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Abstract

We use recently proposed tests to extract jumps and cojumps from three types of assets: stock

index futures, bond futures, and exchange rates. We then characterize the dynamics of these discon-

tinuities and informally relate them to U.S. macroeconomic releases before using limited dependent

variable models to formally model how news surprises explain (co)jumps. Nonfarm payroll and federal

funds target announcements are the most important news across asset classes. Trade balance shocks

are important for foreign exchange jumps. We relate the size, frequency and timing of jumps across

asset classes to the likely sources of shocks and the relation of asset prices to fundamentals in the

respective classes.
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1 Introduction

How markets process information and what determines asset return distributions are central issues

in economics. Our study investigates jumps and simultaneous jumps in multiple markets (i.e.,

cojumps) and their relation to macroeconomic news releases. How big and frequent are jumps

across asset classes and over time? Do jumps cluster in time? Are there more “cojumps” than

one would expect if asset prices jumped independently? What causes (co)jumps and how do such

causes vary across markets? Our study answers these questions.

Andersen, Bollerslev, Diebold and Vega (2003, 2007a) studied how macroeconomic news re-

leases affect asset returns generally, but we focus on discontinuous price changes. Duffie, Pan and

Singleton (2000), Liu, Longstaff and Pan (2003), Eraker, Johannes and Polson (2003), and Piazzesi

(2005) discuss how knowledge of jumps influences financial management. Lee and Mykland (2008)

and Tauchen and Zhou (2005) explain how characterizing the distribution and causes of jumps

can improve asset pricing models, which motivates our study.

We use the non-parametric statistic of Andersen, Bollerslev and Dobrev (2007c) and Lee and

Mykland (2008), modified by Boudt, Croux and Laurent (2008), to extract jumps and cojumps

from three types of assets—exchange rates, stock index futures and U.S. bond futures—and then

relate those jumps to macroeconomic news. The jump test compares returns to a local volatility

measure to find returns that a diffusion is very unlikely to produce—jumps. Because our procedure

identifies the precise timing of intraday jumps, it is especially useful in studying the effects of

announcements on jumps and cojumps.

We define cojumps with univariate tests as simultaneous significant jumps, rather than using

any of the multivariate tests proposed by Barndorff-Nielsen and Shephard (2006b), Jacod and

Todorov (2009), and Bollerslev, Law and Tauchen (2008). Our approach is most appropriate for

the present study because it permits straightforward estimates of precisely timed cojumps with a

relatively narrow range of intraday data.

Researchers have evaluated the impact of macroeconomic news on assets returns in many

ways. To the best of our knowledge, two other concurrent papers study the link between jumps

and news besides the present paper. Huang (2007) estimates daily jumps with bipower variation

on 10 years of S&P 500 and U.S. T-bonds data. Analyzing conditional distributions of jumps,

and regressing continuous and jump components on measures of disagreement and uncertainty

concerning future macroeconomic states, Huang (2007) finds a major role for payroll news and a

relatively more responsive bond market. This is basically consistent with our findings. Dungey,

McKenzie and Smith (2008) focus on the Treasury market, estimating jumps and cojumps across

the term structure with bipower variation. Dungey et al. (2008) find that the middle of the yield

curve often cojumps with one of the ends, while the ends of the curve exhibit more idiosyncratic

jumps. Macro news is strongly associated with cojumps in the term structure.

Our paper differs from these concurrent papers in several respects. First, we estimate jumps at

a very high frequency with the Andersen/Bollerslev/Dobrev and Lee/Mykland technique, modified
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by Boudt et al. (2008). These intraday estimates, which are much more precise than daily (bipower

variation) jump measures, enable us characterize cojumps and to carefully link macro news to

(co)jumps. Second, we implement Boudt et al. (2008)’s modification to the jump statistic, which

improves jump detection in the presence of intraday patterns in volatility. The Lee/Mykland

statistic overdetects (underdetects) jumps in periods of high (low) intraday volatility. Third, we

consider a broad set of financial assets including exchange rates, stocks, and bonds. Fourth, we

estimate Tobit-GARCH and probit models to formally assess the impact of macro surprises on

jumps and cojumps.

To presage our results, we find that exchange rate jumps are frequent but small, fairly symmet-

ric and highly interdependent. U.S. news releases are relatively less important to USD markets

than to U.S. stock and bond markets. In contrast, bond markets are the most sensitive to our

news releases, by some measures, and display significant asymmetry. Certain market combinations

are more likely to cojump because shocks affect them similarly. The fed funds target, NFP and

GDP announcements are important in all markets and the trade balance is important in forex. We

conclude that (co)jump behavior varies across markets in a sensible fashion. The likely sources of

jumps and the variation in market dependence on fundamentals explains how (co)jump behavior

differs across markets.

The rest of the paper proceeds as follows: Section 2 explains our jump detection procedures

while Section 3 characterizes (co)jumps and their joint distribution with our news releases. Section

4 formally evaluate the impact of news surprises on jumps/cojumps with Tobit-GARCH and probit

models. Section 5 concludes.

2 Jump identification

We describe the original tests of Andersen et al. (2007c) and Lee and Mykland (2008) before ex-

plaining Boudt et al. (2008)’s modification that accounts for a deterministic volatility component.

2.1 First step towards intraday jumps detection

Andersen et al. (2007c) and Lee and Mykland (2008) assume a continuous time jump-diffusion

data generating process. The log price process evolves as follows:

dp(t) = µ(t)dt + σ(t)dW (t) + κ(t)dq(t), 0 ≤ t ≤ T, (1)

where p(t) is a log asset price, W (t) is a standard Brownian motion, q(t) is a counting process,

possibly a non-homogenous Poisson process, independent of W (t), and κ(t) (= p(t) − p(t−)) is

the jump size. The Brownian motion, W (t), jump sizes, κ(t), and the counting process, q(t), are

independent of each other. In the absence of jumps, the drift µ(t) and instantaneous volatility

σ(t) are such that the underlying data generating process is an Itô process with continuous sample

paths. The drift and diffusion coefficients may not change dramatically over short periods of time.

2



The intuition behind the jump test proposed simultaneously by Andersen et al. (2007c) and

Lee and Mykland (2008) is straightforward: In the absence of jumps, instantaneous returns are

increments of Brownian motion. Standardized returns that are too large to plausibly come from

a standard Brownian motion must reflect jumps.1 More formally, assume we have T days of

b1/∆c ≡ M equally-spaced intraday returns and denote the i-th return of day t by rt,i ≡ p(t +

i∆)− p(t + (i− 1)∆), where i = 1, . . . , M . Andersen et al. (2007c) and Lee and Mykland (2008)

propose the following test statistic for jumps in rt,i:

Jt,i ≡ | rt,i |
σt,i

. (2)

One must estimate the unobserved volatility, σt,i, with a robust-to-jumps estimator. Barndorff-

Nielsen and Shephard (2004, 2006a) show that, under weak conditions, realized bipower variation

(RBV) converges to integrated volatility under the model described by Equation (1).

plim
∆→0

RBVt(∆) =
∫ t

t−1

σ2(s)ds, (3)

where

RBVt(∆) ≡ µ−2
1

M∑

i=2

|rt,i||rt,i−1|, (4)

with µ1 ≡
√

2/π ' 0.79788.

Consequently, Andersen et al. (2007c) and Lee and Mykland (2008) propose estimating σ2
t,i as

the average of the RBV computed over a local window of K observations preceding period t, i.

They both explicitly assume that the spot volatility is approximately constant over that window.

There is a clear tradeoff in choosing the window size K: K must be large enough to accurately

estimate integrated volatility but small enough for variance to be approximately constant. For

returns sampled at frequencies of 60, 30, 15, and 5 minutes, Lee and Mykland (2008) recommend

using K = 78, 110, 156 and 270 observations, respectively.

Under the null of no jumps, the test statistic, Jt,i, follows the same distribution as the absolute

value of a standard normal variable. Lee and Mykland (2008) propose inferring jumps from the

distribution of the statistic’s maximum over the sample size. Under the null of no jumps in t, i−1

to t, i, then, as ∆ → 0, the sample maximum of the absolute value of a standard normal (i.e. Jt,i

in (2)) converges to a Gumbel distribution. We reject the null of no jump if

Jt,i > G−1(1− α)Sn + Cn, (5)

where G−1(1 − α) is the 1 − α quantile function of the standard Gumbel distribution, Cn =

(2 log n)0.5 − log(π)+log(log n)
2(2 log n)0.5 and Sn = 1

(2 log n)0.5 , n being the total number of observations (i.e,

M × T ). With a significance level of α = 0.1, we reject the null of no jump if Jt,i > Snβ∗ + Cn

with β∗ such that exp(−e−β∗) = 1−α = 0.9, i.e. β∗ = −log(−log(0.9)) = 2.25. This conservative

procedure can be expected to find only α spurious jumps in a given sample of n observations.
1The drift is nearly zero and can be ignored in practice.
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2.2 The instantaneous volatility periodicity problem

Many financial time series display deterministic periodic variation within a day or a week (An-

dersen and Bollerslev, 1997). Estimating volatility using RBV rolling windows inappropriately

smooths these periodic patterns, because such an estimator is necessarily slowly time varying.

Boudt et al. (2008) show that such cyclical patterns might induce the Jt,i statistic to spuriously

detect jumps. To correctly infer jumps, we must estimate and remove this deterministic periodicity

with a robust-to-jumps volatility estimator.

Following Boudt et al. (2008), we assume that instantaneous volatility in Equation (1) is the

product of a slowly varying component, δ(t), and a deterministic circadian component, f(t).

σ(t) = δ(t)f(t). (6)

We assume, without loss of generality, this deterministic variance process integrates to one on a

daily basis, ∫ t

t−1

f2(s)ds = 1, (7)

and standardize the estimates of intraday periodicity in volatility accordingly.

Boudt et al. (2008) propose modifying the jump statistic to account for the circadian component

in volatility, i.e.,

FiltJt,i ≡ | rt,i |
δt,ift,i

, (8)

where δt,i is estimated as the average of the RBV over the K observations preceding rt,i and ft,i, the

circadian component, with Boudt et al. (2008)’s modification to Taylor and Xu (1997)’s estimator.

This estimation scheme omits returns that might contain jumps to avoid biased estimates of the

periodicity. Appendix A-1 describes the periodicity filters.

The pattern of intraday periodicity in volatility varies over time, enough to affect the jump

estimation. So we reestimate it for each year, which provides a reasonable trade-off between

permitting time variation and accurate estimation. For brevity, we do not describe the estimated

volatility periodicity in this paper, but they are available upon request.

In the remainder of the text, Jumpt,i denotes significant jumps based on the jump statistics

given in Equation (8). It equals the tested return rt,i when there is a significant jump (i.e.

FiltJt,i > G−1(1− α)Sn + Cn) and it equals 0 otherwise, i.e.,

Jumpt,i ≡ rt,i × I(FiltJt,i −G−1(1− α)Sn − Cn), (9)

where I(.) is the indicator function for a positive argument. Because we use the conservative Lee

and Mykland (2008) procedure that is expected to find only α spurious jumps in the whole sample,

we evaluate jumps with a significance level of α = 0.1.
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3 Jumps and cojumps

This subsection characterizes the jumping and cojumping behavior of 8 financial assets from 3 asset

classes: four dollar exchange rates, denoted USD/EUR, USD/GBP, JPY/USD, and CHF/USD,

respectively, three stock index futures, Nasdaq, Dow Jones, S&P 500, denoted as ND, DJ, and SP,

respectively, and 30-year U.S. Treasury bond futures, denoted as US.

3.1 The Data

Table 1 summarizes the source, timing and sample lengths of the asset return series and Appendix

A-2 further details these data. The sample lengths vary across assets, from 18 years for the

exchange rates to about 6.5 to 7 years for bond and equity futures.2 We consider 24-hour trading

for exchange rates and approximately business hours for the bond and equity data: 8:30 to 15:00

or 16:15.3 The Nasdaq and S&P 500 data include limited electronic trading, which enables these

data to start at 8:30, the same starting time as the U.S. bonds and Dow Jones futures.4 In choosing

the trading hours, we sought to obtain the longest spans of data, the longest daily trading hours

with liquid trading and similar trading hours within the bond and stock classes.

We use a sampling frequency of 15 minutes for all data. Our own unreported simulation results

and those in Lee and Mykland (2008) show that the jump test has good power at the 15-minute

frequency. Volatility signature plots —omitted for brevity— and results from the literature lead

us to think that 15-minute returns are free of microstructure noise.

3.2 Jump sources and relation to fundamentals

The sources of news and relation of asset prices to fundamentals help us understand jump char-

acteristics across markets. There are at least three sources of jumps: 1) Our set of U.S. news

releases; 2) other news, not in our set, including foreign releases; and 3) idiosyncratic liquidity

shocks from traders moving into and out of markets, perhaps revealing private information. Liq-

uidity shocks are much more likely during periods of slow trading—as might be experienced on

the 24-hour-a-day forex markets—and are likely to be specific to one market.

Different functions of fundamentals drive exchange rates, stocks and bond prices. Exchange

rates reflect the discounted stream of expected relative fundamentals between the two currencies.
2We splice USD/DEM returns with USD/EUR returns on January 1, 1999, and call the resulting series the

USD/EUR for simplicity.
3Exchange rates display known features: low volatility during Tokyo lunch at about 22:00 EST (3:00 GMT),

higher volatility during the London segment starting at about 1:00 EST (6:00 GMT), and the highest variation

during the London - New-York overlap, from 7:00 to 10:00 EST (12:00 to 15:00 GMT) (Andersen and Bollerslev

1998). The Nasdaq and S&P series display relatively low volatility during the E-platform trading, prior to 9:30

EST, and a U-shaped pattern of higher volatility during pit trading. The Dow Jones and U.S. T-bonds futures

series also display U-shaped patterns during pit trading.
4We note that U.S. bonds and Dow Jones futures trade at the CBOT from 8:20 EST on. We sampled from 8:30

for ease of comparison with other series.
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Equity prices reflect the discounted stream of expected future dividends in the domestic currency;

bond prices reflect only the domestic discount factor. The fact that asset prices reflect changes in

fundamentals in different ways will affect their jump characteristics.

3.3 Jump size and frequency

Figure 1 provides a bird’s eye view on the time series of identified jumps, illustrating that jumping

behavior varies by asset class. For example, the volatile ND futures exhibit fewer but larger jumps

than exchange rates. Comparing jumps between markets, the size of detected jumps must be

positively related to the underlying volatility of the market because jump detection procedures

can only find jumps that are larger than the diffusion volatility, for a given data frequency. More

volatile markets will tend to have larger jumps.

The P (jumpday) statistics in the second horizontal panel of Table 2 show that stock indices

and bond futures exhibit fewer jump days than on dollar exchange rates. US bonds and stock

index futures jump on 6.62 to 8.43 % of sample days, while dollar exchange rates—with 24 hours

of data per day—jump on about 25% of sample days. While foreign exchange rates jump on 3

or 4 times as many days as stock and bond markets, the 24-hour forex market also has about 3

times as many trading hours in the day. Per observation, foreign exchange markets jump about

50 percent more often than the SP or DJ markets but about as often as the very volatile ND or

US Treasury bond futures (P (jump)). The Treasury bond futures market (column 4, US) also

jumps frequently. It exhibits more jumps per observation (P (jump) = 0.37%) than three of the

four exchange rates but the exchange rates exhibit more jump days.

Table 2 shows that stock indices and bond futures exhibit relatively large jumps, which average

between 0.51 and 1.61%, in absolute value (E(|jumpsize| |jump)). Exchange rates jumps are

smaller, averaging between 0.27 and 0.36%, in absolute value. The coefficients of variation
(

σ
µ

)

for absolute jumps are similar across assets, ranging from 63 percent for the SP to 74 percent for

the DJ.

Exchange rates experience more frequent jump days than stock or bond markets because they

are subject to news from two countries, not just one, and probably because they experience

more idiosyncratic liquidity shocks during slow trading in the 24-hour markets. Commonality in

international business cycles (see Kose, Otrok and Whiteman, 2003, 2008) means that a shock to

a U.S. or foreign fundamental will change the expected value of the relative fundamentals much

less than the individual variable. And idiosyncratic liquidity shocks will tend to produce relatively

small jumps. Thus, exchange rates will experience small but frequent jumps.

Equity prices depend on the expected discounted stream of future dividends while bond prices

depend on the discount factor. That is, U.S. macro surprises—not relative surprises—matter for

equities and bonds and their jumps tend to be larger than forex jumps, even relative to their

larger return volatility. Mean bond, stock and forex jumps are about 5, 4 and 3 percent of their

annual volatilities, respectively. Researchers have speculated that bond prices exhibit large jumps
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in response to news because bond prices depend only on the discount factor, while offsetting

news effects on the discount rate and expected dividends might dampen the size of equity jumps,

weakening the relation of macro surprises to equity jumps (Ederington and Lee, 1993; Fleming

and Remolona, 1997, 1999). For example, a positive GDP shock will tend to increase dividend

forecasts but it will also tend to raise expected interest rates. These effects will tend to offset each

other in equity prices. We will show later that some of the bond market’s jump frequency is due

to its sensitivity to news.

3.4 Symmetry in jump frequency

Is there asymmetry in positive and negative jump frequency? While we analyze jumps rather

than returns, previous theoretical and empirical results on returns suggest that markets respond

more to negative surprises in good times.5 Because surprises are mean zero and most of our

sample covers expansions, we might expect more significant negative jumps, at least for bonds

and equities.6 The justification for asymmetry is less clear in other markets.

The last two rows of Table 2 show that forex markets show no evidence of consistent or sizable

asymmetry, although the USD/EUR shows a modest—but statistically significant—preponderance

of positive jumps.7 Equity markets tend to show more negative jumps but the disparity is not

statistically significant. Bond markets do display significant asymmetry, however: More than 58

percent of all bond jumps are negative and this figure is statistically significantly different than

50 percent.

Why are bond market jumps asymmetric? Figure 1 suggests that many of the negative bond

price jumps came in late 1998 and the first half of 1999, during which 30-year Treasury bond yields

rose from about 5 percent to 6 percent. About 75 percent of bond jumps were negative from July

1998 through June 1999, and one fails to reject bond jump symmetry in the whole sample without

these observations. What happened during late 1998 and 1999? The Russian default in August

1998 led investors to seek safe returns, pushing up U.S. long bond prices considerably from July

1, 1998 to about October 1, 1998. For the next 15 months, long yields rose about 2 percentage

points and bond futures prices fell substantially. This recovery from the flight-to-safety generated

inordinately many negative jumps in bond futures prices.
5The literature has suggested both behavioral and rational expectations explanations for such asymmetric re-

sponses. Barberis, Shleifer and Vishny (1998) offer a behavioral approach, while Veronesi (1999) provides a rational

expectations model. Moreover, practitioners commonly accept that markets strongly respond to bad news in good

times, as Conrad, Bradford and Landsman (2002) and Andersen, Bollerslev, Diebold and Vega (2003) explain.
6NBER business cycle dating identifies only two periods covering about 18 months (July 1990 to March 1991

and March-to-November 2001) as contractions. These recession periods are only a small fraction of our longest

samples that cover about 18 years of data.
7A positive jump means a dollar depreciation for the USD/EUR and USD/GBP markets and a dollar appreciation

for the JPY/USD and CHF/USD.
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3.5 Intraday jump timing and size

Figure 2 shows the estimated jumps frequency and mean absolute size, by time of day, for each

series. On the equity and bond markets, jumps are most prevalent during the 8:45 a.m. return,

the period spanning most macro news releases in our sample. Bond markets also experience many

jumps near 14:00-15:00. The equity jumps are fairly small but the bond market jumps are the

largest of the day. Examination of intraday volatility patterns—omitted for brevity—suggests that

stock markets ordinarily experience relatively low volatility prior to 10:00 am Eastern time, which

means that proper treatment of intraday volatility is necessary to discern these modestly sized

jumps. In contrast, bond market volatility is substantial at announcement times, which means

that the detection procedure can only identify fairly large jumps.

Exchange rate jumps are modestly more frequent around 8:30 a.m., 16:00 to 20:00 and 22:00-

02:00, indicating links with major macro news, and during periods of known low volatility, i.e.,

Tokyo lunch and early Asian trading. The latter pattern suggests that illiquidity can cause jumps.

Exchange rate jumps tend to get larger after the opening of European markets at about 2:00

Eastern time and appear to be especially large near announcements. In contrast, jumps that occur

during purely Asian trading tend to be more frequent but smaller than those from European and

North-American trading hours. These “small” jumps are still economically important, representing

price moves of about one third of a percent over 15 minutes.

The contrasting results from equity, bond and forex markets illustrate the importance of proper

treatment of intraday volatility. We find relatively small equity jumps around announcement times

because we can compare them to the low equity market volatility during this period. In contrast,

we find very large bond market jumps at announcement times because intraday bond volatility is

very high around these times.

3.5.1 Markets interdependence: an analysis of cojumps

This section characterizes cojumps, simultaneous jumps on different markets. The cojump indi-

cator on a set of markets, Mkt, at period t, i is defined as follows:

COJumpMkt
t,i =

∏

Mkt

I(|Jump
mj

t,i |), (10)

where I(.) is the indicator function for a positive argument, Jump
mj

t,i refers to significant jumps

detected at period t, i (as defined in Equation (9)) on market mj in the set Mkt. For brevity, we

denote the probability of a cojump simply as P (coj).

Table 3 details the properties of cojumps found with a significance level of α = 0.1. Cojumps

are overwhelmingly more likely than one would expect under the null of independent jumps. For

example, the observed proportion of cojumps on the ND-SP markets was 0.04%, but the expected

probability under the null that the jumps are independent is essentially zero.8 Formal tests of this
8The probability of cojumping under the null of independence is the product of the jump proportions in the

respective markets. These are near zero for every market combination in Table 3. Thus, we do not report them.
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hypothesis reject the null of independent jumps for all cases in which there are cojumps.

To study jump dependence, we examine the probability of cojumps conditional on jumps

in individual markets (P (coj|jump)). In the third vertical panel of Table 3, the four columns,

numbered from 1 to 4, show the conditional probabilities of a cojump in all markets, conditional

on a jump in markets 1 to 4, respectively. For example, the first conditional probability on the

second line of the table means that 11.76% of all jumps on the ND market are also cojumps with

the DJ. Likewise, 16.53% of all DJ jumps are ND-DJ cojumps.

Stock-bond cojump probabilities, conditional on a jump in one of the markets range from

3.16% (P(ND-DJ-US cojump | ND jump)) to 35.38% for P(ND-SP cojump | SP jump). That

is, over one third of SP jumps were also cojumps with the ND. Cojumps are somewhat more

frequent on dollar exchange rate pairs than on stock-bond combinations, even accounting for the

greater number of forex observations. For example, there are 313 cojumps on the USD/EUR and

CHF/USD markets, or about one every three weeks. The conditional probability of a cojump

on two dollar markets, given a jump on one of them, ranges between 8.26 % (USD/GBP and

JPY/USD) to 37.74 % (USD/EUR and CHF/USD).

There are about 50 percent more exchange rate cojumps than stock-bond cojumps. That is,

exchange rate jumps are strongly interdependent because shocks to U.S. fundamentals affect all 4

exchange rates in our study and European regional shocks directly affect 3 of the 4 exchange rates.

The fact that the JPY/USD cojumps relatively infrequently with other exchange rates illustrates

the importance of European regional shocks.

Certain pairs of exchange rates and stock-bond combinations cojump more than others. Two

factors seem to generate disproportionate cojumps: 1) correlation between the fundamentals in

the markets; and 2) ease of simultaneous trading in the markets. For example, the USD/EUR

and USD/CHF cojump more often than any other exchange rate pair, probably due to the strong

correlation in fundamentals between Germany and Switzerland, which have substantial trade,

financial and monetary ties. Likewise, the ND-SP pair displays the most cojumps of any stock-

bond pair. The fact that both ND and SP traded on the CME—while the DJ and US traded on

the CBOT—might explain the strong relation. Traders could easily track the prices of both the

ND and SP and rapidly eliminate any perceived mispricing.9

4 Macroeconomic announcements, jumps and cojumps: em-

pirical analysis

This section analyzes the impact of 25 U.S. macroeconomic announcements on jumps and cojumps

to determine the extent to which macroeconomic surprises cause cojumps. We assume that news

surprises cause jumps but that jumps do not cause news. There is a long literature on asset market

reactions to macroeconomic news. Flannery and Protopapadakis (1988) document day-of-the-week

9The CME and CBOT were independent entities during our sample period but merged as of July 12, 2007.
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patterns in Treasuries and stock indices. Ederington and Lee (1993, 1995) did the seminal work

with intraday bond data and macro announcements. Fleming and Remolona (1997, 1999) related

the 25 largest price changes in the GovPX bond price data to macroeconomic announcements.

Mizrach and Neely (2009) review the literature on bond market reactions to news in some detail.

More recently, Andersen and Bollerslev (1998) have shown that macro news affects the continuous

part of price variation through a periodic component. In this section, we complement Andersen

and Bollerslev (1998) by formally showing that macro surprises significantly explain identified

jumps. We describe the data before estimating limited dependent variable models for (co)jumps.

4.1 Descriptive analysis

4.1.1 Macroeconomic announcements

As is standard in the literature, we use the International Money Market Service data on surveyed

and realized macroeconomic fundamentals. Macroeconomic news is almost always released at

scheduled times, most often at 8:30 U.S. Eastern Time (12:30 or 13:30 GMT), secondarily at 10:00

U.S. Eastern Time, for the news considered in our study. Table 4 describes our announcement

data. Of course, these 25 announcements are only a subset of all U.S. announcements and do not

reflect all news or relevant announcements. To avoid cumbersome qualifications, we will sometimes

refer to days of our 25 announcements simply as “announcement days”.

As in Balduzzi, Elton and Green (2001) or Andersen et al. (2003), we standardize surprises to

easily compare coefficients across surprises and series. The standardized surprise for announcement

j, at time t, i, is Sj
t,i =

Rj
t,i−Ej

t,i

σ̂j
, where Rj

t,i is the realization of announcement j at time t, i, Ej
t,i

is its survey expectation and σ̂j is the standard deviation of that difference. Balduzzi et al. (2001)

have shown that the survey median expectation is an unbiased predictor of the macro news.

4.1.2 Matching jumps and macroeconomic announcement

This subsection considers how closely asset price jumps match our announcements and which con-

sidered news are most likely to produce discontinuities. Table 5 reports the conditional probabili-

ties of jumps and announcements. We emphasize that P (jump|news) and P (news|jump) convey

two very different types of information about the relation between news and jumps. P (jump|news)

describes the likelihood that a news releases causes a jump while P (news|jump) tells us what pro-

portion of jumps are associated with a particular type of news. For example, consider a rare type of

news—perhaps the outbreak of war—that nearly always causes jumps. In this case, P (jump|news)

would be very high but—because wars are infrequent—P (news|jump) might be very, very low.10

The second horizontal panel of that table shows the probability of a jump, conditional on a

generic announcement. In this case, P (jump|news) ranges from 1.10 % (JPY/USD) to 4.17 %

10Because the probability of a jump simultaneous with an unrelated news release is very, very small, we think it

reasonable to assume that news releases cause coincident jumps.
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(U.S. bonds). A generic announcement from our set of news is unlikely to create a jump on any

market, but it is most likely to do so on the bond futures market and least likely to do so for forex.

Our news appears to cause many jumps on equity and bond markets: P (news|jump) reaches

32.21%, for DJ futures. That is, almost 1/3 of DJ jumps are associated with the release of one

of our 25 macro news items. The corresponding P (news|jump) figures for the SP, ND and US

markets are very similar to those of the DJ market, at 29.23, 27.06 and 32.21 percent, respectively.

In contrast, our news announcements precede only about 3 to 4% of USD jumps. Clearly, prices

jump disproportionately near one of our macro news releases, especially in the equity and bond

markets. However, the P (news|jump) figures indicate that our announcements precede only a

minority of equity and bond jumps and very few foreign exchange jumps. Other factors cause

most jumps in our data.

Why is our news more closely associated with equity and bond jumps than with exchange

rate discontinuities? Recall that there are at least three sources of jumps: our news, other news

and liquidity shocks. Because foreign news and liquidity shocks cause many forex jumps, but

not U.S. stock-bond jumps, our news set necessarily causes a lower proportion of forex jumps

(P (news|jump)) than stocks and bond jumps. The fact that news about relative fundamentals

matters for forex—rather than the shocks themselves—means that many shocks will not change

expected relative fundamentals (much) and thus a given bit of news is less likely to cause forex

jumps. That is, P (jump|news) is also lower for forex.

As previously discussed, most research has found that bond markets react more strongly than

equity markets to news. In contrast to previous research, we find that equity jumps are almost

as closely associated with news as bond jumps. We believe that our careful modeling of intraday

volatility, with the methods of Boudt et al. (2008), enables us to find relatively small equity jumps

that previous researchers might have overlooked because they occur during a period of low intraday

volatility.

What news announcements are most likely to create jumps? The third panel of Table 5 shows

the P (jump|news) for 8 types of news that are often coincident with jumps.11 The federal funds

target is important to all markets because it directly affects the yield curve and is forward looking.

The NFP and GDP reports are likewise generally acknowledged as very important announcements

for all asset markets because they summarize real activity. As a relative measure of U.S. and

foreign fundamentals, the trade balance is important to forex markets. This importance might

reflect expectations that unfavorable trade numbers will elicit a change in monetary or intervention

policy. Both the United States and its trading partners practiced foreign exchange intervention

for much of the sample.

Comparing the P (jump|news) for PPI and CPI reveals a potentially interesting fact: Foreign

exchange jumps correlate better with PPI announcements, while bond futures jumps respond more

strongly to CPI news. This is intuitively appealing: Exchange rates should be more sensitive to
11We omit the statistics on the less relevant announcements for brevity. Full results are available on request.
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tradeable goods prices—which the PPI better reflects— through goods market arbitrage, while

the bond market should respond to broader price indices, such as the CPI, which reflect changes in

domestic purchasing power. We will see later, however, that the Tobit estimation fails to confirm

a relation between PPI shocks and foreign exchange jumps.

The last panel of Table 5 shows the importance of various types of news releases in generating

jumps, P (news|jump), revealing their importance for market expectations. If the release frequency

for all the types of announcements were the same, then P (news|jump) would be proportional to

P (jump|news). But the fact that federal funds rate is released only every 6 or 7 weeks, on

average, means that although funds target announcements are very likely to cause jumps, they

cause relatively fewer jumps than one might expect. A funds target announcement is more than

20 times as likely as one of the 17 “other” announcements to cause a jump in the Treasury bond

futures market (39.47 versus 1.93%). But because the 17 “other” announcements are much more

frequent, they cause about as many jumps as the federal funds target announcements (10.07%).

Likewise, federal funds target announcements only cause about 1% of exchange rate jumps, on

average although the conditional probability of an exchange rate jump after a target announcement

ranges from 8.47 to 33.33 percent.

4.1.3 Cojumps and macroeconomic announcements

When do cojumps usually occur? Figure 3 illustrates that cojumps in the six bivariate dollar

exchange rate combinations tend to cluster in the Asian segment (between 22:00 and 2:00 EST)

and in the North American afternoon. The release of some Japanese news in the afternoon might

explain the tendency of JPY jumps and cojumps at about midnight Eastern time, 13:00 Tokyo

time. Liquidity shocks around that time might produce the cojumps in European pairs. But there

is a pronounced spike in all cojump pairs around the time of many U.S. macro news releases, 8:30

EST. This suggests a strong relation between news and jumps.

The last column of Table 3 shows the proportions of cojumps that occur within 15 minutes

of news arrival for various combinations of markets (P (news|cojump)). Equity and bond market

cojumps are much more strongly associated with news releases than foreign exchange cojumps.

News accompanies 73.33 % of ND-US jumps, for example. But cojumps on equity-bond or foreign

exchange markets are much more likely to be associated with news than jumps on those respective

markets. And cojumps in 3 forex markets are more likely to be associated with news than cojumps

in 2 markets, which are more consistently associated with news than single jumps.

Our news set causes a lower proportion of jumps than cojumps because liquidity shocks and

foreign shocks are more likely to be market-specific and so create more jumps than cojumps. There-

fore, our set of announcements will drive a higher percentage of cojumps than jumps. Likewise,

our news causes a lower proportion of forex cojumps than stock-bond cojumps because foreign

news–not in our data set–is more likely to affect relative fundamentals than U.S. fundamentals

and thus will cause more forex cojumps than U.S. stock-bond cojumps.
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4.2 Modeling jumps and cojumps in Tobit-probit framework

The previous section described the conditional probabilities of (co)jumps and our macro announce-

ments. One would expect jumps to depend on the surprise component of announcements, not on

the mere announcement itself. To properly infer the link between (co)jumps and macro surprises,

one must model (co)jumps formally as a function of such releases using Tobit-GARCH and pro-

bit models, respectively. The Tobit regression analysis of jumps includes all series. The probit

analysis of cojumps focuses on dollar exchange rates, where cojumps are most frequent.

4.2.1 Modeling jumps to assess the impact of macro announcements

We estimate the impact of macroeconomic surprises on jump magnitudes with a Tobit regression

model, because the dependent variable is constrained.12 The announcement regressor list varies

with the dependent variable because we can only include announcements that are coincident with

jumps. Besides considering absolute macro surprises as jump determinants, we control for day-

of-the-week effects and an intraday periodic component, which might be related to liquidity and

trading volume.

|Jumpt,i| =





µ + ηt,i + µt,i + ξt,i + εt,i if µ + ηt,i + µt,i + ξt,i + εt,i> 0

0 otherwise

where |Jumpt,i| is the magnitude of significant observed jumps (α = 0.1) at period t, i (see

Equation (9)), ηt,i is a linear combination of day-of-the-week dummies and µt,i describes the

impact of standardized U.S. news surprises.

µt,i =
N∑

j=1

λj |Sj
t,i|,

where λ’s are coefficients, Sj
t,i is the standardized surprises magnitudes in market j and N denotes

the number of announcements used as regressors. We also permit potential delayed response to

news by testing for lagged news, µt,i−1. ξt,i represents an intraday periodic component—separate

from announcement effects—that is based on a flexible Fourier form, in the spirit of Andersen and

Bollerslev (1998). That is, we include

ξt,i = γ1nt,i + γ2n
2
t,i +

p∑

i=1

(γ2+i cosκi(t,i) + γ2+p+i sin κi(t,i)), (11)

where nt,i takes M (the number of intraday periods within a day) values in {1, ..., M} according

to the intraday position of the index t, i, κi(t,i) = 2π 1
M × i × nt,i, and p is fixed at 5 terms.

12The Tobit model can be motivated as the result of a two-step data generating process for jumps. A probit model

first determines whether the asset price jumps and then–if there is a jump–a truncated regression model determines

the magnitude of that jump. The probit and truncated regression models must have the same explanatory variables

and proportional coefficients. The Tobit likelihood function can be written as the product of the probit and

truncated normal likelihood functions.

13



Finally, following Andersen, Bollerslev and Huang (2007b), we correct for heteroskedasticity using

the Tobit-GARCH model of Calzolari and Fiorentini (1998). In the GARCH(1,1) variant, for

example, εt,i|It,i−1 is N(0, σ2
t,i) with σ2

t,i = ω + α1ε
2
t,i−1 + β1σ

2
t,i−1 and It,i is the information set

up to time the i-th interval of day t.13 We estimate this computationally demanding model with

a forex sample starting in 1990 to match most announcement samples.

We note that both the (co)jumps and surprises are measured with some error. The error

in the jumps will decrease the apparent amount of predictability in the Tobit-probit relations.

The surprises are measured with error because the survey expectations are only approximately

market expectations at the time of the announcement. The error in the exogenous variables (i.e.,

the surprises) will attenuate their coefficients toward zero and inflate their p-values. Therefore

our Tobit and probit results present a conservative picture of the relation between these macro

surprises and (co)jumps.

Model Selection We selected models by testing restrictions from general frameworks. We

first determined what conditional variance specification—GARCH(1,1), ARCH(2), ARCH(1) or

homoskedastic—best fits the data in models that allowed for day-of-the-week effects, a circadian

component, as well as contemporaneous and lagged announcement effects. Likelihood ratio tests

reject homoskedasticity in favor of the GARCH(1,1) model, except for the CHF/USD and ND

series, where ARCH(2) and ARCH(1) are more appropriate, respectively. The periodic compo-

nent parameters and day-of-the-week effects were each jointly significant on all series. Lagged

announcement effects were significant only for U.S. bond prices.

Formal tests of asymmetry in the news/jump relation rejected that feature in both Tobit and

probit models of jump reaction to news. That is, negative surprises are usually no more or less

likely to produce cojumps than are positive surprises. This symmetry fails to confirm research

such as Andersen et al. (2003), to cite one example.

Tobit results Table 6 reports Tobit-GARCH estimation results for effect of U.S. macro sur-

prises on jumps. We omit coefficients associated with intraday periodicity and days-of-the-week

to save space. The Tobit results formally confirm much inference from the coincidence of news

and jumps. NFP, retail sales, advanced GDP, fed funds target announcements and the CPI often

contribute significantly to equity and bond jumps. Exchange rates also respond significantly to

NFP and the ubiquitous fed funds target announcements but also to trade balance reports, pre-

liminary GDP, government fiscal announcements and consumer confidence. As with the previous

results, NFP and fed funds target announcements most strongly explain jumps across all markets,

followed by consumer confidence and the two types of GDP announcements.

Recall that the PPI news release events were associated with foreign exchange jumps. The
13In Tobit models, residuals are not directly observed. Calzolari and Fiorentini (1998) detail how to approximate

the squared residuals ε2
t,i−1 of censored values of the dependent variable with their expected values. Note also that

for ease of notation, we use the conventions ε2
t,0 = ε2

t−1,M and σ2
t,0 = σ2

t−1,M .
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Tobit estimation finds, however, that PPI news surprises have no significant positive effect on

jumps. There are at least three possible explanations for this. The first is that the coincidence

between PPI announcements and forex jumps is simply a coincidence. The second is that the

PPI expectations/surprises are measured with significant error, attenuating the value of the Tobit

coefficients. The third possibility is that forex jumps depend only on the fact that there is a PPI

announcement, not the size of the shock. It is not clear why an announcement, rather than the

surprise, would produce a forex jump.

Aside from the PPI puzzle, our results are economically sensible. For example, trade balance

news affects exchange rates more than other markets. One might reason that trade balance shocks

affect expectations of future exchange rate policy, perhaps including interventions, trade or capital

flow regulations or even monetary policy. The Tobit regressions confirm previous studies indicating

that the bond market is very sensitive to news. Equity and some forex markets appear nearly as

sensitive in terms of significant Tobit coefficients, however.

4.2.2 Modeling cojumps

Table 7 presents evidence on the link between macro news and cojumps from a probit model. We

use probit estimation with a qualitative indicator for cojumps because there is no unambiguous

way to attach a single magnitude to cojumps. That is, one could define the magnitude of a cojump

as any number of increasing functions mapping the set of jump sizes into the real line: geometric

or arithmetic averages, minimum, maximum, etc.

P (COjumpt,i = 1) = Φ(µ + ηt,i + µt,i + ξt,i).14 (12)

COjumpt,i is the cojump indicator at a significance level α = 0.1 (see Equation (10)), while

Φ(∗) is the cumulative normal distribution function. The remaining variables are defined as

in the Tobit model: ηt,i controls for weekly seasonality; µt,i includes macro surprises in absolute

value; ξt,i adjusts for intraday periodicity. The seasonal component and day-of-the-week regressors

significantly improve the models’ fit, as they do for the Tobit models. As with the Tobit results,

we omit these coefficients to save space.

The relation between news surprises and cojumps is very strong and consistent. Almost all (18

of 19) of the announcement coefficients are positive and significant. The most important shocks for

the exchange rate cojumps are the federal funds rate target shocks, NFP shocks and preliminary

GDP. The federal funds target surprise, in particular, significantly explains every cojump pair. The

pair USD/EUR - CHF/USD is sensitive to the widest variety of news, as six announcements have

significant effects. Again, the close correlation between Swiss and German/euro area fundamentals

14Unlike that of the Tobit model, the variance of the error term of the Probit model is assumed to be constant.

We tested for but did not find any evidence of ARCH effects for the cojumps. Time varying variance in the latent

variable in Tobit models implies the same behavior in the latent probit models because the two latent variables are

conceptually identical. In our case, however, we estimate the Tobit model on jumps while we estimate the probit

on cojumps. Therefore, strictly speaking, the time varying variance need not carry over.
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surely explains the fact that the USD/EUR and CHF/USD tend to respond very similarly to U.S.

news releases. We obtain McFadden R2s of about 4% for the exchange rate cojump models.

5 Conclusion

This paper has studied financial price discontinuities and macroeconomic announcements. We

apply a modified version of the test for jumps, initially proposed by Andersen et al. (2007c) and

Lee and Mykland (2008) and extended by Boudt et al. (2008), to characterize (co)jumps in USD

exchange rates, U.S. Treasury bond futures and U.S. equity futures. Our analysis indicates that

one must account for volatility periodicity in detecting jumps or risk size or power problems.

Because we can almost exactly determine jump times, we can identify cojumps and associate

(co)jumps with scheduled macro announcements.

Assets differ in how they depend on fundamentals and on the likely sources of shocks to those

fundamentals. Considering this variation enables us to explain how (co)jump behavior varies across

markets. Exchange rates experience frequent but relatively small jumps because they are subject

to news from two countries and because they probably experience more idiosyncratic liquidity

shocks during slow trading in the 24-hour markets. Forex jumps tend to be smaller than bond or

equity jumps because national macro shocks produce much smaller changes in expected relative

fundamentals between currencies. Therefore a generic U.S. announcement is less likely to create a

jump in forex markets. Because a wider variety of shocks influence forex markets, our set of news

announcements creates a smaller proportion of forex jumps than bond or equity jumps.

Bond price jumps are frequent and large relative to bond return volatility. Consistent with

previous research, bonds respond very strongly to our set of news. In contrast to previous research,

however, equities jump almost as often in response to news, but these jumps are relatively small

and might have been overlooked because they occur during a period of low intraday volatility.

Bond response to news might be larger than equity response because bonds do not depend on

expected dividends, which might offset the effect of news on the discount factor.

Jump frequency appears to be fairly symmetric in most markets. The exception is the bond

futures market, which experiences more negative jumps, largely as a result of the recovery from

the Russian-default/LTCM flight-to-safety in late 1998. Without the July 1998 through June 1999

period, there would be little evidence of asymmetry on bond markets.

Certain pairs of exchange rates or stock-bond combinations cojump more than others, either

because the fundamentals are highly correlated or because it is easy to simultaneously trade

the assets. For example, exchange rate jumps are strongly interdependent because shocks to

U.S. fundamentals change relative fundamentals for all 4 exchange rates in our study. Similarly,

European regional shocks affect 3 of the 4 exchange rates. The correlation between European

currencies means that the JPY/USD cojumps less often than other exchange rates.

Most of our news does not cause jumps. A generic announcement from our data set only
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produces an exchange rate jump about 1 to 2 percent of the time and a bond or equity jump only

about 3 to 4 percent of the time. News creates a lower proportion of jumps than cojumps because

liquidity shocks and foreign news tend to be market-specific and unlikely to create cojumps.

Therefore, our set of announcements drives a higher percentage of cojumps than jumps.

Consistent with this, regression models indicate that macro announcement surprises are asso-

ciated with cojumps even more consistently than with jumps. Almost all of the surprises in the

probit estimations were statistically significant generators of exchange rate cojumps. NFP and

federal funds target announcements strongly determine forex cojumps.

Certain announcements are much more likely to be coincident with jumps than others. Federal

funds target, non-farm payroll and GDP announcements appear to be the most important. A

federal funds target announcement, for example, produces a Treasury bond price jump almost 40

percent of the time. Tobit and probit analysis confirms the importance of NFP and federal funds

target announcements for a wide range of markets.

Jumps and cojumps in foreign exchange markets are more strongly associated with PPI an-

nouncements, while jumps in bond prices coincide more often with CPI news. While this might

seem consistent with foreign exchange markets responding more strongly to tradeables inflation

(PPI) and bond markets reacting more strongly to overall inflation (CPI), Tobit models show no

positive relation between PPI shocks and exchange rate jumps. The reason for this is not clear.

A-1 APPENDIX: Robust periodicity filter

To identify jumps, one first needs a robust-to-jumps periodicity estimator to determine which

observations might contain jumps. One can use a robust scale estimator, such as the median

absolute deviation (MAD) or the shortest half scale of Rousseeuw and Leroy (1988). This non-

parametric approach to periodicity estimation, called weighted standard deviation (WSD), has at

least two advantages in our context: 1) We remain fully agnostic on the relation between macro

surprises and jumps; 2) Monte-Carlo simulation results in Boudt et al. (2008) suggest that the

WSD approach is a good compromise between efficiency in the absence of jumps and robustness

to the presence of jumps.

We permit the intraday periodicity to vary by the day of the week and thus compute 5 separate

cyclical components. For ease of exposition, however, we present the periodicity filters for the

simplest case where the length of the cycle is one day.

To compare returns across sample days, Boudt et al. (2008) suggest standardizing intraday

returns with daily bipower variation. This is in line with Andersen and Bollerslev (1998) who

show, that daily exchange rate volatility must be controlled for in order to isolate high-frequency

periodic effects. The standardized intraday returns are computed as follows:

rt,i =
rt,i√

RBVt(∆)
, (A-1)

where RBVt(∆) is given in Equation (4).

17



A first approximation of the intraday periodicity in volatility could be based on the robust

scale measure given by the shortest half scale (SHS) estimator, proposed by Rousseeuw and Leroy

(1988). To compute the Shortest Half scale estimator, we need the corresponding order statistics

r(1);t,i, . . . , r(nt,i);t,i such that r(1);t,i ≤ r(2);t,i ≤ . . . ≤ r(nt,i);t,i. The shortest half scale is the

smallest length of all “halves” consisting of ht,i = bnt,i/2c + 1 contiguous order observations.

These halves equal {r(1);t,i, . . . , r(ht,i);t,i}, . . ., {r(nt,i−ht,i+1);t,i, . . . , r(nt,i);t,i}, and their length

is r(ht,i);t,i − r(1);t,i, . . ., r(nt,i);t,i − r(ht,i);t,i, respectively. The corresponding scale estimator—

corrected for consistency under normality—equals the minimum of these lengths:

ShortHt,i = 0.741 ·min{r(ht,i);t,i − r(1);t,i, . . . , r(nt,i);t,i − r(nt,i−ht,i+1);t,i}. (A-2)

The Shortest Half estimator for the periodicity factor of rt,i (that satisfies the identifiability

condition stated in Equation (7)) equals

f̂ShortH
t,i =

ShortHt,i√
1
M

∑M
j=1 ShortH2

t,j

. (A-3)

The shortest half dispersion is highly robust to jumps, but it has only 37% efficiency with

normally distributed rt,i’s. Boudt et al. (2008) show that the standard deviation applied to the

returns, weighted as a function of their outlyingness under the SHS estimate, offers a better

trade-off between the efficiency of the standard deviation under normality and the shortest-half-

dispersion’s robustness to jumps.

f̂WSD
t,i =

WSDt,i√
1
M

∑M
j=1 WSD2

t,j

, (A-4)

where

WSDt,j =

√√√√1.081 ·
∑nt,j

l=1 w[(rl;t,j/f̂ShortH
t,j )2]r2

l;t,j∑nt,j

l=1 w[(rl;t,j/f̂ShortH
t,j )2]

.

The function w(z) is an indicator function that equals one when z ≤ 6.635, which is the

χ2(1) 99% quantile, and 0 otherwise. The function w selects jump-free returns, based on a first

approximation of periodicity with the shortest half scale, to evaluate a Taylor and Xu (1997) type

of periodicity.

A-2 APPENDIX: Asset price data

Olsen and Associates provide the exchange rate series, which cover about 18 years of data (1987-

2004). The series denoted USD/EUR is the composition of USD/DEM returns, prior to January

1, 1999, and USD/EUR returns after January 1, 1999. We use the USD/EUR label for simplicity.

The decentralized currency markets trade 24-hours a day. Thus, a trading day consists of 96

15-minute intervals. Consistent with the literature on intraday exchange rate patterns, we define

trading day t to start at 21:15 GMT on day t− 1 and end at 21:00 GMT on day t, as in Bollerslev
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and Domowitz (1993). Also consistent with the literature, we remove week-ends and a set of fixed

and irregular holidays, from the intraday return series, as well as days where there are too many

missing values, constant prices, and/or days with the longest constant runs activity. The regular

holidays removed are December 24 through the 26, December 31 through January 2 and July 4.

Irregular holidays include Good Friday, Easter Monday, Memorial Day, Labor Day, Thanksgiving

and the day after. The first two lines of Table 2 report the number of observations and sample

days for each asset.

We convert the original database times from GMT to Eastern time (EST) or Eastern time

Daylight Saving Time (EST-DST), depending on the appropriate period of the year. We use U.S.

time, rather than GMT, because the macro announcements and most other trading regularities—

e.g., the start of North American trading—create periodic patterns in U.S. time, rather than in

GMT. For simplicity, we simply call the U.S. time scale EST. So the first exchange rate of trading

day t is the last price of the 16:00-16:15 EST interval (of calendar day t-1).

The Dow Jones and 30-year U.S. T-bonds futures contracts series trade on the Chicago Board of

Trade (CBOT), while the Nasdaq and S&P 500 futures trade on the Chicago Mercantile Exchange

(CME). We augment the regular trading hours data of Nasdaq and S&P 500 with the GLOBEX

electronic platform data, which extends the trading day to 8:30 to 16:15. The Dow Jones and US

Treasury futures from the CBOT trade from 8:20 to 16:15 and 8:20 to 15:00, respectively. We

sampled the CBOT series from 8:30 on for ease of comparison with other series, however. The

availability of the off-hours electronic trading data limits the useful GLOBEX-augmented S&P

and Nasdaq sample to about 6.5 years. Trading on this Globex platform before the retained dates

is rather thin and contains many missing values.

We construct continuous futures series in the usual way by splicing contracts with liquid trad-

ing. We roll-over contracts 6 business days before maturity for most futures and 15 business days

for U.S. T-bonds.

We note that we cannot identify jumps in the long overnight futures return, because it cannot

be directly compared to a local volatility estimate and the noise in the long return would obscure

the presence of jumps. Thus, our futures calculations omit the overnight return.
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Table 1: Description of the raw original series used in the study

Asset Source Original Freq. Trading Hours* Period retained

NASDAQ 100 Futures (ND) CME/GLOBEX tick 8:30-16:15 EST 07/01/1998 - 12/30/2004

S&P 500 Futures (SP) CME/GLOBEX tick 8:30-16:15 EST 07/01/1998 - 12/30/2004

US Treasury bonds Futures (US) CBOT 5-min 8:30-15:00 EST 07/01/1998 - 11/29/2004

Dow Jones Futures (DJ) CBOT 5-min 8:30-16:15 EST 07/01/1998 - 07/22/2005

USD/EUR O&A 5-min 24 hours a day 01/01/1987 - 10/01/2004

USD/GBP O&A 5-min 24 hours a day 01/01/1987 - 10/01/2004

JPY/USD O&A 5-min 24 hours a day 01/01/1987 - 10/01/2004

CHF/USD O&A 5-min 24 hours a day 01/01/1987 - 09/30/2004

* CBOT futures (Dow Jones and U.S. bonds) trading actually starts at 8:20 EST. We sampled from 8:30

on for ease of comparison with other series.
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Table 2: Descriptive statistics on significant jumps using the FiltJ statistics

SP ND DJ US USD/EUR USD/GBP JPY/USD CHF/USD

# obs. 49135 49662 53909 40560 419616 423072 418272 424128

annualized std. dev. 18.15 35.84 17.81 8.99 11.38 10.20 12.06 12.15

# days 1585 1602 1739 1560 4371 4407 4357 4418

# jump days 105 135 116 130 1062 1184 1092 1143

P (jumpday) (%) 6.62 8.43 6.67 8.33 24.30 26.87 25.06 25.87

E(#jump|jumpday) 1.24 1.26 1.12 1.15 1.33 1.38 1.35 1.34

# jumps 130 170 130 149 1408 1636 1471 1531

P (jump) (%) 0.26 0.34 0.24 0.37 0.34 0.39 0.35 0.36

E(|jumpsize||jump) 0.89 1.61 0.74 0.51 0.32 0.27 0.36 0.30√
V ar(|jumpsize||jump) 0.56 1.22 0.55 0.35 0.23 0.18 0.25 0.20

# jumps > 0 59 84 57 62 744 802 701 745

P (jump > 0) (%) 0.12 0.17 0.11 0.15 0.18 0.19 0.17 0.18

E(jumpsize|jump > 0) 0.87 1.66 0.82 0.53 0.32 0.27 0.36 0.30√
V ar(jumpsize|jump > 0) 0.61 1.33 0.71 0.37 0.23 0.18 0.26 0.20

# jumps < 0 71 86 73 87 664 834 770 786

P (jump < 0) (%) 0.14 0.17 0.14 0.21 0.16 0.20 0.18 0.19

E(jumpsize|jump < 0) -0.90 -1.57 -0.68 -0.49 -0.33 -0.27 -0.36 -0.31√
V ar(jumpsize|jump < 0) 0.51 1.10 0.36 0.32 0.23 0.19 0.25 0.20

% of negative jumps 54.62 50.59 56.15 58.39 47.16 50.98 52.35 51.34

standard error 4.37 3.83 4.35 4.04 1.33 1.24 1.30 1.28

Note: The table displays, from top to bottom the number of sample points (#obs.), the annualized standard deviation of

intraday returns, the number of sample days (#days), the total number of jump days (# jump days, i.e. days with at

least one jump), the probability (in %) of a jump day (P(jump day)=100(# jump days / # days)), and the number of

jumps per jump day (E(# jumps|jump day)=# jumps/#jump days). We further give the total number jumps (#jumps),

their proportion (in %) over sample observations (P (jump) = 100(#jumps/#obs.)), as well as their absolute mean size

and standard deviation (E(|jumpsize||jump) and
√

V ar(|jumpsize||jump)). The next two panels split the jumps in two

sets: positive and negative jumps. Proportions (P (jump > 0) and P (jump < 0)), mean (E(jumpsize|jump > 0) and

E(jumpsize|jump < 0) ) and std. dev. (
√

V ar(jumpsize|jump > 0) and
√

V ar(jumpsize|jump < 0)) are reported,

as for the full set of jumps in absolute value. Finally, the last panel reports the percentage of jumps that are negative

(100#jumps<0
#jumps

) and the associated standard error (100
√

(1− #jumps<0
#jumps

)#jumps<0
#jumps

/#jumps). The chosen significance

level for jumps estimation is α = 0.1. The sampling frequency is 15 minutes. The sample period is given in Table 1.
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Table 3: Cojumps

# obs. # coj. P (coj) P (coj|jump) (%) # coj. P (news|coj)

(%) 1 2 3 4 match. news

ND - DJ 49600 20 0.04 11.76 16.53 - - 11 55.00

ND - SP 49135 46 0.09 27.54 35.38 - - 16 34.78

ND - US 40482 15 0.04 9.49 10.07 - - 11 73.33

DJ - SP 49073 22 0.04 18.97 16.92 - - 8 36.36

DJ - US 40508 9 0.02 9.09 6.04 - - 5 55.56

SP - US 40040 10 0.02 8.47 6.71 - - 7 70.00

ND - DJ - SP 49073 16 0.03 9.58 13.79 12.31 - 8 50.00

ND - DJ - US 40456 5 0.01 3.16 5.05 3.36 - 3 60.00

DJ - SP - US 40014 5 0.01 5.32 4.24 3.36 - 3 60.00

ND - SP - US 40040 9 0.02 5.81 7.63 6.04 - 6 66.67

ND - DJ - SP - US 40014 5 0.01 3.23 5.32 4.24 3.36 3 60.00

USD/EUR - USD/GBP 419424 313 0.07 22.28 19.25 - - 15 4.79

USD/EUR - JPY/USD 417792 214 0.05 15.24 14.58 - - 17 7.94

USD/EUR - CHF/USD 418848 531 0.13 37.74 35.21 - - 24 4.52

USD/GBP - JPY/USD 417984 134 0.03 8.26 9.11 - - 12 8.96

USD/GBP - CHF/USD 422304 266 0.06 16.29 17.45 - - 14 5.26

JPY/USD - CHF/USD 417504 172 0.04 11.69 11.46 - - 17 9.88

USD/EUR - USD/GBP - JPY/USD 417600 89 0.02 6.35 5.49 6.06 - 11 12.36

USD/GBP - JPY/USD - CHF/USD 417216 74 0.02 4.57 5.03 4.94 - 10 13.51

USD/EUR - USD/GBP - CHF/USD 418656 186 0.04 13.25 11.46 12.36 - 12 6.45

USD/EUR - JPY/USD - CHF/USD 417024 129 0.03 9.19 8.79 8.60 - 15 11.63

USD/EUR - USD/GBP - JPY/USD - CHF/USD 416832 62 0.01 4.43 3.83 4.22 4.14 9 14.52

USD/EUR - ND 46080 9 0.02 7.44 5.66 - - 3 33.33

USD/EUR - SP 45570 12 0.03 10.08 9.92 - - 3 25.00

USD/EUR - DJ 46050 9 0.02 7.44 8.04 - - 4 44.44

USD/EUR - US 39442 7 0.02 7.29 5.00 - - 1 14.29

Note: Cojumps are defined as an indicator variable equal to one when significant jumps (at α = 0.1, and a 15-minute

sampling frequency occur exactly at the same time on different markets. The table displays, the number of observations,

the number of cojumps, the cojump probability (P (coj), in %). Columns 5 to 8 (P (coj|jump) in %, numbered 1 to 4) report

the probability of a cojump on the considered markets, given a jump on the market designated by the number of the column

(1 to 4). This number refers to the order of the markets in which they appear on the first column. For example, the values

in the 5th and 6th columns of row 2 (ND-SP) indicate that 27.54% (35.38) of all jumps on the ND (SP) market are also

ND-SP cojumps. The last two columns report the number of cojumps matching exactly news arrival and the probability

of a type of news, given a cojump (P (news|coj)), respectively. The sample period is given by the common sample between

the considered assets.
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Table 4: Scheduled macroeconomic announcement

Announcement Variable Name Starting Date Time (EST) Freq.

Real Activity

Real GDP Advance GDPADV 4/27/1990 8:30 Q

Real GDP Preliminary GDPPRE 5/24/1990 8:30 Q

Real GDP Final GDPFIN 6/21/1990 8:30 Q

Employees on Non-farm Payrolls NFPAYROL 1/8/1986 8:30 M

Retail Sales RETSALES 2/11/1980 8:30 M

Industrial Production INDPROD 2/15/1980 9:15 M

Capacity Utilization CAPUTIL 4/18/1988 9:15 M

Consumer Credit CONSCRED 1/11/1996 15:00 M

Personal Income PERSINC 3/17/1981 8:30/10:00 M

Prices

Producer Price Index PPI 1/10/1986 8:30 M

Consumer Price Index CPI 1/22/1986 8:30 M

Investment

Durable Good Orders DURABLE 1/24/1986 8:30 M

Business Inventories BINVENT 3/14/1988 8:30/10:00 M

Construction Spending CNSTRSPEND 4/1/1988 10:00 M

New Orders at Factories ORDERFACT 3/30/1988 10:00 M

Consumption

Personal Consumption Expenditures PCE 7/17/1985 8:30/10:00 M

New Home Sales HOMESALES 3/29/1988 10:00 M

Net Exports

Trade Balance TRADEBAL 1/30/1986 8:30 M

Government Deficit

Government Fiscal Surplus - Deficit GVFISCDEF 2/22/1988 14:00 M

Forward Looking

Manufacturing Composite Index MFGIND 2/1/1990 10:00 M

Housing Starts HOUSING 1/17/1986 8:30 M

Consumer Confidence CONSCONF 7/30/1991 10:00 M

Index of Leading Economic Indicators LEADINGI 1/30/1986 8:30 M

FOMC

Federal Funds Target FFRTARGET 9/21/1994 14:15 6-weeks
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Table 5: Further descriptive statistics on jumps

SP ND DJ US USD
EUR

USD
GBP

JP Y
USD

CHF
USD

# days 1585 1602 1739 1560 3668 3675 3660 3670

# obs. 49135 49662 53909 40560 352128 352800 351360 352320

P(news) (%) 2.53 2.53 2.52 2.84 0.78 0.78 0.78 0.78

# news days 991 1004 1085 934 2213 2219 2208 2216

# jumps 130 170 130 149 1136 1330 1190 1200

Aggregated news

# jump-news match 38 46 42 48 35 40 30 50

P (jump|news) (%) 3.06 3.66 3.09 4.17 1.28 1.46 1.10 1.82

(0.49) (0.53) (0.47) (0.59) (0.21) (0.23) (0.2) (0.26)

P (news|jump) (%) 29.23 27.06 32.31 32.21 3.08 3.01 2.52 4.17

(3.99) (3.41) (4.1) (3.83) (0.51) (0.47) (0.45) (0.58)

P(jump,news) (%) 0.077 0.093 0.078 0.118 0.010 0.011 0.009 0.014

(0.013) (0.014) (0.012) (0.017) (0.002) (0.002) (0.002) (0.002)

Disaggregated news - P (jump|news) (%)

PPI 3.90 3.90 3.57 1.33 0.00 1.14 1.14 0.57

(2.21) (2.21) (2.02) (1.32) (0) (0.8) (0.8) (0.57)

CPI 6.58 5.13 5.95 7.79 0.57 0.00 0.57 0.57

(2.84) (2.5) (2.58) (3.05) (0.57) (0) (0.57) (0.57)

NFPAYROL 12.00 23.38 9.52 14.47 5.20 0.00 1.73 5.20

(3.75) (4.82) (3.2) (4.04) (1.69) (0) (0.99) (1.69)

TRADEBAL 1.30 2.56 1.18 1.30 0.56 1.13 1.13 0.56

(1.29) (1.79) (1.17) (1.29) (0.56) (0.79) (0.79) (0.56)

GDPADV 16.00 16.00 18.52 0.00 0.00 1.82 0.00 0.00

(7.33) (7.33) (7.48) (0) (0) (1.8) (0) (0)

GDPPRE 0.00 0.00 3.70 4.17 1.85 0.00 1.85 1.85

(0) (0) (3.63) (4.08) (1.83) (0) (1.83) (1.83)

RETSALES 4.23 12.68 6.41 7.25 0.62 0.00 0.00 0.62

(2.39) (3.95) (2.77) (3.12) (0.62) (0) (0) (0.62)

FFRTARGET 5.41 7.89 7.89 39.47 22.03 30.00 8.47 33.33

(3.72) (4.37) (4.37) (7.93) (5.4) (5.92) (3.63) (6.09)

Other 1.87 0.81 1.60 1.95 0.59 0.86 0.81 0.86

(0.46) (0.3) (0.41) (0.5) (0.18) (0.21) (0.21) (0.21)

Disaggregated news - P (news|jump) (%)

PPI 2.31 1.76 2.31 0.67 0.00 0.15 0.17 0.08

(1.32) (1.01) (1.32) (0.67) (0) (0.11) (0.12) (0.08)

CPI 3.85 2.35 3.85 4.03 0.09 0.00 0.08 0.08

(1.69) (1.16) (1.69) (1.61) (0.09) (0) (0.08) (0.08)

NFPAYROL 6.92 10.59 6.15 7.38 0.79 0.00 0.25 0.75

(2.23) (2.36) (2.11) (2.14) (0.26) (0) (0.15) (0.25)

TRADEBAL 0.77 1.18 0.77 0.67 0.09 0.15 0.17 0.08

(0.77) (0.83) (0.77) (0.67) (0.09) (0.11) (0.12) (0.08)

GDPADV 3.08 2.35 3.85 0.00 0.00 0.08 0.00 0.00

(1.51) (1.16) (1.69) (0) (0) (0.08) (0) (0)

GDPPRE 0.00 0.00 0.77 0.67 0.09 0.00 0.08 0.08

(0) (0) (0.77) (0.67) (0.09) (0) (0.08) (0.08)

RETSALES 2.31 5.29 3.85 3.36 0.09 0.00 0.00 0.08

(1.32) (1.72) (1.69) (1.48) (0.09) (0) (0) (0.08)

FFRTARGET 1.54 1.76 2.31 10.07 1.14 1.35 0.42 1.67

(1.08) (1.01) (1.32) (2.47) (0.32) (0.32) (0.19) (0.37)

Other 12.31 4.12 11.54 10.07 0.97 1.20 1.26 1.33

(2.88) (1.52) (2.8) (2.47) (0.29) (0.3) (0.32) (0.33)

Note: The table gives the matching between announcements and jumps computed at a 15-minutes fre-

quency with significance level α = 0.1. The table’s upper panel shows, from top to bottom, the number

of sample days (# days), the number of observations (# obs.), the probability (in %) of an announce-

ment (i.e. the probability that at least one announcement occurs in an intra-day interval), the number

of announcement days and the number of jumps (# news days and # jumps). Next panel (Aggregated

news) shows the number of jumps occurring within one hour after announcement arrival (# Jump-news

match), the probability (in %) of a jump given a release (P (jump|news) = 100(# Jump-news match /

# news)), the probability (in %) of an announcement given a jump (P (news|jump) = 100(# Jump-news

match / # jumps)), the probability (in %) of an announcement and a jump (P (jump, news) = 100(#

Jump-news match / # obs.)). Jump-news matches are very similar with a half-hour window. In the

second panel, reported quantities are based on a news indicator equal to one when at least one of our

sample announcement occurs, and 0 otherwise. The last two panels (Disaggregated news, P (jump|news)

and P (news|jump)) split previous panel (Aggregated news) information. They provide detailed results

for most important news and displays P (jump|news) and P (news|jump) in percent. The last line of

the “disaggregated panels” (called “Other”) is based on a news indicator equal to one when one of our

sample announcement occurs, excluding those detailed above in the corresponding panel. The exchange

rate samples start in January 1990. The other series samples period is given in Table 1.
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Figure 1: Time series of significant jumps
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Note: The figure illustrates significant jumps based on the FiltJt,i statistics given in Equation (8).

The significance level is α = 0.1 and the sampling frequency is 15 minutes. The X-axis displays

time in years, while the Y-axis displays identified jumps (in %), i.e. the variable Jumpt,i given in

Equation (9). The sample period is given in Table 1.
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Figure 2: Count of significant jump occurrences and mean of absolute jumps conditional on the

intraday period
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Note: the X-axis represents intraday time (U.S. eastern time). The left side Y-axis displays the

number of significant jumps (α = 0.1), while the right side Y-axis displays the mean of absolute

values of significant jumps. Solid lines denote the number of jumps and dashed lines denote mean

jump size. Vertical lines denote the interval containing 8:30, the time of most news arrival. The

sample period is given in Table 1.
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Figure 3: Cojump occurrences per intra-day period
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Note: The graphs display the cojump count (α = 0.1) for different exchange rates combinations.

The X-axis displays intraday periods over 24 hours in EST time. The sample period is given in

Table 1.

32


