiosyncratic

shocks.

Case B. "t(i) < "�t . In this case the wealth level is low. It is then optimal not to save, so

st+1(i) = 0 and �t(i) > 0. By the resource constraint (69), we have ct(i) = "t(i)xt(i), which by

equation (76) implies c(i) = "t(i)
"�t

h
�Et

1+rt+1
(1+gt)wt+1

i�1
. Equation (71) then implies that the marginal

utility of consumption is given by �t(i) =
"�t
"t(i)

h
�Et

1+rt+1
(1+gt)wt+1

i
: Since "(i) < "�, equation (74)

implies �t(i) =
h
�Et

1+rt+1
wt+1

i �
"�

" � 1
�
> 0.

The above analyses imply that the expected shadow value of goods, Ei"(i)�(i), and hence the

optimal cuto¤ value "�, is determined by the following equation for savings based on (72):

1

wt
=

�
�Et

1 + rt+1
(1 + gt)wt+1

�
R("�t ); (77)

where

R("�t ) �
�Z
"<"�

"�dF (") +

Z
"�"�

"dF (")

�
: (78)

Notice that, unlike the case with preference shocks, the value of R("�) is no longer necessarily

greater than one because the option value of liquidity is now measured by R("�)
"� instead of by

R("�). However, here we have something analogous: R("�) > "�. The cuto¤ strategy continues to

imply that the optimal level of wealth (cash in hand) in period t is determined by a "target" policy

given by xt(i) = 1
"�t

h
�Et

1+rt+1
(1+gt)wt+1

i�1
. Thus, labor supply will still adjust so that the wealth level

meets its target, as in the previous sections.

Utilizing equation (77), the decision rules of household i are summarized by

ct(i) = wtR("
�
t )�min

�
"(i)

"�
; 1

�
(79)

(1 + gt)st+1(i) = wtR("
�
t )�max

�
"(i)� "�
"�

; 0

�
(80)
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xt(i) = wtR("
�
t )"

�(�1)
t : (81)

Notice that ct(i) + (1 + gt)st+1(i) = "t(i)xt(i). Denoting c �
R
c(i)di, s �

R
s(i)di, N �

R
N(i)di,

and x �
R
x(i)di and integrating the household decision rules over i by the law of large numbers,

the aggregate variables are given by

ct = wtR("
�
t )D("

�
t ) (82)

(1 + gt)st+1 = wtR("
�
t )H("

�
t ) (83)Z

"(i)x(i)di = �" [(1 + rt)st + wNt] = wtR("
�
t )
�"

"�t
; (84)

where �" is the mean of "(i) and

D("�) �
Z
"�"�

"

"�
dF (") + 1� F ("�) (85)

H("�) �
Z
">"�

"

"�
dF (")� (1� F ("�)) (86)

and these two functions satisfy D("�) + H("�) = �"
"� , "

�D < �", @D@"� < 0, and @H
@"� < 0. Aggregate

consumption and savings are related to aggregate wealth (
t � �"xt) according to the following

relationships:

ct =
"�t
�"
D("�t )
t (87)

(1 + gt)st+1 =

�
1� "

�

�"
D

�

t; (88)

where "�t
�" D("

�
t ) < 1 is the aggregate marginal propensity to consume (MPC).

In general equilibrium, we have rt + �t = � ytkt and wt = (1 � �) ytNt . Market clearing implies

st+1 = kt+1 and
R
Nt(i) = Nt. The constant-returns-to-scale property of the production function

implies xt = yt + (1� �) kt. The aggregated household resource constraint implies the aggregate
goods-market clearing condition,

ct + (1 + gt) kt+1 � �"(1� �)kt = �"yt: (89)

Notice the wedge in the aggregate budget identity, �". This wedge exists because of the idiosyncratic

weal shock.

In the special case of � = 1, the model also has closed-form solutions with xt = yt and

ct =

�
"�t
�"
D("�t )

�
�"yt (90)
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(1 + gt) kt+1 =

�
1� "

�
t

�"
D("�t )

�
�"yt (91)

Nt = (1� �)
R("�t )

"�t
: (92)

Since w = (1� �) yN , utilizing equation (77), we get�
�"

"�t
�D("�t )

�
= ��Et

R("�t+1)

"�t+1
; (93)

which suggests that "�t = "� for all t (i.e., a constant) is a solution and labor supply is constant

over time. Once the distribution of "t(i) is given, the constant "� can then be solved by equation

(93) and we then have
h
1� "�t

�" D("
�
t )
i
= ��1�"R("

�). Substituting this into equations (90) and (91)

gives ct =
�
1� ���"�1R(��)

�
�"yt and (1 + gt) kt+1 =

�
���"�1R(��)

�
�"yt.21 Hence, as in the previous

bu¤er-stock models, regardless of the distribution of ", borrowing constraints do not matter for the

model�s aggregate dynamics when � = 1.

The model�s steady state and impulse responses can be solved analogously to the previous

sections. Since the steps are similar, they are not repeated here. When we assume that the

distribution of "(i) is given by the power function, F (") =
�
"(i)
"max

��
, with support "(i) 2 [0; "max]

and the upper-bound parameter "max =
(1+�)
� so that the mean �" = 1, the results of this model are

then completely identical to those obtained in the previous sections when the variance of wealth

shocks is chosen properly to match that of preference shocks in the previous models.22

21When the variance of the distribution for " is degenerate, we have R(��) = "� = �", so this bu¤er-stock model
also reduces completely to the representative-agent RBC model.
22A power-law distribution is the inverted Pareto distribution. That is, if " follows the Pareto distribution, then

"�1 follows the power distribution.
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