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Abstract

Portfolio choice by full-scale optimization applies the empirical re-
turn distribution to a parameterized utility function, and the maximum
is found through numerical optimization.

Using a portfolio choice setting of three UK equity indices we identify
several utility functions featuring loss aversion and prospect theory, under
which full-scale optimization is a substantially better approach than the
mean-variance approach. As the equity indices have return distributions
with small deviations from normality, the findings indicate much broader
usefulness of full-scale optimization than has earlier been shown.

The results hold in and out of sample, and the performance improve-
ments are given in terms of utility as well as certainty equivalents.
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or Richard G. Anderson: Richard.G.Anderson@stls.frb.org. We are grateful for comments
and suggestions by Björn Hansson, Mark Kritzman, Paolo Porchia, Indranarain Ramlall, Jim
Steeley, Szymon Wlazlowski, and one anonymous referee, as well as conference presentation
attendants at FMA European Meeting 2007 (IESE Barcelona), EFMA Annual Meeting 2007
(WU Wien), and MMF 2007 (Birmingham University), and seminar attendants at Lund Uni-
versity Economics Department. The usual disclaimer applies.

1



1 Introduction

It is well known that asset returns probability distributions in general feature

both skewness and excess kurtosis. Investor preferences of these higher mo-

ments are attracting increasing attention by portfolio choice researchers and

the financial industry, often arriving at more complex utility functions than

traditionally assumed. In full-scale optimization (FSO), originally suggested by

Paul A. Samuelson1, empirical return distributions are used in their entirety,

and the choice of utility function is completely flexible. In this paper we assess

the performance of FSO using a wide range of utility function specifications ap-

plied to equity indices. We show that when utility functions include loss aversion

or prospect theory, even assets with only small deviations from normality are

better selected in an FSO framework than with the traditional mean-variance

approach.

The strength of FSO is that no analytical solution to the portfolio choice

problem is pursued. This allows the distributional properties of returns to be

left non-parameterized and the utility function to be specified to reflect investor

preferences uncompromized by mathematical convenience. The absence of sim-

plifying assumptions, yielding theoretical appeal, comes however at the cost

of computational burden. As the optimization problem is not convex, a grid

search or a global search algorithm has to be used to find the utility maximizing

portfolio.

Cremers et al. (2005) show in a hedge fund selection problem that the per-

formance of FSO (in terms of utility) is substantially better than Markowitz’s

(1952, 1959) mean-variance (MV) approach when investor preferences are mod-

eled to include loss aversion or prospect theory (based on Kahnemann and

Tversky 1979). The results are confirmed in an out-of-sample application by

Adler and Kritzman (2007). Several other portfolio choice papers resembling

FSO but not using the term have appeared lately. Statistical properties of the es-

timator have been explored by Gourieroux and Monfort (2005). Scenario-based
1Samuelson’s article When and Why Mean-Variance Analysis Generically Fails was never

published, but the term FSO was picked up by Cremers, Kritzman and Page (2005).
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approaches (using hypothesized outcomes with probabilities attached instead

of empirical return distributions) have been dealt with by Grinold (1999) and

Sharpe (2007). Higher moments properties of utility maximized portfolios have

been investigated by Maringer (2008), who also proposes heuristic optimization

methods to deal with the computational burden of the optimization problem.

The idea of utility maximization as a methodology for portfolio optimization

problems, based on the utility theory founded by Von Neumann and Morgen-

stern (1947), can be traced back at least to Tobin (1958), and also appears

in several assessments of the MV approach (e.g. Levy and Markowitz 1979,

Markowitz 1987). As the latter studies showed that the performance difference

between MV portfolios and utility maximized portfolios (using power utility)

was negligible, the less burdensome MV approach became the model of choice

in the financial industry, and the benchmark in academia.2

The relevance of higher moments for investment decisions was pointed out

by Levy (1969) and Samuelson (1970), and in realistic portfolio management

situations, investors often express preferences that imply more complex utility

functions than power or quadratic utility (Litterman 2003, Meucci 2005, Ch.2

and Ch.5 respectively). It is when implementing such preferences (loss aver-

sion and prospect theory) the FSO has been proven superior to MV (Cremers

et al. 2005, Adler and Kritzman 2007). In these assessments however, assets with

extremely non-normal returns (hedge funds) have been used, and the results

have only been shown to hold for a few examples of utility function specifica-

tions. Our assessment of FSO features a selection of equity indices with returns

much closer to a normal distribution (in general still non-normal though) and

a much broader spectrum of utility function specification. Finding that FSO

performance is substantially better than MV when complex investor preferences
2In the MV model, risk is defined in terms of the second moment (variances and covariances)

only. This makes the model simple to apply, but it is based on assumptions that are clearly
unrealistic. For the MV solution to be optimal, either the return distribution must feature
spherical symmetry, or investors must be indifferent to higher moments and equally averse
to downside and upside risk (quadratic utility). Financial returns are rarely spherical (first
pointed out by Mandelbrot 1963), and the quadratic utility is known to be decreasing in
wealth above a certain wealth level.
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(in particular prospect theory) hold, our results indicate that the earlier studies

are robust with respect to utility function specification, as well as to other asset

classes (equity indices).

This paper is organized as follows. Section 2 discusses the portfolio choice

problem and the characteristics of investors’ preferences. Section 3 presents

data, utility functions and methodology used in our assessment of FSO. The

results are presented and analyzed in Section 4, and Section 5 concludes.

2 Portfolio Selection and Investor Preferences

2.1 The Portfolio Selection Problem

Single period portfolio selection models can in general be described as utility

maximization problems such as in Equation 1.

θ∗ = arg maxθ U(θ′R)

θ ∈ Ω
(1)

Here, R is a (n×T ) matrix containing expected returns of n admissible assets in

T different scenarios. θ is a vector of length n containing the portfolio weights

for each asset. Utility is a function U of expected portfolio return, θ′R, which θ

is chosen to maximize, subject to the constraint matrix Ω. Typically, Ω includes

a budget constraint such as θ′ι = 1 (where ι is a vector of ones), but it may also

include other constraints, e.g. a short selling constraint (0 ≤ θi ≤ 1) or a loss

aversion constraint.

The portfolio return θ′R is a vector of length T . Its empirical distribution

will differ depending on the portfolio weights chosen in θ. The functional form of

the utility function should mirror the investor’s preferences to determine which

expected portfolio distribution is preferred.

In the mean-variance approach, the utility function is quadratic, which im-

plies that the mean and variance of the expected returns for each asset in R is

all that determines the utility. In full-scale optimization, R contains historical
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returns of each asset and the utility for each possible θ is evaluated at each point

in time available in the sample. This means that all features of the empirical

return distribution are considered, not only the first two moments.

Setting up the optimization problem in this way typically does not yield

convexity, and analytical solutions cannot always be found. Instead search tech-

niques must be used, such as a grid search or a stochastic search algorithm. The

problem may be thought of as constructing an allocation matrix Θ containing

each possible portfolio weight combination θ. The allocation matrix dimension

is (n×m), where n is the number of assets considered, and m is the number of

possible portfolio allocation combinations, which is a function of n and a pre-

cision parameter p.3 Each column of Θ represents one allocation combination

vector θ (n × 1). To find the optimal θ, the utility for each theta is evalu-

ated for each asset returns vector Rt, which contains returns on each asset i

(i = 1, 2, ..., n) at time t (t = 1, 2, ..., T ). Each of the T Rt vectors will have the

dimension (n × 1) and elements Ri,t = Pi,t

Pi,t−1
, where Pi,t is the price of asset

i at time t. The θ with highest average utility over time will be the optimal

allocation combination, θFSO. This is shown formally in Equation 2.

θFSO = arg maxθ

(
T−1

∑T
t=1 U(θ′aRt)

)

θ ∈ Θ
(2)

A key feature of FSO is that any utility function can be chosen, as the

optimization is carried out numerically. This allows the optimization to consider

more complex investor preferences than traditionally assumed.

2.2 Investor Preferences

Investor preferences implied by utility functions can be investigated by expand-

ing the utility function in a Taylor series around the mean (µ1) and taking

3When using a grid search, p is chosen at a level suitable to the problem nature, yielding
a finite dimension m of the allocation matrix. Search algorithms do not always specify p,
making m infinitely large. Then a halting criterion is used to stop the search at suitable
precision.
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expectations on both sides, as shown in Equation 3. This yields measures of the

investors’ preferences in terms of the distribution’s moments. Let Uk denote

the kth derivative of the utility function and µj the jth moment of the portfolio

return, then (set up in the same fashion as in Scott and Horvath 1980) the

expected utility takes the following form:4

E(U) = U(µ1) +
U2(µ1)

2
µ2 + Σ∞i=3

U i(µ1)
i!

µi. (3)

The expression shows that the expected utility equals the utility of the expected

returns, plus the impact on utility of deviations from the expected return. The

influence of each moment on expected utility is weighted by the correspond-

ing order derivative of the utility function. Typically, U2(µ1), for variance is

negative; U3(µ1) for skewness is positive; and U4(µ1) for kurtosis is negative.5

In the MV model the covariances of the assets play an important role. Im-

plicitly, utility functions with higher moment preferences different from zero also

take co-moments, such as co-skewness and co-kurtosis, into account.6

In principle there is no limit on the number of moments to consider, but

higher moments than kurtosis (k > 4) have not been considered in the finance

literature, and will not be discussed here. However, according to Scott and

Horvath (1980), most investors have utility functions where moments of odd

order (i.e. k = 1, 3, 5...) have positive signs on its respective derivative, and

moments of even order have negative derivatives.

In this paper we consider four families of utility functions. Their general

mathematical forms are presented in Table 1. Here, we define utility in terms

of the portfolio return 1 + rp = θ′R, rather than over wealth. This approach

may be interpreted as a normalization of initial wealth to one, i.e. W0 = 1.
4The term (θ′R− µ1)U ′(µ1) disappears when taking expectations, as E(θ′R− µ1) = 0
5As referred above, the MV approach is based on either assuming quadratic utility or a

normal return distribution. The quadratic utility function is expressed E(U) = µ1 − λµ2.
This implies U1(µ1) = 1, U2(µ1) < 0 (usually referred to as the risk aversion parameter, −λ),
and Uk(µ1) = 0 for all k > 2. If normally distributed returns are assumed, all odd moments
(k = 3, 5...) will be zero, and all even moments will be functions of the variance (see Appendix
to Chapter 1 in Cuthbertson and Nitzsche, 2004).

6Co-skewness is a phenomenon extensively discussed by Harvey, Liechty, Liechty and Muller
(2003).
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Utility function Utility

Exponential: −exp(−A(1 + rp))

Power: (1+rp)1−γ−1
1−γ for γ > 0

ln(1 + rp) for γ = 1

Bilinear: ln(1 + rp) for rp ≥ x
P (rp − x) + ln(1 + x) for rp < x,P > 0

S-shaped: −A(z − rp)γ1 for rp ≤ z
+B(rp − z)γ2 for rp > z

In all the utility functions, rp represents portfolio return. A represents the degree of (absolute)
risk aversion in the exponential utility functions. In power utility functions, γ is the degree of
(relative) risk aversion. The special case when γ = 1 is also called logarithmic utility. In the
bilinear utility specification, x is the critical return level called the kink. P is the penalty level
for returns lower than the kink. In the S-shaped utility functions, the critical return level (the
inflection point) is indicated by z. A, B, γ1 and γ2 are parameters determining the curvature
of the S-shaped utility.

Table 1: Utility function equations

A motivation for defining utility directly in terms of returns can be found in

Kahnemann and Tversky (1979). They argue that people focus more on the

return on an investment than on the level of wealth. Figure 1 displays how the

utility varies with returns for certain specifications of the four utility function

families.

The parametric, closed form utility functions that are most common in the

finance literature are the families of exponential and power utility functions.

The former is characterized by constant absolute risk aversion (CARA), and the

latter by constant relative risk aversion (CRRA), meaning that risk aversion

varies with wealth level. In Figure 1 examples of exponential and power utility

function graphs are given in panel a) and b) respectively.

To consider the investor preferences of skewness and kurtosis in particular,

two types of utility functions that have been suggested are the bilinear and the

S-shaped utility function families. Both of these are characterized by a critical

point of investment return, under which returns are given disproportionally bad
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Panel a) shows how exponential utility varies over returns when the risk aversion parameter is
set to A = 6. In panel b) the same relationship for power utility is shown, with risk aversion
set to γ = 2. The bilinear utility function is shown in panel c) and has parameters set to
P = 5 and x = 0% (kink). In panel d) the S-shaped utility function depicted has parameters
A = 1, B = 2, γ1 = 0.3, γ2 = 0.7, and z = 0% (inflection point).

Figure 1: Utility function graphs
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utility. Graphical examples of bilinear and S-shaped utility functions are given

in Figure 1, panels c) and d) respectively.

The bilinear functions capture a phenomenon that is central in investment

management today: loss aversion. The objective of limiting losses is motivated

by monetary as well as legal purposes. The issue is traditionally treated with

Value-at-Risk models, and can also be incorporated in FSO theory through a

constraint on the maximization problem (as shown by Gourieroux and Monfort

2005). The bilinear utility functions have a kink at the critical point and are

formed by straight lines of different slope on each side (i.e. the functions are

linear splines), which obviously yields discontinuity even in the first derivatives.

Consisting of straight lines, the bilinear function does not reflect risk aversion in

the sense that marginal utility is not decreasing in returns (except for the jump

at the kink). This type of functions has previously been applied by Cremers et al.

(2005) and Adler and Kritzman (2007). For an example of how power utility can

be combined with bilinear utility to feature risk aversion, see Maringer (2008).

The S-shaped utility function is motivated by the fact that it has been shown

in behavior studies that an investor prefers a certain gain to an uncertain gain

with higher expected value, but he also prefers an uncertain loss to a certain loss

with higher expected return (see Kahnemann and Tversky 1979). The utility

function features an inflection point where these certainty preferences change.

The utility function implies high absolute values of marginal utility close to

the inflection point, but low (absolute) marginal utility for higher (absolute)

returns. The first derivatives are continuous, but second derivatives are not.

3 Empirical Application

We assess the FSO methodology by comparing its performance to portfolios

produced by using the MV methodology. The portfolios are optimized in a

setting of three equity indices as admissible assets. The utility outcome of

FSO and MV optima are examined in and out of sample. To get an economic

interpretation of utility differences we also calculate certainty equivalents. The

9



exercise is repeated for a wide range of utility function specifications.

3.1 FSO specification

We use a grid search to find the FSO optimum. As the allocation matrix grows

quickly when more assets are added or the allocation precision p is increased, we

use a three asset setting with p = 0.5%, and we do not allow for short-selling.

This yields an allocation matrix of dimension (3×20301), which we evaluate over

96 monthly observations. This rather limited amount of assets and precision is

due to the computational burden of the technique.7 We analyze the full grid of

possible allocations – no search algorithm is applied.8

The choice of grid precision can be made on the basis of the tradeoff be-

tween the marginal utility of increasing p and the additional computational cost

of doing so. Setting the grid precision to 0.1% instead of 0.5% increases the

grid size by a factor of almost 25 (from 20301 to 501501). For most portfolio

choice problems, that increased computational cost can not be motivated by the

increased utility achieved.

An alternative to increasing the precision of the complete grid is to perform a

second grid search around the optimum found in the first search. We performed

a second step grid search using p = 0.1% around the p = 0.5% optima, covering

all possible allocation within the range of θi ± 1%.9 The second grid dimension
7The number of possible solutions (m) is

C(n + 1/p− 1, 1/p) =
(n + (1/p)− 1)!

(1/p)!(n− 1)!
=

((1/p) + 1) ∗ ((1/p) + 2) ∗ ... ∗ ((1/p) + n− 1)

1 ∗ 2 ∗ ... ∗ (n− 1)
,

where n is the number of assets and p the precision of the grid. This is the formula for
combinations of discrete numbers with repetition, derived by Leonhard Euler (1707-1783).
See e.g. Epp (2003).

8In Cremers et al. (2005) and Adler and Kritzman (2007), a search algorithm is applied to
find the FSO optimum. Such algorithms are necessary when using larger number of assets.
Cremers et al. consider 61 assets in their application, and use a precision of 0.1% and do
not allow for short selling. This implies m = 7.23 × 1098, which is the number of vectors to
be evaluated over their 10 annual observations. They do not disclose their search algorithm.
Gourieroux and Monfort (2005), Cremers, Kritzman and Page (2003, 2005) and Adler and
Kritzman (2007) all argue that the computational burden of the FSO technique has become
obsolete with the ample computational power on hand nowadays. There is however, to our
knowledge, no study verifying this.

9This is the range needed to cover all solutions not covered in the previous grid search, as
if two assets change by 0.5% in the same direction, the third has to change by 1%. In general
the range required for the second grid search is p(n − 1), where n is the number of assets in
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Utility function Time 1st step Time 2nd step

Exponential: 1.25 0.00

Power: 1.47 0.01

Bilinear: 35.78 0.13

S-shaped: 44.75 0.14

Time is specified in seconds. Optimization was run over 96 time periods. The platform used
was a Intel Core 2 2.16Ghz processor with 3GB RAM. Software used was R v2.6.1, applying
the function system.time.

Table 2: Computational cost of full-scale optimization

is in our case 67 ≤ m ≤ 331, depending on whether the first stage optimum

contains allocations close to the allowed limits 0 and 1 or not. We found that

both the computational cost and the utility improvement of the second grid

search are minute. None of the utility improvements exceeded 1%, and only

8 out of 132 utility functions had improvements exceeding 0.1%. This utility

improvement is what we sacrifice when choosing p = 0.5% rather than p = 0.1%,

a convenience cost. As a grid search never can yield an exact solution, we also

applied Simulated Annealing on the area around the optimum (for description of

this technique, see e.g. Goffe, Ferrier and Rogers 1994). Again, the convenience

cost was very small. We hence concluded that p = 0.5% was enough for this

application.10 The computational cost of the second step grid search, measured

in computation time, was also small. Time needed for performing FSO on each

utility function type used in this article, for first and second step grid searches

respectively, are given in Table 2.

The study is performed in a one-period setting – no rebalancing of the port-

folio is considered.

the problem and p is the precision of the first grid search.
10In portfolio choice problems with large grids resulting from a larger number of assets, the

two-stage technique presented here may be a viable option to decrease computational cost.
Caution is needed however, as non-convexity may lead to that the optimum identified with
an imprecise grid may not be in the area of the global optimum.
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3.2 Data

For the empirical application we use three indices that are published by the

Financial Times, downloaded from Datastream (2007): FTSE 100, FTSE 250,

and FTSE All-World Emerging Market Index (EMI ).11 The FTSE 100 includes

the 100 largest firms on the London Stock Exchange (LSE) and FTSE 250 in-

clude mid-sized firms, i.e. the 250 firms following the hundred largest. The EMI

reflects the performance of mid- and large-sized stocks in emerging markets12.

All series are denoted in British pounds (£). We calculate return series for

eight years of monthly observations (Jan 1999 - Dec 2006), yielding 96 obser-

vations. As shown in Figure 2, the data features two expansionary periods and

one downward trend.

The data properties are presented in Table 3. All three indices display

positive means over the sample period. The least volatile choice of the three is

the FTSE100, followed by FTSE250 and the FTSE EMI. All of them feature

negative skewness and excess kurtosis is observed for FTSE 100 and FTSE 250.

It is shown with a Jarque-Bera test of normality (Jarque and Bera 1980) that

normality can be rejected for the UK indices, but not for the EMI13.

In order to mitigate the probability of corner solutions, we scale all returns

to conform to implied returns of an equally weighted portfolio14. This does

not change the shape of the probability distribution, and does not affect the

comparison between FSO and MV.
11The Datastream codes for the indices are FT100GR(PI), FT250GR(PI), and AWA-

LEG£(PI).
12For exact definition, see http://www.ftse.com/Indices/FTSE Emerging Markets/Downloads

/FTSE Emerging Market Indices.pdf
13The Jarque-Bera test is appropriate for serially uncorrelated data (such as white-noise

regression residuals) but inadequate for temporally dependent data such as certain financial
returns. We do not pursue this further; the interested reader is referred to Bai and Ng (2005)

14The difference between the average return of all three indices and the return corresponding
to the variance of the equally weighted portfolio is added to each observation. In this case,
the difference added amounts to 0.086%.
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Mean Var. Skew. Kurt. J–B stat. p

FTSE 100 0.0010 0.0015 -0.93 3.91 17.07 0.00

FTSE 250 0.0096 0.0025 -0.83 4.36 18.32 0.00

FTSE EMI 0.0122 0.0043 -0.24 2.91 0.93 0.63

The table shows the first four moments of the monthly data series. Kurt. is the estimator of
Pearson’s kurtosis using the function kurtosis in R (this is not excess kurtosis). J-B stat. is
the Jarque-Bera test statistic, and p is the probability that the series is following a normal
distribution according to this test.

Table 3: Summary statistics

3.3 Utility functions

We apply our portfolio selection problem to exponential, power, bilinear, and S-

shaped utility functions. The same utility function types have been investigated

before, but only a few cases of each type. We perform the exercise under several

different utility function parameter values, chosen with the intention to cover

all reasonable levels.

The bilinear and S-shaped utility functions are our main interest in this

study. Using these, it has been shown in a hedge fund setting that FSO

yields portfolio weights that differ substantially from those of MV optimization

(Cremers et al. 2005, Adler and Kritzman 2007). We seek to test whether this

difference holds in a portfolio selection problem of equity indexes. We also in-

clude the traditional investor preferences of exponential and power utility. Util-

ity maximization using these functions have repeatedly been shown to differ only

marginally to quadratic utility (Levy and Markowitz 1979, Markowitz 1987, Cre-

mers et al. 2005), and we include them for the purpose of illustration. Gourier-

oux and Monfort (2005) apply the FSO model to the exponential and power

utility functions, which allows them to derive the asymptotic properties of the

FSO estimator. They establish in this context that the utility maximizing esti-

mator yields greater robustness than the MV counterpart, as no information in

the return distribution is ignored.
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Figure 2: Development of the three indices over the time period considered

The range of utility parameters tested is given in Table 4. For the exponential

utility function, the only parameter to vary is the level of risk aversion (A),

which we vary between 1 and 10. The γ parameter in the power utility function

determines level of risk aversion and how risk aversion decreases with wealth.

As we let it vary between 1 and 5, we include the special case when the power

utility function is logarithmic, which happens when γ is one. The higher γ and

A are, the higher is the risk aversion. For the bilinear utility function, we vary

the critical point (the kink, x, varied from -4% to +0.5%) under which returns

are given a disproportionate bad utility. We also vary the magnitude, P , of

this disproportion from 1 to 10. In the S-shaped utility function there are five

parameters to vary. We test three levels for the inflection point, z: 0%,−2.5%

and −5%. The parameters γ1 and A respectively determine the shape and

magnitude of the downside of the function, whereas γ2 and B determines the

upside characteristics in the same way. The disproportion between gains and

losses can be determined either by the γ parameters or the A and B parameters,

14



or both. We perform one set of tests where the γ’s vary (γ2 ≥ γ1) and the

magnitude parameters are held constant and equal, and one set of tests where

the gammas are constant and equal, but where A and B varies (A ≥ B).

Utility function Parameter values

Exponential: 0.5 ≤ A ≤ 6

Power: 1 ≤ γ ≤ 5

Bilinear: −4% ≤ x ≤ 0.5% ; 1 ≤ P ≤ 10

S-shaped: −5% ≤ z ≤ 0% ; 0.05 ≤ γ1 ≤ 0.5 ; 0.95 ≤ γ2 ≤ 0.5 ; A = 1.5 ; B = 1.5

−5% ≤ z ≤ 0% ; γ1 = 0.5 ; γ2 = 0.5 ; 1.5 ≤ A ≤ 2.9 1.5 ≤ B ≤ 0.1 ;

Table 4: Utility function parameters

3.4 Model Comparison

The methodology for comparing full-scale optimization to the mean-variance ap-

proach is to a large extent inspired by that applied by Cremers et al. (2005) and

Adler and Kritzman (2007), where the performance of the different approaches

is measured in utility.

In order to compare the FSO and MV optima, the resulting total FSO port-

folio return is calculated (Rp = θ′FSOR). The MV optimal portfolio, θMV , is

then the variance-minimizing allocation that yields the same expected portfolio

return, a point on the MV efficiency frontier.15 From each solution, a return

distribution over time is calculated (θ′Rt). By inserting each of these in the util-

ity function applied for the FSO method, a measure of the MV approximation
15We use the Markowitz MV model from 1952 as benchmark in this study. In this way, it

can be established whether the FSO model is superior to that model. The rich supply of MV
extensions, however, is yet to be compared to the FSO model.
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error, εMV , can be calculated as in Equation 416.

εMV =
U(θ′FSOR)− U(θ′MV R)

|U(θ′MV R)| (4)

For the bilinear and S-shaped utility functions, we also calculate success

rates of the same type as in Cremers et al. (2005). These are the fraction of

all points in time that yield portfolio returns superior to the investor’s specified

critical level (kink and inflection point respectively).

Measuring the difference in terms of improved utility has the drawback that

utility is hard to interpret in economic terms. Also, different utility functions

yield different magnitudes of utility variation for a set of returns. An alternative

measure, which is more straightforward to interpret, is certainty equivalents.17

The certainty equivalent of a specific risky investment in terms of return can

be defined as the certain return that would render the investor the same level

of utility as the uncertain return of the risky investment. In other words, the

certainty equivalent, rCE , is the solution to the following equation:

u(1 + rCE) = Eu(1 + rp) (5)

where u(·) is the utility function and E denotes expected value. Provided that

the utility function is one-to-one the solution to this equation exists and is

unique:

rCE = u−1(Eu(1 + rp))− 1 (6)

For the utility functions presented above we therefore are able to compute the

unique return rCE that satisfies Equation 5 given the portfolio returns rp corre-

sponding to the optimal allocation θ. Using the same approximation as in the
16The MV solution can be calculated with much higher detail than the FSO portfolio, which

is limited to 0.5% precision. Accordingly, a minor source of utility difference will be due to
this limitation, which in the comparison is to the MV method’s advantage.

17Certainty equivalents have earlier been used for FSO-MV comparisons in a working paper
by Cremers, Kritzman and Page (2003), which however never was published.
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FSO,

Eu ≡
∫

u∈U

ufudu ≈ 1
T

T∑

i=1

ui, (7)

where U is the support of the probability density function fu of u and T is

the number of observations, the RHS of Equation 5 can be evaluated. The

approximating sum should be evaluated at the optimal weights. This value is

already calculated during the portfolio optimization; it is the expected utility

at the optimal weights. When the RHS of Equation 5 is evaluated, it is simple

to solve for rCE .

If expected utility calculated at the optimal weights is denoted by u, i.e.

u ≡ 1
T

∑T
i=1 ui, we should solve the equations

u(1 + rCE) = u (8)

for the different utility functions. The solutions for each utility functions are

presented in Table 5 (in the rightmost column).

When we are evaluating the results of the empirical application in the next

section, we are mainly interested in the difference in certainty equivalents be-

tween the two portfolio selection techniques. Hence, we derive the following

measure, showing the difference in rCE between FSO and MV:

∆CE ≡ rFSO
CE − rMV

CE (9)

The certainty equivalent difference, ∆CE , is easy to interpret. It is the

certain return on investment corresponding to the increase in utility (under the

utility function in question).

3.5 Out-of-sample testing

In order to further examine the robustness of the FSO methodology, we repeat

the procedure described above in an out-of-sample setting. This is done using

essentially the same methodology as in Adler and Kritzman (2007). For this
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Utility function CE derivation

Exponential: −exp(−A(1 + rp)) ⇔ rCE = − 1
A ln(−u)− 1

Power: (1+rp)1−γ−1
1−γ for γ > 0 ⇔ rCE = [1 + (1− γ)u]

1
1−γ − 1

ln(1 + rp) for γ = 1 ⇔ rCE = exp(u)− 1

Bilinear: ln(1 + rp) for rp ≥ x ⇔ rCE = exp(u)− 1
P (rp − x) + ln(1 + x) for rp < x ⇔ ?

S-shaped: −A(z − rp)γ1 for rp ≤ z ⇔ rCE = z −
(

u
−A

) 1
γ1

+B(rp − z)γ2 for rp > z ⇔ rCE = z +
(

u
B

) 1
γ2

? Under Bilinear utility when u < u(x), no explicit solution exists. This case is handled by a
standard search algorithm.

Table 5: Certainty equivalent equations

purpose, the sample is split in two halves. The first half is used for estimat-

ing optimal portfolio allocations, and the performance of the optimal portfolio

retrieved is measured on the second half.

We generate 10000 samples of cross-sectional monthly returns by drawing

from the second half of our sample (with replacement), which was not employed

for the portfolio optimization. This bootstrapping procedure allows us to study

performance of the optimized portfolio out-of-sample.

The average utility difference between FSO and MV portfolios is calculated.

The exercise is repeated using the second half of the sample for estimation and

the first half for the diagnostics.

4 Results

The portfolio selection problem described was repeated 103 times using different

utility function specifications. There were 12 tests with exponential utility, 9

tests with power utility, 31 tests with bilinear utility and 51 tests with S-shaped

utility. All results are presented in the Appendix. Below the test results are
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presented and interpreted for each utility function type separately. The section

is concluded with some general observations.

4.1 Traditional utility functions

The tests performed with exponential utility and differing levels of risk aversion

yielded, as expected, portfolios with high weights to risky assets when A was low

and less so as the risk aversion parameter A was set higher (see Table 6). The

portfolios identified were all very close to the MV frontier, resulting in extremely

small utility improvements, if any, when using FSO instead of MV. As the FSO

and MV solutions were close to identical, the differences in performance out-of-

sample were close to non-existent.

Portfolio allocations based on power utility functions were selected with 9

different levels of γ, implying different levels of relative risk aversion. As shown

in Table 7, the power utility function yielded portfolios allocating the whole

investment to the most risky asset (FTSE EMI) for γ ≤ 1.5, and then gradually

leaned more towards the medium-risky asset (FTSE 250) as γ grew. The devi-

ation from the MV frontier was slightly bigger than in the exponential utility

cases, but differences in utility outcome both in-sample and out-of-sample were

still minute. In-sample utility improvement never exceeded 0.02%, and out-

of-sample differences displayed neither substantial magnitude, nor consistent

directions on deviations from zero.

The improvement in terms of certainty equivalents are zero or close to zero

under both exponential and power utility functions. Hence, an investor follow-

ing these utility functions is not prepared to pay anything to move from MV to

FSO. These results conform well to those of earlier assessments (see references

above), showing that portfolio allocations chosen by the utility maximizing ap-

proaches constitute very small improvements relative to the MV approach, when

the investor’s utility is well described by the exponential or the power utility

functions.
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4.2 Bilinear utility functions

The tests on bilinear utility functions (i.e. linear splines) were performed with

the kink (x) at different levels and various penalties (P ) on sub-kink returns.

Each kink value was tested for 3 different penalty levels. As was shown in Table

1 above, the disutility of sub-kink returns is amplified by the factor P . When

P = 1, there is no kink, and the utility function features neither loss aversion,

nor risk aversion.

The results retrieved for bilinear utility functions are shown in Table 8. As

expected, the risk level of the optimal portfolios retrieved with FSO decreased

as the kink and penalty parameters increased. When the penalty parameter

was set to 1 all wealth was allocated to the most risky asset (FTSE EMI),

which is due to the lack of risk aversion in this case. For higher penalty levels,

the portfolios were increasingly weighted towards the less risky assets (FTSE

100 and FTSE 250). At P = 10, no allocations were made to the most risky

asset. This occurs when the incentive to avoid returns less than those associated

with the kink dominates other investor incentives, such as maximizing returns

or minimizing risk by diversification. Portfolio diversification was highest at

P = 5.

Whereas many of the portfolios optimized under bilinear utility were close to

the MV frontier, there were cases where the utility improvement was substantial

(up to 4% in-sample and 13% out-of-sample). Looking at certainty equivalents,

there was a positive, fairly consistent, but small difference in favor of the FSO

portfolios. On average, CE improvement amounted to 0.02% in-sample and

0.04% out-of-sample (see bottom of Table 8). This means that usage of FSO

rather than MV when investor preferences are correctly described with a bilinear

utility function, yields a utility improvement equivalent to that of a certain

0.02% annual return. Of the 20000 draws made for the out-of-sample test, 14%

yielded CE improvements higher than 1%, and 8% yielded less than −1% (in

annual terms).

Looking at the distribution of returns out-of-sample, there were on average
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(of the 20000 bootstrapped samples) no differences between FSO and MV in

mean and variance. The solutions under bilinear utility, however, yielded higher

skewness and higher kurtosis than the MV solutions did on average (as showed

in Table 11). Bilinear utility does not punish kurtosis, as there is no decrease

in marginal utility with returns (i.e. no risk aversion) except for the jump at

the kink. Accordingly, it can be seen that the corresponding MV portfolios are

more diversified than the FSO portfolios.

The success rates (ratio of returns exceeding the kink) were slightly higher

on average using FSO to implement the bilinear preferences than for the MV

portfolios, which can be related to the higher skewness resulting under bilinear

utility (see bottom of Table 8). Differences appeared only in 10 cases, out of

which two were in favor of MV. Success rates implemented by Cremers et al.

(2005) yielded similarly small differences under the bilinear utility specification.

4.3 S-shaped utility functions

As discussed in Section 2.2, the S-shaped utility function features risk loving

behavior when returns are below a critical value z, and risk aversion when

returns are above that value. We performed our tests with the inflection point

set to zero, −2.5% and −5%, with varying settings of either the gamma values

(γ1 and γ2) or the magnitude parameters (A and B). These parameters regulate

the curvature of the S-shape. Exact specifications of parameters are given in

the first five columns in Tables 9 and 10, followed by the results analysis to the

right in the tables.

The utility from the FSO approach under S-shaped utility was considerably

better than the utility obtained with S-shaped preferences when evaluating al-

locations chosen via the MV approach. The average utility difference was 10%

in-sample and 15% out-of-sample. Certainty equivalent improvements averaged

0.2% both in-sample and out-of-sample (10 times higher than under bilinear

utility). That is, using FSO causes an increase in utility corresponding to a

certain annual return of 0.2% on average – a substantial gain. This CE was
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very consistent throughout the 20000 out-of-sample draws. It exceeded 1% in

35% of the cases, whereas it was lower than −1% in only 15% of the tests.

Return distributions on average of the 20000 bootstrapped samples have

higher means and variances when optimizing with FSO than with MV (see Table

11). As for the bilinear utility case, skewness and kurtosis are also increased,

the former with much higher magnitude than under the bilinear preferences

(0.069). In other words, the portfolios based on S-shaped preferences have a

higher risk level but a lower probability of very low returns on a single day.

The success rates are also clearly in favor of the FSO approach in cases where

S-shaped utility is believed to describe the investor’s preferences well, which

was also found by Cremers et al. (2005). In 60% of the utility specifications the

FSO success rate is higher than the MV counterpart – another reflection of the

increased skewness of the FSO return distribution.

The variation of gamma proportions causes only minor changes in the allo-

cations. The gamma primarily determines the bends of the S-shape, and the

influence on allocations is apparently marginal. The variation of A and B, on

the other hand, is more influential on allocations. The higher the ratio A/B

gets, the less risk is chosen for the portfolio. Our results also indicate that, as

expected, higher inflection points correspond to higher loss aversion.

5 Conclusions

The empirical application of this study constitutes the widest FSO-MV com-

parison to date with respect to utility functions. The results extend earlier

findings by Cremers et al. (2005) and Adler and Kritzman (2007), establishing

the robustness of those studies’ results. The FSO methodology is useful when

investor utility function features a threshold, such as in the bilinear and the S-

shaped utility functions (especially the latter). For traditional utility functions

(exponential and power utility) there is no clear performance difference between

MV and FSO.

The fact that these results appear in an application of equity indices increases
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the scope of the FSO applicability considerably. It has earlier only been shown

that FSO is useful in allocation problems involving hedge funds, which have

very non-normal return distributions. Using assets with return distributions

closer to normality yields smaller gains in utility, but the improvements are still

substantial.

Full-scale optimization has great theoretical appeal in that it does not build

on assumptions simplifying the world of the investor. Return distributions are

used in their entirety and utility functions can be chosen with complete flexibil-

ity, without mathematical convenience considerations. Challenges remaining for

the investment advisor include correctly specifying the investor’s preferences in

a utility function, and to overcome the computational burden of the technique.

These issues should be subject to future research. Studies similar to the current

one with other asset selection problems, such as selection between different asset

classes or derivative selection, would also be useful.
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Full results

Here the complete set of results from the empirical application for each utility
function is presented. Each table is constructed in the following fashion: Utility
function parameters; Optimal portfolio allocations under FSO ; Optimal portfolio
allocations under MV ; Utility improvement ; Certainty Equivalent improvement.
In the latter two categories, (IS) contains in-sample results and (OOS) out-of-
sample results. Certainty equivalents improvements are given in annual terms.
In Tables 8-11, Success rate columns are added, the first one containing FSO
results and the second MV results (both in-sample for the full dataset). Port-
folio allocations notation are as follows: θ1 is allocation to FTSE100, θ2 is to
FTSE250, and θ3 is to FTSE EMI. The given allocations are those estimated
on the full dataset. Allocations estimated on the first and second half of the
dataset respectively are available upon request. Table 11 gives portfolio return
distributional properties averaged over the 20000 boostrapped samples, for FSO
and MV allocations respectively.

FSO approach MV approach εMV ∆CE
A θ1 θ2 θ3 θ1 θ2 θ3 IS OOS IS OOS
0.5 0.000 0.000 1.000 0.000 0.001 0.999 0.0% 0.0% 0.1% 0.0%
1 0.000 0.000 1.000 0.000 0.001 0.999 0.0% 0.0% 0.1% 0.0%

1.5 0.000 0.000 1.000 0.000 0.001 0.999 0.0% 0.0% 0.1% 0.0%
2 0.000 0.230 0.770 0.000 0.230 0.770 0.0% 0.0% 0.0% 0.0%

2.5 0.000 0.400 0.600 0.000 0.400 0.600 0.0% 0.0% 0.0% 0.0%
3 0.000 0.515 0.485 0.000 0.515 0.485 0.0% 0.0% 0.0% 0.0%

3.5 0.000 0.595 0.405 0.000 0.595 0.405 0.0% 0.0% 0.0% 0.0%
4 0.000 0.655 0.345 0.000 0.655 0.345 0.0% 0.0% 0.0% 0.0%

4.5 0.000 0.705 0.295 0.000 0.705 0.295 0.0% 0.0% 0.0% 0.0%
5 0.000 0.740 0.260 0.000 0.740 0.260 0.0% 0.0% 0.0% 0.0%

5.5 0.000 0.770 0.230 0.000 0.770 0.230 0.0% 0.0% 0.0% 0.0%
6 0.000 0.795 0.205 0.000 0.795 0.205 0.0% 0.0% 0.0% 0.0%

Table 6: Exponential utility results
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FSO approach MV approach εMV ∆CE
γ θ1 θ2 θ3 θ1 θ2 θ3 IS OOS IS OOS
1 0.000 0.000 1.000 0.000 0.001 0.999 0.0% 0.1% 0.1% 0.0%

1.5 0.000 0.000 1.000 0.000 0.001 0.999 0.0% -0.1% 0.1% 0.0%
2 0.000 0.220 0.780 0.000 0.220 0.780 0.0% -0.2% 0.0% 0.0%

2.5 0.000 0.395 0.605 0.000 0.395 0.605 0.0% 0.1% 0.0% 0.0%
3 0.000 0.510 0.490 0.000 0.510 0.490 0.0% 0.1% 0.0% 0.0%

3.5 0.000 0.590 0.410 0.000 0.590 0.410 0.0% 0.0% 0.0% 0.0%
4 0.000 0.650 0.350 0.000 0.650 0.350 0.0% 0.2% 0.0% 0.0%

4.5 0.000 0.700 0.300 0.000 0.700 0.300 0.0% 0.0% 0.0% 0.0%
5 0.000 0.735 0.265 0.000 0.735 0.265 0.0% -0.1% 0.0% 0.0%

Table 7: Power utility results
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Utility function Mean Variance Skewness Kurtosis

Bilinear: 0.0000 0.0000 0.0029 0.0180

S-shaped: 0.0004 0.0001 0.0687 0.0150

Table 11: Average out-of-sample differences in distributional properties between
FSO and MV solution under bilinear and S-shaped utility functions
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