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Abstract

In this paper we propose a contemporaneous threshold multivariate smooth transition

autoregressive (C-MSTAR) model in which the regime weights depend on the ex ante

probabilities that latent regime-specific variables exceed certain threshold values. The

model is a multivariate generalization of the contemporaneous threshold autoregressive

model introduced by Dueker et al. (2007). A key feature of the model is that the

transition function depends on all the parameters of the model as well as on the data.

The stability and distributional properties of the proposed model are investigated. The

C-MSTAR model is also used to examine the relationship between US stock prices and

interest rates.

Keywords: Nonlinear autoregressive models; Smooth transition; Stability; Threshold.

JEL Classification: C32; G12.
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1 Introduction

Nonlinear time series models which allow for state-dependent or regime-switching behav-

iour have gained much attention and popularity in recent years. Prominent examples

include threshold autoregressive models [see, e.g., Tong (1983)], which are piecewise lin-

ear in the threshold space, and Markov switching models [see, e.g., Hamilton (1993)]

where regime shifts are driven by a hidden Markov process. Another well-known exam-

ple is smooth transition autoregressive (STAR) models [see Teräsvirta (1998); van Dijk et

al. (2002)] which, unlike threshold or hidden Markov models, allow for smooth rather than

discrete changes in regime.1 More recently, Dueker et al. (2007) introduced a new class of

contemporaneous threshold smooth transition autoregressive (C-STAR) models in which

the mixing (or regime) weights depend on the ex ante probabilities that regime-specific

latent variables exceed certain threshold values. A key feature of the C-STAR model is

that its mixing (or transition) function depends on all the parameters of the model as

well as on the data, a feature which allows the model to describe time series with a wide

variety of conditional distributions.

When the joint dynamic properties of multiple time series are of interest, it is natural

to consider multivariate models. In a nonlinear framework, Hamilton (1990), Tsay (1998)

and van Dijk et al. (2002), among many others, discussed multivariate Markov switch-

ing, threshold and smooth transition autoregressive models, respectively. In spite of some

obvious difficulties associated with the practical use of such models (e.g., choice of an ap-

propriate threshold variable, number of regimes, transition function), they are potentially

very useful for analyzing possibly state-dependent multivariate relationships. Well-known

examples of such relationships, which have been the focus of much research, are nonlin-

ear money-output Granger causality patterns [e.g., Rothman et al. (2001); Psaradakis

et al. (2005)] and threshold nonlinearities in the term structure of interest rates [e.g.,

Tsay (1998); De Gooijer and Vidiella-i-Anguera (2004)], to give but two examples.

1Several applications of these models have been proposed in the literature; these include: Tiao and Tsay

(1994) and Potter (1995) to US GNP; Rothman (1998), Caner and Hansen (1998) and Koop and Potter

(1999) to unemployment rates; Obstfeld and Taylor (1997) to real exchange rates; Aıt-Sahalia (1996),

Enders and Granger (1998), Pfann et al. (1996) to interest rates; Pesaran and Potter (1997) to business

cycle relationships.
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This paper contributes to the literature on multivariate nonlinear models by proposing

a contemporaneous threshold multivariate STAR, or C-MSTAR, model. This model is

a multivariate generalization of the C-STAR model and shares with the latter the key

property that all the variables that are included in the conditioning information set are

also present in the mixing function. In analogy with the univariate case, the mixing weights

in the C-MSTAR model depend on the ex ante probabilities that latent regime-specific

variables exceed certain (unknown) threshold values.

After recalling the definition and main characteristics of univariate C-STAR models in

Section 2, the C-MSTAR model is introduced and discussed in Section 3. In particular, we

examine the stability properties of the model and give conditions under which the Markov

chain associated with the model is geometrically (or, more precisely, Q-geometrically)

ergodic. This is a useful property because it implies that the C-MSTAR process is strictly

stationary (when suitably initialized) and absolutely regular. We also use artificial data

to examine the various types of conditional distributions that can be generated by a C-

MSTAR model. In Section 4, we investigate the relationship between US stock prices and

interest rates using a C-MSTARmodel. Our empirical results suggest that monetary policy

has different effects on stock prices in different states of the economy and that Granger

causality between stock prices and interest rates is regime dependent. A summary is given

in Section 5.

2 Univariate Contemporaneous Threshold Autoregressive

Models

The C-STAR model is a member of the STAR family. As is well known, a STAR process

may be thought of as a function of two (or more) autoregressive processes which are

averaged, at any given point in time, according to a mixing function G(·) with range [0, 1].

Specifically, a two-regime (conditionally heteroskedastic) STAR model for the univariate

time series {xt} may be formulated as

xt = G(zt−1)x1t + (1−G(zt−1))x2t, t = 1, 2, . . . , (1)
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where zt−1 is a vector of exogenous and/or pre-determined variables and

xit = μi +

pX
j=1

α
(i)
j xt−j + σiut, i = 1, 2. (2)

In (2), {ut} are assumed to be independent and identically distributed (i.i.d.) random

variables such that ut is independent of the past {xt−1, xt−2, . . .} and E(ut) = E(u2t−1) = 0,

p is a positive integer, σ1 and σ2 are positive constants, and μi and α
(i)
j (i = 1, 2; j =

1, . . . , p) are real constants. The feature that differentiates alternative STAR models is

the choice of the mixing function G(·) and transition variables zt−1 [cf. Teräsvirta (1998);

van Dijk et al. (2002)].

Letting

zt = (xt, xt−1, ..., xt−p+1)
0, δ = (1, 0, . . . 0)0 ∈ Rp,

and

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(i)
1 α

(i)
2 α

(i)
3 · · · α

(i)
p−1 α

(i)
p

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i = 1, 2,

the Gaussian two-regime C-STAR model of order p is obtained by defining the mixing

function G(·) in (1) as

G(zt−1) =
Φ({x∗ − μ1 − δ0C1zt−1}/σ1)

Φ({x∗ − μ1 − δ0C1zt−1}/σ1) + [1− Φ({x∗ − μ2 − δ0C2zt−1}/σ2)]
,

where x∗ is a threshold parameter and Φ(·) is the N (0, 1) distribution function.2 Notice

that

G(zt−1) =
P(x1t < x∗|zt−1;ϑ1)

P(x1t < x∗|zt−1;ϑ1) + P(x2t > x∗|zt−1;ϑ2)
and

1−G(zt−1) =
P(x2t ≥ x∗|zt−1;ϑ1)

P(x1t < x∗|zt−1;ϑ1) + P(x2t ≥ x∗|zt−1;ϑ2)
,

where ϑi = (μi, α
(i)
1 , . . . , α

(i)
p , σ2i )

0 is the vector of parameters associated with regime i.

Hence, (1) can be rewritten as

xt =
P(x1t < x∗|zt−1;ϑ1)x1t + P(x2t ≥ x∗|zt−1;ϑ2)x2t
P(x1t < x∗|zt−1;ϑ1) + P(x2t ≥ x∗|zt−1;ϑ2)

.

2Although (conditional) Gaussianity is assumed here and elsewhere in the paper, the Gaussian distrib-

ution function could in principle be replaced with another continuous distribution function.
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Since the values of the mixing function depend on the probability that the contem-

poraneous value of x1t (x2t) is smaller (greater) than the threshold level x∗, the model

is called a contemporaneous threshold model. As with conventional STAR models, a C-

STAR model may be thought of as a regime-switching model that allows for two regimes

associated with the two latent variables x1t and x2t. Alternatively, a C-STAR model may

be thought of as allowing for a continuum of regimes, each of which is associated with a

different value of G(zt−1).

One of the main purposes of the C-STAR model is to address two somewhat arbitrary

features of conventional STAR models. First, STAR models specify a delay such that the

mixing function for period t consists of a function of xt−j for some j ≥ 1. Second, STAR

models specify which of and in what way the model parameters enter the mixing function.

C-STAR models address these twin issues in an intuitive way: they use a forecasting func-

tion such that the mixing function depends on the ex ante regime-dependent probabilities

that xt will exceed the threshold value(s). Furthermore, the mixing function makes use of

all of the model parameters in a coherent way.

3 Multivariate Contemporaneous Threshold Autoregressive

Models

In this section we introduce a multivariate generalization of the C-STAR model. We begin

by defining the model and then proceed to investigate some of its properties.

3.1 Definition

The C-MSTAR model proposed in this paper may be viewed as a type of multivariate

STAR model. An n-variate (conditionally heteroskedastic) STAR process {yt} with m

regimes may be defined as

yt =
mX
i=1

Gi(zt−1)yit, t = 1, 2, . . . , (3)
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where Gi(·) (i = 1, . . . ,m) are mixing functions with range [0, 1], zt−1 is a vector of

exogenous and/or pre-determined variables, and

yit = μi +

pX
j=1

A
(i)
j yt−j +Σ

1/2
i ut, i = 1, . . . ,m. (4)

In (4), {ut} is a sequence of i.i.d. n-dimensional random vectors such that ut is independent

of the past {yt−1,yt−2, . . .} with E(ut) = 0 and E(utu0t) = In (In being the n-dimensional

identity matrix), p is a positive integer, μi (i = 1, . . . ,m) are n-dimensional vectors of

intercepts, A(i)j (i = 1, . . . ,m; j = 1, . . . , p) are n × n coefficient matrices, and Σ1/2i

(i = 1, . . . ,m) are symmetric, positive definite n× n matrices.

For simplicity and clarity of exposition, we shall focus hereafter on the bivariate first-

order C-MSTAR model, i.e., the case when n = 2, m = 4, and p = 1. To define this

model, let

yt = (xt, wt)
0, yit = (xit, wit)

0 (i = 1, . . . , 4),

y∗1 = (x
∗, w∗)0, y∗2 = (x

∗,−w∗)0, y∗3 = (−x∗, w∗)0, y∗4 = (−x∗,−w∗)0,

where x∗ and w∗ are threshold parameters, and xit and wit (i = 1, . . . , 4) are latent regime-

specific random variables. Then, {yt} is said to follow a Gaussian first-order C-MSTAR

model if it satisfies (3)—(4) with ut ∼ N (0, I2), zt−1 = yt−1, and

Gi(zt−1) = (1/κt)Φ2(Σ
−1/2
i {y∗i − μi −A

(i)
1 yt−1}), i = 1, . . . , 4,

where Φ2(·) is the N (0, I2) distribution function and

κt =
4X

i=1

Φ2(Σ
−1/2
i {y∗i − μi −A

(i)
1 yt−1}).

It can be readily seen that

G1(zt−1) = (1/κt)P(x1t < x∗, w1t < w∗|yt−1;θ1),

G2(zt−1) = (1/κt)P(x2t < x∗, w2t ≥ w∗|yt−1;θ2),

G3(zt−1) = (1/κt)P(x3t ≥ x∗, w3t < w∗|yt−1;θ3),

G4(zt−1) = (1/κt)P(x4t ≥ x∗, w4t ≥ w∗|yt−1;θ4),

where θi = (μ0i, vec(A
(i)
1 )

0, vec(Σi)
0)0 is the parameter vector associated with regime i. The

mixing functions Gi(·) reflect the weighted probabilities that the regime-specific latent

variables xit and wit are above or below the respective thresholds x∗ and w∗.
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3.2 Probabilistic Properties

In this subsection we examine some probabilistic properties of the C-MSTAR model. In

particular, we give conditions under which the C-MSTAR model is stable in the sense

of having a Markovian representation which is geometrically ergodic.3 For simplicity and

clarity of exposition, we focus once again on the Gaussian, bivariate, first-order C-MSTAR

model.

The stability concept employed here is that of Q-geometric ergodicity introduced

by Liebscher (2005). To recall the definition of this concept, suppose that {ξt}t≥0 is

a Markov chain on a general state space S with k-step transition probability kernel

P (k)(·, ·) and an invariant distribution Π(·), so that P (k)(x, B) = P(ξk ∈ B|ξ0 = x)

and Π(B) =
R
S P

(1)(x, B)Π(dx) for any Borel set B in S and x ∈ S. Then {ξt} is said

to be Q-geometrically ergodic if there exists a non-negative function Q(·) on S satisfyingR
S Q(x)Π(dx) <∞ and positive constants a, b and λ < 1 such that, for all x ∈ S,°°°P (k)(x, ·)−Π(·)°°°

τ
≤ {a+ bQ(x)}λk, k = 1, 2, . . . ,

where k·kτ denotes the total variation norm.4

Geometric ergodicity entails that the total variation distance between the probability

measures P (k)(x, ·) and Π(·) converges geometrically fast to zero (as k goes to infinity) for

all x ∈ S. It is well known that, if the initial value ξ0 of the Markov chain has distribution

Π(·), then geometric ergodicity implies strict stationarity of {ξt}. Furthermore, provided

that the initial distribution of {ξt} is such that Q(ξ0) is integrable with respect to Π(·),

Q-geometric ergodicity implies that the Markov chain is Harris ergodic (i.e., aperiodic,

irreducible and positive Harris recurrent) as well as absolutely regular (or β-mixing) with

a geometrically decaying mixing rate [see Liebscher (2005, Proposition 4)]. Such ergodicity

and mixing properties are of much importance for the purposes of statistical inference since

they validate the use of well-known asymptotic results [cf. Pötscher and Prucha (1997)].

To give a sufficient condition for Q-geometric ergodicity of a C-MSTAR process, the

concept of the joint spectral radius of a set of matrices is needed. Suppose that C is a
3For a comprehensive account of the stability and convergence theory of Markov chains the reader is

referred to Meyn and Tweedie (1993).
4Note that P (k)(x, ·)−Π(·)

τ
= 2 supB P (k)(x, B)−Π(B) .
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bounded set of real square matrices and let Ch be the set of all products of length h (h ≥ 1)

of the elements of C. Then the joint spectral radius of C is defined as

ρ(C) = lim sup
h→∞

Ã
sup
C∈Ch

kCk
!1/h

, (5)

where k·k is an arbitrary matrix norm. We note that the value of ρ(C) is independent of

the choice of matrix norm and that, if the set C trivially consists of a single matrix, then

ρ(C) coincides with the usual spectral radius (i.e., the largest modulus of the eigenvalues

of the matrix).5

It is easy to see that the first-order C-MSTAR model

yt =
4X

i=1

Gi(yt−1)(μi +A
(i)
1 yt−1) +

Ã
4X

i=1

Gi(yt−1)Σ
1/2
i

!
ut, t = 1, 2, . . . , (6)

is a special case of the general nonlinear model considered in Liebscher (2005). Thus, by

invoking Theorem 2 of that paper, we have the following result. Here, k·k denotes the

Euclidean vector norm or the corresponding induced matrix norm (i.e., kxk = (x0x)1/2

and kCk = maxkxk=1 kCxk, for any n-dimensional vector x and n× n matrix C).

Proposition 1 Suppose that, for every compact subset B of R2, there exist positive con-

stants b1 and b2 such that
°°Σ(x)−1°° ≤ b1 and |det{Σ(x)}| ≤ b2 for all x ∈ B, where

Σ(x) =
P4

i=1Gi(x)Σ
1/2
i . If, in addition, the set A = {A(1)1 ,A

(2)
1 ,A

(3)
1 ,A

(4)
1 } is such that

ρ(A) < 1, then the C-MSTAR process {yt} satisfying (6) is a Q-geometrically ergodic

Markov chain with Q(x) = kxk.

It follows from our earlier discussion that ρ(A) < 1 guarantees the existence of a

unique invariant distribution for {yt} with respect to which E(kytk) <∞; furthermore, if

{yt} is initialized from this invariant distribution, then it is strictly stationary as well as

absolutely regular at a geometric rate.

It is worth pointing out that Liebscher’s (2005) approach, which we have followed

here, is quite general and delivers conditions for geometric ergodicity of (conditionally

heteroskedastic) nonlinear autoregressive processes which can sometimes be weaker than

5By the generalized spectral radius theorem, the matrix norm in the definition of ρ(C) in (5) may be

replaced by the spectral radius as long as C is a finite or bounded set.
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alternative sufficient conditions [cf. Liebscher (2005, p. 682)]. A practical difficulty, how-

ever, is that exact or approximate computation of the joint spectral radius of a set of

matrices is not an easy task, not even in the simplest non-trivial case of a two-element

set [see, e.g., Tsitsiklis and Blondel (1997)].6 One possibility is to use the algorithm pre-

sented in Gripenberg (1996) to obtain an arbitrarily small interval within which the joint

spectral radius of A lies. Alternative approximation methods are discussed in Blondel and

Nesterov (2005) and Blondel et al. (2005), inter alia.

3.3 Distributional Properties

Some further properties of the C-MSTARmodel are illustrated by using the data-generating

processes (DGPs) given in Table 1. These DGPs have been chosen to highlight some rel-

evant features of the model with respect to: (i) the response of the mixing function to

changes in the parameters of the model; and (ii) the empirical distribution of C-MSTAR

data. The errors ut are orthogonal under DGP-1, while DGP-2 and DGP-3 allow for posi-

tive and negative contemporaneous correlation, respectively. We note that theQ-geometric

ergodicity condition of Proposition 1 is satisfied for these DGPs – an application of the

algorithm in Gripenberg (1996) yields 0.9366025 < ρ(A) < 0.9366125.7

Figure 1 shows the conditional density functions of the latent regime-specific ran-

dom vectors yit (i = 1, . . . , 4) for DGP-1, given that yt−1 = (0.4, 0.6)0, along with the

threshold y∗1 = (0.4, 0.6)0 and the values of the mixing functions Gi(yt−1). Each plot

shows the relevant area of the density (suitably rotated) for which each regime is de-

fined. The regime-specific conditional means are E(y1t|yt−1) = (0.35, 0.57)0, E(y2t|yt−1) =

(0.29, 0.6)0, E(y3t|yt−1) = (0.59, 0.39)0, and E(y4t|yt−1) = (0.43, 0.66)0. It can be seen that

the values of the mixing weights Gi(yt−1) depend on the values of the regime-specific con-

ditional means relative to the threshold. More specifically, the larger the area of the condi-

tional distribution which lies above the threshold is, the larger Gi(yt−1) is. In our example,

we have G1(yt−1) = 0.09, G2(yt−1) = 0.48, G3(yt−1) = 0.09, and G4(yt−1) = 0.34.

Conditioning on yt−1 = (−1.5,−2)0 results in the density functions shown in Fig-
6 It should also be remembered that the condition that each of the matrices in A has a subunit spectral

radius is necessary but not sufficient for ρ(A) < 1.
7The algorithm is implemented using Gustaf Gripenberg’s MATLAB code (which is available at

http://math.tkk.fi/~ggripenb/ggsoftwa.htm).
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ure 2. The regime-specific conditional means are now E(y1t|yt−1) = (−1.44,−1.97)0,

E(y2t|yt−1) = (−1.26,−1.97)0, E(y3t|yt−1) = (−1.37,−1.35)0, and E(y4t|yt−1) = (−1.31,−1.59)0.

The mixing functions take the values G1(yt−1) = 0.88, G2(yt−1) = 0.1, G3(yt−1) = 0.02,

and G4(yt−1) = 0. It is not surprising that the regime associated with G1(·) is now the

most prominent regime since the distance E(y1t|yt−1) from each of the thresholds is about

one standard deviation.

Figures 3—6 illustrate the effect that contemporaneous correlation has on the mixing

functions for the two different conditioning values that were considered before. No-

tice that, when we condition on yt−1 = (0.4, 0.6)0, the values of the mixing functions

change substantially as a result of the change in the shape of the conditional distributions.

When there is positive correlation G1(yt−1) = 0, G2(yt−1) = 0.52, G3(yt−1) = 0.11,

and G4(yt−1) = 0.36, while G1(yt−1) = 0, G2(yt−1) = 0.54, G3(yt−1) = 0.07, and

G4(yt−1) = 0.38 when there is negative contemporaneous correlation. Interestingly, the

change in the sign of the correlation coefficient results in marginal changes in the values

of the mixing functions; it is the location of the conditional means relative to the thresh-

olds and the dispersion of the conditional densities that are of primary importance as far

as the mixing weights are concerned. Similar results are obtained when we condition on

yt−1 = (−1.5,−2)0.

3.4 Estimation

As in the univariate case, the parameters of an C-MSTAR model can be estimated by the

method of maximum likelihood (ML). For a bivariate first-order model characterized by

the parameter vector θ = (θ01,θ
0
2,θ

0
3,θ

0
4,y

∗0
1 )
0, it is not difficult to see that the contribution

of the t-th observation to the conditional likelihood is

4X
i=1

Gi(yt−1) det(Σ
−1/2
i )φ2(Σ

−1/2
i {yt − μi −A

(i)
1 yt−1}),

where φ2(·) is the N (0, I2) density function. The conditional likelihood function is con-

tinuous with respect to the thresholds x∗ and w∗, so these parameters can be estimated

jointly with all the other parameters of the model. If the C-MSTAR model satisfies the

stability condition discussed earlier, so that the data may be assumed to come from a

strictly stationary and absolutely regular Markov chain, then it is reasonable to use stan-
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dard asymptotic procedures to carry out likelihood-based inference on θ.

4 Application: Stock Prices and Interest Rates

As an illustration, we analyze the low-frequency relationship between stock prices and

interest rates. The interactions between asset prices and monetary policy is a topic which

has attracted considerable interest in the literature [see, e.g., Bernake and Gertler (1999,

2001) and Cecchetti et al. (2000)]. Using a C-MSTAR model, we examine the possibly

different effects that monetary policy may have on stock prices in different states of the

economy. An interest rate shock, for example, may have very different effects on stock

markets depending on whether the price-earnings ratio is (perceived to be) high or low.

Our approach explicitly allows for four different regimes, which are associated with: (i) low

price-earning ratio, low interest rates; (ii) low price-earning ratio, high interest rates;

(iii) high price-earning ratio, low interest rates; and (iv) high price-earning ratio, high

interest rates.

More formally, let St and Rt denote the ratio of stock prices to earnings per share and

the nominal interest rate, respectively. Further, let st = St − μs and rt = Rt − μr denote

the deviation of the two variables from their respective means. Our analysis is based on

the C-MSTAR model

yt =
4X

i=1

Gi(yt−1)yit, (7)

where yt = (st, rt)0 and yit = (sit, rit)0 are latent regime-specific random vectors satisfying

yit = μi +A
(i)
1 yt−1 +Σ

1/2
i ut, i = 1, . . . , 4. (8)

In (7)—(8),

G1(yt−1) = (1/κt)P(s1t < s∗, r1t < r∗|yt−1;θ1),

G2(yt−1) = (1/κt)P(s2t < s∗, r2t ≥ r∗|yt−1;θ2), (9)

G3(yt−1) = (1/κt)P(s3t ≥ s∗, r3t < r∗|yt−1;θ3),

G4(yt−1) = (1/κt)P(s4t ≥ s∗, r4t ≥ r∗|yt−1;θ4),

κt = P(s1t < s∗, r1t < r∗|yt−1;θ1) + P(s2t < s∗, r2t ≥ r∗|yt−1;θ2)

+P(s3t ≥ s∗, r3t < r∗|yt−1;θ3) + P(s4t ≥ s∗, r4t ≥ r∗|yt−1;θ4), (10)
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{ut} ∼ i.i.d. N (0, I2), (11)

and θi = (μ0i, vec(A
(i)
1 )

0, vec(Σi)
0)0.

We use Shiller’s (1989) data set of annual observations on the Standard and Poor’s 500

composite stock price index to earnings per share (St) and the three-month Treasury Bill

rate (Rt), extended to cover the period from 1900 to 2000. It is clear from Figure 7 that,

for long periods of time, both series take values well above their sample means (which arebμs = 13.731 and bμr = 4.809). It is also clear that the series tend to remain above or below
the respective sample mean for relatively long periods. It is reasonable to expect that the

economy behaved differently in the 1970’s and 1980’s, when interest rates were relatively

high and the price-earnings ratio was relatively low, and in periods such as the 1930’s and

late 1990’s, when the price-earnings ratio was relatively high.

Since we use annual data, we expect that stock price and interest rate dynamics are

adequately captured by the first-order model in (7)—(11). ML estimates of the parameters

of this model and their asymptotic standard errors (computed from the inverse of the

empirical Hessian) are reported in Table 2.8 The standardized residuals of the model

appear to exhibit no signs of serial correlation on the basis of conventional Ljung—Box

portmanteau tests.

The estimated threshold parameters reported in the last row of Table 2 are bs∗ = 2.0369
and br∗ = −0.0236. Adding to these values the corresponding sample means bμs and bμr, we
see that the estimated thresholds for the price-earnings ratio and interest rates are 15.7680

and 4.7855, respectively.

The bottom four panels of Figure 7 plots the estimated mixing functions, for each

point in sample, which specify the weight of regime 1 (associated with G1(·)), regime 2

(associated with G2(·)), regime 3 (associated with G3(·)), and regime 4 (associated with

G4(·)). In Table 4 we date the regimes, attributing a regime to a given time period

when the estimated probabilities exceed 0.5 for at least two consecutive observations. It

is seen that the most prominent regime is the one characterized by a low price-earnings

ratio and low interest rates (regime 1). This regime lasts from mid 1930’s to the end of

the 1950’s. Much of the 1970’s and 1980’s appear to be associated with a regime with

8The ML estimates are obtained by a quasi-Newton optimization algorithm that utilizes the Broyden—

Fletcher—Goldfarb—Shano Hessian updating method.
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low price-earnings ratio and high interest rates (regime 2), a regime which also seems

to characterize a few years in the beginning of the 1920’s. The regime associated with

high price-earnings ratio and low interest rates (regime 3) never lasts more than six years

and is prevalent in only a few years during the 1930’s, 1960’s and 1990’s. Finally, the

regime associated with low price-earnings ratio and high interest rates (regime 4) seems

to dominate for only a short period of time towards the end of the 1960’s, the beginning

of the 1970’s and the early 1990’s.

Regarding the stability properties of the empirical model, we note that the ML es-

timates reported in Table 2 do not satisfy the condition of Proposition 1; in particular,

we have 1.3456313 < ρ( bA) < 1.3765024, where bA = {bA(1)1 , bA(2)1 , bA(3)1 , bA(4)1 }. It should be
remembered, however, that a subunit joint spectral radius is not necessary for Q-geometric

ergodicity.

As an alternative way of assessing the stability of the empirical model, we consider the

properties of the noiseless part, or skeleton, of the model [cf. Chan and Tong (1985)]. For

the C-MSTAR model in (7)—(11), the skeleton is defined as

yt = F (yt−1,θ),

where

F (yt−1,θ) =
4X

i=1

Gi(yt−1)(μi +A
(i)
1 yt−1).

A fixed point of the skeleton is any two-dimensional vector ye satisfying the equation

F (ye,θ) = ye, (12)

and ye is said to be an equilibrium point of the model. Since the model is nonlinear, there

may, of course, exist one, several or no equilibrium points satisfying (12). An examination

of the local stability of each of the equilibrium points may be carried out by considering

the following first-order Taylor expansion around the fixed point:

yt − ye = F (yt−1,λ)− F (ye,θ)

≈
Ã
∂F (yt−1,θ)

∂yt−1

¯̄̄̄
yt−1=ye

!0
(yt−1 − ye). (13)

If the matrix of partial derivatives in (13) has a subunit spectral radius, then the equilib-

rium is locally stable and yt is a contraction in the neighborhood of ye. It can be readily
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verified that

∂F (yt−1,θ)

∂yt−1
=

4X
i=1

½
∂Gi(yt−1)

∂yt−1
(μi +A

(i)
1 yt−1)

0 +Gi(yt−1)(A
(i)
1 )

0
¾

(14)

and

∂Gi(yt−1)

∂yt−1
=
1

κ2t

(
−κt(Σ−1/2i A

(i)
1 )

0∇Φ2(vi)− Φ2(vi)
4X

i=1

(Σ
−1/2
i A

(i)
1 )

0∇Φ2(vi)
)
, (15)

where vi = Σ
−1/2
i (y∗i − μi −A

(i)
1 yt−1) and ∇Φ2(vi) is the gradient of Φ2(·) at vi.

Using numerical simulation and a grid of starting values, it is found that the skeleton

of the empirical model in Table 2 has a unique fixed point ye = (1.57, 0.05)0. To assess

the stability of the model, we compute the eigenvalues of the matrix of partial derivatives

in (13) using the expansion in (14)—(15); these eigenvalues are 0.98 and 0.92, suggesting

that the model is locally stable. Furthermore, plots of the skeleton shown in Figure 7

(top panel) reveal that, for both the price-earning ratio and the interest rate, the skeleton

converges very quickly to the respective long-run value, thus providing further evidence of

stability.

Next, we use the proposed C-MSTAR model to assess the regime-specific Granger

causality patterns present in the data. It is important to notice that, using a linear first-

order VAR model, the estimated parameters of which are reported in Table 3, none of the

two variables appears to be Granger causal for the other. This result is very surprising

since, not only do the two variables reflect alternative investing opportunities, but the

interest rate is usually thought of as a policy variable that might be used to correct

misalignments in stock prices.

Using the C-MSTAR model in Table 2, it can be seen that the elements off the main

diagonal of A(i)1 vary significantly across regimes. Specifically, the interest rate Granger

causes the price-earning ratio in regimes 1 and 3 (when the probability of the latent variable

rit being below the relevant threshold is high). One may speculate that in regime 3 the

stock price boom of the 1960’s is associated with a long period of relatively low interest

rates; the causality in regime 1 reflects the fact that stocks and bonds are substitute

assets. The price-earnings ratio Granger causes the interest rates only in regime 4 (when

the probability of r4t and s4t being above their respective thresholds is high). This result

may reflect the fact that the central bank reacts to the price-earning ratio by changing the
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interest rate when it is thought that a misalignment correction is needed. This seems to

be captured by our model since regime 4 is usually followed by regime 2. For example, the

period of high price-earning ratio and interest rates of the 1920’s is followed by a crash in

the stock markets.9

5 Summary

In this paper we have introduced a new class of contemporaneous threshold multivariate

STAR models in which the mixing weights are determined by the probability that contem-

poraneous latent variables exceed certain threshold values. For a model with first-order

dynamics, we have given conditions which ensure that the model is stable in the sense of

having a Q-geometrically ergodic Markovian representation. Using numerical examples,

we have examined some of the characteristics of the model in terms of the conditional dis-

tribution of the data and the properties of the mixing functions. We have also illustrated

the practical use of the proposed model by analyzing the bivariate relationship between

US stock prices and interest rates.
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Table 1. Data-Generating Processes

DGP-1

μ1 =

⎡⎣ −0.05
−0.05

⎤⎦ , A
(1)
1 =

⎡⎣ 0.80 0.05

0.10 0.90

⎤⎦ , Σ1 = I2

μ2 =

⎡⎣ −0.05
0.05

⎤⎦ , A
(2)
1 =

⎡⎣ 0.75 −0.05
0.05 0.85

⎤⎦ , Σ(2) = I2

μ3 =

⎡⎣ 0.15

−0.05

⎤⎦ , A
(3)
1 =

⎡⎣ 0.75 −0.30
0.20 0.85

⎤⎦ , Σ(3) = I2

μ4 =

⎡⎣ 0.05
0.10

⎤⎦ , A
(4)
1 =

⎡⎣ 0.90 −0.10
0.01 0.90

⎤⎦ , Σ(4) = I2

(x∗, w∗) = (0.6,−0.4)

DGP-2

Intercepts, autoregressive coefficients and threshold parameters are

the same as for DGP-1.

Σ1 =

⎡⎣ 1 0.9

0.9 1

⎤⎦ , Σ2 =
⎡⎣ 1 0.8

0.8 1

⎤⎦ , Σ3 =
⎡⎣ 1 0.3

0.3 1

⎤⎦
Σ4 =

⎡⎣ 1 0.8

0.8 1

⎤⎦
DGP-3

Intercepts, autoregressive coefficients and threshold parameters are

the same as for DGP-1.

Σ1 =

⎡⎣ 1 −0.9

−0.9 1

⎤⎦ , Σ2 =
⎡⎣ 1 −0.8

−0.8 1

⎤⎦ , Σ3 =
⎡⎣ 1 −0.3

−0.3 1

⎤⎦
Σ4 =

⎡⎣ 1 −0.8

−0.8 1

⎤⎦
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Table 2. ML Estimates for a C-MSTAR Model

Regime 1: Low Price-Earning Ratio, Low Interest Rate

bμ1 =
⎡⎣ −1.0289

(0.7752)

0.4723
(0.0769)

⎤⎦ , bA(1)1 =

⎡⎣ 1.1534
(0.1289)

−0.5527
(0.2525)

0.0198
(0.0125)

1.0912
(0.0241)

⎤⎦ , bΣ1 =
⎡⎣ 2.5784

(0.7658)
−0.0079
(0.0121)

−0.0079
(0.0121)

0.0226
(0.0431)

⎤⎦

Regime 2: Low Price-Earning Ratio, High Interest Rate

bμ2 =
⎡⎣ 1.5035

(0.4020)

0.1419
(0.4496)

⎤⎦ , bA(2)1 =

⎡⎣ 1.0958
(0.1014)

−0.0210
(0.0658)

0.0039
(0.1338)

0.6712
(0.0554)

⎤⎦ , bΣ2 =
⎡⎣ 1.5199

(0.3983)
0.5858
(0.3498)

0.5858
(0.3498)

1.2808
(0.1813)

⎤⎦

Regime 3: High Price-Earning Ratio, Low Interest Rate

bμ3 =
⎡⎣ −1.1839

(1.6322)

−0.6837
(0.5170)

⎤⎦ , bA(3)1 =

⎡⎣ 1.1327
(0.2126)

1.5213
(0.3966)

0.0604
(0.0658)

0.9141
(0.1243)

⎤⎦ , bΣ3 =
⎡⎣ 8.6217

(3.0768)
0.1760
(0.3365)

0.1760
(0.3365)

0.7830
(0.5218)

⎤⎦

Regime 4: High Price-Earning Ratio, High Interest Rate

bμ4 =
⎡⎣ 1.0271

(1.2241)

1.1669
(0.5970)

⎤⎦ , bA(4)1 =

⎡⎣ 0.4349
(0.2287)

−0.0996
(0.3719)

−0.3988
(0.1034)

0.8856
(0.1841)

⎤⎦ , bΣ4 =
⎡⎣ 22.3045

(7.0952)
−3.4039
(1.4534)

−3.4039
(1.4534)

3.2939
(1.2573)

⎤⎦

bs∗ = 2.0369
(0.5487) , br∗ = −0.0236

(0.2027) , maxL = −362.941

Figures in parentheses are asymptotic standard errors and maxL is the maximized log-likelihood.

Table 3. ML Estimates for a VAR Model

yt = μ+Ayt−1 +Σ
1/2ut

bμ =
⎡⎣ 0.1301

(0.3200)

0.0111
(0.1503)

⎤⎦ , bA =

⎡⎣ 0.7938
(0.0706)

−0.0590
(0.0332)

0.0988
(0.1047)

0.8661
(0.0492)

⎤⎦ , bΣ =
⎡⎣ 10.2291 0.0577

0.0577 2.2561

⎤⎦

maxL = −437.679

Figures in parentheses are asymptotic standard errors and maxL is the maximized

Gaussian log-likelihood.
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Table 4. Dating of Regimes

Regime 1 Regime 2 Regime 3 Regime 4

1934—1959 1919—1924 1931—1935 1969—1972

1975—1990 1961—1967 1991—1992

1993—1994

1999—2000

Regime 1: Low price-earning ratio, low interest rate.

Regime 2: Low price-earning ratio, high interest rate.

Regime 3: High price-earning ratio, low interest rate.

Regime 4: High price-earning ratio, high interest rate.
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