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Abstract

In the recent literature on monetary and �scal policy design, adoption
of policies that induce both determinacy and learnability of equilibrium
has been considered fundamental to economic stabilization. We study
the connections between determinacy of rational expectations equilibrium,
and expectational stability or learnability of that equilibrium, in a general
class of purely forward-looking models. We ask what types of economic
assumptions drive di¤erences in the necessary and su¢ cient conditions
for the two criteria. We apply our result to a relatively general New Key-
nesian model. Our framework is su¢ ciently �exible to encompass lags in
information, a cost channel for monetary policy, and either Euler equation
or in�nite horizon approaches to learning. We are able to isolate condi-
tions under which determinacy does and does not imply learnability, and
also conditions under which long horizon forecasts make a clear di¤erence
to conclusions about expectational stability. The sharpest result is that
informational delays break equivalence connections between determinacy
and learnability.
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1 Introduction

1.1 Overview

In the recent literature on monetary and �scal policy design, there has been

considerable interest in the promotion of policies that can deliver both a deter-

minate, or unique, rational expectations equilibrium, and also learnability, or

stability, of that equilibrium. Policies that generate equilibria which are both

unique and stable are viewed as preferable to those that might allow either a

multiplicity of equilibria, or instability, or both. The determinacy criterion is

de�ned according to Blanchard and Kahn (1980), and the learnability, or ex-

pectational stability,1 criterion is de�ned according to Evans and Honkapohja

(2001).

In some parts of this literature, there appears to be a tight connection be-

tween determinacy and learnability. The discussion in Woodford (2003a, 2003b)

as well as in Bullard and Mitra (2002) highlights cases where the conditions for

determinacy of equilibrium are the same as the conditions for expectational

stability. Woodford (2003a, p. 1180) states, �Thus both criteria ... amount

in this case to a property of the eigenvalues of [a matrix] A, and the condi-

tions required for satisfaction of both criteria are related, though not identical.�

McCallum (2007a) presents results suggesting that, for a large class of models

of interest for macroeconomists, expressed as linear systems of expectational

di¤erence equations, determinacy implies E-stability.2 Yet, an examination of

the �general linear model�case in Evans and Honkapohja (2001) makes it plain

that determinacy does not imply learnability. And, all of the above authors

stress that there is no general presumption that determinacy implies learnabil-

ity.3 Still, there seems to be a close relationship between the criteria in many

applications, and this is a puzzle we would like to help resolve. In particu-

1We use the terms expectational stability ; E-stability, and learnability interchangably in this
paper. The connections between the expectational stability condition and local convergence of
systems under real time recursive learning are discussed extensively in Evans and Honkapohja
(2001).

2Recently, McCallum (2007b) has argued that �well-formulated� models, which meet a
certain technical condition, the learnable rational expectations equilibrium is always unique,
even when the rational expectations equilibrium itself may not be unique.

3Bullard and Mitra (2002) in particular provide one example where the conditions required
for the two criteria do not coincide.
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lar, we would like to better understand the nature of the relationship between

determinacy and learnability in economic terms.

Meanwhile, Preston (2005, 2006) and Woodford (2003b) have suggested that

introducing learning into certain microfounded environments creates situations

where long-horizon forecasts can matter for learning dynamics.4 In the in�nite

horizon approach to learning,5 the fundamental equations describing the evolu-

tion of the state of the economy are altered under learning relative to the case

under rational expectations. Appropriately taking those changes in the dynamic

system into account can, but does not always, change the conclusions one would

draw concerning the learnability of a particular rational expectations equilib-

rium. For the baseline Bullard and Mitra (2002) �ndings, the in�nite horizon

approach yields the same conclusions, and Preston (2005, p. 86) notes, �That

these results concur with the results [under the in�nite horizon approach] is not

necessarily to be expected.�Indeed, in subsequent work, such as Preston (2006),

the learnability conditions di¤er under the two approaches. We would like to

understand more about the economics of the relationship between determinacy

and learnability in the in�nite horizon learning environment as well.

In this paper we consider a general class of purely forward-looking models

where, in equilibrium, current endogenous variables are determined by in�nite

horizon expectations (as in most microfounded macroeconomic models). On

the one hand, we study under what conditions determinacy and the di¤erent

learning approaches deliver the same stability conditions. On the other hand, we

investigate what aspects of the model might cause learnability and determinacy

to be governed by di¤ering conditions. To this end, we apply our more general

results to a standard and widely-studied macroeconomic model. It is already

known that determinacy does not imply E-stability in general; what is not well

understood is the nature of economic models in which the two sets of conditions

diverge. To understand the economic aspects we need to perform our analysis

inside of a known model framework, which is why we commit to using a fairly

general version of the New Keynesian (NK) macroeconomic model. This also

4Also see Marcet and Sargent (1989).
5Contrasting with the one-step-ahead (a.k.a, Euler equation ) approach to learning standard

in Evans and Honkapohja (2001).

2



facilitates our inclusion of the in�nite horizon approach, which is inherently an

issue that depends on the microfoundations.

1.2 What we do

We �rst study a general class of purely forward-looking models with in�nite hori-

zon expectations and informational delays. This class of models have a �nite

horizon representation which relies on the assumption of rational expectations,

as discussed in Preston (2005). Within this class of models, we investigate the

connection between determinacy and E-stability under in�nite horizon (IH) and

�nite horizon (FH) learning. We then study a generalized NK macroeconomic

model which includes certain features which will help us delineate between the

conditions for determinacy and those for learnability in a variety of circum-

stances. We allow for informational delays, as explained below, and also we

allow for the cost channel of monetary policy suggested recently by Ravenna

and Walsh (2006). With the model environment in place, we turn to calculating

determinacy and expectational stability conditions. We characterize situations

in which determinacy implies E-stability and situations in which it does not,

under both Euler equation and in�nite horizon learning.

1.3 Main �ndings

We �rst present two propositions that discuss the general model. Proposition

1 isolates conditions under which the Euler equation and in�nite horizon learn-

ing yield the same expectational stability conditions. Proposition 2 provides

conditions under which determinacy implies expectational stability. The results

suggest that di¤erences in the stability conditions under alternative approaches

are related to the rate at which the future is discounted and the existence of

information delays. Models that have a reduced-form representation with a

unique discount factor in each behavioral equation and do not have information

delays imply the same stability conditions. Models that have a representation

implying heterogeneous discount factors or display information delays might not

yield the same stability conditions.

Propositions 3 and 4 focus on the NK model. It is shown that determinacy
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implies E-stability when there are no information delays, but determinacy does

not imply E-stability when there are information delays. Furthermore, Euler

and in�nite horizon learning yield di¤erent stability conditions. This sharp

result suggests that for models that have some type of informational delay, a

wedge will be driven between the determinacy conditions and the learnability

conditions. Since information delays of some type are probably the most realistic

case, this is the most general conclusion of the paper.

1.4 Organization

In the next section we develop the general in�nite horizon model and review

and characterize the E-stability conditions. We then discuss the propositions

indicating when determinacy and learnability conditions will coincide, and when

they will not. In section 3 we discuss the application to the NK model. We

summarize our �ndings in the concluding section; there are also two appendices

to the paper which contain some of the development of the model.

2 A �general model�

2.1 Informational delays

A key aspect of our approach is that we allow for di¤ering information sets to

be available to agents at the time expectations are formed and decisions are

made as we consider the microfoundations of the model. This means that date t

expectations may be formed either with information available at date t; or with

information available at date t�1; and that the equations we derive to represent
the equilibrium dynamics will be equally valid in either case. To accomplish this,

we use the operator Êt�`, where ` 2 f0; 1g ; which we think of as an information
lag or a �delay�when ` = 1; and which is just the standard Êt when ` = 0: The

hat indicates that expectations may not initially be rational.

Many models in macroeconomics assume rational expectations and have

t�dating of the expectations operator, Et; and this has come to be thought
of as the standard case. For many purposes under the rational expectations

assumption it may not be too important, although it is rarely analyzed in the
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literature. In an environment with learning, the dating of the expectations op-

erator may be more critical, and Evans and Honkapohja (2001) have suggested

that the t � 1 dating of the expectations operator may be more natural when
learning is explicitly considered. This is because the general equilibrium has

date t quantities and prices being determined at date t, but the agents are sup-

posed to be forming expectations using the date t � 1 data in their recursive
algorithms. This type of simultaneity is a constant companion in standard eco-

nomic theory but does not make very much sense if we think more explicitly

about the microfoundations of how the expectations are being formed. Even

under the rational expectations assumption, the case for information lags has

been made. McCallum (1999) has argued that actual policymakers rarely have

contemporaneous information available when making decisions, especially con-

cerning variables like GDP, and that operational interest rate rules would involve

a reaction to readings on endogenous variables at least one period in the past.

In an in�uential paper, Rotemberg and Woodford (1999) estimated a DSGE

model with rational expectations but dated their expectations operator at t� 2
to provide a better �t to the data.

2.2 The model

The general class of models we have described can be expressed in matrix no-

tation as

A0Yt = A1Êt�`Yt +
NX
d=1

A2;dÊt�`

1X
T=t

�T�td YT+1 +A3Xt�1 +A4�t; (1)

where Yt denotes a n�dimensional vector of endogenous variables and Xt de-

notes a k�dimensional vector of shocks which evolve according to

Xt = HXt�1 + �t: (2)

The matrix H is assumed to be diagonal with elements 0 � hi;i < 1, for i =

1:::k. The model equations imply N � n discount factors, �d, associated with

the future evolution of the endogenous variables. For an example of a model

consistent with this representation, see Preston (2005). The discount factors
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emerge from the decisions associated with di¤erent behavioral equations in the

model. Finally, all matrices A are conformable.

The model is purely forward-looking, an assumption that is made in order to

maintain analytical tractability. Of course such an assumption excludes many

widely-used models that include, for example, capital accumulation, habit for-

mation and more generally, lags in agent�s decision rules. We leave the analysis

of these more complicated frameworks for future research. A discussion on the

model�s limitations can be found in Section 4.

2.3 E-stability

We assume that agents do not have rational expectations at the outset but

form expectations using adaptive learning rules. The methodology to analyze

the convergence properties of the agent�s learning process has been developed

by Marcet and Sargent (1989) and Evans and Honkapohja (2001). Evans and

Honkapohja (2001) discuss the tight connection between the convergence prop-

erties of real time learning algorithms, such as recursive least squares, and the

concept of E-stability that is used here.

As is standard in the literature, agents are endowed with a perceived law of

motion (PLM) for Yt. In this paper we focus on a PLM which is consistent with

the Minimum State Variable solution of (1), which takes the form

Yt = a+ bXt�`; (3)

where a denotes the intercept vector, b denotes a n � k matrix of coe¢ cients

and ` takes values of zero (no delays) or one (one period delay). Agents use (3)

to form expectations: the discounted in�nite sum in equation (1) can then be

expressed as

Êt�`

1X
T=t

�T�td YT+1 =
1X
T=t

�T�td a+
1X
T=t

b�T�td H(T�t+1)XT�`

=
1

1� �d
a+ b (1� �dH)

�1
HXt�`: (4)

Substituting (4) in (1) we obtain the actual law of motion (ALM) of Yt under
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learning dynamics

Yt = ~A1 (a+ bXt�`)

+
NX
d=1

~A2;d

�
1

1� �d
a+ b (1� �dH)

�1
HXt�`

�
+A3Xt�1 +A4�t; (5)

where ~Ai = A�10 Ai for i = 1; 2; and 3: Equation (5) de�nes the following map-

ping between the PLM and the ALM

T (a; b) =

 
~A1a+

NX
d=1

~A2;d
1

1� �d
a; ~A1b+

NX
d=1

~A2;db (1� �dH)
�1
H+ ~A3

!
:

(6)

At the rational expectations equilibrium PLM and ALM coincide, that is T (a; b) =

(a; b). The notion of E-stability describes the interaction between PLM and

ALM which arises during the learning process, where T (a; b) 6= (a; b). It is

determined by the following matrix di¤erential equations

d

d�
(a; b) = T (a; b)� (a; b) (7)

where � denotes �arti�cial�time. The rational expectations equilibrium is de-

�ned to be E-stable if equation (7), evaluated at the REE, is locally stable. The

ODE intuitively describes a stylized learning rule under which the parameters

a and b are adjusted towards their REE values. The local asymtotic stability of

(7) depends on the eigenvalues of the Jacobian of (7). In the class of models de-

scribed by (1), the problem of understanding the eigenvalues can be reduced to

analyzing two separate matrices. The matrix governing expectational stability

of the intercept is

M IH(a) = ~A1 +
NX
d=1

~A2;d
1

1� �d
� In: (8)

For the matrix of coe¢ cients b, after vectorizing T (b) we obtain

M IH (b) =
�
Ik 
 ~A1

�
+

NX
d=1

�h
(Ik � �dH)

�1
H
i0

 ~A2;d

�
� Ik 
 In: (9)

E-stability obtains if and only if the real parts of the eigenvalues ofM IH(a) and

M IH (b) are negative. We stress that to obtain the case of contemporaneous
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expectations (` = 0) all that is needed is to re-de�ne the matrix A0 and set

~A1 = 0. In the next section we use (8) and (9) to establish that E-stability

conditions need not be the same as determinacy conditions.

2.4 An equivalence result

We �rst consider the connections between in�nite horizon (IH) and �nite hori-

zon (FH) (a.k.a. one-period-ahead or Euler equation learning). The following

proposition states the su¢ cient condition to have equivalence in the E-stability

conditions under di¤erent learning approaches.

Proposition 1 Consider the model (1) and assume that �d = �d0 8 d and d0.
Then �nite horizon and in�nite horizon learning approaches deliver the same

expectational stability conditions.

Proof. The model in matrix representation becomes

Yt = ~A1Êt�`Yt + ~A2Êt�`

1X
T=t

�T�tYT+1+A3Xt�1 +A4�t (10)

where it is assumed that all decision rules use the same discount factor �. This

implies that every row in ~A2 must constrain at least one non-zero element.

Otherwise, the corresponding equation would imply � = 0, violating the as-

sumption. We now proceed to quasi-di¤erence (10). First, we forward (10) one

period and taking expectations

Et�`Yt+1 = ~A1Êt�`Yt+1 + ~A2Êt�`

1X
T=t+1

�T�t�1YT+1 + Êt�` ~A3Xt + Et�`A4�t:

Second, we rewrite (10) as

Yt = ~A1Êt�`Yt + ~A2Êt�`YT+1 + ~A2Êt�`

1X
T=t+1

�T�tYT+1 +A3Xt�1 +A4�t

and combining the two expressions we obtain,

Yt = ~A1Êt�`Yt + ~A2Êt�`Yt+1 + �Êt�`Yt+1

� � ~A1Êt�`Yt+1+ ~A3 (H � �Ik)Xt�1

+A4 (Et�`�t � �t) :
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Re-arranging yields

Yt = ~A1Êt�`Yt+
h
~A2 + �

�
In � ~A1

�i
Êt�`Yt+1+ ~A3 (H � �Ik)Xt�1+A4 (Et�`�t � �t) ;

(11)

which de�nes the �nite horizon representation of the model. This is the reduced-

form representation of the model solution that is used to evaluate E-stability

under the FH approach. The ALM (11) gives the following mappings

TFH(a) =
h
~A1 + ~A2 + �

�
In � ~A1

�i
a

=
h
(1� �) ~A1 + ~A2 + �In

i
a

TFH(b) = ~A1b+
h
~A2 + �

�
In � ~A1

�i
bH

= ~A1b� ~A1b�H + ~A2bH + �bH

and the following associated Jacobian matrices, for the intercept

MFH(a) = (1� �) ~A1 + ~A2 � (1� �) In (12)

MFH(a) = (1� �)M IH(b) (13)

where the last equality follows from (8), imposing d = 1. Hence, if MFH(a)

has negative eigenvalues, so does M IH(b) and vice versa. For the regression

coe¢ cients we obtain (after vectorization) the following Jacobian

MFH(b) = Ik 
 ~A1 � �H 
 ~A1 +H 
 ~A2 + �H 
 In � Ik 
 In

= (Ik � �H)
 ~A1 +H 
 ~A2 � (Ik � �H)
 In

MFH(b) = M IH (b) � [(Ik � �H)
 In]

where the �rst equality follows from the properties of the Kroneker product and

the second equality follows from setting N = 1 (that is �d = � 8 d) in (9), which
gives

M IH (b) =
�
Ik 
 ~A1

�
+
h
(Ik � �H)�1H

i0

 ~A2 � Ik 
 In;

and again is obtained using the properties of the Kroneker product.6 The next

step is to show that if M IH (b) has negative eigenvalues, then MFH(b) also has
6 In particular, given a k � k matrix P and a n� n matrix Q

IkP 
QIn = (Ik 
Q) (P 
 In) :
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negative eigenvalues. The matrix (Ik � �H) 
 In is a nk � nk block diagonal

matrix

(Ik � �H)
 In =

24 (1� �h11) In ... 0
0 ::: 0
0 ... (1� �hkk) In

35 ;
so that

M IH (b) � [(Ik � �H)
 In] =

24 �A11 ... 0
0 ::: 0
0 ... �Akk

35 : (14)

where

�A11 = (1� �h11)
h
~A1 + (1� �h11)�1 h11 ~A2 � In

i
and

�Akk = (1� �hkk)
h
~A1 + (1� �h11)�1 h11 ~A2 � In

i
:

The eigenvalues of (14) are given by the eigenvalues of the sub-matrices

(1� �hii)
h
~A1 + (1� �hii)�1 hii ~A2 � In

i
for i = 1:::k:

We then obtain the eigenvalues as

eig
�
(1� �hii)

h
~A1 + (1� �hii)�1 hii ~A2 � In

i�
=

(1� �hii) eig
�h
~A1 + (1� �hii)�1 hii ~A2 � In

i�
for i = 1:::k;

which proves the claim. Similarly, the reverse also holds true, given that

M IH (b) =MFH(b) � [(Ik � �H)
 In]�1

is well de�ned under the maintained assumptions about H.

2.5 When determinacy implies E-stability

The next proposition states the su¢ cient conditions under which determinacy

implies expectational stability.

Proposition 2 Consider the model (1) and assume �d = �d0 8 d and d0. If
~A1 = 0 determinacy implies E-stability.
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Proof. By setting ~A1 = 0 local determinacy depends on the eigenvalues of the

matrix

MD = ~A2 + �In

which is obtained by setting ~A1 = 0 in eq (11). In order to yield local determi-

nacy all eigenvalues of MD must be inside the unit circle. From (12) and (13)

and after imposing ~A1 = 0 we obtain

MD =MFH (a) + In = (1� �)M IH (a) + In

where the second equality comes from Proposition 1. If the eigenvalues of MD

are inside the unit circle, the eigenvalues of MFH (a) �and M IH (a)�have neg-

ative real parts. Hence E-stability is veri�ed. Concerning the Jacobian for the

shock coe¢ cients, we have

eig
�
MFH(b)

�
= eig

�
H 
 ~A2 � (Ik � �H)
 In

�
= eig

�
H 
 ~A2

�
� eig ((Ik � �H)
 In)

which7 implies that MFH (b) + In has eigenvalues with real parts less than one

if MFH (a) + In has real eigenvalues less than one.

3 A simple monetary model

In the recent literature, problems of equilibrium selection have mostly been

connected to monetary policy design. The choice of a particular policy rule

to conduct monetary policy depends on the ability of such rule to stabilize

expectations. Below we describe a simple new Keynesian model. It is simple

enough to �t the class of model described above but it provides a useful starting

point to discuss the connection between determinacy and E-stability.
7The second equality uses the following result. Let us de�ne ��i as an eigenvalue of the

matrix (1� �hii) In, that is ��i = (1� �hii), and �i an eigenvalue of ~A2hii � (1� �hii) In.
Then the determinant ����In � ~A2hii + (1� �hii) In

��� = 0
implies ���(�+ ��) In � ~A2hii

��� = 0:
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3.1 Households

There is a continuum of households that consume, save and supply labor in a

homogeneous labor market. A household i maximizes utility over an in�nite

horizon

Êit�`

1X
T=t

�T�t
�
U
�
CiT
�
� V

�
hiT
��
; (15)

where the parameter � 2 (0; 1) is the discount factor and the period utility func-
tions U (Ct) and V (ht) have standard properties. For tractability we assume

that in the case of delays, ` = 1, only consumption decisions are predetermined.

This means that labor supply decisions and saving decisions are taken with date

t information, independently of the value of `. Consumption Ct is given as a

composite of all goods produced in the economy,

Cit �
�Z 1

0

cit (j) dj

� �
��1

(16)

and has an associated price index

Pt �
�Z 1

0

pt (j)
1��

dj

� 1
1��

: (17)

Households hold money that can be used to purchase the consumption good

and can also be deposited at a �nancial intermediary. The budget constraint of

household i is given by

M i
t+1 + PtC

i
t �M i

t �Di
t + (1 + it)D

i
t +Wth

i
t + Pt

Z
�ft (j)dj + Pt�

M ; (18)

where M i
t denotes money holdings at the beginning of the period and Dt de-

notes the amount on deposit at the �nancial intermediary, which pays the gross

nominal interest rate (1 + it).8 The variable Wt is the economywide nominal

wage determined in a perfectly competitive labor market, and �t(j) and �
M

denote real pro�ts from �rms and the �nancial intermediary. Each agent i is

assumed to have an equal share of each �rm j. These assumptions guarantee

that the households income pro�les are identical, even in the case of incomplete

markets. The household also faces the cash-in-advance constraint

PtC
i
t �M i

t +Wth
i
t �Dt; (19)

8We assume that money bears no interest.
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which takes this form because households receive their wages at the beginning

of the period.

Solving the household problem gives the optimal consumption decision given

current beliefs9 in log-linear deviations from the nonstochastic steady state

Ĉit = Êit�`

1X
T=t

�T�t
h
(1� �)Ŷ iT � ��(iT � �T+1)

i
; (20)

where � denotes the intertemporal elasticity of substitution in consumption

and Ŷt denotes real income.10 Details of the derivation can be found in the

Appendix. The labor supply, decided with period-t information is

Vh
�
hit
�

uc
�
Cit
� = wt

Pt
: (21)

Finally, in an equilibrium with a positive nominal interest rate, the cash in

advance constraint will bind as

PtC
i
t =M i

t +Wth
i
t �Dt:

3.2 Firms

Each �rm j produces a di¤erentiated good and has market power. They face a

demand for their output given by

Y Dt (j) =

�
pt (j)

Pt

���
Ct

where Ct denotes aggregate consumption. Labor is the only input in the pro-

duction function, which is assumed to be linear in order to simplify the analysis,

Yt(j) = Atht (j) :

The labor market is viewed as economywide and perfectly competitive. Firms

are subject to a cash constraint, which gives rise to a cost channel for monetary

policy. In particular, the �rms must anticipate their wage bill to the workers and

9Here we consider optimal decisions in the anticipated utility framework �see Marcet and
Sargent (1989). Agents are boundedly rational in that they ignore the future updating in
their beliefs.
10Following Preston (2002), for simplicity we assume that each agent forecasts her entire

income and not its single components. This has no implication for our conclusions. More
details are available in the Appendix.

13



therefore have to borrow funds from the �nancial intermediary in the amount

corresponding to ht (j)Wt.

We study a standard model of nominal pricing rigidities a là Calvo. Firms

maximize their expected pro�ts,11

Êt�`

1X
T=t

�T�tQt;T�T (j);

where Qt;T is the stochastic discount factor and where real �ow pro�ts are

�t(j) =
pt (j)

Pt
Y Dt (j)� (1 + it)

wt
Pt
ht(j):

Financial intermediaries operate in a perfectly competitive markets for funds.

Therefore the cost of borrowing for each �rm is

it
Wt

Pt
ht(j):

In order to simplify the analysis we assume that, independently of informational

delays, �rms can observe the current aggregate price level when deciding their

optimal price.12 When there are informational delays the optimal relative price

depends on the expected current and future marginal cost. Similarly to house-

holds, �rms choose their labor input (and the amount of funds to borrow) using

current information� delays can occur only at the pricing stage. The �rst order

condition for the optimal price becomes

Êt�`

1X
T=t

�T�tQt;TY
D
T (PT )

�

�
P �t (j)�

� � 1
�

PT sT

�
= 0; (22)

The optimal pricing decision after log-linearization is

p̂�t (j) = Êt�`

1X
T=t

(��)
T�t

[(1� ��) ŝT + ���T+1] (23)

where p̂�t = ln (P
�
t =Pt) and

st =
wt
PtAt

(1 + it) ; (24)

11Discounted with the average household stochastic discount factor, which turns out to be
the correct way of discounting the future stream of pro�ts because agents are identical.
12The instability results in this paper do not depend on this assumption. Eusepi and Preston

(2007a) consider the case where �rms no not observe the current price level when deciding
their price, in a simpler model.
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is the real marginal cost of production, which is a function of the real wage

and the opportunity cost of holding cash. Given homogeneous factor markets

implies that each �rm that chooses the optimal price will choose the same price

p̂�t (j) = p̂�t . While Calvo pricing implies a distribution of prices across �rms,

nevertheless the model speci�cation leads to a simple log-linear relation between

the optimal price and in�ation

�t =
1� �
�

p̂�t : (25)

Finally, �nancial intermediaries make a pro�t of

Pt�
M
t = (1 + it)

Z
Wth(j)dj � (1 + it)

Z
Di
tdi = (1 + it)Tt (26)

where Tt is a cash injection from the government to be de�ned below.

3.3 Monetary and �scal policies

We assume that the �scal authority operates a zero debt, zero spending �scal

policy. The �scal variable Tt denotes a cash injection from the government

which is equal to

Tt =Mt+1 �Mt: (27)

Monetary policy is described by a simple Taylor-type rule of the (log-linear)

form

{̂t = {̂�t + �
h
Êt�`�t + ��Êt�`xt

i
(28)

where the monetary authority reacts to private sector expectations about in�a-

tion and the output gap, denoted by xt. The latter is de�ned as the log-deviation

of output from its natural level, consistent with �exible prices.13 For generality,

the intercept {̂�t is time-varying.
14 The term in brackets de�nes the linear com-

bination between expected output and in�ation corresponding to the optimal

discretionary targeting rule under rational expectations, where the coe¢ cient ��

on the output gap can be interpreted as a function of the central bank�s relative

preference for output stabilization.15

13Please see the appendix.
14Under optimal discretionary policy {̂�t is a linear combination of the underlying shocks.

Alternatively, it can be interpreted as a monetary policy shock. The speci�c form of the
intercept does not a¤ect the stability and determinacy results.
15Details are provided in the appendix.
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3.4 Equilibrium

Equilibrium in the goods market requires

yt(j) =

�
pt (j)

Pt

���
Ct

for every j; and equilibrium in the labor market givesZ
hidi = ht =

Z
h(j)dj,

where hit = ht. We also have a market clearing condition for loanable funds of

�nancial intermediaries,

Wt

Z
h(j)dj =

Z
Di
tdi+ Tt:

3.5 Evolution of aggregate variables

3.5.1 The output gap

Combining the consumption decision rule (20) and market clearing conditions,

aggregate demand can be expressed as

xt = Êt�`

1X
T=t

�T�t [(1� �)xT � ��(̂{T � �T+1) + ��rnT ] ; (29)

where xt is the output gap, it is the deviation of the one-period nominal interest

rate from the value consistent with in�ation at target and output at potential,

�t is the deviation of in�ation from target, and rnt is a disturbance term
16

describing the natural rate of interest in the economy. This is the equilibrium

interest rate that arises under �exible prices consistent with the natural level of

output. We assume this term is governed by the stochastic process

rnt = �rnt�1 + �t

where 0 < � < 1 and �t � N (0; ��) : We normalize the in�ation target to

zero. The parameter � is the discount factor of the representative household

and, again, the parameter � is the intertemporal elasticity of substitution in

16This is a function of the only exogenous shock At.
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consumption. Quasi-di¤erencing this expression we obtain the familiar forward-

looking IS curve, including one extra term for information delays

xt = (1� �)Êt�`xt � ��Êt�` (it + �t+1 � r̂nt ) + �Êt�`xt+1: (30)

The aggregate demand (30) states output is a function of one-period-ahead

expectations.

3.5.2 In�ation

In�ation dynamics is described by

�t = Êt�`

1X
T=t

(��)
T�t �

�
�
(��1 + )xT + {̂T

�
+ �(1� �)�T+1

	
: (31)

where � = (1���)(1��)
� > 0. Quasi-di¤erencing and imposing rational expecta-

tions we obtain

�t = �Êt�`�t+1 + �Êt�`
��
��1 + 

�
xt + {̂t

�
; (32)

which, again, depends only on one-period-ahead forecasts.

In the next sections we describe the stability conditions under di¤erent ap-

proaches. Most papers in the adaptive learning literature use versions of equa-

tions (30) and (32) to evaluate the E-stability properties of di¤erent policy

rules.17 Below, we compare the E-stability conditions obtained using (30) and

(32) with the E-stability conditions arise when using (29) and (31).

3.6 Finite vs. In�nite Horizon

Proposition 1 shows that the two approaches to modeling learning need not

imply the same E-stability conditions. This is potentially true for the simple

model presented above. In fact the model can be re-expressed in general form

(1), where N = 3 and

�1 = �

�2 = ��

�3 = 0.
17See for example Bullard and Mitra (2004), among the others..
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As shown in Preston (2007), assuming that the policy rule responds to ex-

pected in�ation and output gap E-stability conditions are stricter than deter-

minacy conditions.18 More generally, Eusepi and Preston (2008) emphasize that

communication of the policy rule has a crucial role in determining E-stability,

whereas it does not a¤ect determinacy, given that under rational expectations

policy is fully understood. Interestingly, Proposition 1 can be interpreted as

suggesting that di¤erences in E-stability conditions depend on agents�hetero-

geneity in the way the future is discounted. In�nite horizon decisions per se do

not alter the stability conditions. Assume that, (1) agents know the monetary

policy rule, and (2) �rms set prices according to the following �sophisticated�

decision rule19

�t = Êt�`

1X
T=t

�T�t
�
�
�
(��1 + )xT + {̂T

�	
(33)

obtained by iterating forward on (32) and imposing a transversality condition.

This model translated in form (1) implies N = 2, where �1 = �2 = �. It

follows directly from Proposition 1 that E-stability conditions are the same in

both �nite and in�nite horizon approach. This simple result will be used in the

Propositions below.

3.7 The role of information delays

We now consider the crucial role of information delays. In the sequel we assume

that agents correctly understand the policy rule followed by the central bank.

This simpli�es the analysis and distinguishes our results from those found by

Eusepi and Preston (2008) and Preston (2007). That is, failure to achieve E-

stability is not connected to agents� information about the policy rule but to

other features in the model; delays in decision rules and, more generally, the

monetary transmission mechanism. We �rst consider the model with contem-

poraneous information and a standard Taylor rule and compare the results with

the case of information delays. In the case of contemporaneous expectations we

obtain the following proposition.
18The same representation obtain in a model with nominal rigidities a la Rotemberg �see

Eusepi and Preston.
19We call it �sophisticated�rule because it uses some elements of rational expectations �see

Preston (2005).
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Proposition 3 In the model with contemporaneous expectations (` = 1) deter-

minacy implies E-stability.

Proof. Consider a pricing rule of the form

�t = Êt�`

1X
T=t

(#�)
T�t �

�
�
(��1 + )xT + {̂T

�
+ �(1� #)�T+1

	
: (34)

Here we de�ne a new parameter, # 2 f�; 1g : If # = �; we obtain pricing

equation (31), and if # = 1 we obtain the �sophisticated�pricing equation (33).

As stated above, Proposition 1 implies that E-stability conditions under the

�nite horizon learning are the same as obtained from the in�nite horizon model

with # = 1.

Part 1. Set ` = 1. We �rst show the parameter restrictions that ensure

expectational stability under in�nite horizon learning. E-stability in this case

depends on the eigenvalues of the matrix

M IH(a) = (1� �)�1
�
I2 � ~A1

��1
~A2;1 + (1� #�)�1

�
I2 � ~A1

��1
~A2;2 � I2:

where # 2 (0; 1]. Local stability obtains ifM IH(a) has eigenvalues with negative

real values. This is veri�ed if and only if the trace of the matrix is negative and

the determinant is positive. Consider the determinant: it is positive if

[(�� 1) + (�� 1) �] � + ���� [(1� �)� �]�
1 + ��� + ����

�
(� � 1) (#� � 1)

> 0:

If (1� �)� � > 0, this condition is satis�ed for any other parameter values. If

(1� �)� � < 0, the determinant is positive provided

0 � �� < ��� = �� 1
�

�
�
��1 + 

�
� � 1 + � : (35)

We can write the trace as

Tr(#; �)�
1 + ��� + ����

�
(� � 1) (#� � 1)

where

Tr(#; �) = �1� �� � 2����� ��#� � �#�+

��#�� + ���� � �2 + ����#�+�
������2

�
� �#����� + � � 2���+

����� + 2� + 2�����+ �� + ��#�:
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First, it is straightforward to show that

Tr(1; �) =

�
�
��� + (1� �) + (�� 1) � + (�� 1) �� + ((2� �)� �)����

�
< 0

provided the conditions for a positive determinant are satis�ed. Second, consider

Tr(0; �) = �1� ��� (1� �)� 2 (1� �)����+	(�)

where

	(�) � �
�
1 + ����

�
�2 + 2� + ��(1� �)

� [(�� 1) + (�� 1) �] � + �����:

It is easy to verify that 	(0) < 0 and 	(1) < 0 (provided the conditions for

a positive determinant are satis�ed). Given that 	0 (�) is linear20 in �, this

implies 	(�) < 0. Finally, given that Tr(#; �) is linear in #, we can conclude

that Tr(#; �) < 0 8# 2 (0; 1]. The above results imply that both IH and FH

learning give E-stability if and only if (35) is satis�ed or (1� �)� � > 0.
Part 2. Using Proposition 2, we conclude that local determinacy implies

expectational stability.21

We now prove the second proposition concerning the model with delays.

Proposition 4 In the model with delays (` = 1):

1) Local determinacy does not imply expectational stability.

2) IH learning and FH learning imply di¤erent E-stability conditions.

Proof. As in the previous Proposition, we consider the model with pricing

equation (34), assuming ` = 1. The determinant of M IH(a) is

�([(�� 1) + (�� 1) �] � + ���� [(1� �)� �])
(1� �) (1� #�) > 0 (36)

20That is
	0(�) = �(1 + ����)� � ��:

21We stress that the reverse does not hold: indeterminate equilibria can be E-stable in this
model.
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provided (35) holds. The trace is

� � 1 + ��
1� #� � �����

1� � ; (37)

and it is negative provided

�� > ��� =
1� �
1� #�

[��� 1 + �]
���

(38)

which adds an extra restriction on the parameters with respect to the one that

guarantees determinacy. The extra restriction does not vanish once we set

# = 1, but it is clear that the restriction is less stringent in this case. Also, from

Proposition 1, inequality (38) holds also under the Euler approach (equivalent

to the case where # = 1). Considering the coe¢ cients on the shocks, the trace

is

��(1 + ��
��� �)

(1� ��) +
(��+ �� � 1)
(1� #��) (39)

which is negative if the condition for the constant is satis�ed. The determinant

is

� �(��+ �� � 1 + ������ � ����� ���
(1� ��)(1� #��)

��2� + �� ��� � ��+ ��� + ��+ ������)
(1� ��)(1� #��) (40)

which can be simpli�ed to

�
�
� (�� �) + �� (�� �) + ���� (1� �� � ��)

�
+ � (1� �) (1� ��� ��) > 0 (41)

provided condition (38) is veri�ed.

3.8 An Example

We now consider a calibrated version of the simple monetary model. We set

parameters to values that are commonly used in the literature. In particular,

we set � = 0:99,  = 0 (in�nitely elastic labor supply), � = 1 and � = 1:5.

We wish to show how determinacy and E-stability conditions change as we vary

the degree of price rigidity. We measure the degree of price rigidity with �, the
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probability of not having an opportunity to set the price. We then calibrate �

consistently with a given value of �.

The parameter �� governs the policymaker response to the output gap in the

monetary policy rule. Figure 1 shows how ��
�
from (35) and ��� from (38) change

as the degree of price rigidity changes. We plot both ��
#=1
� ; consistent with �nite

horizon learning, and ��
#=�
� for in�nite horizon learning. According to the above

discussion, for a given �, expectational stability obtains for ��� < �� < ��
�
.

The Figure shows that for the in�nite horizon learning, the interval for ��

consistent with determinacy and expectational stability is roughly constant as

the degree of price �exibility increases, perhaps with some exception toward

the right in the diagram. However, for �nite horizon learning the interval for ��

consistent with determinacy and expectational stability is generally smaller, and

there would be no interval at all for a su¢ ciently high degree of price stickiness,

that is, toward the left in the diagram. The unlabeled black lines in the diagram

indicate the di¤erence in the E-stability regions implied by the two alternative

learning approaches.

4 Discussion

The �general model� described by (1) was chosen because it allows a clear

characterization of the connection between determinacy and E-stability while

maintaining analytical tractability. McCallum (2007a) and Ellison and Perlman

(2008) explore the connection between E-stability and determinacy in models

with endogenous lagged variables but focus only on the �nite horizon approach.

McCallum (2007a) does not consider the case of information delays, which are

shown to be crucial in breaking the connection between determinacy and learn-

ability. Ellison and Perlman (2008) discuss alternative information assumptions

in expectations formation and �nd that they do not play a role in the stability

analysis. The class of model they consider does not include informational delays

in the agents decision rules which explains the di¤erent conclusions in the two

papers.

The purely forward-looking class of models discussed here o¤ers a rich set of

results. Importantly, it stresses the importance of focusing both on determinacy
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Figure 1: The relationship between determinacy and E-stability as a function of
the degree of price stickiness � and the policymaker response to the output gap
�: Expectational stability requires a value of � between �� and �

�: IH learning,
# = �; creates a larger region than FH learning, # = 1:
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and E-stability when evaluating the stability of rational expectations equilibria.

Moreover, it emphasizes the importance of a microfounded approach to modeling

learning dynamics. Concerning the absence of lag structures in our model, we

can nevertheless point at two examples where a numerical exploration of the

models accords with our results. Consider a standard real business cycle model

with aggregate externalities, as in Benhabib and Farmer (1994). As shown in

Eusepi and Preston (2008) the model has an in�nite horizon behavioral equation

and only one discount factor. Numerical exploration of the model shows that

E-stability conditions under the in�nite horizon and �nite horizon approaches

coincide, and determinacy implies E-stability. Also, a numerical exploration

of NK model with endogenous capital accumulation and no information delays

shows that E-stability conditions under in�nite horizon and �nite horizon are

di¤erent.22 Moreover, E-stability conditions under in�nite horizon learning do

not coincide with determinacy conditions. These are only examples, and they

clearly do not o¤er proof in general that the results proposed in this paper

extend to more complex models. However, they do o¤er some evidence that our

proposed explanation for the break-down in the connection between determinacy

and E-stability might survive increased model complexity.

5 Conclusions

We have studied a general class of models and investigated the connection be-

tween determinacy and E-stability. As an example we have applied our �ndings

to a New Keynesian model generalized on certain dimensions in an attempt

to delineate the di¤erences between conditions for equilibrium determinacy and

conditions for equilibrium learnability in terms of meaningful economic assump-

tions. One of the sharpest �ndings is that in models with informational lags,

the connections between determinacy and learnability conditions are broken. In

other situations, and certainly in some interesting baseline cases, we are able to

show that determinacy does imply learnability and thus that in some practical

settings, it is not necessary to analyze the two conditions separately. We are also

22 In particular, Taylor rules that respond too aggressively to output deliver E-instability
under the in�nite horizon approach.
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able to illustrate some interesting cases where there are and are not di¤erences

between the Euler equation and in�nite horizon approaches to learnability.

An important caveat to this analysis is that there are no natural lags in

the NK framework as we have analyzed it here, such as those that might come

from time-to-build technologies or related concepts. The class of models con-

sidered in this paper is entirely forward-looking. Given that we have found

that information lags are one important source of di¤erences in conditions for

determinacy versus learnability, one might suspect that in models with more

realistic lag structures, conditions for determinacy will in general not be the

same as conditions for learnability. We leave this as an interesting topic for

future research.
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APPENDICES

A Derivation of the consumption rule

Combining the household�s budget constraint and the cash-in-advance con-

straint (which holds with equality at a positive nominal interest rate), we obtain

M i
t+1 � (1 + it)M i

t � (1 + it)PtCit + (1 + it)Wth
i
t +�

i
t; (42)

where �it denotes the household shares in the pro�ts of �rms and �nancial

intermediaries. Solving forward and making use of the tranversality condition

we obtain

M i
t �

1X
j=0

Rt;t+j
�
Pt+jCt+j + (it+j= (1 + it+j))M

i
t+j+1 � T it+j � Pt+jY it+j

�
;

(43)
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which must hold in all states and dates, where

Rt;t+j =

jY
k=1

(1 + it+k�1)
�1 (44)

and where PtY it =Wth
i
t+Pt

Z h
�ft (j)dj + itWtht

i
dj. To obtain the expression

above we use23

(1 + it)Wth
i
t +�

i
t

(1 + it)
=2664Wth

i
t + Pt

Z
�ft (j)dj

1 + it
+ (it= (1 + it))

Z
PtCtdj + Tt

3775
� (it= (1 + it))M i

t+1; (45)

where the second and third terms in brackets take into account that wages are

anticipated by households at the beginning of the period, while revenues are

transferred at the end of the period. Furthermore, for simplicity we assume

each household understands that the present value of government tranfers must

be equal to the present value of government liabilities held net of seigniorage,24

so that the intertemporal budget constraint simpli�es to

0 =
1X
j=0

Rt;t+j [Pt+jCt+j � Pt+jYt+j ] ; (46)

where for simplicity we assume each household has zero initial net wealth. Log-

linearizing the intertemporal budget constraint we obtain

0 =
1X
j=0

�tĈt+j �
1X
j=0

�tŶt+j : (47)

The �rst order condition for consumption gives

Uc
�
Cit
�
= �Êt�`

"
(1 + it)Uc

�
Cit+1

�
�t+1

#
: (48)

23The last expression can be simpli�ed by using PtCt = Mt+1 in every period along with
the condition that aggregate sales must be equal to aggregate consumption. Also notice that
Cit = Ct and M

i
t =Mt in every period and for every household i.

24Eusepi and Preston (2007b) relax this assumption and study the implications of learning
when agents have to forecast �scal variables.
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Linearization of the Euler equation yields

Ĉt = Êt�`Ĉt+1 � �Êt�`(̂{t � �t+1);

and solving backward we obtain

Ĉt = Êt�`ĈT + �Êt�`

T�1X
s=t

(is � �s+1):

Taking the expectation of the budget constraint yields

Êt�`

1X
T=t

�T�tĈT = Êt�`

1X
T=t

�T�tŶT ; (49)

and substituting for Et�1ĈT we obtain

Êt�`

1X
T=t

�T�t

"
Ĉt � �

T�1X
s=t

(is � �s+1)
#
= Êt�`

1X
T=t

�T�tŶT

which implies

Ĉt = Êt�`

1X
T=t

�T�t
h
(1� �)ŶT � ��(iT � �T+1)

i
: (50)

B Marginal cost and the output gap

From the households��rst order conditions, the labor supply is25

Vh
�
hit
�

uc
�
Cit
� = wt

Pt
: (51)

Log-linearizing (51) and (24) and combining them gives a relation between out-

put and the real marginal cost as

ŝt =
�
��1 + 

�
ŷt � (1 + )ât + {̂t; (52)

where  is the inverse of the elasticity of the labor supply, which depends on the

disutility of hours worked, and � is the intertemporal elasticity of substitution

in consumption. The marginal cost also depends on the nominal interest rate,

depending on the wage bill that needs to be anticipated by the �rm.

25We stress the assumption that households take their labor supply decisions using current
information about real wages.
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Next, we de�ne ŷnt as the natural level of output, that is, the equilibrium

level of output under �exible prices and no information delays, which can be

shown to be

ynt =
(1 + )

(��1 + )
ât �

�
��1 + 

��1
{̂nt : (53)

Using this expression we can rearrange the marginal cost equation to obtain

ŝt = (�
�1 + ) (yt � ynt ) + (̂{t � {̂nt ) : (54)

We assume that in the �exible price equilibrium the nominal interest rate is

set to zero, eliminating the labor supply distortion, as in Ravenna and Walsh

(2006). Hence in the remainder of the paper we set {̂nt = 0.

C Optimal policy under discretion

In this appendix we show that the monetary policy rule in the main text is of

the same form as if the policymaker was pursuing a certain optimal policy. We

consider optimal policy under rational expectations,26 meaning that the central

bank is assuming rational expectations of the private sector when it is deciding

upon an optimal policy. The behavioral equations for output gap and in�ation

can be reduced to

xt = ��Et�` (̂{t � �t+1) + Et�`xt+1 + rnt (55)

and

�t = �Et�`�t+1 + Et�`�
��
��1 + 

�
xt + {̂t

�
(56)

where � = (1���)(1��)
� . The central bank maximizes a quadratic loss function

in in�ation and output gap

L = �2t + �x
2
t (57)

which is consistent with the model�s microfoundations. We consider the general

case where � is arbitrary.27 The central bank chooses optimal policy to maximize

Et�`

1X
t=0

�tLt (58)

26We could do this under learning but it would complicate the analysis a lot without making
any di¤erence for the issues we are discussing.
27This because we are going to show that the instability result is not only obtained in the

case where the central bank maximizes the representative consumer�s welfare function.
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Et�`

1X
T=t

�t
�
�2T + �x

2
T

�
(59)

subject to (55) and (56). The �rst order conditions are, for xt:

��xt � �
�
��1 + 

�
Et�` 2;t + Et�` 1;t = 0; (60)

for �:

��t + Et�` 2;t = 0; (61)

and for it:

���Et�` 2;t + �Et�` 1;t = 0: (62)

Eliminating the multipliers, we obtain two conditions

��Et�`xt � � (1 + )Et�`�t + �Et�`�t = 0; (63)

��Et�`xt + Et�`�t = 0; (64)

where �� = �
� . The central bank is responding to private sector forecasts under

the assumption that the private sector forecasts are rational. This policy rule is

of the same form as the one employed in the main text, under the assumption

that the targeting rule is implemented using a Taylor-type rule.
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