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1 Introduction

Forecasters are well aware of the so–called principle of parsimony: “simple, parsi-

monious models tend to be best for out–of–sample forecasting...” (Diebold (1998)).

Although an emphasis on parsimony may be justified on various grounds, parameter

estimation error is one key reason. In many practical situations, estimating additional

parameters can raise the forecast error variance above what might be obtained with

a simple model. Such is clearly true when the additional parameters have population

values of zero. But the same can apply even when the population values of the addi-

tional parameters are non–zero, if the marginal explanatory power associated with the

additional parameters is low enough. In such cases, in finite samples the additional

parameter estimation noise may raise the forecast error variance more than including

information from additional variables lowers it.1

As this discussion suggests, parameter estimation noise creates a forecast accuracy

tradeoff. Excluding variables that truly belong in the model could adversely affect

forecast accuracy. Yet including the variables could raise the forecast error variance

if the associated parameters are estimated sufficiently imprecisely. In light of such a

tradeoff, combining forecasts from the unrestricted and restricted (or parsimonious)

models could improve forecast accuracy. Such combination could be seen as a form

of shrinkage, which various studies, such as Stock and Watson (2003), have found to

be effective in forecasting.

For non-nested models, the motivation for model combination is clear even if

the population values of the parameters are known; combination integrates the two

distinct information sets being used in the models. Optimal weights are then a

regression exercise (Bates and Granger, 1969). However, in the case of nested models,

this approach does not work. If the population values of the parameters are known,

one of the models necessarily forecast encompasses the other and hence the optimal

combining weights are trivially either zero or one. Therefore, combination can only

be relevant for nested models if the parameters are estimated and the sample size

is finite. In such an environment, and under some simplifying assumptions such as

strict exogeneity of regressors and i.i.d. errors, it is possible to work through one-step

1For example, simulation evidence in Clark and McCracken (2006) shows that even though the
true model relates inflation to the output gap, in finite samples a simple AR model for inflation will
often (although not always) forecast as well as or better than the true model.
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ahead forecast error variance calculations to determine the combining weights that

would be optimal for forecasting in period T + 1, based on models estimated with T

observations. However, such analytics are very limiting — ruling out, for example,

lagged dependent variables and conditionally heteroskedastic errors.

Accordingly, this paper uses a different approach to develop a general theoretical

basis for combining forecasts from nested models, and provides Monte Carlo and

empirical evidence on the effectiveness of the proposed combinations. Our analytics

are based on models we characterize as “weakly” nested: the unrestricted model is the

true model, but a subset of the coefficients (those not part of the restricted model) are

treated as being local-to-zero.2 This analytic approach captures the practical reality

that the predictive content of some variables of interest is often quite low. That the

unrestricted model ”converges” to the restricted model might, at face value, be seen

as counterintuitive. However, the local asymptotics should be seen as a convenient

analytical device, rather than a modeling procedure. This device allows us to capture

the case in between the extremes noted above — that either the restricted model or

the unrestricted model perfectly forecast encompasses the other. The same type of

analytical device has been used effectively in the literatures on unit-root or near-unit

root inference and weak instruments, despite limiting case implications that might

also seem counterfactual (e.g., implying unit roots in inflation or interest rates, or

instruments uncorrelated with endogenous variables).3

Under the weak nesting specification, we are able to derive weights for combining

the forecasts from estimates of the restricted and unrestricted models that are optimal

in the sense of minimizing the forecast mean square error (MSE). We then characterize

the settings under which the combination forecast will be more accurate than the

restricted or unrestricted forecasts. In the special case in which the coefficients on

the extra variables in the unrestricted model are of a magnitude that makes the

restricted and unrestricted models equally accurate, the MSE–minimizing forecast is

a simple, equally–weighted average of the restricted and unrestricted forecasts.

In the Monte Carlo and empirical analysis, we show our proposed approach of

2Although we focus the presented analysis on nested linear models, our results could be general-
ized to nested nonlinear models.

3In fact, Hansen (2008) uses near-unit root asymptotics to motivate model averaging of OLS-
estimated autoregressive models that either do (restricted) or do not (unrestricted) impose a unit
root in much the same way we do using local-to-zero asymptotics.

2



combining forecasts from nested models to be effective for improving accuracy. Ad-

mittedly, the gains to averaging are often modest or even small. However, the gains

are very consistent: in practice, in our results, averaging is very likely to improve on

the accuracy of both the restricted and unrestricted model forecasts. Moreover, in

practice, most of the benefits can be achieved at low cost, via simple, equal-weight av-

erages. These simple averages typically perform at least as well as more complicated

averages. In particular, in the applications, our proposed combination approaches

work well compared to related alternatives, consisting of Bayesian–type estimation

with priors that push certain coefficients toward zero and Bayesian model averaging

of the restricted and unrestricted models.

Our results build on much prior work on forecast combination. Research focused

on non–nested models ranges from the early work of Bates and Granger (1969) to

recent contributions such as Stock and Watson (2003) and Elliott and Timmermann

(2004). Combination of nested model forecasts has been considered only occasionally,

in such studies as Goyal and Welch (2003) and Hendry and Clements (2004). Our

approach most closely resembles the nested model combination in Hansen (2008)

but for a stationary rather than non-stationary environment. Forecasts based on

Bayesian model averaging as applied in such studies as Wright (2003) and Jacobson

and Karlsson (2004) could also combine projections from nested models.

The paper proceeds as follows. Section 2 provides theoretical results on the possi-

ble gains from combination of forecasts from nested models. In section 3 we present

Monte Carlo evidence on the finite sample effectiveness of our proposed forecast com-

bination methods. Section 4 compares the effectiveness of the forecast methods in a

range of empirical applications. Section 5 concludes. Additional theoretical details

are presented in Clark and McCracken (2006).

2 Theory

We begin by using a simple example to illustrate our essential ideas and results. We

then proceed to the more general case. After detailing the necessary notation and

assumptions, we provide an analytical characterization of the bias-variance tradeoff,

created by weak predictability, involved in choosing among restricted, unrestricted,

and combined forecasts. We then derive the optimal combination weights.
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2.1 A simple example

Suppose we are interested in forecasting yt+1 using a simple model relating yt+1 to

a constant and a strictly exogenous, scalar variable xt. Suppose, however, that the

predictive content of xt for yt+1 may be weak. To capture this possibility, we model

the population relationship between yt+1 and xt using local-to-zero asymptotics, such

that, in large samples, the predictive content of xt shrinks to zero (assume that, apart

from the local element, the model fits in the framework of the usual classical normal

regression model, with homoskedastic errors, etc.):

yt+1 = β0 + T−1/2β1xt + ut+1, E(xtut+1) = 0, E(u2
t+1) = σ2. (1)

In light of x’s weak predictive content, the forecast from an estimated model

relating yt+1 to a constant and xt (henceforth, the unrestricted model) could be less

accurate than a forecast from a model relating yt+1 to just a constant (the restricted

model). Whether that is so depends on the “signal” and “noise” associated with xt

and its estimated coefficient. Under the local asymptotics incorporated in the DGP

(1), the signal–to–noise ratio is proportional to β2
1σ

2
x/σ

2. Given σ2 and σ2
x (or β1),

higher values of the coefficient on x (or the variance of x) raise the signal relative

to the noise; given the other parameters, a higher residual variance σ2 increases the

noise, reducing the signal-to-noise ratio. In general, noise associated with estimating

the coefficient on x creates a forecast accuracy tradeoff. Excluding x could adversely

affect forecast accuracy, while including it could increase the forecast error variance

if the coefficient is estimated sufficiently imprecisely.

In light of this tradeoff between predictive content and additional noise from pa-

rameter estimation, a combination of the unrestricted and restricted model forecasts

could be more accurate than either of the individual forecasts. We consider a com-

bined forecast that puts a weight of α∗t on the restricted model forecast and 1−α∗t on

the unrestricted model forecast. We then analytically determine the weight α∗t that

yields the forecast with lowest expected squared error in period t+ 1.

As we establish more formally below, the (estimated) MSE–minimizing combina-

tion weight α∗t is a function of the signal–to–noise ratio:

α̂∗t =
[
1 +

(√
t b̂1

)2
σ̂2
x/σ̂

2
]−1

, (2)

where b̂1 denotes the coefficient on x (
√
tb̂1 corresponds to an estimate of the local
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population coefficient β1), σ̂
2
x denotes the variance of x, and σ̂2 denotes the residual

variance, all estimated at time t (for forecasting at t+ 1).4 As this result indicates, if

the predictive content of x is such that the signal-to-noise ratio equals 1, then α̂∗t = .5:

the MSE–minimizing forecast is a simple average.

Admittedly, the local-to-zero asymptotic implication that the true model con-

verges to the restricted model might strike some as counterintuitive. However, we

view the local-to-zero setup as a convenient analytical device, as opposed to a mod-

eling device, which ultimately leads to model combination that matches up with

intuition. This device allows us to capture the case in between the extremes provided

by conventional asymptotics — those extremes being that either the restricted model

or the unrestricted model forecast encompasses the other. Under the local approxi-

mation, for a given β1, the predictive content of xt declines to zero as the sample size

diverges. This approximation allows us to derive limiting forecast moments such that

even though the larger model is the true one, it may or may not be more accurate

than the smaller model — a result that conventional asymptotics applied to estimated

models cannot deliver under general conditions. But this approximation shouldn’t be

taken to mean we intend to model the predictive content of xt as declining as fore-

casting moves forward for a given data sample. Rather, in a practical setting, we

view the value of β1/
√
T as being fixed, which implies that, as the sample expands,

the implicit β1 is increasing. In turn, as the sample expands as forecasting moves

forward in time, the predictive content of xt rises, such that the optimal combination

forecast gradually puts increasing weight on the unrestricted model — as intuition

suggests should occur, and indeed does in our Monte Carlo and empirical results.

2.2 The general case: environment

In the general case, the possibility of weak predictors is modeled using a sequence of

linear DGPs of the form (Assumption 1)

yT,j+τ = x′T,2,jβ
∗
T + uT,j+τ = x′T,1,jβ

∗
1 + x′T,22,j(T

−1/2β∗22) + uT,j+τ , (3)

ExT,2,juT,j+τ ≡ EhT,j+τ = 0 for all j = 1, ...t, t = T − P + 1, ...T,

4Clements and Hendry (1998) derive a similar result, for the combination of a forecast based
on the unconditional mean and a forecast based on an AR(1) model without intercept, the model
assumed to generate the data.
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where P denotes the number of predictions considered. Note that we allow the depen-

dent variable yT,j+τ , the predictors xT,2,j and the error term uT,j+τ to depend upon

T , the final forecast origin. We make this explicit in the notation to emphasize that

as the overall sample size is allowed to increase in our asymptotics, this parameteri-

zation affects their marginal distributions. While this is obvious for yT,j+τ it is also

true for xT,2,j if lagged values of the dependent variable are used as predictors. As

such, our analytical results are based upon assumptions made on the triangular array

{{yT,j, x′T,2,j}T+τ
j=1 }T≥1.

For a fixed value of T , our forecasting agent observes the sequence {yT,j, x′T,2,j}tj=1

sequentially at each forecast origin t = T − P + 1, ...T . Forecasts of the scalar

yT,t+τ , τ ≥ 1, are generated using a (k × 1, k = k1 + k2) vector of covariates xT,2,t =

(x′T,1,t, x
′
T,22,t)

′, linear parametric models x′T,i,tβ
∗
i , i = 1, 2, and a combination of the

two models, αtx
′
T,1,tβ

∗
1 + (1 − αt)x′T,2,tβ∗2. The parameters are estimated using OLS

(Assumption 2) and hence β̂i,t = arg minβi
t−1∑t−τ

j=1 (yT,j+τ − x′T,i,jβi)
2, i = 1, 2, for

the restricted and unrestricted models, respectively.5 We denote the loss associated

with the τ -step ahead forecast errors as û2
T,i,t+τ = (yT,t+τ − x′T,i,tβ̂i,t)2, i = 1, 2, and

û2
T,W,t+τ = (yT,t+τ − αtx′T,1,tβ̂1,t − (1 − αt)x′T,2,tβ̂2,t)

2 for the restricted, unrestricted,

and combined, respectively.

The following additional notation will be used. LetHT,i(t) = (t−1∑t−τ
j=1 xT,i,juT,j+τ )

= (t−1∑t−τ
j=1 hT,i,j+τ ), BT,i(t) = (t−1∑t−τ

j=1 xT,i,jx
′
T,i,j)

−1, andBi = limT→∞(ExT,i,jx
′
T,i,j)

−1

for i = 1, 2 . For UT,j = (h′T,2,j+τ , vec(xT,2,jx
′
T,2,j)

′)′, let V =
∑τ−1
l=−τ+1 Ω11,l, where

Ω11,l is the upper block-diagonal element of Ωl defined below. For any (m × n) ma-

trix A with elements ai,j and column vectors aj, let: vec(A) denote the (mn × 1)

vector [a′1, a
′
2, ..., a

′
n]′; |A| denote the max norm; and tr(A) denote the trace. Let

supt = supT−P+1≤t≤T and let ⇒ denote weak convergence. Finally, we define a

variable selection matrix and a coefficient vector that appears directly in our key

combination results: J = (Ik1×k1 , 0k1×k2)
′ and δ = (01×k1 , β

∗′
22)
′.

To derive our general results, we need two more assumptions (in addition to our

assumptions (1 and 2) of a DGP with weak predictability and OLS–estimated linear

5In the interest of brevity, throughout the paper we focus on the recursive forecasting scheme,
under which the estimation sample expands as forecasting moves forward in time. However, our
results extend to the rolling scheme, under which the estimation sample is held at the same size and
rolled forward as forecasting moves ahead in time. In a rolling scheme context, the t in equations
(2) and (5) becomes the size of the rolling estimation sample and the summands begin with the first
period in the rolling sample rather than period 1.
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forecasting models).

Assumption 3: (a) T−1∑[rT ]
j=1 UT,jU

′
T,j−l ⇒ rΩl , Ωl = limT→∞ T

−1∑T
t=1E(UT,jU

′
T,j−l)

for all l ≥ 0, (b) Ω11,l = 0 all l ≥ τ , (c) supT−P+1≥1,s≤T E|UT,s|2q <∞ for some q > 1,

(d) UT,j−EUT,j = (h′T,2,j+τ , vec(xT,2,jx
′
T,2,j−ExT,2,jx′T,2,j)

′)′ is a zero mean triangular

array satisfying Theorem 3.2 of De Jong and Davidson (2000).

Assumption 4: For s ∈ (1 − λP , 1], (a) αt ⇒ α(s) ∈ [0, 1], (b) limT→∞ P/T = λP ∈
(0, 1).

Assumption 3 imposes three types of conditions. First, in (a) and (c) we require

that the observables, while not necessarily covariance stationary, are asymptotically

mean square stationary with finite second moments. We do so in order to allow the

observables to have marginal distributions that vary as the weak predictive ability

strengthens along with the sample size but are ‘well-behaved’ enough that, for ex-

ample, sample averages converge in probability to the appropriate population means.

Second, in (b) we impose the restriction that the τ -step ahead forecast errors are

MA(τ − 1). We do so in order to emphasize the role that weak predictors have on

forecasting without also introducing other forms of model misspecification. Finally, in

(d) we impose the high level assumption that, in particular, hT,2,j+τ satisfies Theorem

3.2 of De Jong and Davidson (2000). By doing so we not only insure (results needed

in Clark and McCracken (2006)) that certain weighted partial sums converge weakly

to standard Brownian motion, but also allow ourselves to take advantage of various

results pertaining to convergence in distribution to stochastic integrals.

Our final assumption is unique: we permit the combining weights to change with

time. In this way, we allow the forecasting agent to balance the bias-variance tradeoff

differently across time as the increasing sample size provides stronger evidence of

predictive ability. Finally, we impose the requirement that limT→∞ P/T = λP ∈ (0, 1)

and hence the duration of forecasting is finite but non-trivial.

2.3 Theoretical results on the tradeoff

Our characterization of the bias-variance tradeoff associated with weak predictability

is based on
∑T
t=T−P+1 (û2

T,2,t+τ − û2
T,W,t+τ ), the difference in the (normalized) MSEs

of the unrestricted and combined forecasts. Clark and McCracken (2006) provide a
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general characterization of the tradeoff, in Theorem 1. But in the absence of a closed

form solution for the limiting distribution of the loss differential (the distribution

provided in Clark and McCracken (2006)), we proceed in this section to focus on the

mean of this loss differential.

From the general case proved in Clark and McCracken (2006), we first establish

the expected value of the loss differential, in the following corollary.

Corollary 1: E
∑T
t=T−P+1 (û2

T,2,t+τ − û2
T,W,t+τ )→

∫ 1
1−λP

EξW (s) =∫ 1
1−λP

(1− (1− α(s))2)s−1tr((−JB1J
′ +B2)V )ds−∫ 1

1−λP
α2(s)δ′B−1

2 (−JB1J
′ +B2)B

−1
2 δds.

This decomposition implies that the bias-variance tradeoff depends on: (1) the

duration of forecasting (λP ), (2) the dimension of the parameter vectors (through

the dimension of δ), (3) the magnitude of the predictive ability (as measured by

quadratics of δ), (4) the forecast horizon (via V , the long-run variance of hT,2,t+τ ),

and (5) the second moments of the predictors (Bi = limT→∞(ExT,i,tx
′
T,i,t)

−1).

The first term on the right-hand side of the decomposition can be interpreted as

the pure “variance” contribution to the mean difference in the unrestricted and com-

bined MSEs. The second term can be interpreted as the pure “bias” contribution.

Clearly, when δ = 0 and thus there is no predictive ability associated with the pre-

dictors xT,22,t, the expected difference in MSE is positive so long as α(s) 6= 0. Since

the goal is to choose α(s) so that
∫ 1
1−λP

EξW (s) is maximized, we immediately reach

the intuitive conclusion that we should always forecast using the restricted model and

hence set α(s) = 1. When δ 6= 0, and hence there is predictive ability associated with

the predictors xT,22,t, forecast accuracy is maximized by combining the restricted and

unrestricted model forecasts. The following corollary provides the optimal combina-

tion weight. Note that, to simplify notation in the presented results, from this point

forward we omit the subscript T from the predictors.

By maximizing the arguments of the integrals in Corollary 1 that contribute to

the average expected mean square differential over the duration of forecasting, we

obtain the optimal combination weight, given in Corollary 2.

Corollary 2: The pointwise optimal combining weights satisfy

α∗(s) =

[
1 + s

(
β′22(Ex22,tx

′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)
−1Ex1,tx

′
22,t)β22

tr((−JB1J ′ +B2)V )

)]−1

. (4)
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This combining weight is decreasing in the marginal ‘signal to noise’ ratio

sβ′22(Ex22,tx
′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)
−1Ex1,tx

′
22,t)β22/tr((−JB1J

′ +B2)V ).

As the marginal ‘signal’, sβ′22(Ex22,tx
′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)
−1Ex1,tx

′
22,t)β22, in-

creases, we place more weight on the unrestricted model and less on the restricted

one. Conversely, as the marginal ‘noise’, tr((−JB1J
′ + B2)V ), increases, we place

more weight on the restricted model and less on the unrestricted model. In the spe-

cial case in which the signal–to–noise ratio equals 1, the optimal combination weight

is 1/2. Finally, as forecasting moves forward in time and the estimation sample

(represented by s) increases, we place increasing weight on the unrestricted model.

A bit more algebra establishes the determinants of the size of the benefits to

combination. The expected loss difference Eξ∗W (s) takes the easily interpretable form

tr((−JB1J
′ +B2)V )2

s(sβ′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)
−1Ex1,tx′22,t)β22 + tr((−JB1J ′ +B2)V ))

.

With a 1-step horizon and conditionally homoskedastic errors, the numerator simpli-

fies to tr((−JB1J
′ +B2)V ) = σ2k2. In either case, we expect the optimal combination

to provide the most benefit when the marginal ‘noise’, tr((−JB1J
′ +B2)V ), is large

or when the marginal ‘signal’, sβ′22(Ex22,tx
′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)
−1Ex1,tx

′
22,t)β22,

is small. And again, we obtain the result that, as the estimation sample grows, any

benefits from combination vanish as the parameter estimates become more accurate.

Note, however, that the term β′22(Ex22,tx
′
22,t−Ex22,tx

′
1,t(Ex1,tx

′
1,t)
−1Ex1,tx

′
22,t)β22

is a function of the local-to-zero parameters β22. Moreover, note that these optimal

combining weights are not presented relative to an environment in which agents are

forecasting in ‘real time’. Therefore, for practical use, we suggest a transformed

formula. Let B̂i and V̂ denote estimates of Bi and V , respectively, based on data

through period t.6 If we let T 1/2β̂22 denote an estimate of the local-to-zero parameter

β∗22 and set s = t/T , we obtain the following real time estimate of the pointwise

optimal combining weight:

6We estimate Bi with B̂i = (t−1
∑t−τ
j=1 xi,jx

′

i,j)
−1, where xi,t is the vector of regressors in the

forecasting model (supposing the MSE stationarity assumed in the theoretical analysis). At a forecast
horizon (τ) of one period, we estimate V using V̂ = t−1

∑t−τ
j=1 û

2
1,jx2,jx

′

2,j . At longer forecast
horizons, we similarly compute V with the Newey–West estimator (again, using the residual from
the restricted model) and 2(τ−1) lags. In all cases, we use the restricted model residual in computing
V , in light of the evidence in such studies as Godfrey and Orme (2004) that imposing such restrictions
improves the small sample properties of heteroskedasticity–robust variances.
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α̂∗t =

1 + t


β̂
′
22

t−1
t−τ∑
j=1

x22,jx
′
22,j − (t−1

t−τ∑
j=1

x22,jx
′
1,j)B̂1(t

−1
t−τ∑
j=1

x1,jx
′
22,j)

 β̂22

tr((−JB̂1J ′ + B̂2)V̂ )





−1

.

(5)

The parameter estimates provide asymptotically mean unbiased estimates of the

local-to-zero parameters on which our theoretical derivations (Corollary 2) are based.

Nonetheless, our estimates of the local-to-zero parameters are not consistent. The

local-to-zero asymptotics allow us to derive closed–form solutions for the optimal

combination weights, but require knowledge of local-to-zero parameters for which we

can obtain mean unbiased, but not consistent, estimates via OLS (and rescaling). We

therefore simply use rescaled OLS magnitudes as estimates of the assumed local-to-

zero values and subsequent optimal combining weights. Below we use Monte Carlo

experiments and empirical examples to determine whether the estimated quantities

perform well enough to be a valuable tool for forecasting.

Conceptually, our proposed combination (5) might be seen as a variant of a Stein

rule estimator.7 With conditionally homoskedastic, 1–step ahead forecast errors, the

signal-to-noise ratio in our combination coefficient α̂t is the conventional F–statistic

for testing the null of coefficients of 0 on the x22 variables. With additional (and

strong) assumptions of normality and strict exogeneity of the regressors, the F–

statistic has a non–central F distribution, with a mean that is a linear function

of the population signal-to-noise ratio. Based on that mean, the population–level

signal-to-noise ratio can be alternatively estimated as F -statistic− 1. A combination

forecast based on this estimate is exactly the same as the forecast that would be

obtained by applying conventional Stein rule estimation to the unrestricted model.

This Stein rule result suggests an alternative estimate of the optimal combination

coefficient α∗t with potentially better small sample properties. Specifically, based on

(i) the equivalence of the directly estimated signal-to-noise ratio and the conventional

F -statistic result and (ii) the centering of the F distribution at a linear transform of

the population signal-to-noise ratio, we might consider replacing the signal-to-noise

7Our optimal, but infeasible, combining weights are closely related to the minimum-MSE estima-
tor provided in Theil (1971). Our results primarily differ in that we permit serially correlated and
conditionally heteroskedastic errors, and don’t require strict exogeneity of the regressors.

10



ratio estimate in (5) with the signal-to-noise ratio estimate less 1. However, under

this estimation approach, the combination forecast could put a weight of more than

1 on the restricted model and a negative weight on the unrestricted. As a result, we

might consider a truncation that bounds the weight between 0 and 1:

α̂∗t = [1 +max (0, signal/noise− 1)]−1 , (6)

where the signal/noise term is the same as that in the baseline estimator (5). In

light of potential concerns about the small sample properties of the estimator (5),

we include a forecast combination based on (6) in our Monte Carlo and empirical

analyses.

More generally, in cases in which the marginal predictive content of the x22 vari-

ables is small or modest, a simple average forecast might be more accurate than our

proposed estimated combinations based on (5) or (6). With β22 coefficients sized

such that the restricted and unrestricted models are nearly equally accurate, the

population–level optimal combination weight will be close to 1/2. As a result, fore-

cast accuracy could be enhanced by imposing a combination weight of 1/2 instead

of estimating it, in light of the potential for noise in the combination coefficient es-

timate. A parallel result is well–known in the non–nested combination literature:

simple averages are often more accurate than estimated optimal combinations (see,

e.g., Smith and Wallis (2008)).

Of course, in our context, the optimal weight changes over time, rising as more

data become available for model estimation, such that an optimal weight that starts

out (or ends up) close to 1/2 might not end up (or start out) close to 1/2. In

practice, however, our estimated weights change only very gradually over time. For

example, in the DGP 3 experiment in Table 1 presented below, the theoretically

optimal combination weight (for a forecast horizon of 1 period) declines from only 0.5

to 0.4 over the first 40 observations of the forecast sample. As a result, as long as the

optimal combination weight starts out in the neighborhood of 1/2, a simple average

is likely to do well in samples of common size, even though the optimal weight is

gradually declining over the course of the sample.

Our proposed combination (5) might also be expected to have some relationship

to Bayesian methods. In the very simple case of the example of section 2.1, the

proposed combination forecast corresponds to a forecast from an unrestricted model
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with Bayesian posterior mean coefficients estimated with a prior mean of 0 and vari-

ance proportional to the signal–noise ratio. More generally, our proposed combina-

tion could correspond to the Bayesian model averaging considered in such studies as

Wright (2003), Koop and Potter (2004), and Stock and Watson (2005).8 In the more

general case, there may be some prior that makes a Bayesian average of the restricted

and unrestricted forecasts similar to the combination forecast based on (5). But the

rationale for Bayesian averaging is quite different from the combination rationale de-

veloped in this paper. Bayesian averaging is generally founded on model uncertainty.

In contrast, our combination rationale is based on the bias–variance tradeoff associ-

ated with parameter estimation error, in an environment without model uncertainty.

3 Monte Carlo Evidence

We use Monte Carlo simulations of several multivariate data-generating processes to

evaluate the finite–sample performance of the combination methods described above.

In these experiments, the DGPs relate the predictand y to lagged y and lagged x,

with the coefficients on lagged x set at various values. Forecasts of y are generated

with the combination approaches considered above. Performance is evaluated using

simple summary statistics of the distribution of each forecast’s MSE: the average MSE

across Monte Carlo draws and the probability of equaling or beating the restricted

model’s forecast MSE.

3.1 Experiment design

In light of the considerable practical interest in the out–of–sample predictability of

inflation (see, for example, Stock and Watson (1999, 2003), Atkeson and Ohanian

(2001), Orphanides and van Norden (2005), and Clark and McCracken (2006)), we

present results for DGPs based on estimates of quarterly U.S. inflation models. In

particular, we consider models based on the relationship of the change in core PCE

inflation to (1) lags of the change in inflation and the output gap, (2) lags of the change

in inflation, the output gap, and food and energy price inflation, and (3) lags of the

change in inflation and five common business cycle factors, estimated as in Stock and

8Indeed, in the scalar environment of Stock and Watson (2005), setting their weighting function
to t-stat2/(1 + t-stat2) yields our combination forecast.
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Watson (2005). We consider various combinations of forecasts from an unrestricted

model that includes all variables in the DGP to forecasts from a restricted model that

takes an AR form.

For each experiment, we conduct 10,000 simulations. With quarterly data in mind,

we evaluate forecast accuracy over forecast periods of various lengths: P = 1, 20, 40,

and 80. In our baseline results, the size of the sample used to generate the first (in

time) forecast at horizon τ is 80−τ+1 (the estimation sample expands as forecasting

moves forward in time). In light of the potential for forecast combination to yield

larger gains with smaller model estimation samples, we also report selected results

for experiments in which the size of the sample used to generate the first (in time)

forecast at horizon τ is 40− τ + 1.

The first DGP, based on the empirical relationship between the change in core

inflation (∆yt) and the output gap (x1,t), takes the form

∆yt = −.40∆yt−1 − .18∆yt−2 − .09∆yt−3 − .04∆yt−4 + b11x1,t−1 + ut

x1,t = 1.15x1,t−1 − .05x1,t−2 − .20x1,t−3 + v1,t (7)

var
(
ut
v1,t

)
=
(
.72
.02 .57

)
.

We consider experiments with two different settings of b11, the x1 coefficient, which

corresponds to our theoretical construct β22/
√
T . The baseline value of b11 is the

one that, in population, makes the null and alternative models equally accurate (in

expectation, at the 1–step ahead horizon) in the first forecast period, period T−P+2.

Given the population moments implied by the DGP parameterization, this value is

b11 = .042. The second setting we consider is the empirical value: b11 = .10.

The second DGP, based on estimated relationships among inflation (∆yt), the

output gap (x1,t), and food and energy price inflation (x2,t), takes the form:

∆yt = −.47∆yt−1 − .24∆yt−2 − .15∆yt−3 − .10∆yt−4

+ b11x1,t−1 + b21x2,t−1 + b22x2,t−2 + ut

x1,t = 1.15x1,t−1 − .05x1,t−2 − .20x1,t−3 + v1,t (8)

x2,t = .06x1,t−1 + .40x2,t−1 + .28x2,t−3 − .13x2,t−4 + v2,t

var

 ut
v1,t

v2,t

 =

 .62
.03 .57
−.06 .06 .70

 .
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As with DGP 1, we consider experiments with two settings of the set of bij coefficients,

which correspond to the elements of β22/
√
T . One setting is based on empirical

estimates: b11 = .07, b21 = .27, b22 = .10. We take as the baseline experiment one in

which all of these empirical values of the bij coefficients are multiplied by a constant

less than one, such that, in population, the null and alternative models are expected

to be equally accurate (at the 1–step ahead horizon) in (the first) forecast period

T − P + 2. In our baseline experiments, this multiplying constant is .370.

The third DGP is based on estimated relationships among inflation (∆yt) and five

business cycle factors estimated as in Stock and Watson (2005) (xi,t, i = 1, . . . , 5):

∆yt = −.40∆yt−1 − .19∆yt−2 − .10∆yt−3 − .04∆yt−4 +
5∑
i=1

bi1xi,t−1 + ut

xi,t =
4∑
j=1

aijxi,t−j + vi,t, i = 1, . . . , 5. (9)

As with DGPs 1 and 2, we consider experiments with two different settings of the set

of bij coefficients. One setting is based on empirical estimates: b11 = .04, b21 = .09,

b31 = .16, b41 = .04, b51 = .08.9 We take as the baseline experiment one in which

all of these empirical values of the bij coefficients are multiplied by a constant less

than one, such that, in population, the null and alternative models are expected to be

equally accurate (at the 1-step horizon) in forecast period T −P + 2. In our baseline

experiments, this multiplying constant is .748.

3.2 Forecast approaches

Following practices common in the literature from which our applications are taken

(see, e.g., Stock and Watson (2003)), direct multi–step forecasts one and four steps

ahead are formed from various combinations of estimates of the following forecasting

models:

y
(τ)
t+τ − yt = δ0 +

4∑
j=1

δi∆yt+1−i + u1,t+τ (10)

y
(τ)
t+τ − yt = γ0 +

4∑
j=1

γi∆yt+1−i + Γ′22x22,t + u2,t+τ , (11)

9The coefficients of the AR models for the factors are as follows, in order from lags 1 to 4: factor
1: .81, -.18, .19, -.19; factor 2: .80, -.05, .16, -.18; factor 3: -.36, .16, .22, .12; factor 4: .31, .08, .39,
.01; and factor 5: .25, .15, .24, .05. The residual variances of the five factors are as follows, in order
for factors 1 through 5: 6.36, 2.35, .92, 2.08, 1.62. The variance of ut is .67.
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where y
(τ)
t+τ = (1/τ)

∑τ
s=1 yt+s and y

(1)
t+1 ≡ yt+1. In the actual inflation data underlying

the DGP specification, y
(τ)
t+τ corresponds to the average annual rate of price increase

from period t to t+ τ . Across DGPs 1-3, the vector x22,t consists of, respectively, (1)

(x1,t), (2) (x1,t, x2,t, x2,t−1)
′, and (3) (x1,t, x2,t, x3,t, x4,t, x5,t)

′. Because the multi-step

forecasts are projections of an average of y over the forecast horizon up to period t+τ

rather than simply a projection of y in period t+ τ (in order to follow the examples

of the aforementioned studies), the relationship of forecast accuracy to horizon is

unclear. Depending on the DGP, MSEs may rise or fall as the horizon increases.

We examine the accuracy of forecasts from: (i) OLS estimates of the restricted

model (10); (ii) OLS estimates of the unrestricted model (11); (iii) the ‘known’ opti-

mal linear combination of the restricted and unrestricted forecasts, using the weight

implied by equation (4) and population moments implied by the DGP; (iv) the esti-

mated optimal linear combination of the restricted and unrestricted forecasts, using

the weight given in (5) and estimated moments of the data; (v) the estimated optimal

linear combination using the Stein rule–variant weight given in (6); and (vi) a simple

average of the restricted and unrestricted forecasts.10

3.3 Simulation results

In our Monte Carlo comparison of methods, we primarily base our evaluation on

average MSEs over a range of forecast samples. For simplicity, in presenting average

MSEs, we only report actual average MSEs for the restricted model (10). For all other

forecasts, we report the ratio of a forecast’s average MSE to the restricted model’s

average MSE. To capture potential differences in MSE distributions, we also present

some evidence on the probabilities of equaling or beating the restricted model.

3.3.1 Results for signal = noise experiments

We begin with the case in which the coefficients bij (elements of β22) on the lags of xit

(elements of x22) in the DGPs (7)–(9) are set such that, at the 1-step ahead horizon,

the restricted and unrestricted model forecasts for period T−P+2 are expected to be

equally accurate — because the signal and noise associated with the xit variables are

equalized as of that period. In this setting, the optimally combined forecast should, on

10As noted above, weights of 1/2 are optimal if the signal associated with the x variables equals
the noise, making the models equally accurate.
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average, be more accurate than either the restricted or unrestricted forecasts. Note,

however, that the models are scaled to make only 1–step ahead forecasts equally

accurate. At the 4–step ahead forecast horizon, the restricted model may be more or

less accurate than the unrestricted, depending on the DGP.

The average MSE results reported in Table 1 confirm the theoretical implications.

Consider first the 1–step ahead horizon. With all three DGPs, the ratio of the un-

restricted model’s average MSE to the restricted model’s average MSE is close to

1.000 for all forecast samples. At the 4-step ahead horizon, for all DGPs the ratio

of the unrestricted model’s average MSE to the restricted model’s average MSE is

generally above 1.000. The unrestricted model fares especially poorly relative to the

restricted in the case of DGP 3, in which the unrestricted model includes five more

variables than the restricted. In general, in all cases, the MSE ratios for 4-step ahead

forecasts from the unrestricted model tend to fall as P rises, reflecting the increase

in the precision of the x coefficient (Γ22) estimates that occurs as forecasting moves

forward in time and the model estimation sample grows.

A combination of the restricted and unrestricted forecasts has a lower average

MSE, with the gains generally increasing in the number of variables omitted from the

restricted model and the forecast horizon. At the 1–step horizon, using the known

optimal combination weight α∗t yields P = 20 MSE ratios of .994, .983, and .974 for,

respectively, DGPs 1, 2, and 3. At the 4–step horizon, the forecast based on the

known optimal combination weight has P = 20 MSE ratios of .986, .962, and .973 for

DGPs 1-3.

Not surprisingly, having to estimate the optimal combination weight tends to

slightly reduce the gains to combination. For example, in the case of DGP 2 and

P = 20, the MSE ratio for the estimated optimal combination forecast is .989, com-

pared to .983 for the known optimal combination forecast. Using the Stein rule–based

adjustment to the optimal combination estimate (based on equation (6)) has mixed

consequences, sometimes faring a bit worse than the directly estimated optimal com-

bination forecast (based on equation (5)) and sometimes a bit worse. To use the same

DGP 2 example, the P = 20 MSE ratio for the Stein version of the estimated optimal

combination is .990, compared to .989 for the directly estimated optimal combination.

However, in the case of 4-step ahead forecasts for DGP 3 with the P = 20 sample, the

MSE ratios of the known α∗t , estimated α̂∗t , and Stein–adjusted α̂∗t are, respectively,
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.973, .991, and .985.

In the Table 1 experiments, the simple average of the restricted and unrestricted

forecasts is consistently a bit more accurate than the estimated optimal combination

forecast. For example, for DGP 3 and the P = 20 forecast sample, the MSE ratio of the

simple average forecast is .974 for both 1–step and 4–step ahead forecasts, compared

to the estimated optimal combination forecasts’ MSE ratios of .982 (1-step) and .991

(4-step). There are two reasons a simple average fares so well. First, with the DGPs

parameterized to make signal = noise for one–step ahead forecasts for period T−P+2,

the theoretically optimal combination weight is 1/2. Of course, as forecasting moves

forward in time, the theoretically optimal combination weight declines, because as

more and more data become available for estimation, the signal-to-noise ratio rises

(e.g., in the case of DGP 3, the known optimal weight for the forecast of the 80th

observation in the prediction sample is about .33). But the decline is gradual enough

that only late in a long forecast sample would noticeable differences emerge between

the theoretically optimal combination forecast and the simple average. Second, in

practice, the optimal combination weight may not be estimated with much precision.

As a result, imposing a fixed weight of 1/2 is likely better than trying to estimate a

weight that is not dramatically different from 1/2.

3.3.2 Results for signal > noise experiments

In DGPs with larger bij (β22) coefficients — specifically, coefficient values set to

those obtained from empirical estimates of inflation models — the signal associated

with the xit (x22) variables exceeds the noise, such that the unrestricted model is

expected to be more accurate than the restricted model. In this setting, too, our

asymptotic results imply the optimal combination forecast should be more accurate

than the unrestricted model forecast, on average. However, relative to the accuracy

of the unrestricted model forecast, the gains to combination should be smaller than

in DGPs with smaller bij coefficients.

The results for DGPs 1–3 reported in Table 2 confirm these theoretical implica-

tions. At the 1–step ahead horizon, the unrestricted model’s average MSE is about

5-6 percent lower than the restricted model’s MSE in DGP 1 and 3 experiments and

roughly 15 percent lower in DGP 2 experiments. At the 4–step ahead horizon, the

unrestricted model is more accurate than the restricted by about 12, 28, and 4 percent

17



for DGPs 1, 2, and 3.

Combination using the known optimal combination weight α∗t improves accuracy

further, more so for DGP 3 (for which the unrestricted forecasting model is largest)

than DGPs 1 and 2 and more so for the 4–step ahead horizon than the 1-step horizon.

Consider, for example, the forecast sample P = 1. For DGP 2, the known optimal

combination forecast’s MSE ratios are .839 (1-step) and .716 (4-step), compared to

the unrestricted forecast’s MSE ratios of, respectively, .845 and .723. For DGP 3, the

known optimal combination forecast’s MSE ratios are .924 (1-step) and .919 (4-step),

compared to the unrestricted forecast’s MSE ratios of, respectively, .947 and .971.

Consistent with our theoretical results, the gains to combination seem to be larger

under conditions that likely reduce parameter estimation precision (more variables

and residual serial correlation created by the multi-step forecast horizon).

Similarly, the gains to combination (gains relative to the unrestricted model’s

forecast) rise as the estimation sample gets smaller. Table 3 reports results for the

same DGPs used in Table 2, but for the case in which the initial estimation sample

is 40 observations instead of 80. With the smaller estimation sample, DGP 2 simula-

tions yield known optimal combination MSE ratios of .882 (1-step) and .807 (4-step),

compared to the unrestricted forecast’s MSE ratios of, respectively, .908 and .851.

For DGP 3, the known optimal combination forecast’s MSE ratios are .960 (1-step)

and .959 (4-step), compared to the unrestricted forecast’s MSE ratios of, respectively,

1.064 and 1.146.

Again, not surprisingly, having to estimate the optimal combination weight tends

to slightly reduce the gains to combination. For instance, in Table 2’s results for

case DGP 2 and P = 1, the 4–step ahead MSE ratio for the estimated optimal

combination forecast is .723, compared to .716 for the known optimal combination

forecast. Using the Stein rule–based adjustment to the optimal combination estimate

(based on equation (6)) typically reduces forecast accuracy a bit more (to a MSE

ratio of .732 in the same example), but not always — the adjustment often improves

forecast accuracy with DGP 3 and a small estimation sample (Table 3).

Imposing simple equal weights in averaging the unrestricted and restricted model

forecasts sometimes slightly improves upon the estimated optimal combination but

other times reduces accuracy. In Table 2’s results for DGPs 1 and 2, the estimated

optimal combination is always more accurate than the simple average. For example,
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with DGP 2 and the 4-step horizon, the P = 20 MSE ratio of the estimated optimal

combination forecast is .725, compared to the simple average forecast’s MSE ratio

of .767. But for DGP 3, the simple average is often slightly more accurate than the

estimated optimal combination. For instance, at the 4-step horizon and with P =

20, the optimal combination and simple average forecast MSEs are, respectively, .928

and .919.

As these results suggest, the merits of imposing equal combination weights over

estimating weights depend on how far the true optimal weight is from 1/2 (which de-

pends on the population size and precision of the model coefficients) and the precision

of the estimated combination weight. In cases in which the known optimal weight is

relatively close to 1/2 (DGP 3, 1-step forecast, Table 2), the simple average performs

quite similarly to the known optimal forecast, and better than the estimated opti-

mal combination. In cases in which the known optimal weight is far from 1/2 (DGP

2, 1-step forecast, Table 2), the simple average is dominated by the known optimal

forecast and, in turn, the estimated optimal combination. Consistent with such rea-

soning, reducing the initial estimation sample generally improves the accuracy of the

simple average forecast relative to the estimated optimal combination. For example,

Table 3 shows that, with DGP 2 and the 4-step horizon, the P = 20 MSE ratio of

the simple average forecast is .789, compared to the estimated optimal combination

forecast’s MSE ratio of .775 (in Table 2, the corresponding figures are .767 and .725).

3.3.3 Distributional results

In addition to helping to lower the average forecast MSE, combination of restricted

and unrestricted forecasts helps to tighten the distribution of relative accuracy —

specifically, the MSE relative to the MSE of the restricted model. The results in

Table 4 indicate that combination — especially simple averaging — often increases

the probability of equaling or beating the MSE of the restricted model, often by

more than it lowers average MSE (note that, to conserve space, the table omits

results for DGP 1). For instance, with DGP 2 parameterized such that signal =

noise for forecasting 1-step ahead to period T − P + 2, the frequency with which

the unrestricted model’s MSE is less than or equal to the restricted model’s MSE is

47.2 percent for P = 20. The frequency with which the known optimal combination

forecast’s MSE is below the restricted model’s MSE is 57.4 percent. Although the
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estimated combination does not fare as well (probability of 51.4 percent), a simple

average fares even better, beating the MSE of the restricted model in 58.1 percent of

the simulations. Note also that, by this distributional metric, using the Stein variant

of the combination weight estimate often offers a material advantage over the direct

approach to estimating the combination weight. In the same example, the Stein–

based combination forecast has a probability of 55.3 percent, compared to the 51.4

percent for the directly estimated combination forecast.

By this probability metric, the simple average (and, to a lesser extent, the optimal

combination based on the Stein rule estimate) also fares well in other experiments.

Consider, for example, the experiments with the signal > noise version of DGP 3, a

forecast horizon of 4 steps, and P = 20. In this case, the probability the unrestricted

model yields a MSE less than or equal to the restricted model’s MSE is 54.3 percent.

The probabilities for the estimated optimal combination, Stein–estimated optimal

combination, and simple average are, respectively, 62.9, 64.9, and 69.1 percent. Again,

averaging, especially simple averaging, greatly improves the probability of beating the

accuracy of the restricted model forecast.

4 Empirical Applications

To evaluate the empirical performance of our proposed forecast methods, we consider

the widely studied problem of forecasting inflation with Phillips curve models. In

particular, we examine forecasts of quarterly core PCE (U.S.) inflation. In light of

the potential for the benefits of forecast combination to rise as the number of vari-

ables and, in turn, overall parameter estimation imprecision increases, we consider

a range of applications, including between one and five predictors of core inflation.

In a first application, patterned on analyses in such studies as Stock and Watson

(1999, 2003), Orphanides and van Norden (2005), and Clark and McCracken (2006),

the unrestricted forecasting model includes lags of inflation and the output gap. In

a second application, the unrestricted forecasting model is augmented to include lags

of food and energy price inflation, following Gordon’s (1998) approach of including

supply shock measures in the Phillips curve. In another set of applications, patterned

on such studies as Stock and Watson (2002, 2005), and Boivin and Ng (2005), the un-

restricted forecast model includes lags of inflation and 1, 2, 3, or 5 common business
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cycle factors, estimated as in Stock and Watson (2005). This section proceeds by de-

tailing the data and forecasting models, describing some additional forecast methods

included for comparison, and presenting the results.

4.1 Data and model details

Inflation is measured in annualized percentage terms (as 400 times the log change in

the price index). The output gap is measured as the log of real GDP less the log

of CBO’s estimate of potential GDP. Following Gordon (1998), the food and energy

price inflation variable is measured as overall PCE inflation less core PCE inflation.

The common factors are estimated with the principal component approach of Stock

and Watson (2002, 2005), using a data set of 127 monthly series nearly identical

to Stock and Watson’s (2005).11 Following Stock and Watson (2005) and Boivin

and Ng (2005), the factors are estimated recursively for each month of the forecast

sample, applying the factor estimation algorithm to data through the given month.

Quarterly data on factors used in model estimation ending in quarter t are within–

quarter averages of monthly factors estimated with data from the beginning of the

sample through the last month of quarter t

Following the basic approach of Stock and Watson (1999, 2003), among others, we

treat inflation as having a unit root, and forecast a measure of the direct multi-step

change in inflation as a function of lags of the change in quarterly inflation and lags

of other variables. In particular, we make y the log difference of the quarterly core

PCE price index (scaled by 400 to make y an annualized percentage change); ∆y is

then the change in quarterly inflation. The predictand is y
(τ)
t+τ−yt, where y

(τ)
t+τ denotes

the average annual rate of price change from t to t + τ . The x variables denote the

output gap, relative food and energy price inflation, and the set of common factors

included in the model (with the number ranging from 1 to 5). The restricted model

is autoregressive — the multi-step change in inflation is a function of just lags of the

one–period change in inflation. The unrestricted model adds lags of x variables to

the set of regressors. In particular, the competing forecasting models take the forms

of section 4’s equations (10) and (11). All models include four lags of the change

11Following the specifications of Stock and Watson (2005), we first transformed the data for sta-
tionarity, screened for outliers, and standardized the data, and then computed principal components
at the monthly frequency.
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in inflation (∆yt). For the output gap and the factors, the models use one lag. For

food–energy inflation, the models include two lags.

The forecasting models are estimated with data starting in 1961:Q1. The param-

eters of the forecasting models are re-estimated with added data as forecasting moves

forward through time (that is, our forecasting scheme is the so–called recursive). The

forecast sample is 1985:Q1 (1985:Q4 for four–step ahead forecasts) through 2006:Q2.

We report results — MSEs — for forecast horizons of one quarter and one year.12

4.2 Additional forecast methods

Because our proposed forecast combination methods correspond to a form of shrink-

age, for comparison we supplement our results to include not only our proposed

methods but also some alternative shrinkage forecasts based on Bayesian methods.

Doan, Litterman, and Sims (1984) suggest that conventional Bayesian estimation

(specifically, the prior) provides a flexible method for balancing the tradeoff between

signal and parameter estimation noise.

Accordingly, one alternative forecast is obtained from the unrestricted forecasting

model estimated with generalized ridge regression, which is similar to and under

some implementations identical to conventional BVAR estimation. Consistent with

the spirit of our proposed combination approaches, which try to limit the effects of

sampling noise in the coefficients of the x variables, the ridge estimator pushes the

coefficients on the x variables toward zero by imposing informative prior variances

on the associated coefficients (the tightness of the prior increases with the number of

lags of x included). The ridge estimator allows very large variances on the coefficients

of the intercept and lagged inflation terms. In the case of the 1–step ahead model,

our generalized ridge estimator is exactly the same as the conventional Bayesian or

BVAR estimator of Litterman (1986), except that we use flat priors on the intercept

and lagged inflation terms.13 We apply the same priors to the 4–step ahead model

(based on some experimentation to ensure the prior setting worked well).

We report a second alternative forecast constructed by applying Bayesian model

12Because the multi-step forecasts are projections of the average inflation rate from t+ 1 to t+ τ
rather than just the quarterly inflation rate in period t+ τ , how forecast accuracy should relate to
horizon is unclear. Depending on the DGP, MSEs may rise or fall as the horizon increases.

13In the notation of Litterman, we use the following parameter settings in determining the prior
variances: λ = .2 and θ = .5.
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averaging (BMA) to the restricted and unrestricted models, following the BMA ap-

proach of Fernandez, Ley, and Steel (2001). In particular, we first estimate the models

imposing a simple g–prior (but with a flat prior on intercepts), and then average the

models based on posterior probabilities calculated as in Fernandez, Ley, and Steel

(2001). Following Wright (2003), we set the g–prior coefficient (g0j in the notation of

Fernandez, et al., or 1/φ in Wright’s notation) at .20.

4.3 Results

In very broad terms, the results in Table 5 seem reasonably reflective of the overall

literature on forecasting U.S. inflation in data since the mid-1980s: the variables

included in the unrestricted model but not the restricted only sometimes improve

forecast accuracy. Across the 12 columns of Table 5 (covering six applications and two

forecast horizons), the restricted model’s MSE is lower than the unrestricted model’s

in six cases, sometimes slightly (e.g., 1–year ahead forecasts from the model with

five factors) and sometimes dramatically (e.g., 1–year ahead forecasts from the model

with the output gap and food–energy inflation). Such a pattern is also consistent with

our concept of weak predictability: with a signal-noise ratio that is about 1, such that

the restricted and unrestricted models are about equally accurate, we would expect

the unrestricted model to beat the unrestricted about 1/2 of the time (see, e.g., the

Monte Carlo results in the top panel of Table 4).

Combining forecasts with our proposed methods significantly improves upon the

accuracy of the unrestricted model’s forecast, by enough that, in each column, at

least one of the average forecasts is more accurate than the restricted model’s fore-

cast. For every application and horizon, our estimated optimal combination forecast

has a lower MSE than the unrestricted model. For example, in the three factor ap-

plication (lower block, middle), the optimal combination forecast has a 1–year ahead

MSE ratio of .791, while the unrestricted model has a MSE ratio of .879. Consis-

tent with our theoretical results, the advantage of the combination forecast over the

unrestricted forecast tends to rise as the number of x variables in the unrestricted

model increases (with the increase in the number of variables tending to lower the

signal–noise ratio) and as the forecast horizon increases. For example, in the same

(three factor) application, the 1–quarter ahead MSE ratios of the unrestricted and

optimal combination forecasts are, respectively, .950 and .935 — closer together than
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for the 1–year ahead horizon. In the five factor application, the 1–year ahead MSE

ratios of the unrestricted and optimal combination forecasts are 1.001 and .834 —

farther apart than in the three factor application.

Estimating the optimal combination weight with our proposed Stein rule–based

approach yields a consistent, modest improvement in forecast accuracy. In all columns

of Table 5, the optimal combination forecast based on the Stein–estimated weight (6)

has a lower MSE than does the optimal combination based on the baseline approach

(5). In the same three factor application, at the 1–year horizon the optimal combi-

nation based on the Stein–estimated weight has a MSE ratio of .781, compared to

the directly estimated optimal combination forecast’s MSE ratio of .791. With five

factors and the 1–year horizon, the Stein–estimated optimal combination’s MSE ratio

is .807, while the directly estimated optimal combination forecast’s MSE ratio is .834.

In most cases, imposing equal weights in combining the restricted and unrestricted

model forecasts further improves forecast accuracy, sometimes substantially. As a re-

sult, in many cases, the simple average forecast is the best forecast of all considered.

For instance, in the output gap and food–energy inflation application, the 1–year

ahead MSE ratios of the simple average and Stein–estimated combination forecasts

are .871 (the lowest among all forecasts) and 1.020, respectively. In the application

with two factors, the 1–year ahead MSE ratios are .854 (again, the lowest among all

forecasts) and .866 for, respectively, the simple average and Stein–estimated combina-

tion forecasts. In some cases, though, the simple average is only slightly better than or

worse than our proposed Stein rule–based approach. For example, in the three factor

application, the simple average forecast’s 1–year ahead MSE ratio is .782, compared

to the Stein–estimated combination forecast’s MSE ratio of .781.

In these applications, our proposed combinations clearly dominate Bayesian model

averaging and are generally about as good as or better than ridge regression. For

example, in the two factor application, the 1–year ahead MSE ratio is .866 for the

Stein–estimated combination, .854 for the simple average, and .891 for the ridge

regression forecast. In the same application, though, the 1–quarter ahead MSE ratios

are virtually identical, at .953, .950, and .950, respectively. In the application with the

output gap and food–energy inflation as predictands, the 1–quarter ahead MSE ratios

of the Stein-estimated, simple average, and ridge regression forecasts are, respectively,

1.060, .983, and 1.032. However, in all cases, the BMA forecast is less accurate
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than the Stein–estimated combination and simple average forecasts. For instance,

in the two factor application, the BMA forecast has MSE ratios of .971 and .934

at the 1–quarter and 1–year ahead horizons (compared, e.g., to the Stein–estimated

combination MSE ratios of .953 and .866).

5 Conclusion

As reflected in the principle of parsimony, when some variables are truly but weakly

related to the variable being forecast, having the additional variables in the model

may detract from forecast accuracy, because of parameter estimation error. Focusing

on such cases of weak predictability, we show that combining the forecasts of the

parsimonious and larger models can improve forecast accuracy. We first derive, theo-

retically, the optimal combination weight and combination benefit. In the special case

in which the coefficients on the variables of interest are of a magnitude that makes the

restricted and unrestricted models equally accurate, the MSE–minimizing forecast is

a simple, equally–weighted average of the restricted and unrestricted forecasts.

A range of Monte Carlo experiments and empirical examples show our proposed

approach of combining forecasts from nested models to be effective in practice. Ad-

mittedly, the gains to averaging are often modest or even small. However, the gains

are very consistent: in practice, in our results, averaging is very likely to improve on

the accuracy of both the restricted and unrestricted model forecasts. Moreover, in

practice, most of the benefits can be achieved at low cost, via simple, equal-weight av-

erages. These simple averages typically perform at least as well as more complicated

averages. Our paper thus supports the conventional wisdom that simple averages are

hard to beat — but, in contrast to most of the combination literature, provides a

theoretical and practical basis for applying averaging to nested models.
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Table 1. Monte Carlo Results from Signal = Noise Experiments: Average MSEs
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1

horizon = 1 horizon = 4
method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .773 .775 .771 .764 .818 .816 .808 .796
unrestricted 1.004 1.002 1.000 .998 1.029 1.011 1.006 .998
opt. combination: known α∗t .995 .994 .994 .993 .995 .986 .985 .982
opt. combination: α̂∗t .999 .998 .997 .996 1.007 .996 .993 .989
opt. combination: Stein α̂∗t .999 .998 .998 .997 1.005 .996 .994 .991
simple average .995 .994 .994 .993 .992 .984 .983 .981

DGP 2
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .678 .678 .677 .672 .635 .632 .627 .620
unrestricted 1.009 1.003 .999 .993 1.004 1.004 .996 .983
opt. combination: known α∗t .984 .983 .982 .980 .959 .962 .960 .956
opt. combination: α̂∗t .992 .989 .987 .984 .972 .974 .971 .964
opt. combination: Stein α̂∗t .993 .990 .989 .987 .975 .976 .973 .967
simple average .984 .982 .982 .980 .958 .960 .959 .956

DGP 3
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .780 .752 .747 .740 .843 .822 .817 .805
unrestricted 1.012 1.009 1.003 .994 1.058 1.050 1.037 1.020
opt. combination: known α∗t .974 .974 .973 .970 .972 .973 .971 .967
opt. combination: α̂∗t .983 .982 .980 .976 .993 .991 .987 .980
opt. combination: Stein α̂∗t .985 .983 .981 .978 .987 .985 .983 .978
simple average .974 .974 .973 .970 .974 .974 .972 .967

Notes:
1. DGPs 1–3 are defined in, respectively, equations (7), (8), and (9). In all experiments, the bij coefficients
are scaled such that the null and alternative models are (in population) expected to be equally accurate in
the first forecast period. For DGP 1, b11 = .042. For DGP 2, b11 = .026, b21 = .100, b22 = .037. For DGP 3,
b11 = .026, b21 = .06, b31 = .106, b41 = .026, b51 = .053.
2. The forecasting approaches are defined as follows. The restricted forecast is obtained from OLS estimates
of the model omitting x terms (equation (10)). The unrestricted forecast is obtained from OLS estimates
of the full model (equation (11)). The opt. combination: known α∗t forecast is computed as α∗t × restricted
+ (1 − α∗t ) × unrestricted, with α∗t computed according to (4), using the known features of the DGP. The
opt. combination: α̂∗t forecast is α̂∗t × restricted + (1 − α̂∗t ) × unrestricted, with α̂∗t computed according
to (8), using moments estimated from the data. The opt. combination: Stein α̂∗t forecast is α̂∗t × restricted
+ (1 − α̂∗t ) × unrestricted, with α̂∗t computed according to (9). Finally, the simple average forecast is .5 ×
restricted + .5 × unrestricted.
3. P defines the number of observations in the forecast sample. The size of the sample used to generate
the first (in time) forecast at horizon τ is 80 − τ + 1 (the estimation sample expands as forecasting moves
forward in time).
4. The table entries are based on averages of forecast MSEs across 10,000 Monte Carlo simulations.
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Table 2. Monte Carlo Results from Signal > Noise Experiments: Average MSEs
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1

horizon = 1 horizon = 4
method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .813 .813 .809 .802 .958 .955 .946 .932
unrestricted .955 .954 .953 .950 .898 .882 .878 .871
opt. combination: known α∗t .952 .952 .951 .949 .889 .875 .872 .867
opt. combination: α̂∗t .957 .955 .954 .952 .895 .881 .878 .872
opt. combination: Stein α̂∗t .960 .958 .957 .954 .903 .888 .884 .877
simple average .959 .959 .958 .958 .896 .890 .889 .887

DGP 2
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .811 .805 .803 .798 .967 .948 .940 .929
unrestricted .845 .845 .841 .837 .723 .729 .724 .714
opt. combination: known α∗t .839 .840 .837 .834 .716 .721 .718 .710
opt. combination: α̂∗t .843 .843 .840 .836 .723 .725 .722 .713
opt. combination: Stein α̂∗t .847 .845 .841 .837 .732 .732 .728 .718
simple average .865 .866 .866 .865 .765 .767 .767 .764

DGP 3
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .834 .803 .798 .790 .968 .942 .934 .921
unrestricted .947 .944 .939 .931 .971 .966 .956 .940
opt. combination: known α∗t .924 .924 .922 .918 .919 .920 .917 .910
opt. combination: α̂∗t .930 .928 .926 .921 .929 .928 .923 .915
opt. combination: Stein α̂∗t .936 .932 .929 .924 .935 .932 .928 .920
simple average .928 .927 .927 .925 .918 .919 .917 .913

Notes:
1. DGPs 1–3 are defined in, respectively, equations (7), (8), and (9). For DGP 1, b11 = .042. For DGP 2,
b11 = .07, b21 = .27, b22 = .10. For DGP 3, b11 = .04, b21 = .09, b31 = .16, b41 = .04, b51 = .08.
2. See the notes to Table 1.
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Table 3. Signal > Noise Experiments with Small Estimation Sample: Average MSEs
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1

horizon = 1 horizon = 4
method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .854 .853 .839 .823 1.061 1.023 .998 .966
unrestricted .988 .970 .964 .958 .970 .938 .918 .900
opt. combination: known α∗t .971 .961 .957 .954 .925 .909 .897 .886
opt. combination: α̂∗t .978 .967 .962 .958 .924 .913 .902 .891
opt. combination: Stein α̂∗t .980 .971 .967 .962 .925 .919 .909 .898
simple average .968 .962 .961 .959 .908 .902 .897 .894

DGP 2
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .876 .852 .837 .820 1.071 1.024 .998 .970
unrestricted .908 .882 .868 .855 .851 .801 .775 .749
opt. combination: known α∗t .882 .865 .856 .847 .807 .773 .755 .736
opt. combination: α̂∗t .888 .870 .860 .850 .804 .775 .758 .741
opt. combination: Stein α̂∗t .896 .878 .866 .854 .819 .791 .773 .751
simple average .886 .877 .873 .870 .807 .789 .782 .775

DGP 3
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .841 .837 .827 .812 1.022 1.009 .988 .960
unrestricted 1.064 1.019 .993 .967 1.146 1.087 1.047 1.002
opt. combination: known α∗t .960 .950 .941 .932 .959 .952 .943 .929
opt. combination: α̂∗t .980 .963 .951 .939 .994 .976 .961 .942
opt. combination: Stein α̂∗t .972 .962 .953 .942 .968 .962 .953 .940
simple average .957 .947 .940 .934 .964 .951 .941 .929

Notes:
1. DGPs 1–3 are defined in, respectively, equations (7), (8), and (9). For DGP 1, b11 = .042. For DGP 2,
b11 = .07, b21 = .27, b22 = .10. For DGP 3, b11 = .04, b21 = .09, b31 = .16, b41 = .04, b51 = .08.
2. P defines the number of observations in the forecast sample. The size of the sample used to generate the
first (in time) forecast at horizon τ is 40− τ + 1 (rather than 80 − τ + 1 as in the baseline experiments).
3. See the notes to Table 1.
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Table 4: Monte Carlo Probabilities of Equaling
or Beating Restricted Model’s MSE, DGPs 2 and 3

DGP 2: signal = noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .501 .472 .483 .524 .509 .495 .493 .525
opt. combination: known α∗t .521 .574 .627 .698 .535 .576 .600 .660
opt. combination: α̂∗t .515 .514 .547 .613 .530 .538 .554 .605
opt. combination: Stein α̂∗t .642 .553 .554 .592 .646 .597 .579 .601
simple average .521 .581 .639 .727 .539 .593 .628 .706

DGP 2: signal > noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .557 .803 .901 .977 .589 .785 .869 .951
opt. combination: known α∗t .567 .834 .926 .986 .600 .810 .893 .963
opt. combination: α̂∗t .570 .843 .935 .989 .609 .836 .916 .975
opt. combination: Stein α̂∗t .574 .849 .939 .990 .618 .844 .921 .977
simple average .598 .921 .980 .999 .635 .900 .965 .995

DGP 3: signal = noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .497 .461 .473 .519 .481 .424 .412 .417
opt. combination: known α∗t .524 .609 .652 .736 .521 .564 .590 .642
opt. combination: α̂∗t .517 .549 .584 .670 .505 .506 .513 .555
opt. combination: Stein α̂∗t .608 .564 .583 .664 .614 .554 .540 .562
simple average .524 .616 .671 .770 .517 .556 .587 .653

DGP 3: signal > noise
horizon = 1 horizon = 4

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
unrestricted .521 .621 .684 .796 .512 .543 .571 .648
opt. combination: known α∗t .541 .715 .794 .899 .540 .644 .696 .786
opt. combination: α̂∗t .539 .702 .778 .890 .537 .629 .677 .773
opt. combination: Stein α̂∗t .568 .710 .791 .900 .587 .649 .688 .787
simple average .554 .779 .867 .955 .552 .691 .758 .861

Notes:
1. The table entries are frequencies (percentages of 10,000 Monte Carlo simulations) with which each forecast
approach yields a forecast MSE less than or equal to the restricted model’s MSE.
2. See the notes to Tables 1 and 2.
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Table 5. Application Results: 1985-2006 Forecasts of Core PCE Inflation
(for restricted model, average MSE; for other forecasts,

ratio of MSE to restricted model’s MSE)
output gap output gap & 1 factor

food-energy inflation
method/model 1Q 1Y 1Q 1Y 1Q 1Y
restricted .632 .516 .632 .516 .632 .516
unrestricted .980 1.044 1.150 1.380 .979 1.034
opt. combination: α̂∗t .976 .990 1.073 1.081 .977 .986
opt. combination: Stein α̂∗t .976 .984 1.060 1.020 .977 .978
simple average .973 .906 .983 .871 .977 .950
Ridge regression .978 1.018 1.032 1.135 .976 .976
BMA .995 1.006 1.085 1.155 .999 1.024

2 factors 3 factors 5 factors
method/model 1Q 1Y 1Q 1Y 1Q 1Y
restricted .632 .516 .632 .516 .632 .516
unrestricted .965 .971 .950 .879 1.136 1.001
opt. combination: α̂∗t .954 .879 .935 .791 1.040 .834
opt. combination: Stein α̂∗t .953 .866 .934 .781 1.021 .807
simple average .950 .854 .936 .782 .963 .794
Ridge regression .950 .891 .933 .807 .955 .815
BMA .971 .934 .954 .846 1.065 .914

Notes:
1. The forecasting models take the forms given in equations (10) and (11). In the first application, the
unrestricted model includes just one lag of the output gap, defined as the log ratio of actual GDP to the
CBO’s estimate of potential GDP. In the second application, the unrestricted model includes one lag of
the output gap and two lags of relative food and energy price inflation, calculated as overall PCE inflation
less core PCE inflation. In the remaining applications, the unrestricted model includes one lag of common
business cycle factors — with the number of factors varying from 1 to 5 across applications — estimated as
in Stock and Watson (2005).
2. The first six forecast approaches are defined in the notes to Table 1. The BMA forecast is a Bayesian
average of the forecasts from the restricted and unrestricted models, implemented with the averaging ap-
proach recommended by Fernandez, Ley, and Steel (2001), with the difference that these results are based
on a g–prior coefficient setting of 1/5. The Ridge regression forecast is obtained from a generalized ridge
estimator which shrinks the β22 coefficients (but not the other coefficients) of the unrestricted model toward
0 based on conventional Minnesota prior settings described in section 4.2.
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