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Abstract

We investigate the global dynamics of Real Business Cycle (RBC) models with

production externalities. We con�rm that purely local analysis does not tell the full

story. With externalities smaller than required for local indeterminacy, local analysis

shows the steady state to be a saddle, implying a unique equilibrium. But global

analysis reveals the steady state is surrounded by stable deterministic cycles. Our

analysis suggests that indeterminacy is more pervasive than previously thought, and the

results strengthen the view that caution should be exercised when linearized versions

of this class of RBC models are used in applied work.
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1 Introduction

The work of Benhabib and Farmer (1994) has triggered a great amount of research and

renewed interest in studying expectations-driven �uctuations. The major reason behind this

is that it makes quantitative analysis of the business-cycle e¤ects of sunspots possible within

the popular framework of Kydland and Prescott (1982). Along with this fast growing litera-

ture of indeterminacy, there has also been a growing concern that sunspots equilibria in this

class of RBC models may not be robust to parameter calibration and model perturbations.

For example, the required degree of returns-to-scale and the elasticity of labor supply for in-

ducing indeterminacy in this class of models may be unrealistically large; and indeterminacy

may no longer be possible once realistic adjustment costs of capital or labor are taken into

account. Both the indeterminacy literature and the criticisms raised against it, however, are

based almost exclusively on local analysis. The point of this paper is to show the danger

of drawing conclusions based solely on local analysis. In particular, it is shown that models

can exhibit global indeterminacy even when they are locally determinate and that global

dynamics can be dramatically di¤erent from local dynamics.

In this paper we focus on the Benhabib-Farmer RBCmodel featuring increasing returns to

scale due to production externalities. But we believe our analyses have broader implications

for other types of models, such as the New Keynesian monetary models with Taylor rules.1

By analyzing the global dynamics of this class of RBC models, we con�rm that purely local

analysis can be misleading. For example, with su¢ ciently small externalities, local analysis

shows the steady state to be a saddle, implying a unique equilibrium featuring monotonic

transitional dynamics; but global analysis reveals instead that the steady state is surrounded

by stable period-2n cycles.

Our analysis is particularly relevant in light of the recent literature of estimating and test-

ing for indeterminacy. Lubik and Schorfheide (2004) use a business-cycle model that allows

for indeterminacy to conduct likelihood-based estimation of the e¤ects of monetary policies

based on the di¤erence in the propagation mechanism between determinate and indetermi-

nate models. They argue that U.S. monetary policy in the post-1982 period is consistent

with determinacy whereas the policy in the pre-Volker period is not. Their estimation pro-

1In our working paper version (Coury and Wen 2000), we have also examined other versions of the
Benhabib-Farmer model, such as the model of Wen (1998) featuring capacity utilization and the model
of Weder (1998) featuring durable consumption goods. We showed that these models all exhibit global
indeterminacy while the steady state appears to be a saddle.
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cedure, however, is based entirely on local analysis. Thus, the conclusions they draw from

their analysis may not be robust if the region of the parameter space they consider to be

determinate is actually indeterminate in the global sense.

Our analysis reinforces the concerns expressed by Benhabib and Eusepi (2004) regarding

the danger of drawing conclusions based solely on local analysis. Our paper is related to the

work of Christiano and Harrison (1999). Rather than focusing on local dynamics, Christiano

and Harrison conduct global analysis and show that chaos and regime switching sunspot

equilibria can arise in a standard RBC model with increasing returns to scale. They also

study the implications of this model for stabilization in relation to government tax policies.

However, their analysis is conducted under the condition that the degree of aggregate returns

to scale is large enough to trigger local indeterminacy. They do not study whether global

indeterminacy continues to exist when the model lies in the determinate region judged by

local analysis.2

The signi�cance of the present work is that we conduct global analysis under the condi-

tion of local determinacy and without policy distortions. Linearized versions of this class of

models are now routinely used and calibrated in the empirical literature to explain macroeco-

nomic �uctuations.3 Since global indeterminacy exists in this class of empirically plausible

RBC models even in parameter regions where the equilibrium appears to be locally unique,

caution must be exercised when linearized versions of these models are applied to empirical

analysis. In practice, for example, people who do not believe in sunspots or indeterminacy

may choose the level of the externality small enough so that the model�s steady state appears

to be a saddle, hence carrying out investigations assuming that the equilibrium is unique,

while indeterminacy and sunspot equilibria may exist globally in the model.4

Related Literature. The broader literature is impossible to survey here because it is so

vast. We only mention some of the papers that are most closely related to our analysis in

this paper. Benhabib and Farmer (1994) and Farmer and Guo (1994) discuss indeterminacy

and sunspot equilibria in a standard one-sector RBC model with production externalities

2Another related work is Guo and Lansing (2002). They examine the relationship between government tax
policy and endogenous �uctuations in the Benhabib-Farmer (1994) model. They show that when the model
is locally indeterminate due to a su¢ ciently large degree of externalities, the introduction of distortionary
taxes into the model can lead to interesting global dynamics. In particular, they �nd parameter regions
where the model is locally determinate but globally indeterminate. However, their �nding is restricted to
the condition that increasing returns to scale are su¢ ciently large to trigger local indeterminacy in the
absence of policy distortions. Hence, in this regard their model is similar to Christiano and Harrison (1999).

3See, e.g., Benhabib and Farmer (1996), Benhabib and Wen (2004), Barinci and Cheron (2001), Farmer
and Guo (1994), Guo and Sturzenegger (1998), Harrison and Weder (2002), Perli (1998), Schmitt-Grohe
(2000), Weder (1998), Wen (1998a, b) and Xiao (2004), among many others.

4A similar point has also been made by Guo and Lansing (2002) in a di¤erent context regarding the
design of stabilizing government polices.
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(i.e., the model of Baxter and King 1991). Since these �rst-generation indeterminate RBC

models require implausibly large degrees of externalities to generate indeterminacy (see, e.g.,

Schmitt-Grohe 1997), thereby casting doubt on their empirical relevance, subsequent work

by Benhabib and Farmer (1998), Benhabib and Nishimura (1997), Benhabib, Meng and

Nishimura (2000), Bennett and Farmer (2000), Harrison (2001), Perli (1998), Weder (1998

and 2000) and Wen (1998a), among many others, made e¤orts to reduce the degree of exter-

nalities required for inducing local indeterminacy.5 This line of research discovers that factors

such as additional sectors of production, durable consumption goods, non-separable utility

functions, or variable capacity utilization can all help by reducing the required externalities

for local indeterminacy to a degree that is empirically plausible. However, Wen (1998b),

Kim (2003), and Herrendorf and Valentinyi (2003), among others, show that if adjustment

costs are present, indeterminacy may no longer be possible in this class of models regardless

of the degree of externalities or returns to scale. Most work in this literature, however, is

based on local analysis. The global properties of this class of calibrated RBC models remain

largely unknown. For the broader literature on sunspots, see Shell (1977, 1987), Cass and

Shell (1983), Shell and Smith (1992), Azariadis (1981), Azariadis and Guesnerie (1986), and

Woodford (1986a, 1986b, 1991). For global analysis of indeterminacy and nonlinear dynam-

ics in dynamic optimization models, see Benhabib and Nishimura (1979), Benhabib and Day

(1982), Grandmont, Pintus, and Vilder (1998), Michener and Ravikumar (1998), Pintus,

Sands, and Vilder (2000), Majumdar, Mitra and Nishimura (2000), Mitra (2001), Mitra and

Nishimura (2001a, 2001b), among many others.

2 The Benhabib-Farmer Model

A representative agent chooses sequences of consumption fctg1t=0, hours to work fntg
1
t=0 ;

and the stock of capital fkt+1g1t=0 to solve

max
1X
t=0

�t
�
log (ct)� a

n1+t

1 + 

�
(1)

subject to

ct + kt+1 � (1� �)kt � Xtk
�
t n

1��
t ; (2)

5Schmitt-Grohe and Uribe (1997) proposed an indeterminate model without increasing returns to scale
in the production technology. Their model features distortionary taxes and balanced government budget.
Indeterminacy arises if the steady-state tax rate is larger than capital�s share of aggregate income. Wen
(2001) showed that this model is similar to the Benhabib-Farmer (1994) model in reduced form.
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where � is the rate of depreciation for capital and Xt =
�
�k�t �n

1��
t

��
(� � 0) represents

production externalities taken as parametric by individual agents. In equilibrium, the �rst

order optimality conditions are given by:

ant = (1� �)
1

ct
k
�(1+�)
t n

(1��)(1+�)�1
t (3)

1

ct
= �

1

ct+1

h
�k

�(1+�)�1
t+1 n

(1��)(1+�)
t+1 + 1� �

i
(4)

ct + kt+1 � (1� �)kt = k�(1+�)t n
(1��)(1+�)
t ; (5)

plus a transversality condition. Equation (3) is the labor market equilibrium condition,

equation (4) is the intertemporal Euler equation for consumption and saving, and equation

(5) is the aggregate resource constraint.

3 Local Dynamics

Before analyzing the global dynamics of the model, it is illustrative and useful to investigate

�rst the local dynamics of the model. Log-linearizing the �rst-order conditions (3)-(5) around

the steady state and substituting out labor n using equation (3), we can obtain a two-variable

linear system in fkt; ctg: �
k̂t+1
ĉt+1

�
=M

�
k̂t
ĉt

�
; (6)

where circum�ex denotes percentage deviation from steady state. In order to have a unique

equilibrium, the existing literature argues that steady state must be a saddle, i.e., one of the

eigenvalues of M must lie outside the unit circle, so that the current consumption level ct

can be solved forward as a function of the state (kt). If both eigenvalues of M lie inside the

unit circle, the steady state becomes a sink. Hence a continuum of equilibria exists because

any initial value of consumption is consistent with equilibrium. Benhabib and Farmer (1994)

show that, with the externality parameter � exceeding a critical value ��; the steady state

becomes a sink.
However, as will be shown shortly, there can still exist multiple equilibrium paths even

though the steady state is locally a saddle. That is, the model can still be indeterminate

globally even if � < ��).6 To demonstrate the possible topological changes of this model as

6Externalities are still crucial for global indeterminacy.
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we vary the externality parameter �; table 1 tabulates the eigenvalues of the linear system.7

We calibrate the remaining structural parameters according to the existing RBC literature,

namely, we set � = 0:99;  = 0; � = 0:3; and � = 0:025 for a quarterly model. The existence

of global indeterminacy is not sensitive to the particular parameter values. For a wide

region of the parameter space, global indeterminacy will arise if the externality parameter

� is larger than a critical value. These critical values, however, is smaller than the value

required for local indeterminacy. In other words, the steady state remains a saddle when

global indeterminacy appears.

Table 1.
� f�1; �2g modulus

0 0.9250 1.0920
0.4 0.9124 1.3917
0.4800 0.9046 18627
0.4801 0.9046 -278.75
0.4934 0.9026 -1.0004 1.0
0.4935 0.9025 -0.9852
0.506 0.9003 -0.0011
0.507 0.9001 0.0384
0.58 0.8515 0.8324
0.581 0.8433 � 0:0089i 0.8434
1 0.9533 � 0:0382i 0.9540

Table 1 shows that the steady state goes through noticeable topological changes as the

externality parameter � increases from zero. For example, for � slightly greater than 0:48;

the largest eigenvalue changes sign from positive in�nity to negative in�nity. At about

� = 0:4934; the steady state changes from a saddle to a sink and the largest eigenvalue (in

absolute value) passes through 1: Hence, the model admits a �ip bifurcation. Whether that

�ip bifurcation is supercritical or not remains to be examined in the next section by global

analyses. For � � 0:4934; the steady state is locally a sink and the model becomes locally
indeterminate. Complex eigenvalues emerge when � increases still further. Computation

shows that the eigenvalues become real again if we increase the externality beyond � = 1:

7In table 1, we report the value of � in the �rst column, the corresponding eigenvalues in the second and
third columns. In the last column we report the modulus of the largest eigenvalue when they cross the unit
circle or when they become complex numbers.
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4 Global Dynamics

We �rst prove that the �ip bifurcation identi�ed in the local analyses is supercritical. This

means that, within a small open neighborhood of ��, and as � becomes larger, the period-1

steady state goes from being a sink to being a saddle surrounded by an attracting period-2

cycle: trajectories starting in a neighborhood of the period-1 steady state would end up

converging to this cycle (if the cycle were repelling, then the bifurcation would be called

subcritical.) We then use numerical methods to investigate the global behavior of the model

when parameters are su¢ ciently far away from the bifurcation point.

Proposition 1 For an open set of parameter values, close to those of the real business cycle

model, the �ip bifurcation in the Benhabib and Farmer model is supercritical.

Proof. See the appendix.�
As the system undergoes the �ip bifurcation, the steady state becomes saddle-path stable.

In local analysis, this is associated with a unique equilibrium trajectory that is consistent with

initial conditions. Because the �ip bifurcation is supercritical, there is in fact a continuum

of equilibria consistent with a given initial condition (in the case of a subcritical bifurcation,

it would remain true that there is only one equilibrium path associated with a given initial

condition.)

An analytical bifurcation analysis can reveal only the global behavior of the system in

a neighborhood of the parameter values for which a bifurcation occurs. Outside of this

neighborhood, the system may undergo further changes in the global topology of the phase

space that can be revealed by numerical methods. The above proposition therefore does not

guarantee that the period-2 cycle will persist or that a period-doubling bifurcation to chaos

will take place when � di¤ers from the critical value �� = 0:4934. However, it does guarantee

that there exists an open interval around the critical value such that for smaller values of

� < ��, there exists a period-2 attracting cycle around the saddle steady state; and for larger

values of � > ��, the system is globally a sink.

In order to understand the global dynamics of the model for parameters su¢ ciently far

away from the bifurcation point, we rearrange the model�s �rst order conditions as follows:

an = (1� �) 1
ct
k
�(1+�)
t n

(1��)(1+�)�1
t (7)

kt+1 = k
�(1+�)
t n

(1��)(1+�)
t + (1� �)kt � ct (8)
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1

ct
= �

1

ct+1

h
�k

�(1+�)�1
t+1 n

(1��)(1+�)
t+1 + 1� �

i
: (9)

To simulate global dynamics, we disturb the steady state by an arbitrary amount. This is

our initial value for the vector (ct; kt), which also implies the initial value for nt (by equation

(7)). Given these initial values, we note that equation (8) de�nes kt+1 as a function of (ct; kt).

Replacing this function into equation (9), we obtain an implicit function in ct+1: We then

solve this equation numerically for ct+1 using the Newton method. We then have a new set

of initial values (ct+1; kt+1) that we can iterate using the same method.8

Starting from the critical value, ��; at which the �ip bifurcation takes place, it is found

that if we decrease � slightly, the system becomes locally a saddle but is globally surrounded

by a stable period two cycle. As � decreases slightly further, the system undergoes a cascade

of period-doubling �ip bifurcations. A simulation of period doubling is shown in �gure 1.9

For values of � larger than its critical value of the �ip bifurcation ��, the steady state is a

global sink. This is a consequence of the fact that the �ip bifurcation is supercritical as is

proved in proposition 1.

Figure 1. Period-Doubling Global Dynamics.

Robustness. Our �ndings are not limited to the Benhabib-Farmer model. For example,

in our working paper version (Coury and Wen 2000), we have also examined the models of 2
8This method is also used by Guo and Lansing (2002).
9Figure 1 was obtaind by computing 1000 iterations of an orbit starting near the steady state, given a

value of �. The last 100 iterates are kept. This is done for 1000 values of �: The resulting picture is projected
in the f�; ng space. The �gure was generated using Mathematica 4.2 under Windows XP. The algorithm
used to compute the zero of implicit functions is Newton�s method.
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andWeder (1998), where the required degree of externalities for inducing local indeterminacy

is much smaller, due to the presence of capacity utilization or durable goods consumption, so

that the implied aggregate returns to scale are almost constant. We show that both models

have global indeterminacy in parameter regions where the steady state appears to be locally

a saddle. Since the analysis and the analytical proof for the stability of bifurcation are very

similar, the results are not presented here in order to conserve space. Interested readers are

referred to our working paper, Coury and Wen (2000).10

5 Conclusion

In this paper we use the Benhabib-Farmer (1994) model to show that externalities may lead

to an even richer set of dynamics than previously known once one departs from the standard

local analysis. Global analysis reveals that endogenous business cycles driven by sunspots

can arise even in parameter regions where the steady state appears to be locally unique

and determinate. Our analysis indicates that indeterminacy may be more pervasive than

previously thought, and the �ndings strengthen the view that caution should be exercised

when linearized versions of this class of RBC models are used in applied work. While

the literature emphasizes that externalities-driven RBC models have a strong propagation

mechanism when evaluated in the parameter region of local indeterminacy11, it is possible to

construct stationary sunspot equilibria around the deterministic period-2n cycles in a way

similar to Christiano and Harrison (1999). The empirical investigation of such a model could

be an interesting topic for future research.

6 Appendix

Proposition 1 The �ip bifurcation in the Benhabib-Farmer model is supercritical for an

open set of parameter values close to those of the real business cycle model.

Proof. Let xt = (ct; kt): Consider the system xt+1 = f(xt) = (f1(xt); f2(xt)), where para-

meters are such that one of the eigenvalues of the system is �1. Let x� be the unique steady
10Other RBC models with distortionary taxes and balanced budget rules, such as Schmitt-Grohè and

Uribe (1997), are likely to display the same kind of global indeterminacy. Indeed, Wen (2001) shows that
such a model is similar to the Benhabib-Farmer model in its reduced-form dynamics.
11See, for example, Benhabib and Wen (2004). Their model does a good job in matching selected second

moments of the US data for combinations of parameters that give complex eigenvalues. Such results are ob-
tained for values of the externality parameter that are away from the bifurcation point. Complex eigenvalues
improve the model�s performance by inducing smooth oscillatory behavior.
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state of the system. Identify this system with its truncated Taylor series expansion:

xt+1 = A(xt � x�) + F (xt � x�); (10)

where A is the 2 � 2 matrix of �rst-order partial derivatives evaluated at the steady state

and where F (x) = 1
2
B(x; x) + 1

6
C(x; x) + O(kxk4), in which B � (B1; B2); C � (C1; C2) are

2� 1 vectors. The terms in these vectors are de�ned as follows:

Bi(x; y) =

2X
j;k=1

@2fi(�)

@�j@�k
j�=x� xjyk; Ci(x; y) =

2X
j;k;l=1

@3fi(�)

@�j@�k@�l
j�=x� xjykzl (11)

for i = 1; 2. Let q 2 R2 be the eigenvector associated with the eigenvalue �1 = �1 of A,
which spans the eigenspace T c, the tangent space to the center manifold. Let p 2 R2 be the
adjoint eigenvector such that ATp = �1p, normalized so that hp; qi = 1; where h:; :i is the
usual real inner product. We have the following lemma in the continuous case (Kuznetsov,

1998, Section 5.2):

Lemma Let T su denote an (n� 1) dimensional linear eigenspace of A corresponding to all
eigenvalues other than 0, which is the space tangent to the stable-unstable manifold.

Then y 2 T su if and only if hp; yi = 0.�

Applying this lemma in the discrete case to the matrix (A� �1E) (where E is the 2� 2
identity matrix), we conclude that y 2 T su if and only if hp; yi = 0; where T su spans the

eigenspace corresponding to all eigenvalues other than �1.
We can decompose any vector x 2 R2 as x = uq + y (where u = hp; xi, y = x� hp; xi q,

uq 2 T c and y 2 T su). The mapping (after a shift of coordinates back to (0; 0)), ~x =

Ax+ F (x), can be written in the (u; y) coordinate system as:

~u = �1u+
1

2
�u2 + u hb; yi+ 1

6
�u3 + ::: (12)

~y = Ay +
1

2
au2 + :::

where

� = hp;B(q; q)i ; � = hp; C(q; q; q)i ; a = B(q; q)� hp;B(q; q)i q:

10



In order to reduce the dimension of the above system, we appeal to the Reduction Prin-

ciple restated here:

Theorem (Kuznetsov,1998, p157) Consider the hyperbolic discrete-time dynamical system:

x 7! f(x): Using an eigenbasis, the system:

�
u
v

�
7!
�
Bu+ g(u; v)
Cv + h(u; v)

�
is locally topologically equivalent to

�
u
v

�
7!
�
Bu+ g(u; V (u))

Cv

�

where B has eigenvalues on the unit circle, and all the eigenvalues of C are not on the unit

circle and where V (u) is a function de�ning the local representation of the center manifold

W c = f(u; v) : v = V (u)g: �
The local approximation of the center manifold has the form y = V (u) = 1

2
w2u

2+O(u3).

Substituting y into the second equation in (12), it can be shown that w2 = �(A � E)�1a.
Using hb; yi = hp;B(q; y)i and substituting it into the �rst equation in (12) yields (after
simpli�cation):

~u = �u+ a(0)u2 + b(0)u3 +O(u4) � h(u; 0); (13)

where

a(0) =
1

2
hp;B(q; q)i

b(0) =
1

6
hp; C(q; q; q)i � 1

4
(hp;B(q; q)i)2 � 1

2



p;B(q; (A� E)�1B(q; q))

�
It can be shown that equation (13) is topologically equivalent to the normal form:

~� = �� + c(0)�3 +O(�4); (14)

where c(0) = a2(0) + b(0). This equivalence is true as long as two nondegeneracy conditions

hold (see Theorem 4.3 in Kuznetsov, 1998). These conditions will be checked later. Further-

more, we can show that (14) is locally topologically equivalent to ~� = �� + c(0)�3 around
the steady state (see lemma 4.2 in Kuznetsov, 1998).

The main challenge in computing the sign of c(0), which determines the direction of

the bifurcation, is �guring out the coe¢ cients of the third-order Taylor series expansion

in equation (11). In principle, c(0) can be expressed as a complicated function of all the

11



structural parameters, and the sign of c(0) can then be determined if all the parameters

satisfy an implicit relationship: h(�; �; �; �:::) = 0 which represents all the points where a

bifurcation takes place. However, since the system xt+1 = f(xt) is implicit in xt+1 and xt in

our model, obtaining analytical Taylor series expansion terms as functions of the parameters

is di¢ cult. Instead, we choose speci�c parameter values at which the bifurcation takes place

and compute the numerical values of c(0) to prove the direction of bifurcation.

The dynamical system of the benchmark model corresponding to xt+1 = f(xt) is:

��
h
�2k

�3
t c

�4
t + (1� �)kt � ct

i�3�1
c
�4�1
t+1 + �(1��)

ct+1
� 1

ct
= 0;

kt+1 = k
�3
t c

�4
t + (1� �)kt � ct;

(15)

where �1 =
1

1+�(1��)(1+��) ; �4 = ��1(1� �)(1 + �); �2 = (1� �)
��4 ; �3 = �(1 + �)[1 + (1 +

�)(1 � �)�1]: We now appeal to the implicit function theorem to obtain the desired Taylor

series expansion for system (15). As an example, we set � = 0:99;  = 0; � = 0:3; and

� = 0:025: At these parameter values, the �ip bifurcation takes place when the externality

parameter � = 0:4934:::: Using these values, we obtain coe¢ cients for the Taylor series, chk;j;

which satisfy fh(c; k) =
P
k;j

chk;j(c� c�)k(k � k�)j, h = 1; 2 and where the summation is taken

over:

(k; j) 2 f(0; 0); (1; 0); (0; 1); (1; 1) ; (2; 1); (1; 2); (0; 3); (3; 0); (2; 0); (0; 2)g:

Using these coe¢ cients, the matrix A as well as (p; q) can be computed as:

A =

�
c11;0 c10;1
c21;0 c20;1

�
=

�
0:082637:: 0:03137::
28:2945:: �0:18008::

�
;

p = (�14:8781; 0:569283); q = (�0:0289657; 0:99958):

Using these data, one can compute that c(0) = 0:557624 > 0, which implies that the �ip

bifurcation in the benchmark model is supercritical.

Let�s now check the nondegeneracy conditions . 1
2
(huu(0; 0))

2 +1
3
huuu(0; 0) = 2c(0) 6= 0:

The second condition , hu�(0; 0) 6= 0; is true as long as
���01(��)�� 6= 0 holds. Our computation

shows that
���01(��)�� = 153:629: This completes the proof.�
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