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1 Introduction

The performance of firms, non-profit entities and other decision-making units (DMUs) is of-

ten assessed in terms of technical, cost, or other forms of efficiency. For managers, efficiency

estimates can help identify opportunities for reducing costs or increasing revenues. Market

analysts and researchers have used efficiency estimates to help predict failures, merger activ-

ity, and to examine the effects of innovations and regulatory changes. Often, dynamic effects

are of interest, particularly in gauging the effects of regulatory reform, new methods of pro-

duction, or other innovations. In addition to considering changes in technical efficiency over

some time period, researchers often examine changes in productivity, changes in technology,

changes in scale efficiency, etc.

Practitioners have used both parametric and non-parametric approaches to estimate ef-

ficiency. The typical approaches, however, either require potentially untenable specification

assumptions or have other serious drawbacks. A common parametric approach, based on the

ideas of Aigner et al. (1977) and Meeusen and van den Broeck (1977), involves estimation of

a specific response function with a composite error term consisting of inefficiency and noise

components. Often studies specify a translog response function; researchers have found,

however, that the translog function is often a mis-specification, especially when producers

are of widely varying sizes.1 In an attempt to increase flexibility, researchers sometimes aug-

ment translog specifications with trigonometric terms. In order to maximize log-likelihoods

when composite error terms are used, however, the number of additional terms is typically

limited to a number that, in most cases, is probably far less than needed to minimize criteria

such as asymptotic mean integrated square error.2

The inherent problems with parametric efficiency models have led many researchers to

1Empirical examples are provided by Cooper and McLaren (1996), Banks et al. (1997), Wheelock and
Wilson (2001), and Wilson and Carey (2004). For Monte Carlo evidence, see Guilkey et al. (1983) and
Chalfant and Gallant (1985).

2To our knowledge, no studies in the banking literature using this approach have optimized the number
of terms with respect to asymptotic mean integrated square error or similar criteria. Gallant (1981, 1982)
suggests as a rule of thumb n2/3 terms, where n is the sample size; applied papers where models with
composite errors are estimated have typically included far fewer terms. Researchers apparently limit the
number of included terms due to the practical problems associated with maximizing highly non-linear log-
likelihoods with respect to large numbers of parameters. Instead of trigonometric functions, one could use
as basis functions members of a family of orthogonal polynomials (e.g., Laguerre or Legendre polynomials),
but the problems of determining the optimal number of terms, and using these in a non-linear, maximum-
likelihood framework, remain.
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apply non-parametric methods. Non-parametric methods are popular because they avoid

having to specify a priori a particular functional relationship to be estimated; the data are

allowed to speak for themselves. Non-parametric approaches usually involve the estimation

of a production or other set by either the free-disposal hull (FDH) of sample observations, or

the convex hull of the FDH. Methods based on the convex hull of the FDH are collectively

referred to as data envelopment analysis (DEA). Inefficiency is estimated by the distance

from the location of a DMU in input/output space to an estimate of the boundary of support

of the production set. In dynamic settings, Malmquist indices defined in terms of distance

functions estimated by DEA methods are frequently used to measure changes in productivity;

these indices are often decomposed into sub-indices giving measures of changes in efficiency,

technology, etc.3 The statistical properties of DEA estimators have been established, and

bootstrap methods exist for making statistical inferences about the efficiency of individual

firms based on DEA estimates, as well as productivity change, etc. measured by Malmquist

indices and their component sub-indices.4

Despite their popularity, both DEA and FDH estimators have some obvious drawbacks.

First, it has long been recognized that DEA and FDH estimates of inefficiency are sensitive

to outliers in the data. Second, DEA as well as FDH estimators also suffer from the well-

known curse of dimensionality that often plagues non-parametric estimators. The number

of observations required to obtain meaningful estimates of inefficiency increases dramatically

with the number of production inputs and outputs; for a given sample size, adding dimensions

results in more observations falling on the estimated frontier. In many applications, including

the one in this paper, there are simply too few observations available to obtain meaningful

estimates of inefficiency using FDH or DEA.

Recently, some interesting and useful alternatives to FDH and DEA have been devel-

oped. Cazals et al. (2002) proposed a strategy based on estimation of expected minimum

3Productivity relates output quantities produced to input quantities used, whereas technical efficiency
reflects how close a DMU lies to the boundary of the production set. A DMU could experience a change in
productivity without a change in efficiency, or a change in efficiency without a change in productivity. For
example, a DMU would experience no change in efficiency if an increase in its productivity was matched by
an increase in production possibilities that left the DMU an unchanged distance from the boundary of the
production set. Alam (2001) and Wheelock and Wilson (1999) are among recent applications of DEA that
estimate changes in efficiency and productivity of U.S. commercial banks.

4See Simar and Wilson (2000b) for a survey, and Kneip et al. (2007) for more recent results, on the
statistical properties of DEA estimators. See Simar and Wilson (1998, 2000a, 2000b) and Kneip et al. (2007)
for details about the use of bootstrap methods to make inferences based on DEA estimates.
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input functions or expected maximum output functions of order-m, with m ∈ {1, 2, . . .}.
Daouia (2003) and Aragon et al. (2005) offered an alternative involving estimation of input-

and output-oriented conditional quantiles of order-α, with α ∈ (0, 1]. Daouia and Simar

(2007) extended the approach to a multivariate setting (i.e., where production involves both

multiple inputs and multiple outputs). Both the order-m and α-quantile approaches involve

estimating partial frontiers lying “close” to the full production frontier. Both estimators are

robust with respect to outliers because they allow some observations to lie above the esti-

mated partial frontier. Moreover, although fully non-parametric, both estimators achieve

the classical, parametric root-n rate of convergence with no curse of dimensionality when

used to estimate partial frontiers. Further, if the orders m or α are viewed as sequences of

appropriate order in sample size n so that m(n) → ∞ as n → ∞ or α(n) → 1 as n → ∞, the

estimators can be interpreted as robust (with respect to outliers) estimators of the full fron-

tier, although the root-n convergence rate is lost when the estimators are used to estimate

the full frontier.

Although the order-m and order-α approaches overcome two of the problems associated

with DEA and FDH estimators, a third issue remains—the decision whether to measure

efficiency in the input- or the output-direction. The choice can be crucial—especially for

estimating the efficiency of firms operating at the extremes of the size range. Irrespective of

estimation method, or whether full or partial frontiers are estimated, small firms lying close

to the production frontier in the input direction often lie much farther from the frontier in

the output direction. Similarly, large firms lying close to the frontier in the output direction

may lie far away from the frontier in the input direction. Thus, small (large) firms that

appear relatively efficient when efficiency is estimated in the input (output) direction may

appear highly inefficient when efficiency is measured in the output (input) direction. Con-

sequently, true efficiency estimates (again, apart from estimation issues)—and the apparent

amount of overall, or average, technical efficiency in a given sample—may depend crucially

on the distribution of the data, the curvature of the frontier, and whether one uses an input-

or output-orientation. Unfortunately, the choice between input- or output-orientation for

efficiency measurement is often arbitrary.

In this paper, we describe an unconditional, hyperbolic order-α quantile estimator that

shares the advantages of the Cazals et al. (2002) and Daouia and Simar (2007) estimators,
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but which avoids the third problem involving choice of orientation. Our estimator extends

the ideas of Daouia and Simar (2007), and shares many of the properties of their conditional

order-α estimators, but with the additional advantage of avoiding the choice between input-

and output-orientations and the resulting sensitivity of results with respect to that choice.

In addition, we define Malmquist indices and component sub-indices in terms of hyperbolic

order-α quantiles, and demonstrate how these can be estimated.

Avoiding the choice between input- and output-orientation is potentially even more im-

portant in dynamic settings where Malmquist indices and their components are estimated.

With cross-period comparisons needed to define such indices, the sensitivity of results to

the choice of input- or output orientation is more likely to arise. Whereas a firm might

lie near the middle of the range of the data for one period, it might lie near the steeply-

sloped or nearly flat portions of the frontier prevailing in the other period, in which case

estimates of productivity or efficiency change may be highly sensitive to the choice of input-

or output-orientation.

Moreover, from a practical viewpoint, the cross-period comparisons used to estimate

changes in technology often result in infeasible solutions when DEA or FDH estimators are

used. In particular, it is sometimes the case that a firm’s position in one period is either

above or to the left of the frontier estimate in another period; in the former case, cross-

period, input-oriented DEA or FDH efficiency estimates cannot be computed; in the latter

case, cross-period output-oriented estimates cannot be computed. Similar problems exist

for the input- and output-oriented estimators of Cazals et al. (2002) and Daouia and Simar

(2007). Measuring efficiency along hyperbolic paths avoids these problems.

We use our estimator to produce new estimates of efficiency and productivity change

for U.S. commercial banks between 1985 and 2004. The U.S. banking industry experienced

rapid consolidation during these years, reflected in a reduction in the number of commercial

banks from a post-war peak of 14,496 banks at the end of 1984 to 7,630 banks at the end of

2004. Consolidation coincided with dramatic changes in regulation, market structure, and in

the use of information-processing technology by banks and their competitors. Bank failures

accounted for a significant number of exits in the 1980s and early 1990s. Although failures

have since been rare, analysts continue to question the long-run viability of commercial banks

— especially smaller, “community” banks — as other intermediaries and financial markets
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increasingly encroach on the traditional deposit-taking and lending business of commercial

banks.5 The viability of banks would seem to hinge on how well they respond to changes in

regulation, competition, and advances in information-processing technologies that shape the

environment of banking by improving their efficiency and productivity. Although numerous

studies have examined commercial bank efficiency, to date all have relied on the traditional

approaches described above that either impose restrictive specification assumptions or have

other undesirable properties.6

Our estimation results indicate that, in general, U.S. banks became more efficient between

1985 and 2004. However, only large banks—those with at least $1 billion of total assets—

experienced significant productivity improvement. Our results are thus consistent with the

presumption that branching deregulation and rapid advances in information technology have

disproportionately benefited larger banks, and could help explain the relatively rapid decline

in the number of small banks.

The rest of the paper unfolds as follows: Section 2 presents a statistical model and defines

quantile distance functions. Section 3 discusses estimation methodology. Measures of pro-

ductivity change and its components in terms of quantile distance functions are introduced

in Section 4. We describe our data in Section 5, present empirical results in Section 6, and

offer conclusions in Section 7.

5Berger (2003) describes the myriad advances in information and financial technology, and changes in
regulation, that have affected the banking industry over these years, and discusses their implications for
banks of different sizes and their competitors. Major changes in bank regulation since 1980 include the
deregulation of deposit interest rates, the introduction of risk-based capital requirements, and the removal of
legal restrictions on branching, first within states and later across state boundaries. Branching deregulation
in particular promoted rapid consolidation of the industry.

6In particular, researchers have found that the translog functional form is a mis-specification of bank cost
relationships (e.g., McAllister and McManus, 1993; Wheelock and Wilson, 2001), which calls into question
the results of the numerous studies of commercial bank efficiency that impose this functional form. To date,
studies that employ non-parametric estimation of commercial bank efficiency have used either DEA or FDH
estimators. Kumbhakar et al. (2006) propose an interesting local maximum likelihood approach allowing
for both noise and a stochastic inefficiency term while avoiding the need to specify the response function,
but to our knowledge, their idea has (so far) not been used to examine commercial banks. See Berger and
Humphrey (1997) for a survey of commercial bank efficiency studies.

5



2 A Statistical Model of Production

2.1 Some (Minimal) Assumptions

Given vectors x ∈ R
p
+ of p input quantities and y ∈ R

q
+ of q output quantities, standard

microeconomic theory of the firm posits a production set at time t represented by

P t ≡ {(x, y) | x can produce y at time t}. (2.1)

This set represents the set of feasible combinations of inputs and outputs at a given point

in time, and may change with the passage of time.

The assumptions listed below are similar to those in Park et al. (2000), and serve to

define a statistical model.

Assumption 2.1. The production set P t is compact and free disposal, i.e., if (x, y) ∈ P t,

(x̃, ỹ) ∈ Pt, and x̃ ≥ x, then (x̃, ˜̃y) ∈ Pt ∀ 0 ≤ ˜̃y ≤ y.7

Assumption 2.2. (x, y) 
∈ Pt if x = 0, y ≥ 0, y 
= 0, i.e., all production requires use of

some inputs.

Assumption 2.3. The sample St
nt

= {(xi, yi)}nt
i=1 of nt observations on input and output

quantities at time t are realizations of identically, independently distributed (iid) random

variables with probability density function f t(x, y) with support over P t.

A point (x, y) ∈ Pt is said to be on the frontier of P t, denoted P t∂ , if (γ−1x, γy) 
∈ Pt

for any γ > 1; let (xt∂
0 , yt∂

0 ) ∈ Pt∂ denote such a point.

Assumption 2.4. At the frontier, the density f t is strictly positive, i.e., f t
0 = f t(xt∂

0 , yt∂
0 ) >

0, and sequentially Lipschitz continuous, i.e., for all sequences (xn, yn) ∈ Pt converging to

(xt∂
0 , yt∂

0 ), |f t(xn, yn) − f t(xt∂
0 , yt∂

0 )| ≤ c1||(xn, yn) − (xt∂
0 , yt∂

0 )|| for some positive constant

c1.

Now let yk denote the kth element of y, k = 1, . . . , q, and let y(k) =[
y1 . . . yk−1 yk+1 . . . yq

]
denote the vector y with the kth element deleted. In ad-

dition, let y(k)(η) =
[
y1 . . . yk−1 η yk+1 . . . yq

]
denote a vector similar to y, but with

7Here and throughout, inequalities involving vectors are defined on an element-by-element basis; e.g., for
x̃, x ∈ R

p
+, x̃ ≥ x means that some number � ∈ {0, 1, . . . , p} of the corresponding elements of x̃ and x are

equal, while (p − �) of the elements of x̃ are greater than the corresponding elements of x.
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η substituted for the kth element of y. For each k = 1, . . . , 1 define a function

gk
Pt

(
x, y(k)

)
≡ max

{
η |

(
x, y(k)(η)

)
∈ Pt

}
. (2.2)

As discussed in Park et al. (2000), the production set P t can be defined in terms of any

of the functions gk
Pt . Along the lines of Park et al., the following analysis is presented in

terms of gq
Pt, denoted simply as gt.

Assumption 2.5. At the frontier, gt(·, ·) is (i) positive, i.e., gt(xt∂
0 , yt∂

0 ) > 0; (ii) con-

tinuously differentiable; and (iii) the first derivative is Lipschitz continuous, i.e., for all

(x, y), |gt(x, y(q))−gt(xt∂
0 , y

t∂(q)
0 )−∇gt(xt∂

0 , y
t∂(q)
0 )′((x, y(q))−(xt∂

0 , y
t∂(q)
0 ))| ≤ c2||(x, y(q))−

(x0, y
(q)
0 ))||2 for some positive constant c2, and for k = 1, . . . , p and � = 1, . . . , q − 1,

∂
∂xk gt(x, y(q))|

(x,y(q))=(xt∂
0 ,y

t∂(q)
0 )

> 0 and ∂
∂y� g

t(x, y(q))|
(x,y(q))=(xt∂

0 ,y
t∂(q)
0 )

< 0.

Assumptions 2.1 and 2.2 are standard in the economics literature (e.g., see Färe, 1988).

Free disposability in Assumption 2.1 imposes monotonicity on the frontier P t∂ , while As-

sumption 2.2 merely says that there are no free lunches. Assumption 2.3 defines the sampling

mechanism. While Assumptions 2.4 and 2.5 involve some complication, they are in the end

mild assumptions, imposing weak conditions on the density f t near the frontier, and some

smoothness on the frontier itself.

2.2 Traditional Approaches

All studies of efficiency, productivity, etc., involve comparison of observed performance to

some benchmark. In traditional, non-parametric studies, the frontier P t∂ serves as the

benchmark. One can use Shephard (1970) input or output distance functions given by

θ(x, y | P t) ≡ sup
{
θ > 0 | (θ−1x, y) ∈ Pt

}
(2.3)

and

λ(x, y | Pt) ≡ inf
{
λ > 0 | (x, λ−1y) ∈ Pt

}
, (2.4)

(respectively) to measure distance from an arbitrary point (x, y) ∈ R
p+q
+ to the boundary

P t∂ in the input direction or the output direction.

Under constant returns to scale (CRS), θ(x, y | P t) = λ(x, y | Pt)−1. However, with

variable returns to scale (VRS), the choice of orientation (either input or output) can have
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a large impact on measured efficiency. As discussed in Section 1, with VRS, a large firm

could conceivably lie close to the frontier P t∂ in the output direction, but far from P t∂ in

the input direction. Similarly, a small firm might lie close to P t∂ in the input direction, but

far from P t∂ in the output direction. Such differences are related to the slope and curvature

of P t∂ . Moreover, there seems to be no criteria telling the applied researcher whether to use

the input- or output-orientation.8

The hyperbolic distance function

γ(x, y | Pt) ≡ sup
{
γ > 0 | (γ−1x, γy) ∈ Pt

}
(2.5)

reduces this ambiguity by measuring distance from the fixed point (x, y) to P t∂ along the

hyperbolic path (γ−1x, γy), γ ∈ R
1
++. Note that for (x, y) ∈ Pt, θ(x, y | Pt) ≥ 1, λ(x, y |

P t) ≤ 1, and γ(x, y | Pt) ≥ 1 by construction.9 The measures θ(x, y | Pt), λ(x, y | P t), and

γ(x, y | P t) provide measures of the technical efficiency of a firm operating at input/output

levels (x, y) at time t. Such a firm lying in the interior of P t could become technically efficient

by moving to either (x/θ(x, y | P t), y)), (x, y/λ(x, y | P t)), or (x/γ(x, y | P t), γ(x, y |
P t)y), or some other point along the frontier P t∂ .

2.3 The Quantile Approach

As discussed below in Section 3.1, estimation of the distance functions defined in (2.3),

(2.4), and (2.5) incur the curse of dimensionality as well as (perhaps extreme) sensitivity to

outliers. The order-m approach of Cazals et al. (2002) and the order-α approach of Daouia

(2003), Aragon et al. (2005) Daouia and Simar (2007) avoid these problems by estimating

features close to the boundary of the production set, rather than the boundary itself. As

noted in Section 1, these partial frontier estimators can be interpreted as estimators of the

full frontier P t∂ when the orders m or α are viewed as sequences (of appropriate order) in

8 In the case of parametric, stochastic frontier models along the lines of Aigner et al. (1977), one specifies
a production, cost, or other relationship, which determines how efficiency is to be measured; e.g., when
a production function is specified, efficiency is measured in the output direction. By contrast, the model
specified by Assumptions 2.1–2.5 leaves open the question of the direction in which efficiency might be
measured.

9The Shephard (1970) input and output distance functions defined in (2.3)–(2.4) are reciprocals of the
corresponding Farrell (1957) measures. Färe et al. (1985) defined a Farrell-type hyperbolic measure that is
the reciprocal of the measure defined here in (2.5).
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the sample size. Here and in Section 3.2, we extend the input- and output-oriented approach

of Daouia and Simar (2007) to a hyperbolic orientation.

The density f t(x, y) introduced in Assumption 2.4 implies a probability function

H t(x0, y0) = Pr(x ≤ x0, y ≥ y0 at time t). (2.6)

Although this probability distribution function is non-standard, given the direction of the

inequality for y, it is well-defined. The function gives the probability of drawing, at time

t, an observation from f t(x, y) that weakly dominates the firm operating at (x0, y0); an

observation (x̃, ỹ) weakly dominates (x0, y0) if x̃ ≤ x0 and ỹ ≥ y0. Clearly, H t(x0, y0) is

monotone, nondecreasing in x0 and monotone, non-increasing in y0.

The idea of dominance in the sense used here dates at least to the work of Deprins et

al. (1984). As a practical matter, the idea is quite useful from the perspective of managers,

policy makers, and others. While a set of firms may be ranked in terms of their estimated

technical efficiencies or some other criteria, the manager of an inefficient firm may have little

to learn from a more efficient firm unless the two firms use a similar mix of inputs to produce

a similar mix of outputs. In other words, the more efficient firm may not be a relevant role

model for the less efficient firm if they operate in very different regions of the input-output

space. By contrast, a firm that dominates a less efficient firm is able to produce more with

less, and consequently is likely to have management practices or other features that the less

efficient firm should emulate.

Although efficiency is usually measured in either an input or an output direction in non-

parametric studies, measurement along a hyperbolic path maintains a link with the idea

of dominance. Using H t(·, ·), a hyperbolic, α-quantile distance function can be defined by

writing

γt
α(x, y) ≡ sup

{
γ > 0 | H t(γ−1x, γy) > (1 − α)

}
(2.7)

for α ∈ (0, 1]. For a fixed point (x, y) ∈ R
p+q
+ , γt

α(x, y) gives the proportionate, simultaneous

reduction in inputs and increase in outputs required to move from (x, y) along a path

(γ−1x, γy), γ > 0, to a point that has probability (1 − α) of being weakly dominated at

time t. By construction, for α ∈ (0, 1), γt
α(x, y) < γ(x, y | Pt). The hyperbolic α-quantile

at time t is defined by

P t∂
α ≡

{
(γt

α(x, y)−1x, γt
α(x, y)y) | (x, y) ∈ P t

}
. (2.8)

9



By definition, H t(x0, y0) is monotone, nondecreasing in x0 and monotone, non-increasing in

y0; using this fact it is easy to show that P t∂
α is monotone in the sense that if (x0, y0) ∈ Pt∂

α ,

(x̃, ỹ) ∈ Pt∂
α , and x̃ ≥ x0, then ỹ ≥ y0.

10

Figure 1 illustrates the hyperbolic quantile for the simple case where p = q = 1 and

f t(x, y) is uniform over the unit triangle with corners at (0,0), (1,0), and (1,1); hence the

technology is characterized by constant returns to scale. The solid line shows P t∂ . Given

α ∈ (0, 1), it is straightforward to solve analytically for γt
α(x, y), and hence the hyperbolic

α-quantile can be traced out by solving for γt
α(x, y) for a variety of pairs (x, y). This has

been done in Figure 1 for α = 0.99, and P t∂
α is illustrated by the dashed line.

Figure 2 provides another illustration of the hyperbolic quantile, again for p = q = 1, but

with f t(x, y) uniform over a quarter-circle so that the technology displays variable returns

to scale. The solid line shows the full frontier P t∂ = {(x, y) | x ∈ [0, 1], y = (2x − x2)1/2}.
Some algebra reveals that the marginal distribution function for x, F t

x(x0) = Pr(x ≤ x0) is

F t
x(x0) =

⎧⎨
⎩

1 ∀ x0 ≥ 1;
4
π

[
x0−1

2
(2x0 − x2

0)
1/2 + 1

2
sin−1(x0 − 1) + π

4

]
∀ x0 ∈ (0, 1);

0 ∀ x0 ≤ 0.
(2.9)

Then the joint density H t(x0, y0) is given by

H t(x0, y0) = F t
x(x0) − F t

x

(
1 −

(
1 − y2

0

)1/2
)
− 4

π
y0

[
x0 − 1 +

(
1 − y2

0

)1/2
]

(2.10)

for all x0 ∈ [0, 1], y0 ∈ [0, (2x0 − x2
0)

1/2]. Using (2.10), the hyperbolic α-quantile P t∂
α can be

traced out; in Figure 2, this has been done for α = 0.99, and P t∂
α is illustrated by the dashed

curve.

The probabilistic formulation used here is closely related to the work of Daouia and Simar

(2007), which builds on earlier work by Daouia (2003) and Aragon et al. (2005). Daouia and

Simar decompose the distribution function given in (2.6) to obtain

H t(x0, y0) = Pr(x ≤ x0 | y ≥ y0)︸ ︷︷ ︸
F t

x|y(x0|y0)

Pr(y ≥ y0)︸ ︷︷ ︸
St

y(y0)

= Pr(y ≥ y0 | x ≤ x0)︸ ︷︷ ︸
St

y|x(y0|x0)

Pr(x ≤ x0)︸ ︷︷ ︸
F t

x(x0)

(2.11)

10Suppose (x0, y0) ∈ Pt∂
α . Then γt(x0, y0) = 1. Now consider (x̃0, y0), x̃0 ≥ x0. Necessarily,

Ht(x̃0, y0) ≥ Ht(x0, y0). Therefore γt
α(x̃0, y0) ≥ γt

α(x0, y0) = 1, and (γt
α(x̃0, y0)−1x̃0, γt

α(x̃0, y0)y0) ∈ Pt
α,

with γt
α(x̃0, y0)y0 ≥ y0. Moreover, γt

α(x̃0, y0)
−1x̃0 ≥ x0 since Ht(x0, γ

t
α(x̃0, y0)y0) ≤ Ht(x0, y0). Hence

Pt
α is monotonic in the sense we describe.

10



(the terms on the right-hand side of (2.11) also appear in Cazals et al., 2002, and Daraio and

Simar, 2005). Working in a Farrell-type framework, Daouia and Simar define conditional

quantile-based efficiency scores that are equivalent to the reciprocals of the Shephard-type

input- and output-oriented conditional α-quantile distance functions given by

θt
α(x, y) = sup

{
θ ≥ 0 | F t

x|y(θ
−1x | y) > (1 − α)

}
(2.12)

and

λt
α(x, y) = inf

{
λ ≥ 0 | St

y|x(λ
−1y | x) > (1 − α)

}
. (2.13)

For α ∈ (0, 1), θt
α(x, y) < θ(x, y | Pt) and λt

α(x, y) > λ(x, y | P t) by construction. These

implicitly define input and output conditional α-quantile frontiers given by

P t∂
x,α =

{
(θt

α(x, y)−1x, y) | (x, y) ∈ Pt
}

(2.14)

and

P t∂
y,α =

{
(x, λt

α(x, y)−1y) | (x, y) ∈ Pt
}

, (2.15)

respectively.

Returning to the examples in Figures 1 and 2, input and output conditional α-quantiles

are shown by the dotted curves for α = 0.99. The steeper of the two shows the input-oriented

conditional α-quantile; the other shows the output-oriented conditional α-quantile.11 For any

α ∈ (0, 1), these frontiers differ from one another. The input-oriented conditional α-quantile

P t∂
x,α will necessarily have steeper slope than P t∂ , while the output-oriented conditional α-

quantile P t∂
y,α will have less steep slope than P t∂ .12

11In Figure 2, the input-oriented conditional α-quantile is obtained by deriving the survivor function
St

y(y0) = 1 − F t
x(1 − (1 − y2

0)
1/2) − 4

π y0(1 − y2
0) ∀ y0 ∈ (0, 1) and then using (2.10) and (2.11) to write

F t
x|y(x0 | y0) as Ht(x0, y0)/St

y(y0). Similarly, the survivor function St
y|x(y0 | x0) defined in (2.11) is equal to

Ht(x0, y0)/F t
x(x0), with an expression for F t

x(x0) given in (2.9). Given F t
x|y(x0 | y0) and St

y|x(y0 | x0), the
input- and output-conditional α-quantiles can be traced as in Figure 2.

12This point is demonstrated by considering the decomposition in (2.11) and y0 = 0 in either Figure 1 or
2. With y0 = 0, St

y(y0) = 1 and the first line of (2.11) yields Ht(x0, 0) = F t
x|y(x0, 0), and hence the input

conditional α-quantile and the hyperbolic α-quantile intersect at y0 = 0, as shown in the lower left corners
of both Figures 1 and 2. For y0 > 0, however, the first line of (2.11) suggests that F t

x|y(x0 | y0) must be
strictly greater than Ht(x0, y0), and hence with y0 > 0, the input conditional α-quantile must lie to the left
of and above the hyperbolic α-quantile. Hence the input conditional α-quantile has steeper slope than the
hyperbolic α-quantile. Similar reasoning, starting with x0 = 1 and considering the second line of (2.11),
reveals that the output conditional α-quantile necessarily has less-steep slope than the hyperbolic α-quantile
Pt∂

α .

11



Before proceeding to a discussion of estimation strategy, note that if α = 1, then the input

and output conditional α-quantile distance functions θt
α(x, y) and λt

α(x, y) defined in (2.12)

and (2.13) are equivalent to Shephard (1970) input and output distance functions defined

in (2.3) and (2.4). In this case, the distance functions measure distance either in the input

direction or the output direction to P t∂ , rather than to a quantile lying within the interior

of the set P t. Similarly, when α = 1 the hyperbolic α-quantile distance function defined

in (2.7) becomes equivalent to the Shephard-type hyperbolic distance function defined in

(2.5). Choosing α < 1, however, avoids some of the problems associated with estimation of

boundaries of support (or distance to such boundaries) as discussed in the next section.

3 Estimation Methodology

3.1 Estimators for the Traditional Approach

Estimation of the Shephard input and output distance functions defined in (2.3) and (2.4),

as well as of the hyperbolic distance function defined in (2.5), requires an estimator of

the production set P t. Deprins et al. (1984) proposed the free-disposal hull (FDH) of the

observations in St
nt

, i.e.,

P̃(St
nt

) =
⋃

(xi,yi)∈St
nt

{(x, y) ∈ R
p+q
+ | y ≤ yi, x ≥ xi}. (3.1)

The variable-returns-to-scale (VRS) DEA estimator of P t is the convex hull of P̃(St
nt

), given

by

P̂(St
nt

) =
{
(x, y ∈ R

p+q
+ | y ≤ Y Γ, x ≥ XΓ, i′nt

Γ = 1, Γ ≥ 0
}

(3.2)

where X and Y are (p × nt) and (q × nt) matrices whose columns are the observed input

and output vectors, int is an (nt × 1) matrix of ones, and Γ is an (nt × 1) matrix of weights.

DEA (VRS) estimators of θ(x, y | P t) and λ(x, y | P t) are obtained by replacing P t with

either P̃ t or P̂ t in (2.3) and (2.4). When the DEA (VRS) estimator of P t is used, the resulting

estimators of the input and output distance functions can be written as linear programs which

can be solved to obtain estimates (see Simar and Wilson, 2000b for details). DEA (VRS)

estimators based on P̂ t allow for varying (i.e., increasing, constant, and decreasing) returns

to scale. Globally constant returns to scale can be imposed by replacing P t in (2.3) and (2.4)

12



with the convex cone of P̂ t, denoted V
(
P̂t
)
. The estimator V

(
P̂ t
)

is obtained by dropping

the constraint intΓ = 1 in (3.2).13

The asymptotic properties of the DEA (VRS) and FDH distance function estimators

are discussed in Gijbels et al. (1999), Park et al. (2000), Simar and Wilson (2000b), and

Kneip et al. (2007). In particular, consistency of DEA estimators requires assumptions

in addition to A1–A4 listed above in Section 2, including convexity of P t and sufficient

smoothness of P t∂ (see Simar and Wilson, 2000b for details). Under these assumptions,

θ(x, y | P̂ t) = θ(x, y | Pt)+Op

(
n
−2/(p+q+1)
t

)
and θ(x, y | P̃ t) = θ(x, y | Pt)+Op

(
n
−1/(p+q)
t

)
and similarly for output-oriented DEA and FDH estimators. The convergence rates are slow,

reflecting the curse of dimensionality common to many non-parametric estimators. The FDH

estimator has a slower convergence rate than the DEA estimator, but if P t is non-convex,

then only the FDH estimator is consistent. In addition to slow convergence rates and the

curse of dimensionality, the DEA and FDH estimators also suffer from extreme sensitivity

to outliers. For many applications, these problems are potentially acute.14

3.2 Quantile Estimation

Estimation of γt
α(x, y), and hence P t∂

α , is straightforward. The empirical analog of the

distribution function defined in (2.6) is given by

Ĥ(x0, y0 | St
nt

) = n−1
t

n∑
i=1

I(xi ≤ x0, yi ≥ y0 | (xi, yi) ∈ St
nt

), (3.3)

where I(·) denotes the indicator function. Then an estimator of γt
α(x, y) is obtained by

replacing H t(·, ·) in (2.7) with Ĥ(·, · | St
nt

) to obtain

γ̂t
α,nt

(x, y) = sup
{
γ > 0 | Ĥ(γ−1x, γy | St

nt
) > (1 − α)

}
. (3.4)

13 A DEA (VRS) estimator of the hyperbolic distance function γ(x, y | Pt) can similarly be defined by
replacing Pt with P̂t in (2.5). Unfortunately, however, the estimator cannot be written as a linear program,
though it would be easy in principle to adapt the numerical algorithm presented below in Section 3.2 to
this problem. Doing so would perhaps result in considerable computational burden with large samples, since
numerous linear programs would have to be solved to obtain a single estimate. In the CRS case, Pt = V(Pt)
and it is easy to show that in such cases γ(x, y | V(Pt)) = [θ(x, y | V(Pt))]1/2. Hence, when returns to
scale are globally constant, DEA estimates of the hyperbolic distance function can be computed by first
computing input-oriented estimates under CRS and then taking their square roots.

14Several algorithms for detecting outliers in high dimensional spaces have been proposed (e.g., Wilson,
1993, 1995; Kuntz and Scholtes, 2000; Simar, 2003; and Porembski et al., 2005), but these involve substantial
computational burden with large sample sizes.
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Computing γ̂t
α,nt

(x, y) is essentially a univariate problem. Given a point of interest

(x0, y0), it is easy to find initial values γa, γb such that γa < γb that bracket the solution so

that Ĥ(γ−1
a x0, γay0 | St

nt
) > (1 − α) and Ĥ(γ−1

b x0, γby0 | St
nt

) < (1 − α), and then solve for

γ̂α,nt(x0, y0) using the bisection method. This method can be made accurate to an arbitrarily

small degree. The following algorithm describes the procedure:

[1] Set γa := 1, γb := 1.

[2] If Ĥ(γ−1
a x, γay | St

nt
) ≤ (1 − α) then set γa := 0.5 × γa.

[3] Repeat step [2] until Ĥ(γ−1
a x, γay | St

nt
) > (1 − α).

[4] If Ĥ(γ−1
b x, γby | St

nt
) ≥ (1 − α) then set γb := 2 × γb.

[5] Repeat step [4] until Ĥ(γ−1
b x, γby | St

nt
) < (1 − α).

[6] Set γc := (γa + γb)/2 and compute Ĥ(γ−1
c x, γcy | St

nt
).

[7] If Ĥ(γ−1
c x, γcy | St

nt
) ≤ (1 − α) then set γb := γc; otherwise set γa := γc.

[8] If (γb − γa) > ε, where ε is a suitably small tolerance value, repeat steps [6]–[7].

[9] If Ĥ(γ−1
c x, γcy | St

nt
) ≤ (1 − α) set γ̂α,nt(x, y) := γa; otherwise set γ̂α,nt(x, y) := γc.

Note that finding γa first reduces the computational burden. Given γa, γb can be found using

only the subset of sample observations that dominate the point (γ−1
a x, γay). Moreover, only

this same subset of observations need be used in the first pass through steps [6]–[7]. Upon

reaching step [8], the relevant subset of observations can be further reduced each time γa is

reset in step [7]. Setting the convergence tolerance ε in step [8] to 10−6 will yield solutions

accurate to 5 decimal places, which is likely to be sufficient for most applications.15 The

algorithm presented here has been implemented in the freely-available FEAR library provided

by Wilson (2007).

15Note that many rational decimal fractions become irrational numbers in the base-2 representation used
by modern digital computers; e.g., the base-10 fraction 0.95 has no exact representation in base-2. To avoid
problems with the logical comparisons in steps [7] and [9], comparisons should be made against (1 − α − ν)
instead of (1 − α), where ν is the smallest positive real number that can be represented on the computer
architecture in use that yields the result 1− ν 
= 1. For machines using 64-bit IEEE arithmetic, this number
is 2−53 ≈ 1.110223× 10−16.
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Daouia and Simar (2007) describe a method for finding exact solutions for their input-

and output-oriented conditional hyperbolic quantile estimators. It is similarly possible to

obtain exact solutions for the unconditional hyperbolic quantile estimator; see Wheelock

and Wilson (2007) for details. However, due to storage requirements, sorting, and the large

number of logical comparisons required by the exact method, computing γ̂α,nt(x, y) using

the bisection method is much faster than the exact method. Given that (i) in any dataset,

variables typically have at most only a few significant digits, and (ii) our numerical solution

can be made accurate to an arbitrary degree by choosing a suitably small value of the

tolerance value ε, there seems to be no disadvantage in using the numerical procedure in

applied research.

Some asymptotic results from Daouia and Simar (2007) have been extended to the

hyperbolic α-quantile distance function estimator γ̂t
α,nt

(x, y) of γt
α(x, y). First, Whee-

lock and Wilson (2007, Theorem 4.2) establish that γ̂t
α,nt

(x, y) converges completely:

γ̂t
α,nt

(x, y)
c−→ γt

α(x, y) as nt → ∞.16 Hence, γ̂t
α,nt

(x, y) is a strongly consistent estima-

tor of γt
α(x, y).

In addition, assuming α ∈ (0, 1) and H t(γ−1x, γy) is differentiable with respect to γ

near γ = γt
α(x, y), Wheelock and Wilson (2007, Theorem 4.3) establish that γ̂t

α,nt
(x, y) is

asymptotically normally distributed, with convergence at the classical, parametric root-n

rate; i.e.,
√

nt

(
γ̂t

α,nt
(x, y) − γt

α(x, y)
) d−→ N

(
0, σ2

α(x, y | t)
)

(3.5)

where

σα(x, y | t)2 = α(1 − α)

[
∂H t (γα(x, y)−1x, γα(x, y)y)

∂γα(x, y)

]−2

. (3.6)

Consequently, the hyperbolic quantile efficiency estimator γ̂t
α,nt

(x, y) does not suffer from the

curse of dimensionality that plagues most non-parametric estimators since its convergence

rate depends solely on the sample size nt and involves neither p nor q. These results are not

surprising, given that similar results were obtained by Daouia and Simar (2007) for estimators

of the input- and output-oriented conditional α-quantile distance functions defined in (2.12)–

(2.13).

16A sequence of random variables {ζn}∞n=1 converges completely to a random variable ζ, denoted by
ζnt

c−→ ζ, if limn→∞
∑n

j=1 Pr (|ζj − ζ| ≥ ε) < ∞ ∀ ε > 0. This type of convergence was introduced by Hsu
and Robbins (1947). Complete convergence implies, and is a stronger form of convergence than almost-sure
convergence, which implies and is stronger than convergence in probability.
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It is important to note that the results described above do not hold if α = 1. In particular,

if α = 1, the hyperbolic α-quantile estimator defined in (3.4) measures distance along a

hyperbolic path to the FDH of the sample data (see equation (3.1)). In this case, the

estimator has an asymptotic Weibull distribution, with convergence rate n
−1/(p+q)
t . Similarly,

if α = 1, the conditional α-quantile distance function estimators described by Daouia and

Simar (2007) become equivalent to FDH estimators of Shephard (1970) input and output

distance functions, which converge at the rate n−1/(p+q), as discussed in Section 3.1.

On the other hand, if α is viewed a sequence in nt tending to 1 (at an appropriate rate) as

nt → ∞, then an interesting interpretation is possible. Daouia and Simar (2007) show that

for their conditional α-quantile distance function estimators, allowing α → 1 as nt → ∞,

permits their estimators to be interpreted as robust estimators of distance to the full frontier

P t∂ , rather than of distance to the conditional α-quantiles P t∂
x,α and P t∂

y,α. Similar results

hold for the hyperbolic α-quantile distance function estimator. Wheelock and Wilson (2007,

Theorem 4.4) show that provided Assumptions 2.3–2.5 hold and the order of α(nt) > 0 is

such that n
(p+q+1)/(p+q)
t (1 − α(n)) → 0 as nt → ∞, then for any (x, y) ∈ Pt,

n
1/(p+q)
t

(
γt(x, y) − γ̂t

α(nt),nt
(x, y)

) d−→ Weibull
(
μp+q
H,0 , p + q

)
(3.7)

where μH,0 is a constant. An expression for μH,0 as well as proofs of the asymptotic results

listed above are given in Wheelock and Wilson (2007). The result in (3.7) means that

the hyperbolic α-quantile distance function estimator can be seen as a robust estimator of

the hyperbolic distance (to the full frontier P t∂) defined in (2.5) when α is regarded as a

sequence in n tending to 1 at the appropriate rate. Consequently, estimators of the indices

for efficiency change, productivity change, and technical change defined below Section 4 can

be viewed in terms of either partial or full frontiers. Of course, when viewed as an estimator

of distance to the full frontier, γ̂t
α(n),n(x, y) trades its root-n convergence rate when α is fixed

for the slow convergence rate of FDH estimators, but retains the advantage of robustness.

4 Measuring and Estimating Changes in Performance

Given the interest in technical efficiency in cross-sectional contexts, it is natural to ask how

efficiency evolves over time. In competitive industries, one would expect inefficient firms to
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be driven from the market, but this does not happen instantaneously, and firms that are

inefficient today may become more efficient tomorrow and vice-versa.

Using the hyperbolic measure of efficiency defined in (2.7), an estimate of efficiency change

is given by the ratio γt2
α (xit2 , yit2)/γ

t1
α (xit1 , yit1), where (xit1 , yit1) and (xit2 , yit2) denote firm

i’s location in the input-output space at times t1 < t2. A value less than (equal to, greater

than) unity indicates an increase (no change, a decrease) in technical efficiency measured

relative to the α-quantiles at times t1 and t2.

To get an idea of industry-wide performance, one might consider mean changes in effi-

ciency; given the multiplicative nature of the efficiency measures, researchers typically use

geometric, rather than arithmetic, means. Let I(t1, t2) be the set of firms in existence at

both times t1 and t2, and let #I(t1, t2) denote the number of firms in this set. Then, for the

quantile-based measure of efficiency, define

Eα(t1, t2) =

⎡
⎣ ∏

i∈I(t1,t2)

γt2
α (xit2 , yit2)

γt1
α (xit1 , yit1)

⎤
⎦

1/#I(t1,t2)

. (4.1)

Eα(t1, t2) measures the (geometric) mean change in efficiency between times t1 and t2, relative

to the unconditional, hyperbolic α-quantiles at times t1 and t2.

In the case of one input and one output, one can judge productivity simply by the ratio

of output to input quantities. If P t∂ exhibits constant returns to scale everywhere, there

is little difference between productivity and efficiency, although they might be measured

differently. With variable returns to scale, however, technically efficient firms operating

along P t∂ in regions of either increasing or decreasing returns to scale will be less productive

than technically efficient firms operating along the constant-returns region of P t∂ ; they may

also be less productive than some technically inefficient firms.

In cases of multiple inputs and multiple outputs, productivity cannot be measured reliably

by simple ratios. Instead, in dynamic contexts, Malmquist indices are typically used to

measure changes in productivity. These indices are usually defined in terms of the Shephard

input and output distance functions defined in (2.3) and (2.4), which in turn are estimated

by the DEA estimators discussed in Section 3; see Färe and Grosskopf (1996) for examples

and discussion.
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Malmquist indices can also be defined in terms of hyperbolic quantile measures. Define

P t
α =

{
(x, y) | x ≥ x̃, y ∈ [0, ỹ] ∀ (x̃, ỹ) ∈ Pt∂

α

}
. (4.2)

Then P t∂
α is the closure of the compliment of the closed set P t

α, just as P t∂ is the closure of

the compliment of P t. Recall that the operator V(·) was introduced in Section 3.1 to denote

the convex cone of a set in R
p+q
+ ; hence P t

α ⊆ V(P t
α). Also note that different distance

functions can be defined by replacing P t in (2.5) with some other set to measure distance

from (x, y) to the boundary of the other set; e.g., γ(x, y | V(P t
α)) measures distance from

(x, y) along a hyperbolic path (γ−1x, γy), γ > 0, the boundary of the set V(P t
α).

A hyperbolic-quantile-based Malmquist index is defined by the geometric mean

Mα(t1, t2) ≡

⎧⎪⎨
⎪⎩
⎡
⎣ ∏

i∈I(t1,t2)

γ
(
xit2 , yit2 | V(P t1

α )
)

γ
(
xit1 , yit1 | V(P t1

α )
) × γ

(
xit2 , yit2 | V(P t2

α )
)

γ
(
xit1 , yit1 | V(P t2

α )
)
⎤
⎦

1
2

⎫⎪⎬
⎪⎭

1
#I(t1,t2)

. (4.3)

This index provides a measure of the mean change in the productivity of firms from time t1

to t2. The index is analogous to those proposed by Färe et al. (1992, 1994), but with two

important differences. First, productivity is benchmarked against the boundaries of V(P t1
α )

and V(P t2
α ), rather than the boundaries of V(P t1) and V(P t2). Second, the hyperbolic

direction is used, rather than an input or output direction. As noted in the introduction,

measurement along hyperbolic paths avoids the ambiguity discussed in Section 1.

The index Mα(t1, t2) in (4.3) is a geometric mean of two ratios appearing inside the

square brackets in (4.3). The first ratio inside the square brackets measures the change in

productivity using as a benchmark the convex cone of the set bounded by the hyperbolic α-

quantile P t1∂
α prevailing at time t1, while the second ratio measures productivity change using

as a benchmark the convex cone of the set bounded by the quantile P t2∂
α prevailing at time

t2. A particular firm either moves closer to each benchmark (becoming more productive),

farther from each benchmark (becoming less productive), or closer to one and farther from

the other. Values of the Malmquist index less than (equal to, greater than) unity indicate

an increase (no change, a decrease) in productivity.

Malmquist indices can be decomposed to identify the sources of changes in productivity,

and various decompositions of output- and input-oriented Malmquist indices have been pro-

posed in the literature (see Wheelock and Wilson, 1999 for an example). Although many
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decompositions are possible, a measure of efficiency change such as the one defined in (4.1)

and a measure of technical change are common to most decompositions that have appeared

in the literature. In terms of hyperbolic α-quantiles, industry-wide technical change is mea-

sured by the geometric mean

Tα(t1, t2) ≡

⎧⎪⎨
⎪⎩
⎡
⎣ ∏

i∈I(t1,t2)

γt1
α

(
xit1 , yit1

)
γt2

α

(
xit1 , yit1

) × γt1
α

(
xit2 , yit2

)
γt2

α

(
xit2 , yit2

)
⎤
⎦

1
2

⎫⎪⎬
⎪⎭

1
#I(t1,t2)

, (4.4)

where γtk
α

(
xitj , yitj

)
measures distance from firm i’s location at time tj to the hyperbolic α

quantile P tk
α prevailing at time tk, along a hyperbolic path.

The term inside the braces in (4.4) is a geometric mean of two ratios that measure the

shift in the α-quantile relative to the ith firm’s position at times t1 and t2. The first ratio

will be less than (equal to, greater than) unity when distance from the point (xit1 , yit1) along

the hyperbolic path (γ−1xit1 , γyit1), γ > 0, to the hyperbolic α-quantile increases (remains

the same, decreases) from time t1 to t2. Similarly, the second ratio will be less than (equal

to, greater than) unity when distance from the point (xit2 , yit2) along the hyperbolic path

(γ−1xit2 , γyit2), γ > 0, to the hyperbolic α-quantile increases (remains the same, decreases)

from time t1 to t2. Hence Tα(t1, t2)(<, =, >)1 indicates that on average, the hyperbolic

α-quantile (shifts outward, remains unchanged, shifts inward).

Finally, note that one can define estimators of Eα(t1, t2) and Tα(t1, t2) by replacing the

distance functions on the right-hand sides of (4.1) and (4.4) with the corresponding quantile-

based estimators discussed previously in Section 3. To estimate Mα(t1, t2) in (4.3), note that

an observation (xit, yit) can be projected onto the estimated hyperbolic α-quantile P̂t∂
α by

computing (γ̂t
α(xit, yit)

−1xit, γ̂t
α(xit, yit)yit). Define the set of projected observations

S∗
ntt =

{(
γ̂t

α(xit, yit)
−1xit, γ̂t

α(xit, yit)yit

)}nt

i=1
. (4.5)

Then the hyperbolic distance functions that appear in (4.3) can be estimated by computing

distance function estimates γ(x, y | V(P̂(S∗
ntt))) =

[
θ(x, y | V(P̂(S∗

ntt)))
]1/2

by solving the

appropriate linear programs and taking square roots (see footnote 13 for discussion).
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5 Bank Production and Data

Distance function estimation using the estimators described in Section 2 requires the spec-

ification of production inputs and outputs. For our study of commercial banks, we define

five inputs and five outputs which, with one exception (the measure of off-balance sheet out-

put), are those used by Berger and Mester (2003). Our inputs are purchased funds, which

consists of time deposits over $100,000, foreign deposits, federal funds purchased, and vari-

ous other borrowed funds; core deposits, which consists of domestic transactions accounts,

time deposits under $100,000 and savings deposits; labor; physical capital, which consists

of premises and other fixed assets; and financial equity capital. Our outputs are consumer

loans, business loans, real estate loans, securities, and off-balance sheet items, which con-

sist of total non-interest income minus service charges on deposits.17 With the exception

of labor input (which is measured as full-time equivalent employees) and off-balance sheet

items (which are measured in terms of net flow of income), inputs and outputs are stocks

measured by dollar amounts reported on bank balance sheets, rather than number of loans

or deposits, or loan income or deposit interest expenses. This approach is consistent with

the widely used “intermediation” model of Sealey and Lindley (1977).

Our data come from Reports of Income and Condition (Call Reports) for all U.S. com-

mercial banks at year-end 1985, 1994, and 2004. We omitted banks with missing or negative

values for any input or output, and converted dollar values to constant year-2000 prices using

the GDP deflator. Our sample consists of 11,993, 9,585, and 6,075 observations for 1985,

1994, and 2004, respectively, and comprises at least 95 percent of all commercial banks in

operation in these years. Table 1 reports descriptive statistics for each input and output.

Although our annual sample sizes may seem large, at least by parametric standards, they

are in fact small for the non-parametric DEA and FDH estimators given the high dimension-

ality of our application. With five inputs (p) and five outputs (q), we have (p+q) = 10 dimen-

sions. The potential for the curse of dimensionality to affect DEA and FDH estimation can

be gaged by a rough comparison of equivalent sample sizes. For the quantile, DEA, and FDH

17Of the various commonly used measures of off-balance sheet output, this definition is the most consis-
tently measurable across banks and over time. We also used an “asset-equivalent” definition of off-balance
sheet items in a second set of estimates and obtained qualitatively identical results except as noted below.
See Clark and Siems (2002) for discussion of alternative measures of off-balance sheet items, and Berger and
Mester (2003) for additional details about the computation of the other inputs and outputs.
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estimators, we have convergence rates of n−1/2, n−2/(p+q+1), and n−1/(p+q), respectively. Thus,

to achieve the same order of magnitude in estimation error as obtained with the quantile esti-

mator with n = 100 observations, the DEA estimator would require
(
100−1/2

)−11/2
= 316, 227

observations, while the FDH estimator would require
(
100−1/2

)−10
= 105 observations.18

6 Empirical Results

We computed efficiency estimates for all U.S. commercial banks in 1985, 1994, and 2004,

using the hyperbolic α-quantile estimator described previously. Table 2 reports the mean

estimated change in efficiency Eα(t1, t2) between 1985 and 1994 for banks in each asset-size

quartile.19 Quartile “Q1” consists of banks in the smallest-size quartile in a given year, “Q2”

consists of those in the next smallest-size quartile, etc. Because the distribution of banks by

size is extremely skewed, we divide “Q4,” the largest-size quartile, into two groups. “Q4a”

consists of banks in the largest-size quartile with total assets of less than $1 billion, and

“Q4b” consists of those with at least $1 billion of total assets in a given year.20 In empirical

applications, a value for α must be chosen; apart from the theoretical properties mentioned

above in Section 3.2 that follow from viewing α as a sequence converging to 1 as n → ∞,

our sample is finite, with fixed sample size. After examining results obtained with α = 0.95,

0.99, and 0.999, we found that our qualitative results were robust with respect to the various

choices of values for α. We report results in Table 2 (as well as in all of the tables that

18Illustrating the curse of dimensionality, FDH estimates of efficiency equal 1.0 for all observations in each
year; in other words all observations lie on the FDH frontier. By contrast, only 7.9 to 8.8 percent of the
sample observations in 1985, 1994, or 2004 yield DEA efficiency estimates equal to 1.0. Thus, all of the
apparent inefficiency indicated by DEA estimates is due solely to the incorporation of an assumption of
convexity on the production set by the DEA estimator. Recall that the DEA frontier estimator is merely
a convexification of the FDH frontier estimator; the result here implies that many observations in a given
year that lie on the FDH frontier estimate lie below facets of the DEA frontier estimate. Projecting a given
number of observations in increasing numbers of orthogonal directions (i.e., increasing dimensionality of the
problem) necessarily increases the chance that a given observation will become undominated by any of the
other observations, and hence will lie on the FDH frontier estimate.

19Empirical results were obtained using the FEAR library (Wilson, 2007).
20The first, second, and third quartiles of the distribution consist of banks with total assets in the following

ranges: For 1985: $0–$27.760, $27.760–$53.590, and $53.590–$286.700 million (year 2000 dollars); for 1994:
$0–$32.900, $32.900–$62.960, and $62.960–$354.500 million (year 2000 dollars); and for 2004: $0–$48.120,
$48.120–$92.210, and $92.210–$511.900 million (year 2000 dollars). In both 1985 and 1994, 349 banks had
total assets exceeding $1 billion (year 2000 dollars), and in 2004, 230 banks had total assets exceeding $1
billion (year 2000 dollars).
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follow) obtained with α = 0.99.21

Row labels in Table 2 refer to the quartiles for 1985 and the column labels refer to the

quartiles for 1994. Thus, for example, the upper-left most cell reports the geometric mean

estimate of efficiency change for the 1,480 banks that were in quartile “Q1” in both 1985

and 1994. Mean values greater than 1 indicate a decrease in efficiency, whereas those less

than 1 indicate an increase in efficiency. Changes that are statistically significant at 90, 95,

and 99 percent are indicated by one, two, or three asterisks.22

Whereas the mean change in efficiency for the 1,480 banks in the smallest-size quartile in

both 1985 and 1994 is not significantly different from zero, the 361 banks that moved from

the smallest-size quartile (“Q1”) in 1985 to the second quartile (“Q2”) in 1994 experienced

a statistically-significant mean efficiency decline of 7.5 percent. Similarly, the 88 banks in

“Q1” in 1985 that moved to “Q3” in 1994 had a mean decline of 4.85 percent.

Not all groups of banks experienced a decline in efficiency. For example, the 22 banks

that moved from “Q1” in 1985 to “Q4a” in 1994 had a mean efficiency increase of 17.2

percent. Our results indicate that larger banks tended to experience larger efficiency gains

than small banks, with the largest gains obtained by banks in the largest-size quartile in

1994, regardless of their size in 1985.

Table 3 reports mean estimates of efficiency change for U.S. banks between 1994 and

2004. Qualitatively, the results are similar to those for 1985-1994. In general, banks with

at least $1 billion of assets experienced the largest efficiency gains. The only statistically

21Daouia and Simar (2007) employ a similar strategy in their example involving mutual funds data (Section
6.3 of their paper), and also note that for their results, “the choice of α is not so important.” As discussed
in Sections 1 and 3, the attractive statistical properties of the hyperbolic quantile estimator stem from the
fact that quantiles lying close to the boundary of support of the input-output distribution, but not the
boundary itself, are estimated. For a given sample size, α should be chosen “close” to 1, but not so close
that the estimator collapses to the FDH estimator, losing the root-n convergence rate, etc. With α = 0.99,
one-percent of the sample will dominate any point projected onto the α-quantile. Daouia and Simar (Section
6.3) remark that in their example, α = 0.99 yields results close to the FDH case, but their data include only
129 observations. In our application, the sample size is much larger in each of the three years we examine,
and consequently even with α = 0.999, our results are somewhat different from the FDH case.

22Under the null hypothesis of no change in efficiency, the measure defined in (4.1) equals
1. Replacing the unknown, true distance functions on the right-hand side of (4.1) with
the corresponding estimators and then taking logs on both sides yields log

(
Êα(t1, t2)

)
=

1
#I(t1,t2)

∑
i∈I(t1,t2)

[
log

(
γ̂t2

α (xit2 , yit2)
)
− log

(
γ̂t1

α (xit1 , yit1 )
)]

. Under the null, γ̂t2
α (xit2 , yit2) and

γ̂t1
α (xit1 , yit1) (and their logs) have the same mean; hence log

(
Êα(t1, t2)

)
has mean zero. The Lindeberg-

Feller central limit theorem yields asymptotic normality, allowing significance testing.
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significant decline in mean efficiency is for “Q1” banks in 1994 that moved to “Q2” in 2004.

Finally, Table 4 reports mean estimates of efficiency change for 1985 to 2004. Quali-

tatively, the estimates are similar to those for the 1985-94 and 1994-2004 sub-periods. In

general, banks that had at least $1 billion of assets in 2004 experienced the largest efficiency

improvement. Again, however, the only statistically significant estimated decline in efficiency

is for “Q1” banks in 1985 that moved to “Q2” in 2004.

Because efficiency is measured relative to the position of the quantile, observed changes in

the efficiency of a bank over time can result either from a change in the bank’s productivity,

movement of the quantile, or from a combination of the two. Tables 5–7 report estimates of

mean productivity change M(t1, t2) for 1985-1994, 1994-2004, and 1985-2004, respectively.

Values less than 1 indicate productivity improvement, whereas values greater than 1 reflect

a decline in productivity.

For 1985-94, the mean estimates reflect a general improvement in productivity across

banks. For example, the banks that had at least $1 billion of assets in both 1985 and 1994

(“Q4b”) experienced a mean estimated productivity gain of 7.1 percent. Smaller banks

tended to fair less well. The mean estimates of productivity change for banks in the two

smallest-size quartiles in 1994 (“Q1” and “Q2”) are not statistically different from zero,

except for banks that moved from the smallest-size quartile (“Q1”) in 1985 to the second

quartile (“Q2”) in 1994. For those banks we estimate a mean decline in productivity of 3.5

percent, which accounts for at least some of their estimated decline in efficiency.

The estimates reported in Table 6 indicate that productivity generally declined between

1994 and 2004 for all but the largest banks. For example, we estimate a mean productivity

decline of 10.3 percent for banks located in quartile “Q1” in both years. Our estimates

indicate declines of a similar order of magnitude for banks in the smallest-size quartiles, and

statistically insignificant productivity gains for banks with at least $1 billion of assets.23

Finally, for the entire period 1985-2004, our estimates indicate statistically significant

productivity declines for smaller banks, and statistically significant improvements for larger

banks. As shown in Table 7, we find a tendency for banks in the smallest three size quartiles

in 2004 to have become less productive, regardless of their size in 1985. For banks with at

23We obtain statistically significant estimates of productivity improvement in the range of 5–15 percent for
banks in the fourth quartile in 1994 that had at least $1 billion of assets in 2004 (“Q4b”), when we replace
the non-interest income measure of off-balance sheet items with an asset-equivalent measure.

23



least $1 billion of assets in 2004, however, we find a tendency for productivity gains. For

example, for banks with at least $1 billion of assets in both 1985 and 2004, we estimate a

mean improvement of 11.2 percent.

Tables 8–10 report estimates of mean technology change T (t1, t2), which reflect move-

ments in the α-quantile. Values less than 1.0000 reflect outward movement of the quantile,

whereas values greater than 1.0000 reflect inward movement, or reduced production possi-

bilities. For 1985–94, the mean estimates by quartile, though statistically significant, are

generally small. The estimated mean shift in the quantile for banks with at least $1 billion

of assets in both years, however, is a 14.5 percent outward movement. By contrast, for 1994-

2004, our estimates indicate a general inward movement of the quantile, as do our estimates

for 1985-2004 as a whole. For example, for banks in quartile “Q1” in both years, we estimate

a mean 13.1 percent inward shift in the quantile between 1985 and 2004.

In addition to the estimates reported in Tables 2–10, which are based on the hyperbolic

distance measure, we also produced estimates of efficiency change, productivity change, and

technical change using estimates of the input- and output-oriented distance functions defined

in (2.12) and (2.13).24 Qualitatively, our estimates are similar across the three estimators

for banks in the mid-size range, but in a number of cases are quite different for banks that

are in the smallest or largest size groups in one or both periods. For banks at the extremes

of the size distribution, the input- and output-oriented distance measures sometimes lead to

opposite conclusions about the direction, as well as magnitude, of any change in performance.

As discussed in Section 1, large banks that lie close to the quantile (or the full frontier) in the

output-direction—and consequently, also in the hyperbolic-direction—may lie quite distant

from the quantile (or the full frontier) in the input-direction. Similarly, very small banks

that lie close to the quantile or full frontier in the input-direction—and consequently also in

the hyperbolic-direction—may lie quite distant in the output-direction. Not surprisingly, we

find that for large banks, estimates of efficiency, productivity, and technical change based on

the hyperbolic distance measure are more similar to those produced by the output-oriented

measure than they are to those produced by the input-measure, whereas for small banks,

the hyperbolic-based estimates are more like those produced by the input-oriented measure.

24These results are available from the authors on request; we have not included these results here, in order
to conserve space.
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Overall, our estimation results based on hyperbolic α-quantiles indicate that U.S. banks

generally became more efficient between 1985 and 2004. Our estimates suggest that much

of this improvement was due to an inward shift of the α-quantile (and presumably also an

inward shift of the production possibilities frontier), however, rather than significant produc-

tivity gain. Our results are thus consistent with the view of Berger (2003) that in the face of

increased competition among banks and between banks and other financial intermediaries,

advances in information processing and financial technologies have not increased bank pro-

ductivity, but rather to a large extent have been “given away” to bank customers in the form

of improved service quality and lower prices. Although banks have tended to become more

efficient in the face of increased competition, with the exception of the largest institutions,

banks have not generally experienced significant productivity improvement.

Our findings are also consistent with the view expressed by Berger (2003), Bernanke

(2006) and others that technological advances have favored larger banks at the expense of

small lenders. Traditionally, small, community banks have found their niche in lending to

informationally-opaque borrowers, where the development of customer relationships is key

to overcoming information gaps that inhibit profitable lending. Advances in technology have

lowered information processing costs, brought improved credit-scoring methods, and enabled

increasingly sophisticated management techniques, however, that have eroded some of the

information benefits of relationship lending. Such advances appear to have enabled large

banks and other intermediaries to capture market share from small, community banks. Our

findings that larger banks have tended to experience larger gains in efficiency than smaller

banks, and that only the largest banks have enjoyed significant productivity improvement,

are consistent with these trends.

7 Conclusions

This paper describes an unconditional quantile estimator which we use to estimate the tech-

nical efficiency of U.S. commercial banks, and changes in efficiency and productivity between

1985 and 2004. Rapid advances in information and financial technology, and changes in regu-

lation, are changing the environment in which banks operate. Although recently the banking

industry has been profitable and failures have been rare, questions remain about the long-run

viability of commercial banks. Advances in technology, some observers contend, have favored
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non-bank intermediaries and enabled them to capture market share from banks. Similarly,

large banks have probably benefited more from advances in technology, and perhaps also

from deregulation, than have small, community banks.

Most studies of bank efficiency or productivity change use data from the 1980s or early

1990s and, hence, provide no information about how these aspects of bank performance have

changed more recently. Further, these studies all rely on empirical methods that impose

questionable specification assumptions or that have other undesirable properties. By con-

trast, the present study examines efficiency and productivity change through 2004, and uses

methods that avoid many of the problems inherent with past approaches.

Being fully non-parametric, the estimator described in this paper avoids the specification

issues inherent with parametric estimators. The quantile estimator retains, however, the

classical root-n convergence rate of parametric estimators, in contrast to the slow convergence

rates of most non-parametric frontier estimators, such as the FDH and DEA estimators.

Further, unlike FDH and DEA, which are acutely sensitive to outliers in the data, the

quantile estimator is robust with respect to outliers.

Our research findings support the claim that recent changes in technology and regulation

have tended to favor larger banks. Since 1985, banks with at least $1 billion of total assets

have, on average, experienced larger gains in efficiency and productivity than have smaller

banks. Indeed, though our results indicate a general improvement in efficiency, we find that

only the largest banks have experienced significant productivity gains. Thus, an apparent

inward shift in production possibilities, rather than significant productivity improvement,

explains much of the gains in efficiency for all but those banks with at least $1 billion of

assets. Our results are thus consistent with the view that deregulation and advances in

information and financial technology have tended to favor the largest banks at the expense

of small, community banks.
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Färe, R., and Grosskopf, S. (1996), Intertemporal Production Frontiers: With Dynamic DEA,
Boston: Kluwer Academic Publishers.
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Table 1: Summary Statistics for Inputs and Outputs

Variable Mean Median Std. Dev. Min Max

1985 (11993 observations)
purchased funds 116668 6230 2117428 28 138987254
core deposits 154791 41882 1036907 451 66596536
labor 117 26 1046 2 69286
physical capital 4323 909 40091 1 2504860
equity capital 17473 4544 154389 195 9548042
consumer loans 30201 6046 230908 16 13744537
business loans 100006 10082 1565607 3 90468741
real estate loans 43557 10110 374397 3 29309995
securities 112870 24235 1156479 1110 75603347
off-balance sheet items 2557 112 39772 0 2457114
1994 (9585 observations)
purchased funds 101510 6287 1435418 60 85091523
core deposits 229579 50534 1526510 87 86193016
labor 130 28 968 2 60798
physical capital 5395 948 47303 1 2963253
equity capital 28050 5858 219618 167 12741688
consumer loans 39728 4365 310176 5 13361878
business loans 75780 8382 928236 15 55259794
real estate loans 96685 17930 731268 40 47816007
securities 142086 26927 1221160 747 69235206
off-balance sheet items 4416 139 58156 0 2568008
2004 (6075 observations)
purchased funds 198812 16886 6117443 139 455604441
core deposits 270544 64640 3159656 2566 203900062
labor 136 33 2225 2 153158
physical capital 6012 1556 68568 0 3829974
equity capital 47537 9336 742035 355 46040144
consumer loans 37828 3860 912559 0 65069183
business loans 108916 12297 3347792 15 249880653
real estate loans 170730 38127 1598023 107 95453436
securities 193784 29860 4125693 715 264914267
off-balance sheet items 6892 222 231864 0 17313655

NOTE: Labor is measured in full-time equivalents; all other variables are measured in units
of one thousand constant year-2000 dollars.
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Table 2: Mean Estimates of Efficiency Change by Quartile, 1985–1994

1994
1985 Q1 Q2 Q3 Q4a Q4b

Q1 1.0074 1.0750∗∗∗ 1.0485∗ 0.8228∗∗ 0.5293∗∗∗

1480 361 88 22 2

Q2 0.9627∗∗∗ 1.0038 0.9942 0.9060∗∗∗ 0.7421∗∗∗

321 1166 460 79 2

Q3 0.7407 0.9812∗ 0.9885∗∗ 0.9368∗∗∗ 0.5645∗∗

4 300 1232 407 3

Q4a — 0.9850 0.9735∗ 0.9274∗∗∗ 0.7792∗∗∗

0 4 147 1250 104

Q4b — — — 1.1015 0.8652∗∗∗

0 0 0 2 202

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.

31



Table 3: Mean Estimates of Efficiency Change by Quartile, 1994–2004

2004
1994 Q1 Q2 Q3 Q4a Q4b

Q1 0.9748∗∗∗ 1.0626∗∗∗ 0.9993 0.9669 0.3209∗∗∗

1079 263 72 31 2

Q2 0.9348∗∗∗ 0.9799∗∗∗ 0.9793∗∗ 0.9770 —
233 725 318 84 0

Q3 0.9309 0.9769 0.9687∗∗∗ 0.9445∗∗∗ 0.7362∗∗∗

4 197 709 318 8

Q4a — — 0.9597∗ 0.9261∗∗∗ 0.6788∗∗∗

0 0 80 621 127

Q4b — — — — 0.3555∗∗∗

0 0 0 0 53

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Table 4: Mean Estimates of Efficiency Change by Quartile, 1985–2004

2004
1985 Q1 Q2 Q3 Q4a Q4b

Q1 0.9713∗∗ 1.1000∗∗∗ 1.0489 0.9866 0.4222∗∗∗

791 274 124 62 3

Q2 0.9133∗∗∗ 0.9930 0.9976 0.9017∗∗∗ 0.7395∗∗

297 497 295 129 5

Q3 0.9284∗∗ 0.9616∗∗∗ 0.9643∗∗∗ 0.9249∗∗∗ 0.4449∗∗∗

23 257 533 296 19

Q4a — 1.0233 0.9602∗ 0.8898∗∗∗ 0.5725∗∗∗

0 6 80 397 106

Q4b — — — — 0.2459∗∗∗

0 0 0 0 35

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Table 5: Mean Estimates of Productivity Change by Quartile, 1985–1994

1994
1985 Q1 Q2 Q3 Q4a Q4b

Q1 0.9982 1.0352∗∗∗ 1.0039 0.8049∗∗ 0.8878∗∗∗

1476 361 88 22 2

Q2 0.9825 1.0084 0.9994 0.9459∗∗∗ 1.1588∗∗

320 1163 460 79 2

Q3 0.7623 0.9869 0.9982 0.9682∗∗∗ 0.8257
4 299 1232 407 3

Q4a — 1.0188 0.9727∗∗ 0.9534∗∗∗ 0.9273∗∗∗

0 4 147 1249 104

Q4b — — — 1.1251 0.9292∗∗∗

0 0 0 2 202

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Table 6: Mean Estimates of Productivity Change by Quartile, 1994–2004

2004
1994 Q1 Q2 Q3 Q4a Q4b

Q1 1.1034∗∗∗ 1.1441∗∗∗ 1.0539 1.0133 0.6373
1079 263 72 31 2

Q2 1.0679∗∗∗ 1.1044∗∗∗ 1.0609∗∗∗ 1.0672∗∗ —
233 725 318 84 0

Q3 1.0134 1.0897∗∗∗ 1.0863∗∗∗ 1.0394∗∗∗ 1.0375
4 197 709 318 8

Q4a — — 1.072∗∗∗ 1.0331∗∗∗ 0.9906
0 0 80 621 127

Q4b — — — — 0.9794
0 0 0 0 53

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Table 7: Mean Estimates of Productivity Change by Quartile, 1985–2004

2004
1985 Q1 Q2 Q3 Q4a Q4b

Q1 1.0770∗∗∗ 1.1699∗∗∗ 1.0717∗∗ 1.0294 0.6371∗∗∗

786 274 124 62 3

Q2 1.0393∗∗ 1.1280∗∗∗ 1.1250∗∗∗ 1.0303 1.0592
294 495 295 129 5

Q3 1.0352 1.0704∗∗∗ 1.0959∗∗∗ 1.0661∗∗∗ 0.8024∗

23 255 533 296 19

Q4a — 1.1144 1.0675∗∗∗ 1.0160 0.9295∗∗∗

0 6 80 397 106

Q4b — — — — 0.8877∗∗

0 0 0 0 35

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Table 8: Mean Estimates of Technology Change by Quartile, 1985–1994

1994
1985 Q1 Q2 Q3 Q4a Q4b

Q1 0.9963∗∗∗ 1.0082∗∗∗ 0.9991 0.9782∗ 0.8488∗∗

1480 361 88 22 2

Q2 1.0065∗∗∗ 1.0115∗∗∗ 1.0047∗∗ 0.9919 1.0038
321 1166 460 79 2

Q3 1.0129 1.0184∗∗∗ 1.0106∗∗∗ 0.9879∗∗∗ 0.9937
4 300 1232 407 3

Q4a — 1.065∗∗ 1.0229∗∗∗ 0.9937∗∗∗ 0.9609∗∗∗

0 4 147 1250 104

Q4b — — — 1.1248∗∗∗ 0.8546∗∗∗

0 0 0 2 202

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Table 9: Mean Estimates of Technology Change by Quartile, 1994–2004

2004
1994 Q1 Q2 Q3 Q4a Q4b

Q1 1.1444∗∗∗ 1.0962∗∗∗ 1.0713∗∗∗ 1.0365∗∗∗ 1.2855∗∗

1079 263 72 31 2

Q2 1.1265∗∗∗ 1.1059∗∗∗ 1.0594∗∗∗ 1.0207∗∗∗ —
233 725 318 84 0

Q3 1.0989∗∗∗ 1.0961∗∗∗ 1.0842∗∗∗ 1.0327∗∗∗ 0.9877
4 197 709 318 8

Q4a — — 1.0988∗∗∗ 1.0646∗∗∗ 1.1083∗∗∗

0 0 80 621 127

Q4b — — — — 1.6483∗∗∗

0 0 0 0 53

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Table 10: Mean Estimates of Technology Change by Quartiles, 1985–2004

2004
1985 Q1 Q2 Q3 Q4a Q4b

Q1 1.1308∗∗∗ 1.0918∗∗∗ 1.0375∗∗∗ 1.0027 0.9878
791 274 124 62 3

Q2 1.1207∗∗∗ 1.1046∗∗∗ 1.0711∗∗∗ 1.0166∗ 0.9185∗∗∗

297 497 295 129 5

Q3 1.1224∗∗∗ 1.0937∗∗∗ 1.0746∗∗∗ 1.0113∗ 0.9518
23 257 533 296 19

Q4a — 1.1027∗∗∗ 1.0866∗∗∗ 1.0307∗∗∗ 1.0429∗∗

0 6 80 397 106

Q4b — — — — 1.4206∗∗∗

0 0 0 0 35

NOTE: Each cell contains two entries; the top entry gives the mean, and the bottom entry
gives the number of observations. One, two, or three asterisks indicate significance at 90,
95, or 99-percent, respectively.
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Figure 1: Conditional Input, Conditional Output, and Hyperbolic Quantiles (α = 0.99;
f(x, y) uniform over a triangle)
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NOTE: The solid curve shows the frontier P t∂ . The dashed curve illustrates the hyperbolic
α quantile P t∂

α . The two dotted curves show conditional α-quantiles; the steeper of the two
is the input conditional α-quantile, while the less-steeply sloped dotted curve corresponds to
the output conditional α-quantile.
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Figure 2: Conditional Input, Conditional Output, and Hyperbolic Quantiles (α = 0.99;
f(x, y) uniform over a quarter-circle)
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NOTE: The solid curve shows the frontier P t∂ . The dashed curve illustrates the hyperbolic
α quantile P t∂

α . The two dotted curves show conditional α-quantiles; the steeper of the two
is the input conditional α-quantile, while the less-steeply sloped dotted curve corresponds to
the output conditional α-quantile.
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