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Abstract

We present a version of the neoclassical model with an endogenous
industry structure. We construct a distribution of �rms�productivity
that implies multiple steady-state equilibria even with an arbitrarily
small degree of increasing returns to scale. While the most produc-
tive �rms operate across all the steady states, in a poverty trap less
productive �rms operate as well. This results in lower average �rm
productivity and total factor productivity. The distributions of em-
ployment by �rm size across steady states are consistent with the
empirical observation that poor countries have a higher fraction of
employment in small �rms than rich countries. Di¤erences in output
and total factor productivity across steady states are increasing in the
degree of returns to scale, the capital share, and the Frisch elasticity
of labor supply.
JEL: L16, O11, O33, O40
Keywords: endogenous productivity, multiple equilibria, poverty

traps
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1 Introduction

The role of an endogenous industry structure as a powerful amplifying mech-
anism is well established in the literature, building on the seminal work of
Hopenhayn (1992). Endogeneity of the industry structure allows to obtain
countercyclical markups and indeterminacy (Jaimovich, 2007). It can ra-
tionalize the business cycle characteristics of entry, pro�ts, and markups,
while accounting for the standard business cycle moments (Bilbiie, Ghironi,
and Melitz, 2012). It provides an ampli�cation mechanism for di¤erences in
prices of investment goods to translate into large di¤erences in output across
countries (Armenter and Lahiri, 2012). Finally, the endogenous response of
the industry structure to various institutional and policy failures, such as
barriers to entry, induces misallocation of inputs across �rms (for a survey,
see Hopenhayn, 2014).
We show that endogenizing the industry structure can lead to an extreme

form of ampli�cation. We introduce heterogeneous �rms à la Hopenhayn
(1992) in a standard neoclassical model. Many ex-ante identical potential
�rms obtain a random productivity draw upon payment of an entry cost.
Only �rms productive enough to pay an overhead labor cost choose to op-
erate. We construct a distribution of �rms�productivity, characterized by a
high fraction of similarly unproductive �rms, that implies multiple steady-
state equilibria even with an arbitrarily small degree of increasing returns to
scale.1 Consider a steady state with a high productivity cuto¤ and a large
capital stock: These imply that the wage is high, as is the operating cost.
A high operating cost makes low productivity �rms unpro�table, e¤ectively
cleansing the pool of �rms. This justi�es the cuto¤ being high in the �rst
place. Since only high productivity �rms are operating, TFP is high. Con-
versely, in a steady state where capital is low and lower productivity �rms
are operating, the wage is low and lower pro�ts are su¢ cient to cover the
operating cost. Low productivity �rms sully the pool of producers, leading
to lower TFP and capital. In a good equilibrium high productivity �rms
produce more than in a bad equilibrium, despite facing a higher wage and
the same interest rate, because �rms face a higher demand.
As in most models with heterogeneous �rms, �rms�sizes are proportional

to their productivity. Assuming that the distributions by size in the data are

1Galí (1995) obtains multiple equilibria and poverty traps in a model where large in-
creasing returns stem from endogenous markups. However, subsequent empirical evidence
suggests that the degree of increasing returns is small.
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the result of the same underlying distribution of productivity across �rms,
truncated at di¤erent levels, the data are supportive of the kind of distribu-
tion that generates multiple equilibria in the model. In fact, the key feature
of the distribution of �rms by size in poor countries is that it has a much
higher share or employment in small �rms than the distribution of �rms in
rich countries (see Tybout, 2000). We use a numerical example that captures
this feature of the data to show that di¤erences in TFP and output across
steady states are increasing in the degree of returns to scale and in the share
of capital in income.
In the benchmark model labor is supplied inelastically. Multiplicity of

steady states with an arbitrarily small degree of increasing returns is main-
tained when the supply of labor is endogenized. Furthermore, di¤erences in
capital, labor, TFP, and output across steady states are increasing in the
Frisch elasticity of labor supply.
Several models of poverty traps relying on increasing returns have been

proposed in the literature, surveyed by Azariadis and Stachurski (2005, Sec-
tion 5).2 Previous studies of poverty trap models with endogenous TFP
pointed to the failure of adopting the most productive technologies as the
cause of low TFP and income in poor countries (Murphy, Shleifer, and
Vishny, 1989; Ciccone and Matsuyama, 1996). In contrast, we focus on dif-
ferences in the usage of the least productive technologies. There is evidence
pointing to the fact that di¤erences in TFP across economies are related to
the lowest level of �rms�productivity. Comin and Hobijn (2010) take a com-
prehensive look at the uses of various technologies as determinants of TFP
and �nd that the key is not when new, better technologies are adopted, but
when old, obsolete ones are relinquished. Also, the empirical evidence on the
importance of international knowledge spillovers summarized in Klenow and
Rodriguez-Clare (2005) suggests that all countries can easily access frontier
technologies. Banerjee and Du�o (2005) cite the McKinsey Global Institute
(2001) report on India, which �nds that while larger production units (�rms)
use relatively new technologies, smaller (in home) production units have low
productivity.
Models similar to the one we analyze, with constant returns to scale

and a unique steady state, have been used in the misallocation literature to

2An earlier survey of the literature can be found in Azariadis (1996). Kraay and
McKenzie (2014) provides a more recent survey and cast doubts on the empirical relevance
of poverty traps models.
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study the e¤ects of cross-country di¤erences in entry barriers. Barseghyan
and DiCecio (2011) show that the observed di¤erences in entry costs across
countries generate sizeable di¤erences in output and TFP. The key di¤erence
is that the distribution of productivity is calibrated to match the distribution
of �rms and employment by size in the U.S. and it does not feature a �mass
point� of similar, low-productivity �rms. Boedo Moscoso and Mukoyama
(2012) show that entry regulations and �ring costs have important e¤ects
on cross-country di¤erences in TFP and output. Poschke (2010) argues that
small di¤erences in entry costs, by a¤ecting �rms�technology choices, can
explain a substantial part of the TFP di¤erences across similarly developed
economies.
The rest of the paper is organized as follows. Section 2 presents the

benchmark model with inelastic labor supply. Section 3 studies its steady
state and dynamics properties. In Section 4 we present comparative statics
of the benchmark model, using a calibrated numerical example. Section 5
discusses the implications of endogenizing the supply of labor. We conclude
in Section 6.

2 The Model

Our model is a variant of the neoclassical growth model. The model departs
from the standard framework by having a richer structure of the produc-
tion side of the economy. We model �rms following Lucas (1978), Jovanovic
(1982), and Hopenhayn (1992). Firms are heterogeneous: each �rm has
monopoly power over the good it produces, and �rms have di¤erent produc-
tivity levels. Two features of the production side of the economy are crucial
for the results of the paper:

1. a sunk entry cost;

2. an operating cost: in addition to capital and labor used directly in
production, �rms pay for a �xed amount of overhead labor.

A part of the entry costs stems from satisfying di¤erent o¢ cial regulatory
requirements (see Djankov, La Porta, Lopez-de-Silanes, and Shleifer, 2002).
In addition, in some countries, entry requires signi�cant side payments to
local o¢ cials.3 Entry cost may also include expenses related to acquisition

3In the case of Peru, this is documented by De Soto (1989).
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of �rm-speci�c capital,4 acquisition of appropriate technology,5 and market
research.
The operating cost typically refers to overhead labor and expenses that

are lumpy in nature (e.g., renting a physical location). According to the
�ndings of Domowitz, Hubbard, and Petersen (1988), in U.S. manufacturing
plants, the overhead labor accounts for 31 percent of total labor. Ramey
(1991) suggests that overhead labor is about 20 percent. The preferred esti-
mate of overhead inputs in Basu (1996) is 28 percent.
We also assume that �rms learn their productivity only after a sunk entry

cost is paid. This assumption re�ects very high uncertainty faced by entering
�rms and is a stylized fact documented, for example, by Klette and Kortum
(2004).

2.1 Households

There is a continuum of households that supply a �xed amount of labor,
consume, invest, and own all �rms in the economy. The problem of the
representative household is given by

max
1X
t=0

�tU(Ct); � 2 (0; 1) (1)

s.t. Ct + It = rtKt + wt +�t + Tt;

It = Kt+1 � (1� �)Kt;

where Ct denotes consumption, It is investment, Kt denotes the total house-
hold capital, rt is the rental rate on capital, and wt is the wage:6 �t is the
�rms�pro�ts, and Tt is a lump-sum transfer from the government; � and
� 2 (0; 1) are the discount rate and depreciation rate, respectively. We
assume a constant elasticity of substitution utility function with elasticity
� > 0.

4Ramey and Shapiro (2001) show that in some instances the speci�city of �rm capital
is so extreme that the sale price of such capital after a �rm has been dissolved is only a
small fraction of the original cost.

5See, for example, Atkeson and Kehoe (2005).
6We assume that the household inelastically supplies one unit of labor.

4



2.2 Firms

2.2.1 Final Good Producers

The �nal consumption good in this economy is produced by perfectly com-
petitive �rms, according to the following production function:

Yt =

�Z �t

0

[yt(i)]
1
� di

��
;

where �t is the measure of intermediate goods produced in the economy,
yt(i) is the quantity of the intermediate good i and � is a constant that
satis�es � 2 (1; 1 + 
min (�; 1� �)). The parameter � determines the elas-
ticity of substitution between any two intermediate good, " � �= (�� 1).
This parameter also determines the level of returns to scale at the aggregate
level. Increasing returns, implied by � > 1, arise from demand (pecuniary)
externalities.7

Let pt(i) be the price of the ith intermediate good relative to the �nal
good. Then, the maximization problem of the �nal good producer can be
written as

�FFt = max

�Z �t

0

[yt(i)]
1
� di

��
�
Z �t

0

pt(i)yt(i)di; (2)

and the �rst-order optimality condition implies that the demand function for
the ith intermediate good is given by

pt(i) =

�
yt(i)

Yt

����1
�

:

2.2.2 Intermediate Goods Producers

A �rm in the intermediate goods sector lives for one period and is pro�t
maximizing. All �rms are ex-ante identical. There is a sunk entry cost, �.8

7This is similar to increasing returns to variety (see, e.g., Kim, 2004). In models with
identical producers of intermediate varieties increasing reutrns operate at the extensive
margin. In our model increasing returns are at the intensive margin, i.e., they apply to
the productivity of operating �rms and not to the measure of operating �rm.

8We assume that � is denominated in consumption units and that all entry-cost pay-
ments are rebated to the households in a lump-sum fashion. Alternatively, one can model
� as a sunk investment, i.e., in units of capital. Such a formulation would not change any
of our results, but it would make the exposition more cumbersome.
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Once the entry cost is paid, a �rm gains the ability to produce an intermediate
good. The �rm has monopoly power over the good it produces. Next, the
�rm draws a productivity parameter A(j), where j is drawn from an i.i.d.
uniform distribution over [0; 1]. The production function for the good j is
given by

y (j) = [A(j)]1�

�
k(j)�n(j)1��

�

;

where k(j) and n(j) denote capital and labor, respectively. The productivity
parameter di¤ers among the �rms. A �rm with a higher index has a higher
productivity parameter, i.e., A(j) > A(i) for j > i. In addition, functionA(j)
is assumed to be continuous, di¤erentiable almost everywhere, andA(0) = 0.9

The parameter 
 2 (0; �) determines the degree of returns to scale in variable
inputs,10 and it satis�es �
 < 1. The parameter � is between zero and 1.
If a �rm decides to produce, it must incur an operating cost in terms of

wages paid to � units of overhead labor. Consider the decision of a �rm born
in time t with a draw j. If it decides to produce, its pro�ts are

�Pt (j) = maxkt(j);nt(j) pt (j) yt(j)� rtkt(j)� wt [nt(j) + �]

s.t. yt(j) = [A(j)]1�

�
k�t (j)n

1��
t (j)

�

; pt(j) =

h
yt(j)
Yt

i 1��
�
:

(3)

The decision to produce or not depends on whether �Pt (j) is positive. There-
fore, the jth �rm�s pro�ts, �Ft (j), are given by

�Ft (j) = maxf�Pt (j); 0g: (4)

Free entry implies that, in equilibrium, �rms�expected pro�ts must be equal
to the entry cost, �: Z 1

0

�Ft (j)dj = �: (5)

2.2.3 Firms�average productivity

We derive the equilibrium relationship between the �rms�average productiv-
ity and the operating cost. First, we determine the lowest productivity level
necessary for a �rm to decide to produce. The existence of economy-wide

9Alternatively, one could model �rms as drawing productivity instead of an index
j 2 [0; 1]. The function A (j) is the inverse of the CDF of the distribution of �rms�
productivity.
10This is what Lucas (1978) calls managers�span of control.
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competitive factor markets implies that in equilibrium, the gross pro�ts, cap-
ital, and labor ratios of any two �rms are equal to their (scaled) productivity
ratio:

pt(j)yt(j)

pt(i)yt(i)
=
kt(j)

kt(i)
=
nt(j)

nt(i)
=
a(j)

a(i)
; 8i; j; (6)

where a(j) � A(j)
1�

��
 . The �rst-order conditions of problem (3) imply that

pro�ts from producing are equal to the �rm�s share of the gross pro�ts
�
1� 


�

�
minus the operating cost11:

�Pt (j) =
�
1� 


�

�
pt(j)yt(j)� �wt:

Clearly �Pt (j) is increasing in j and, since a(0) = 0; there exists a cuto¤�rm,
Jt, which is indi¤erent between producing or not:�

1� 

�

�
pt(Jt)yt(Jt) = �wt: (7)

Firms with indices higher than Jt will produce, and those with lower indices
will not. Thus, �rms�zero pro�t condition in (5) can be written as

� = �wt

Z 1

Jt

�
a(j)

a(Jt)
� 1
�
dj: (8)

The previous equation de�nes the cuto¤Jt as a function of the operating cost
�wt: An increase in the cuto¤Jt has two e¤ects: Pro�ts of every �rm decline,
and the measure of producing �rms as a fraction of entering �rms declines.
Therefore, the right-hand side of (8) is decreasing in Jt and increasing in
the �xed cost �wt: Hence, the cuto¤ is increasing in the operating cost and

average �rm productivity, �a (Jt) =
R 1
Jt
a(j)dj

1�Jt ; is an increasing function of the
operating cost.

2.2.4 Measures of entering and of operating �rms

Entry in this model refers to the number of �rms that pay the entry cost,
�. The measure of entering �rms di¤ers from the measure of operating �rms
because only a fraction of entrants will have productivity high enough to

11Later on, with some abuse of terminology, we will refer to (1� 

� )pt(j)yt(j) as �rms�

gross pro�ts.
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operate: the pool of producers consists only of �rms which have an index
higher than Jt. In particular, let �t denote the measure of entering �rms and
�t the measure of operating �rms. Then

�t = �t

Z 1

Jt

dj: (9)

2.3 Aggregate Output and TFP

Aggregate capital, labor, and output can be expressed as

Kt = �t

Z 1

Jt

kt(j)dj; (10)

Nt = �t

Z 1

Jt

[nt(j) + �] dj; (11)

Yt =
h
(�t�a (Jt))

(��
) u
(1��)

t

i
K�

t (Nt)

(1��)
 ; (12)

where ut is the fraction of labor used in production. Finally, the rental rate
on capital, the wage rate, and the equation determining the cuto¤ Jt can be
written as

rt = �



�

Yt
Kt

; (13)

wt = (1� �)



�

Yt
utNt

; (14)�
1� 


�

� a(Jt)
�a (Jt)

Yt
(1� ut)Nt

= wt: (15)

2.4 Closing the Model

The resource constraint is given by

Ct +Kt+1 = Yt + (1� �)Kt: (16)

The only role the government has in the model is to collect the entry fees
�t� from �rms and rebate them lump-sum to the households:

Tt = �t�: (17)
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Pro�ts and the labor market clearing condition are

�t = �
FF
t ; (18)

Nt = 1: (19)

The de�nition of equilibrium is standard.

3 Steady States and Dynamics

In this section we analyze the existence and stability of the steady states.
The main �nding is that, given an arbitrarily small degree of returns scale
above constant returns, one can construct a productivity distribution such
that the model has multiple stable steady states.

3.1 Steady States

First, note that the measure of �rms is proportional to the total amount of
labor used to cover the �xed cost:

�t =
1� ut
�

Nt:

Therefore, aggregate output is given by

Yt = TFPtK
�

t N

���

t ; (20)

where total factor productivity is

TFPt = �

�� [�a (Jt)]

��
 (1� ut)��
u(1��)
t : (21)

There are two components of TFP: �rms�average productivity [�a (Jt)]
��


and the term u
(1��)

t (1� ut)��
 ; which we call the labor allocation compo-

nent.12 Firms�average productivity is increasing in Jt. The labor allocation
component is a function of Jt as well, though not necessarily monotonic. The
e¤ect of Jt on average productivity dominates and TFPt is increasing in Jt.
The following proposition allows us to present the model economy in a

more familiar, neoclassical framework.
12The labor allocation component is part of TFP because, given aggregate capital and

labor, the number of �rms� and hence the labor allocation component� a¤ects aggre-
gate output. Also, the model�s TFP is di¤erent from the Solow residual, as the later is
constructed using factor shares that sum to one.
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Proposition 1 The aggregate production function in (12) and total factor
productivity (21) are increasing in the cuto¤ J: The cuto¤ J; the wage w;
and aggregate output Y are all increasing functions of capital K: The rate of
return on capital R � (r + 1� �) is a function of K:

Proof. Equations (14) and (15) imply that the fraction of labor used in
production u is a function only of the cuto¤, J :

u =
�a (J)

�a (J) + ��

(1��)
a(J)

: (22)

Substituting this expression of u into equation (21), we obtain:

TFP (J) = �
��

"
��

(1��)
a(J)

�a (J) + ��

(1��)
a(J)

#��

�

�
"

�a (J)

�a (J) + ��

(1��)
a(J)

#(1��)

[�a (J)]��
 (23)

Di¤erentiating the previous expression,

signum (TFPJ) = signum

24 (��
)(1��)

(1��)
�a+(��
)a

aJ
a
(�a� a)+

�aJ

�
1
�a
� 1

�a+ ��

(1��)
 a

� 35 ; (24)

where TFPJ =
@TFP (J)

@J
, aJ =

@a(J)
@J
, �aJ =

@�a(J)
@J
, a = a (J) and �a = �a (J) : The

terms in parenthesis in (24) are positive and they are multiplied by positive
terms. Hence, TFPJ > 0. Using the �rms��rst-order condition in (14) and
the zero pro�t condition in (8) we get that the following relation between the
cuto¤, J , and capital, K :

� = (1��)

�

�
�� 

(1� �)


���
 "
�a

�a+ ��

(1��)
a

#(1��)
+(��
)�1
a��


�a� a
a

(1� J)K�
:

For a given K, the right-hand side of this equation varies with J from +1
to zero (as J ranges from 0 to 1). Moreover, one can easily show that the
right-hand side is decreasing in J: Thus, there exists a unique J which solves
the equation. In addition, it is increasing in K: Because J is increasing in
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K; so are output, Y; and the wage rate, w: In addition, since, for a given K,
output Y is uniquely determined, so is the rate of return on capital, i.e., R
is a function of K.
The proposition above implies that the dynamics of the economy can be

characterized by the following system of di¤erence equations,�
ct+1
ct

�1=�
= �R(Kt+1);

Ct +Kt+1 = Y (Kt) + (1� �)Kt;
(25)

plus a transversality condition. We now turn to the existence and multiplicity
of steady states.

Proposition 2 For any � > 1, there exists a distribution of productivities,
a (j), such that the system (25) has multiple steady-state equilibria.

Proof. This proof is by construction, i.e., we construct a function a (j).
We use equations (13) and (20) to express K as a function of r and J: By
substituting this expression of K into equation (23) and by using equation
(14), we get

� = ��(J) (26)

where

�(J) �
"

�a(J)

�a(J) + ��

(1��)
a(J)

# ��1
1��


a(J)
��

1��


Z 1

J

�
a(j)

a(J)
� 1
�
dj; (27)

and � is a constant:

� = �

��
1��
�1

�
1� 


�

���

�

� �

1��


�
�� 

(1� �)


� ��

1��
�1

r
�


�
�1 : (28)

Since �(J) is continuous, limJ!0+ �(J) = +1; and limJ!1� �(J) = 0;13

by the intermediate value theorem there always exists a J� that satis�es
equation (26).

13Notice that
R 1
J

h
a(j)
a(J) � 1

i
dj = 1�J

a(J) [�a (J)� a (J)] : Hence,

�(J) = a(J)
��

1��
�1

"
�a(J)

�a(J) + ��

(1��)
 a(J)

# ��1
1��


[�a(J)� a(J)] (1� J) ;

and the limits immediately follow.
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We have to show that for any J� satisfying equation (26) there exists a
pair (c�; K�), both positive, such that R(K�) = 1=� and c� = Y (K�)� �K�:
This is an immediate consequence of Proposition 1.
If there is more than one J� satisfying equation (26), then the model has

multiple steady states. For given parameters �; 
; and �; the shape of the
function �(J) is entirely determined by the shape of the function a(j): If
a(j) is such that �J > 0 then (26) can have multiple solutions. To conclude
the proof, we construct a function a(j) such that �J > 0: Compute �J :

�J =
�� 1
1� �


"
�aJ
�a
�
�aJ +

��

(1��)
aJ

�a+ ��

(1��)
a

#
� +

+

�
�� 

1� �
 �

�a

�a� a

�
aJ
a
�:

Consider a function b(�) constant on
�
J; �J

�
for some 0 < J < �J < 1,

strictly increasing elsewhere on [0; 1], and such that b(0) = 0; b(1) < 1.
Let I(�) be any increasing function with a continuous, bounded derivative on
[0; 1], e.g., the identity function. Finally, let

a(j) = (1� ")b(j) + "I(j):

It follows that a(J) is di¤erentiable with derivative aJ � "M for j 2
�
J; �J

�
;

where M = maxj2[J; �J] IJ(j) is �nite (if I(�) is the identity function, then
aJ = ").
Next, note that �aJ = (�a� a) = (1� J) and hence

lim
"!0

�aJ =
�b� b
1� J > 0;

lim
"!0

�a = �b > b = lim
"!0

a:

It follows that

lim
"!0

�J =
�� 1
1� �


"
�bJ
�b
�

�bJ
�b+ ��


(1��)
 b

#
� > 0:

Hence there exists an " > 0 for which �J is positive at some ~J: For ~J to
be an equilibrium, i.e., � = ��( eJ), it is su¢ cient to scale the function a (j)
appropriately, by multiplying it by (�=�)

1��

��
 . There are at least two more
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Figure 1: A graphical depiction of equation (26).

values of J 2 (0; 1) for which the equation � = ��(J) is satis�ed. Indeed,
recall that limJ!0+ �(J) = +1; and limJ!1� �(J) = 0: Since �J( eJ) > 0, by
the intermediate value theorem that there exists ~JL < ~J such that ��( ~JL) =
� and ~JH > ~J such that ��( ~JH) = �:
To have multiple solutions, it is necessary for the function � to be non-

monotone (see Figure 1). Note that equation (26) implies that if �(J) is
increasing, so is r(K). The necessary condition for the existence of multiple
steady states is that for some values of K the return on capital must be
increasing. The properties of the function � mimic those of �rms�expected
pro�ts, i.e., the right-hand side of the zero-pro�t condition (8). A necessary
condition for existence of multiple steady state is that �rms�expected pro�ts
are increasing in J . An increase in the cuto¤ J has two opposite e¤ects.
On one hand the wage rate increases, increasing expected pro�ts. On the
other hand, a higher J implies a lower value of the integral on the right-hand
side of (8). For expected pro�ts to rise with J , the increase in the wage has
to dominate the fall in the value of the integral. A su¢ cient condition for

13



this is that @�a (J) =@J � @a (J) =@J : A relatively high derivative of average
productivity guarantees a strong positive e¤ect on TFP and the wage rate,
while a relatively low derivative of the marginal �rm�s productivity, a(J),
implies a mild negative response of the integral term. A function a(j) which
is su¢ ciently �at on some interval and increases rapidly for higher values of
j has this property.
Given Propositions 1 and 2, the �high-J� economy has higher capital

stock, higher output, higher TFP, and higher �rms average productivity.

3.2 Dynamics

The following proposition characterizes the behavior of the economy around
the steady state(s).14

Proposition 3 Steady states with an odd index are saddles. Steady states
with an even index can be classi�ed as follows:

1. source, if Y 0 � � > �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
;

2. unstable spiral, if Y 0 � � > �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
;

3. sink, if Y 0 � � < �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
;

4. stable spiral, if Y 0 � � < �CR0

R
and

�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
:

Proof. Linearizing (25) about a steady state:�
K̂t+1

Ĉt+1

�
=

�
Y 0 + 1� � �1

�R0

R
C (Y 0 + 1� �) 1� �R0

R
C

� �
K̂t

Ĉt

�
The eigenvalues of the transition matrix are given by:

�1;2 = 1 +
(Y 0 � �)� �CR0

R
�
q�
(Y 0 � �)� �CR0

R

�2 � 4�CR0
R

2
:

If R0 < 0 (odd steady states) both eigenvalues are real and �1 < 1 < �2
(saddles). If R0 > 0 (even steady states) there are four possible cases:

14An analysis of the global dynamics of our model is beyond the scope of this paper,
and we refer the reader to Galí (1995) and Slobodyan (2005).
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1. Y 0�� > �CR0

R
> 0 ^

�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
) �1;2 2 R;



�1;2

 > 1
(sources);

2. Y 0�� > �CR0

R
> 0 ^

�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
) �1;2 2 C;



�1;2

 > 1
(unstable spirals);

3. �CR0

R
> Y 0�� > 0 ^

�
(Y 0 � �)� �CR0

R

�2
> 4�CR

0

R
) �1;2 2 R;



�1;2

 < 1
(sinks);

4. �CR0

R
> Y 0�� > 0 ^

�
(Y 0 � �)� �CR0

R

�2
< 4�CR

0

R
) �1;2 2 C;



�1;2

 < 1
(stable spirals):

For the parameter values we consider in the rest of the paper, we obtain
three steady states, with the odd steady state unstable (cases 1 and 2 in
Proposition 3). In comparing output and TFP across steady states we will
focus on the two stable steady states.

4 Properties of the Model

In this section we discuss some quantitative properties of our model by com-
puting di¤erences in output and TFP in a calibrated version of the model.
Also, we perform sensitivity analysis on the degree of increasing returns to
scale and capital share parameters. We conclude that the di¤erences between
high and low steady states are sizable.

4.1 Calibration

Our model contains seven parameters (�; �; �; 
; �; �; �), plus any additional
parameters determining the function a (j). The model�s implications are ro-
bust to the choice of � and � for the commonly used values of � 2 (0:94; 0:99)
and � 2 (0:08; 0:12) : Therefore, we set � = 0:95 and � = 0:10: The parame-
ters �; 
; and � deserve more consideration.
The �rst parameter, �; governs the degree of increasing returns to scale

in the economy. There has been a large debate in the recent literature on the
magnitude of increasing returns in the economy. While earlier researchers
(most notably, Hall, 1988) suggested that there are large increasing returns
to scale in the economy, subsequent work has shown that the returns to

15



scale can be best described as constant or at most moderately increasing.
The latest estimates of � are probably those constructed by Laitner and
Stolyarov (2004). Their preferred point estimate is � = 1:1, with con�dence
interval (1:03; 1:2). These �gures are close to the estimates of Bartelsman,
Caballero, and Lyons (1994), Burnside (1996), Burnside, Eichenbaum, and
Rebelo (1995), Basu (1996), Basu and Fernald (1997), and Harrison (2003).
Hence, we calibrate our model with � = 1:1.
The next parameter, 
; represents the share of output that goes to capital

and labor used directly in production, for a given value of �. Note that in the
model there is a di¤erence between aggregate returns to scale and �rm-level
returns to scale. While at the aggregate level there are increasing returns
to scale, at the �rm level, as long as 
 < 1; the returns to scale in variable
inputs are decreasing. In our model, heterogeneous productivity leads to a
heterogeneous degree of returns to scale in all inputs. For high productivity
�rms, the decreasing returns to scale in variable inputs dominate the increas-
ing returns to scale e¤ect of the �xed cost; for low productivity �rms, it is the
opposite. These observations are broadly consistent with empirical �ndings
of Basu (1996), and Basu and Fernald (1997). As a benchmark, we consider

 = 0:85�, which is the preferred value of Atkeson and Kehoe (2005) and is
very close to the estimated value of 0:84 in Basu (1996).
The choice of the next parameter, �, depends on the interpretation of

entrepreneurs� income share, (1� 
=�). If part of it is considered capital
income, then the share of output that remunerates variable capital, rK=Y ,
is less than the overall share. A commonly used rule is to apportion to capital
a fraction � of the entrepreneurs� income share. Summing up, the capital
share of output is [rK=Y + �(1� 
=�)] = �: We set rK=Y = 0:4, which
implies � = 0:47.
We have shown that for some functions a(j) there will be multiple stable

steady states. The key property of the function a(j) that generates multi-
plicity of equilibria is that �aJ strongly dominates aJ for some J .15 A function
that has this property is one that is su¢ ciently �at on some interval (J1; J2).
The larger this interval is, the farther apart the stable steady states are from
each other. In terms of �rms�productivity distribution, this translates into
the lower steady state having a large fraction of �rms with nearly the same

15See proof of Propositon 2.
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J1 J2 b M1 M2 �
1e� 6 0:97 1:65 282:1 105:8 0:50

Table 1: Parameter Values: function a(j) and �xed cost

low productivity. Hence, we parameterize the function a (j) as follows:

a(j) =

8>><>>:
j=J1; if j � J1;

1 + b
�
j�J1
J2�J1

�M1

; if J1 < j � J2;

(1 + b)
�
j
J2

�M2

; if j > J2:

(29)

We normalize � to 1,16 and we choose � and the �ve parameters pinning
down the productivity distribution (J1, J2,M1,M2, b) so that the distribution
of �rms by size implied by our model in the two stable steady state is as close
as possible to the distributions of �rms by size in the average Least Developed
Country (LDC) and in the U.S. (see Tybout, 2000, Table 1). Notice how in
the average LDC the distribution of �rms by size is characterized by a much
higher share of small �rms than in the U.S.
Figure 2 portrays the distributions of �rms by size for the U.S. and the

average LDC (right column), together with the distributions for the high and
low steady states of our calibrated model (left column).
Figure 3 reports the function a (j), which minimizes the distance between

the model distributions and their empirical counterparts.
For this calibration, TFP and output di¤er across steady states by a

factor of 1:1 and 1:21, respectively.

4.2 Comparative Statics

In this section we conduct comparative statics by analyzing how varying
the degree of increasing returns to scale and the capital share maps into
di¤erences across the high and the low steady states of our model.
The limiting case of � equal to 1 has the least favorable implications

for the existence of multiple steady states, because the model essentially
collapses to the standard neoclassical model. It is important to see how large
the steady state di¤erences can be for � arbitrarily close to 1. The condition

16Notice that for our results only �=�
��

1��
�1 matters: see equations (26) and (28).
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Figure 2: Employment Shares: model versus data.

for the existence of multiple steady states translates to a(J) being �at over
some interval. In this case, the extremes of this interval correspond to the
two steady-state values of J . This implies that the ratios of total factor
productivity, capital, and output levels in the two stable steady states are
bounded:

TFPH

TFPL
�

�
1� rK=Y

 � rK=Y

�1�rK=Y
; (30)

KH

KL
� 1� rK=Y


 � rK=Y ; (31)

Y H

Y L
� 1� rK=Y


 � rK=Y : (32)

When our economy approaches constant returns to scale, the endogenous
TFP mechanism alone is quite powerful and it can generate di¤erences in
TFP and output across steady states of up to 28 and 50 percent, respectively,
for low values of 
 (see Table 2).
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 TFP Output rK=Y TFP Output
0:8 1:28 1:50 0:36 1:19 1:31
0:85 1:19 1:33 0:4 1:19 1:38
0:9 1:12 1:20 0:5 1:20 1:50
0:95 1:05 1:09 0:6 1:11 1:75

Table 2: Bounds on relative TFP and output for �! 1.

In the studies of the long-run behavior of an economy, using the proper
measure of capital share of output is of crucial importance. For example, for
the uni�ed theory of Parente and Prescott (2005) to be successful, the capital
share of output should be between 0:55 and 0:65. The magnitude of this share
depends on the de�nition of investment (capital). In the context of this
paper it is proper to de�ne investment as �any allocation of resources that is
designed to increase future productivity�(see Parente and Prescott, 2000).
That is, investment should include maintenance and repair, research and
development, software, investment in organizational capital, and investment
in human capital. Parente and Prescott (2000) �nd that including these
items in investment implies that the capital share of output is larger than
1=2 and can reach as high as 2=3.17 The capital share is important for two
reasons. First, there is a standard neoclassical e¤ect: The higher the capital
share is, the higher the e¤ect of TFP is on the economy. For two economies
di¤ering only in their TFP, the steady state capital ratio relates to the TFP

ratio as follows:
�
KH=KL

�
=
�
TFPH=TFPL

� 1
1��
 . The higher the share of

capital is, the higher the di¤erence in steady state capital is between the two
economies. Second, the capital share directly impacts TFP, because it enters
into the de�nition of TFP in (21) and into the de�nition of the function �(J)
in (27). Because of the highly non-linear nature of TFP and � as functions
of the cuto¤J; it is not possible to derive analytically the e¤ect of an increase
in the capital share on the resulting TFP di¤erences across the steady states.
However, when � tends to 1 the theoretical upper bound on these di¤erences
gets larger as the capital share grows (see equation (31) above). The increase
in the capital share of output increases the TFP di¤erences. Combined with

17For details and references see the original paper. A large portion of the unmeasured
capital is organization capital. Findings of Atkeson and Kehoe (2005) imply that the
value of organizational capital in the US manufacturing sector is larger than the value of
physical capital.
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Figure 4: Relative (high/low steady state) output and TFP for di¤erent
values of 
=� (top row), rK=Y (bottom row), and �. Stars correspond to
the benchmark paramter values (see Section 4.1).

the �neoclassical e¤ect�described above, this leads to even larger di¤erences
in output and in capital across the steady states.
Figure 4 shows the e¤ect of varying �, 
, and rK=Y on the di¤erences in

output and TFP between the high and the low steady state. The higher the
degrees of returns to scale at the aggregate level (�) and the capital share
(rK=Y ), the larger the di¤erences. The lower the degree of returns to scale
at the �rm level (
), the larger are output and TFP in the high steady state
relative to the low steady state.
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5 Endogenous Labor Supply

Consider a representative agent who values consumption and leisure accord-
ing to the following GHH preferences (see Greenwood, Herkowitz, and Hu¤-
man, 1988):

1X
t=0

�t
�

� � 1

�
Ct �

�

1 + �

�
NS
t

�1+����1�
; (33)

where NS
t is the household supply of labor, � is the inverse of the Frisch

elasticity of labor supply and � is a parameter determining the steady-state
value of labor supply. The inelastic labor model discussed above is a special
case, obtained with � ! 1. The household�s �rst order conditions are as
follows: "

Ct+1 � �
1+�

�
NS
t+1

�1+�
Ct � �

1+�
(NS

t )
1+�

#1=�
= � (rt+1 + 1� �) ; (34)

�
�
NS
t

�1+�
= wt: (35)

The labor market clearing condition equates labor demand and supply,
i.e., Nt = NS

t .

Proposition 4 For any � > 1 there exists a distribution of productivities,
a (j), and a value of the entry cost, �, such that the model with endogenous
labor supply has multiple steady-state equilibria.

Proof. From (13) and the equation for aggregate output, Y = TFP
�
K�
N���
�:

Y = TFP
�
TFP

�


r�
N���


� �

1��


N���
:

Combining labor demand (14) and labor supply (35) and substituting from
Y :

N =

�
(1� �)
�




�

��

r�

� �

1��


TFP
1

1��

1

u

� 1��

�(1��
)�(��1)

:
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Substituting in (8) for w from (35) and for N from the previous equation:

� = ��

(
(1� �)
�




�

��

r�

� �

1��


�
�� 

(1� �) 


a (J)

�

� ��

1��


u
��1
1��


) �(1��
)
�(1��
)�(��1)

�

�
Z 1

J

�
a(j)

a(J)
� 1
�
dj:

where u is given by (22). Hence the cuto¤ equation can be written as � =
�̂�̂ (J) ; where

�̂ (J) =

8<:a (J) ��
1��


"
�a (J)

�a (J) + ��

(1��)
a(J)

# ��1
1��


9=;
�(1��
)

�(1��
)�(��1) Z 1

J

�
a(j)

a(J)
� 1
�
dj;

�̂ = ��

(
(1� �)
�




�

��

r�

� �

1��


�
�� 


(1� �) 
�

� ��

1��


) �(1��
)
�(1��
)�(��1)

:

Notice that lim�!1
�(1��
)

�(1��
)�(��1) = 1, implies lim�!1 �̂ (J) = � (J) and

lim�!1 �̂ = �. Also, for � ! 1 the cuto¤ equations with endogenous labor
supply and inelastic labor are equivalent, i.e., lim�!1 �̂�̂ (J) = lim�!1 �� (J) :
Di¤erentiating �̂ (J), it is evident that by constructing the value of � and
the function a(�) exactly as in Proposition 2, one will guarantee the existence
of multiple steady states:

�̂J =
� (1� �
)

� (1� �
)� (�� 1)
�� 1
1� �


"
�aJ
�a
�
�aJ +

��

(1��)
aJ

�a+ ��

(1��)
a

#
�̂ + :::

+

�
� (1� �
)

� (1� �
)� (�� 1)
�� 

1� �
 �

�a

�a� a

�
aJ
a
�̂:

We set the parameters of the production side of the model, as well as
the discount factor and the intertemporal elasticity of substitution to the
same values as in Section 4. The remaining two parameters determining the
disutility from working are set as follows: � is such that the steady state
value of labor in the low steady state is the same as in the inelastic labor
model, i.e., NS = N = 1; We take the benchmark value for � from Jaimovich
and Rebelo (2009), � = 0:4, which corresponds to a Frisch elasticity of 2:5.
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� = 0:4 � !1
Low High High/Low Low High High/Low

K 3:38 5:51 1:63 3:38 4:10 1:21
N 1 1:27 1:27 1 1 1
TFP 0:74 0:83 1:12 0:74 0:83 1:11
Y 1:27 2:07 1:63 1:27 1:54 1:21
w 0:68 0:75 1:10 0:68 0:71 1:04

Table 3: GHH model: stable steady states with � = 0:4 and � !1.

Table 3 contrasts the values of output, labor, TFP, output and wages
for the two stable steady states of the model with endogenous labor with
the same objects in the benchmark inelastic labor model. Labor is 27%
higher in the high steady state when households supply labor elastically.
This corresponds to a higher wage when labor is endogenous. The di¤erences
in capital and output across steady states are much larger with endogenous
labor (63% vs. 21%). The di¤erences in TFP are similar.
Figure 5 illustrates that the di¤erences across steady states are even larger

if one is willing to assume a higher Frisch elasticity of labor supply, i.e., a
lower �. For example, for � = 0:3 the high steady state has a level of output
183% higher than the low steady state.

6 Conclusions

We show that allowing for an endogenous industry structure along the lines
of Hopenhayn (1992) can yield to multiple locally stable steady states: We
construct a distribution of productivity that implies multiple steady state for
an arbitrarily small degree of increasing returns. If only the most productive
�rms operate, TFP and output are high. When the pool of �rms is sullied by
a large measure of low-productivity �rms, the economy is in a low-TFP and
low-output steady state. This is consistent, qualitatively, with the empirical
evidence: LDC countries feature a much higher share of employment in small
(low productivity) �rms than the US.
Di¤erences in TFP and output across steady states are increasing in the

degree of returns to scale, in the share of capital in income, and in the Frisch
elasticity of labor supply.
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