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Abstract 

This paper presents new evidence of spatial correlation in U.S. state income 
growth.  We extend the basic spatial econometric model used in the growth 
literature by allowing spatial correlation in state income growth to vary across 
geographic regions.  We find positive spatial correlation in income growth rates 
across neighboring states, but that the strength of this spatial correlation varies 
considerably by region.  Spatial correlation in income growth is highest for states 
located in the Northeast and the South.  Our findings have policy implications 
both at the state and national level, and also suggest that growth models may 
benefit from incorporating more complex forms of spatial correlation.      
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Regional Disparities in the Spatial Correlation of State Income Growth 
 

 
1.  Introduction 
 

In recent years, it has become common to use spatial econometric techniques to 

investigate the role of location as a determinant of economic growth (see Abreu et al. (2004) for 

a survey).  From the estimation of a variety of cross-country and sub-national models, the 

literature has generally concluded that a country or region's growth can be substantially 

dependent on the growth (or lack thereof) of other countries or regions.   

Although the models of spatial correlation appearing in the literature do vary, they all 

share a common characteristic in that they restrict potential spatial correlations between countries 

or regions to be the same across all geographic divisions in the sample.  Evidence of regional 

differences in economic performance during national business cycles and in response to 

economic integration both in the European Union and United States suggests, however, that the 

influence of spatial correlations among neighbors could vary across regions.1  In this paper we 

extend the typical spatial econometric model of growth to allow for regional variation in spatial 

correlations.  We estimate the model using data on U.S. states, for which control variables have 

been extensively researched (see Crain and Lee, 1999) and where measurement problems are less 

thorny than with a cross-country study. 

 Consistent with the broader literature, we find evidence of positive spatial correlation in 

state-level income growth across the United States as a whole.  That is, when spatial correlation 

is assumed to affect all states equally, we find that a given state’s income growth is directly 

related to the income growth of its neighbors.  However, when we allow for regional differences 

in the impact of spatial correlation in state income growth, we find large and statistically 
                                                      
1 See DeJuan and Tomljanovich (2005), Barrios and de Lucio (2003), and Carlino and Sill (2001) for a review of 
recent work in this area.  
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significant differences across regions in the effects of spatial correlation.  Since the regional-

specific spatial models also "fit-the-data" better than the standard models with common spatial 

effects, our results suggest that more complex forms of spatial correlation may be at work in 

growth dynamics.  

 

2.  Literature Review 

Although the connection between location and growth is deep-rooted, DeLong and 

Summers (1991) were the first to discuss the possibility that spatial patterns may exist in 

standard cross-country growth regressions.  They observed that since omitted variables in 

neighboring countries are likely to take on similar values, citing the similarities between Belgium 

and the Netherlands as an illustration, the residuals from a 'standard' growth regression could be 

correlated across countries.  Although DeLong and Summers (1991) found no evidence of 

spatially correlated residuals in their data, their recognition of the potential for spatial correlation 

prompted further examination.  Over the past several years, the notion that location can affect 

growth has evolved to reflect the broader view that direct and indirect linkages between regions 

or countries are important in understanding growth dynamics.   

For instance, economic growth in a region or country can be influenced by regional 

business cycles, flows of trade, capital, and migration, as well as political instability and armed 

conflicts, technology diffusion, access to product and input markets, and common economic, 

political, and social arrangements (Moreno and Trehan 1997; Ades and Chua 1997; Ramirez and 

Loboguerrero 2002; Ying 2005).  From a more practical perspective, Rey and Montouri (1999) 

also discuss the possibility that boundary mismatch problems can produce spatial correlation.  

Such a problem arises when the economic notion of a market does not correspond well with the 
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geographical boundaries used for data collection.  For instance, the "true" labor market of a 

metropolitan area that is located in one state, but borders one or more other states, could easily 

encompass a multi-state area.  

While spatial correlation in cross-sectional regression models might be mitigated by 

including additional control variables, the problem is often more difficult to address in practice 

because of measurement issues and complex spatial correlations (Anselin 1988).  In addition, 

failing to correct for spatial correlation can result in either biased and inconsistent, or inefficient 

parameter estimates, depending on the nature of the correlation (Anselin 1988).   

Spatial correlation is usually addressed using explicit spatial econometric techniques.  In 

the growth literature, the use of spatial techniques has focused almost exclusively on the 

estimation of either a spatial lag or a spatial error model (Abreu et al. 2004).  Spatial lag models 

allow for spillovers in the dependent variable and spatial error models permit correlation in 

model errors across geographic units. 

As Abreu et al. (2004) note, a large majority of the studies that use spatial econometric 

models to examine growth have employed a convergence framework to explore reductions in the 

dispersion of cross-sectional growth (σ-convergence), and whether poor countries growth faster 

than rich countries and share a common steady-state growth path (β-convergence).  The literature 

has found evidence in favor of convergence and positive spatial correlation (see Abreu et al. 

(2004) for an excellent survey).  As an illustration, Rey and Montouri (1999) investigated the 

spatial aspects of both σ- and β-convergence for U.S. states over the period from 1929 to 1994.  

They find that personal income growth rates became less disperse over the sample period, which 

is consistent with σ-convergence.  In addition, Rey and Montouri (1999) find evidence of 

positive spatial autocorrelation in the dispersion of state-level personal income, with “two strong 
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regional clusters” of income growth in the New England and Southeast regions of the United 

States.   

To explore the presence of spatial patterns in β-convergence, Rey and Montouri (1999) 

modified the basic unconditional convergence framework, which involved regressing the ratio of 

current-to-initial income on a constant term and initial income, as well as estimating one 

specification with a spatial lag term and one specification with a spatial error term.  The spatial 

lag specification permits growth in a state's income to depend on the state's initial income and the 

initial income of neighboring states (those sharing a common border in the framework of Rey 

and Montouri (1999)), while the spatial error model allows correlation in model errors across 

states.  In both spatial econometric specifications, as well as a baseline model that excludes 

spatial effects, Rey and Montouri (1999) find evidence to support unconditional β-convergence.  

The spatial lag and spatial error coefficients are found to be significant at the 1 percent level, 

with the results of specification tests indicating the spatial error model may be more appropriate. 

A number of subsequent studies, with a largely European focus, have applied the basic spatial 

growth framework of Rey and Montouri (1999) and found similar results using a variety of 

different time periods and geographic focus.2   

The focus of our paper differs from previous work in two important ways.  First, we 

estimate a short-run model of growth for U.S. states, as opposed to a long-run (i.e. convergence) 

model.  This allows us to not only avoid the potential for structural differences that may arise in 

a cross-country framework, but also avoid the criticisms of convergence models in general (Quah 

1993, 1996).  In addition, since convergence models are tested by regressing income growth on 

initial income, and possibly other control variables, it would seem to be the case that any spatial 

                                                      
2 See for instance Moreno and Trehan (1997), Ramirez and Loboguerrero (2002), Conley and Ligon (2002), 
Fingleton (2001), Ying (2003), and Le Gallo (2004).   
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growth effects uncovered in these models are a result of long-run dynamics.  However, with 

regard to U.S. states, there is considerable evidence to suggest that short-run growth dynamics 

may also be spatially related.  For example, Carlino and Sill (2001) find evidence of regional 

linkages in the trend and cyclical components of real per capita personal income for Bureau of 

Economic Analysis (BEA) regions within the United States.  Applying a vector error correction 

model to quarterly data from 1956-1995, Carlino and Sill (2001) find that regional income 

growth is cointegrated across BEA regions, which indicates that the regions share a common 

long-run growth path.  The linkages are not as strong with regard to the cyclical component, 

however.  The cyclical component of the Far West region is "out-of-synch" with the cyclical 

components of the nation and other regions (the Far West has a simple correlation of 0.36 with 

the nation, compared to an average of 0.97 for the other regions).  From the perspective of 

growth regressions, these findings suggest that while sub-regions of the U.S. appear to converge, 

there is reason to suspect the presence of spatial correlation in transitory deviations from trend.  

Thus, a transitory shock that affects growth in a given state may affect growth in other states, and 

the strength of the spillovers may differ across sub-regions of the United States.   

A second difference between our study and prior work is that we allow spatial correlation 

in state income growth to vary across regions of the United States.  Carlino and Sill's (2001) 

finding of regional cyclical components in state income growth suggests regional heterogeneity 

in the influence of spatial effects.  An apparent difference in the influence of changes in 

monetary policy across regions (Carlino and DeFina, 1999) is one possible reason for this 

heterogeneity.  Prior research has found evidence of regional heterogeneity in agriculture and 

state bank regulatory policies (e.g., Garrett, et al., 2003) but regional differences in the spatial 

correlation of state economic growth has not been explored.  The advantage of allowing any 
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spatial correlation in state income growth to vary across regions is that we are able to formally 

test for regional disparities in state income growth.  The possibility of regional differences in 

spillovers in state income growth has implications for both state and national policies that effect 

economic growth. 

  

3.  Data and Empirical Specification 

 We use the basic model of spatial correlation developed by Cliff and Ord (1981) and 

Anselin (1988) to investigate the determinants of state-level annual income growth in the 48 

contiguous states over the period 1977 - 2002.3  The general spatial model allows for potential 

spatial correlation in both the dependent variable and error term.  It does not induce cross-

sectional correlation if none is present; it simply provides an established and flexible framework 

for relaxing the assumption of cross-sectional correlation with regard to a model's dependent 

variable and/or error term.  As Anselin (1988) notes, unlike time-series correlation that is one 

dimensional, spatial correlation in cross-sectional models is multi-dimensional in that it depends 

upon all contiguous or influential units of observations (in this case states).  Formally, the 

general first-order spatial model may be expressed as: 

 

ε++= βρ XW yy                                                              (1a)  

                                               (1b)                     νλνελε 1)( −−=+= WW I

                                                      
3 Because we use Crain and Lee's (1999) measure of industry diversity in our regressions, which is constructed using 
Gross State Product (GSP) data, the starting date of our sample is limited to 1977 because this is the first year that 
GSP data are available.  
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where y is the (TN×1) vector of growth rates in real per capita state personal income and X is a 

(TN×K) matrix of regressors.  The spatial lag component is given by yWρ , where W denotes the 

exogenous (TN×TN) block diagonal matrix composed of the (N×N) spatial weights matrices w 

along T block diagonal elements.  The scalar ρ is the spatial lag coefficient that must be 

estimated.  Positive spatial correlation exists if ρ > 0, negative spatial correlation if ρ < 0, and no 

spatial correlation if ρ = 0.4   The spatial error component of the model is given by νελε += W , 

where ε is a (TN×1) vector of error terms, W is the (TN×TN) matrix previously described, ν is a 

(TN×1) white noise error component, and λ is the spatial error coefficient that must be estimated.  

The errors are positively correlated if λ > 0, negatively correlated if λ < 0, and spatially 

uncorrelated correlated if λ = 0.  Note that if no spatial correlation of any form exists, then ρ = λ 

= 0 and the general spatial model reduces to the standard regression model.   

Since the spatial lag term in Equation (1a) is correlated with the error term and the spatial 

error component is also non-spherical, ordinary least squares (OLS) estimation of Equations (1a) 

and (1b) will result in biased, inconsistent, and inefficient parameter estimates (Anselin 1988).  

Assuming the random component of the spatial error (ν ) is homoskedastic and jointly normally 

distributed, Equations (1a) and (1b) can be estimated by maximum likelihood.  Anselin (1988) 

derives the log-likelihood function for the general spatial model, which can be expressed as:

                                                      
4  Unlike the standard first-order autoregressive model in time series, the spatial correlation coefficients do not 
necessarily have to lie between –1 and 1 in the first-order spatial autoregressive model.  Generally, when a binary 
weights matrix is used the values for the spatial correlation coefficients are between the inverse of the largest and 
smallest eigenvalues of the weights matrix.  See Anselin (1995). 
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where ψ = y – ρWy – Xβ, φ = I –  λW, and I is a TN×TN identity matrix. 

The cross-sectional spatial weights matrix (w) formalizes the potential correlation among 

states for which many alternative representations have been used in the literature.  We consider 

two specifications of w in our empirical analyses.  First, a common weights matrix in the growth 

literature (and spatial econometrics literature in general) is the binary contiguity matrix (Cliff 

and Ord, 1981; Anselin, 1988; Case, 1992).  In this representation, the individual elements of w, 

denoted ωij, are set equal to unity if states i and j (i≠j) share a common border, and to zero 

otherwise.  The limitations of this specification are that all neighboring states are assumed to 

have equal influence and any spatial correlations beyond common-border neighbors are 

ignored.5   

In addition to a common-border weights matrix, we also consider distance as an 

alternative spatial weighting scheme.  Distance-based weighting has been used in several studies, 

such as Dubin (1988), Garrett and Marsh (2002), Hernandez (2003), and Garrett et al. (2003), 

but has not been widely exploited in the growth literature.  The most established distance-based 

weighting scheme, and the one we implement in this paper, is an inverse distance format where 

ωij =1/dij, and dij is the distance between states i and j.  In addition, ωij = 0 for i=j.  Thus, as the 

distance between states i and j increases (decreases), ωij decreases (increases), which gives less 

(more) spatial weight to the state pair when i≠j.  Since there is no consensus in the literature on 

how distance should be measured, we follow Hernandez (2003) and measure distance as the 

                                                      
5 We follow the established practice of row-standardizing the contiguity weight matrix by dividing each ωij by the 
sum of each row i. 



difference between state population centers.6  This weighting scheme is very intuitive and 

extends any potential spatial correlation beyond common-border neighbors since all states are 

spatially related, but nearer states (measured by the proximity of their population centers) have a 

greater potential influence.   

The basic spatial model detailed above assumes that the influence of spatial correlation is 

the same for all states.  That is, the functional form given by Equations (1a) and (1b) does not 

permit regional differences in either the spatial lag or spatial error.  We modify Equations (1a) 

and (1b) to allow for different spatial correlation coefficients in different regions of the United 

States.  We use both region and division classifications by the U.S. Bureau of the Census.  There 

are nine Census Bureau divisions in the contiguous 48 states and four regions.  The spatial model 

with regional spatial correlation coefficients may be written as:       

                                                                                                                         (3a)    ε
1

++= ∑
=

βρ XW
R

k
kk yy

                                               ,                                         (3b) νλνελε 1

11
)( −

==
∑∑ −=+=

R

k
kk

R

k
kk I WW

where R denotes the total number of regions, and ρk and λk denote the spatial lag and spatial error 

lag coefficients, respectively, for region k. Wk remains the (TN×TN) block diagonal matrix 

having (N×N) spatial weights matrices wk along T block diagonal elements.  Each matrix wk is 

constructed by pre-multiplying by a dummy variable that equals unity if state i is located in 

region k, and zero otherwise.7  This provides a different interpretation of wk depending upon 

whether wk is a contiguity weight matrix or a distance weight matrix.  In the case of a contiguity 

matrix, we allow growth in state i located in region k to be affected by the income growth of all 
                                                      
6 The distance was computed using the geographic coordinates for the population centroids computed by the Bureau 
of the Census for the year 2000.  Population centroids did not differ significantly in early decades.  
7 Note that this specification allows for asymmetry in spatial correlation between two states each located in a 
different region.  That is, if states i and j are in different regions, then the spatial effect of i on j could be different 
than the spatial effect of j on i. 
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states j that border state i, regardless of whether state j is in the same region as state i.  With the 

distance weights matrix, the elements of each matrix wk capture spatial correlation between each 

state in region k and the remaining 47 states.  Thus, for each state i in region k, row i of distance 

matrix wk contains some measure of distance between state i and all remaining 47 states.  If state 

i is not in region k, then row i of distance matrix wk contains all zeros.       

The matrix (X) includes variables that Crain and Lee (1999) have shown to significantly 

affect state income growth.  They use an Extreme-Bounds Analysis (EBA) to test the robustness 

of 29 different control variables in growth regressions for the 48 contiguous U.S. states over the 

period 1977-92.   We use the independent variables that Crain and Lee (1999) identify as robust 

determinants of state income growth.  These are the share of a state's population between the 

ages of 18 and 64, the share of a state's population with at least a bachelor's degree, a measure of 

a state's industrial diversity, government expenditures as a proportion of state gross product, and 

local government revenue as a share of state and local revenue.  Crain and Lee (1999) find that 

the population and educational attainment variables, which they argue control for the size and 

skill of the labor force, have a positive effect on growth.  On the other hand, states with broader 

industrial bases, larger governments, and those that collect more revenue at the local level are 

found to experience significantly slower growth.  Crain and Lee (1999) contend that the local 

governments' revenue share may proxy for the degree of fiscal centralization or 

intergovernmental competition within a state.   

We include one additional control variable in our model that was not a product of Crain 

and Lee's (1999) Extreme Bounds Analysis.  Recent evidence suggests that the relaxation of state 

laws restricting interstate banking and intrastate bank branching during the 1970s and 1980s may 

have had a large impact on the growth rate of state income (Krol and Svorny 1996; Jayaratne and 
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Strahan, 1996; Strahan, 2003).  Jayaratne and Strahan (1996) argue that deregulation 

substantially improved bank performance by reducing operating costs and loan losses, and 

estimate that deregulation permanently increased a state’s real income growth rate by some 0.50 

– 1.00 percentage points.  Such large, permanent growth effects have not gone unchallenged, 

however.  Further, Wheelock (2003) notes the presence of spatial patterns in state banking 

regulatory decisions, while Freeman (2002) finds that states were more likely to deregulate 

banking when income growth was below trend.  Given this unresolved, yet potentially large, 

linkage between bank deregulation and growth, we include an indicator variable in our model 

that equals unity beginning in the year a state first permitted state-wide branch banking, and zero 

otherwise.8   

We follow Crain and Lee (1999) by estimating our models with all variables specified as 

first difference of logs, except for the bank deregulation dummy variable.  This eliminates the 

potential problems of non-stationary variables and state-specific serial correlation.  Complete 

variable descriptions, data sources, and descriptive statistics for our variables in levels and first 

difference of logs are provided in Table 1. 

[Table 1 about here] 

 

4.  Empirical Results 

We estimate various specifications of the spatial models described above using both a 

contiguity spatial weights matrix and an inverse distance spatial weights matrix.  Table 2 

presents the results from the specifications that assume no regional differences in spatial effects.  

Column 1 shows the results from the basic Crain and Lee (1999) growth regression with no 

                                                      
8 We explored the possibility that a state's banking deregulation decision may be endogenously determined with 
income growth, but did not find evidence to support this view.   
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spatial effects (i.e. ρ = λ = 0).  We also estimate a spatial lag model, spatial error model, and 

spatial lag and error model using both weights matrices for a total of six spatial models.  The 

estimates from the spatial lag models are presented in Columns 2 and 3.  Columns 4 and 5 

present the spatial error results, and Columns 6 and 7 report the specifications containing both a 

spatial lag and spatial error. 

[Table 2 about here] 

The basic OLS specification in Column 1 is largely consistent with the findings of Crain 

and Lee (1999), and the independent variables explain 54 percent of the variation in state income 

growth.  We find, for example, that state income growth is positively correlated with the size of a 

state's labor force, and that states with larger government sectors, more industrial diversity, and 

those that collect more revenue at the local rather than state level experience significantly slower 

income growth.  We also find that growth is uncorrelated with educational attainment.9  In 

addition, we find little evidence that bank deregulation results in significantly higher growth, 

which is consistent with Freeman (2002; 2005).   

Consistent with the growth and convergence literature, the results reported in Columns 2 

– 5 of Table 2 reveal strong evidence of spatial correlation.  Furthermore, regardless which 

weights matrix we use, the coefficients on ρ and λ are quite similar in magnitude and statistically 

significant at the 1 percent level.  The estimated spatial lag coefficients are all positive, 

indicating that a state’s income growth is directly affected by the income growth of neighboring 

states.  The estimates of ρ  from columns 2 and 3 indicate that a one percentage point increase in 

the average income growth of 'neighboring' states generates a 0.23 percentage increase in state i's 

                                                      
9  Although Crain and Lee (1999) classify educational attainment as a “core variable,” they find it to be a significant 
determinant of growth only in their baseline regression, which includes just one other variable – labor force size. 
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income growth rate, regardless whether 'neighboring' states include only the states that share a 

border with state i or all states, with nearer states having more influence.   

In contrast to ρ , the interpretation of λ  is analogous to an estimate of first-order serial 

correlation in a time-series regression.  The positive and significant estimates for λ  that appear 

in Columns 4 and 5 indicate that there is evidence of significant positive residual correlation 

across space, which could be due to spatial heterogeneity or omitted variables.  However, the 

Akaike Information Criterion (AIC), Schwarz Criterion (SC) and the log-likelihood statistics all 

reveal that the spatial lag models presented in Columns 2 and 3 provide a better fit than the 

spatial error models. 

The results from the models that include both the spatial lag and error term (Columns 6 

and 7) reveal that only the spatial lag coefficients are significantly different from zero and have 

magnitudes very similar to those presented in Columns 2 and 3.  This suggests that the 

significant spatial error coefficients in Columns 4 and 5 were likely capturing omitted spatial 

correlation in state income growth.  The findings presented in Table 2 suggest that spatial 

correlation in state-level income growth may be best modeled using a spatial lag.  This is 

supported by the AIC and SC, which are directly comparable across models and weigh the 

explanatory power of a model (based on the maximized value of the log-likelihood function) 

against parsimony.  Based on the AIC and SC, all of the spatial models are preferred to the OLS 

specification, but the spatial lag model that utilizes the contiguity weights matrix provides the 

best fit of the data.  

 Finally, it is also interesting to note that the inclusion of the spatial effects has little 

impact on the estimated parameters for the control variables.  We find the banking deregulation 
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indicator to be significant at the 10 percent level in Columns 2 and 4 in Table 2, but the 

magnitude and significance of the remaining independent variables are largely unchanged.   

 Table 3 presents the results from four specifications that allow for regional differences in 

the spatial correlation coefficient.  Because our results in Table 2 indicate that a spatial lag 

correction is the appropriate specification, we only consider regional differences in spatial lag 

coefficients for all regressions shown in Table 3.  Appendix Table 1 lists the states that are 

included in each division and region. 

[Table 3 about here]

We report two basic specifications in Table 3; each estimated using both a regional 

contiguity weights matrix and a regional inverse distance weights matrix, resulting in a total of 

four models.  Columns 1 and 2 report the estimates from the spatial lag model that allows for 

regional-specific spatial lag coefficients at the Census region level, while Columns 3 and 4 allow 

for both regional-specific spatial lag coefficients at the Census division level.  Both the region 

and division classifications of U.S. states will be considerably less diverse from an economic 

perspective, which may add to our insights of spatial patterns in income determination. 

The results reported in Table 3 provide strong evidence that spatial correlation in state-

level income growth varies substantially by region.  The spatial lag coefficients for the four 

regions are all significant at the 5 percent level or higher.  The regional spatial lag coefficients in 

Columns 1 and 2 indicate that the growth spillovers effects range from a low of about 0.10 in the 

South to a high of 0.28 in the Northeast.  The spatial lag coefficients for the Midwest, West, and 

South are similar in size (0.10 to 0.14), but the Northeast coefficient is nearly twice as large.  

This finding may reflect the relatively small size of states in the Northeast and their significantly 

larger populations, both of which make it likely that that their economies are linked to a greater 

 14



degree than those of other states.  It is also worth noting that the regional-specific models are 

preferred to the aggregate spatial lag models in Table 2 based on the various measures-of-fit.    

The regressions that allow for division level regional spatial coefficients (Columns 3 and 

4 of Table 3) provide a slightly different picture than the region level models.  The estimated 

spillover effects are for the most part positive (except for West South Central division), but 

significant spatial correlation is not present in each division.  Estimates of positive and 

significant spatial correlation in census divisions range from 0.10 to 0.43.  We find no evidence 

of spatial correlation in either the Mountain or Pacific divisions, however, which is interesting 

given that the spatial correlation for the West region (Columns 1 and 2 in Table 3) is positive and 

significant and the West region is made up entirely of the Mountain and Pacific divisions.  This 

difference might be associated with sample size, namely that there are relatively fewer states in 

Census divisions than in Census regions. 

States in several divisions appear to be affected more strongly by their common-border 

neighbors than by all states as a whole.  The spatial coefficients in the Middle Atlantic, East 

North Central, and East South Central are all substantially larger when neighbors are defined by 

common-border as opposed to inverse distance.  On the other hand, the opposite form of 

correlation may be at work in the West South Central division.  There is no evidence of spatial 

correlation for states in this division when neighbors are defined by common-border, yet we find 

evidence of negative correlation using the inverse distance weights matrix.  

 The results from the regional-specific models in Table 3 suggest considerable 

heterogeneity across regions in the effects of spatial correlations on state income growth.  

Further evidence is reported in Tables 4 and 5, where we present p-values from pairwise 

hypothesis tests of the equality of the spatial correlation coefficients from the models in Table 3.   
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 At the region level (Table 4) there are six pairwise equality tests for each regression.  

Using the common-border neighbor definition, the test results show that the spatial correlation 

for states in each region is significantly different from the correlation in other regions, with the 

exception of the South and West regions.  With the inverse distance weights matrix, the p-values 

indicate that spatial correlation is not significantly different between states in the South and 

West, and South and Midwest, but that spatial correlation differs significantly across all other 

regions. 

 Heterogeneity in spatial correlation is further evidenced by the equality tests from the 

division level regressions (Table 5).  Of the 36 possible pairwise equality tests at the division 

level, we find that the spatial correlation is significantly different in 31 tests when neighbors are 

defined as common-border and in 29 tests when using an inverse distance weighting.  The results 

from the regression results in Table 3 and the pairwise hypothesis tests shown in Table 4 and 

Table 5 provide strong evidence of spatial correlation in state income growth in most, but not all 

regions, and that the impact of spatial correlation on state income growth varies statistically 

significantly across regions of the United States. 

[Tables 4 and 5 about here] 

 

5.  Conclusion 

Although the role of space as a determinant of growth has received considerable attention 

in recent empirical studies, work in this area has focused almost exclusively on testing 

convergence hypotheses using international data.  In this paper we estimate several spatial 

econometric models to explore the extent of spatial correlation in the short-run growth dynamics 

of state personal income in the United States.  We use an established set of control variables that 
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are robust determinants of state-level growth to reduce the possibility that any uncovered spatial 

patterns are the result of omitted variable bias or measurement issues.  

Our results provide strong evidence that spatial correlation exists in state-level income 

growth.  The models in which we assume a common spatial lag coefficient for all states, we find 

that a one percentage point increase in the average income growth of 'neighboring' states 

generates between a 0.22 and 0.29 increase in a given state's income growth rate, depending on 

the specification.  In addition, this paper is the first to explore whether spatial correlation in state 

income growth varies for states in different regions of the United States.  We find that spatial 

correlation in state income growth does differ significantly by region, and our model of regional-

specific spatial correlations fits the data better than the typical spatial econometric model that 

assumes a common spatial lag coefficient for all regions.  Generally, we find that states in the 

Northeast and South experience the strongest cross-state income linkages – roughly a 0.20 to 

0.40 percent increase in state income growth for every percentage point increase in ‘neighboring’ 

state income growth.  States in these regions are generally smaller and more populous, and thus 

are more likely to have linked economies, than states in the Midwest and western regions of the 

country.   

The broader implication of our findings is that the spatial correlations at work in income 

growth dynamics appear to be complex.  Further research is warranted to improve our 

understanding of how various regional forces affect growth dynamics and to uncover the 

underlying source(s) of such regional forces.  Our results suggest that states should pay particular 

attention to fiscal policies in neighboring states, as state-level fiscal policies can significantly 

influence income growth in neighboring states.  Also, policy makers should realize that 

 17



improving or deteriorating economic conditions in neighboring states are likely to affect 

economic growth in their own states.   
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Table 1 – Descriptive Statistics 
 

 
 

Levels 
  

First difference of logs 
 

Description 
 

Source 
 

 

Mean 
(Std. Dev.) 

  

Mean 
(Std. Dev.) 

 
 

 
 
 

 

Personal income 
 

13780.815 
(2527.832) 

 1.392 
(2.521) 

Real per capita personal income 
(1982-1984=100) 
 

Bureau of 
Economic 
Analysis 
(BEA) 

 
Labor 

 
60.604 
(2.019) 

  
0.234 

(0.876) 

 
Share of the state's population 
between the ages of 18 and 64 
(share * 100) 

 
Bureau of the 
Census 

 
Education 

 
20.251 
(5.293) 

 

  
2.370 

(5.063) 
 

 
Share of the state's population age 
25 and older with at least a 
bachelor's degree (share * 100) 

 
Bureau of the 
Census  

 
Industry diversity 

 
1408.794 
(245.150) 

  
0.401 

(2.969) 

 
Crain and Lee's (1999) diversity 
measure. It is the sum of the 
squared shares of Gross State 
Product originating in: agricultural 
services, mining, construction, 
manufacturing, transportation & 
utilities, wholesale and retail trade, 
FIRE, and services.   

 
BEA 

 
Government share of GSP 

 
13.448 
(2.899) 

  
-0.339 
(3.465) 

 
Federal, state, and local 
government's share of GSP (share * 
100) 

 
BEA 

 
Local government tax revenue share 

 
36.825 
(9.401) 

  
-0.063 
(6.451) 

 
Local government tax revenue as a 
share of state and local tax revenue 
(share * 100) 

 
Bureau of the 
Census, 
Government 
Finances 

 
Intrastate banking indicator 

 
0.700 

(0.458) 
 

  
-- 
 

 
=1 if the state permits intrastate 
branching through mergers and 
acquisitions, =0 otherwise 

 
Kroszner and 
Strahan (1999) 
 

Notes: Alaska, Hawaii and Washington D.C. are excluded. Descriptive statistics for variables in levels are over the period from 1977 to 2002, 
while the statistics for variables in first difference of logs are over the period from 1978 to 2002.
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Table 2 – Spatial Estimates of U.S. State Income Growth 
 

 (1) (2) (3) (4) (5) (6) (7) 
  OLS contiguity distance contiguity distance contiguity distance 
Constant 1.1255 *** 0.8305 *** 0.8219 *** 1.1116 *** 1.1232 *** 0.7491 *** 0.8384 ***

  (0.1455)  (0.1453)  (0.1440)  (0.1657)  (0.1659)  (0.1788)  (0.1740)  
Labor 0.3207 *** 0.3052 *** 0.3074 *** 0.3220 *** 0.3182 *** 0.2948 *** 0.3083 ***

  (0.0945)  (0.0725)  (0.0705)  (0.0765)  (0.0741)  (0.0723)  (0.0708)  
Education -0.0062   -0.0051   -0.0056   -0.0033   -0.0050   -0.0058   -0.0055   
  (0.0081)  (0.0089)  (0.0085)  (0.0088)  (0.0087)  (0.0090)  (0.0086)  
Industry diversity -0.1158 *** -0.1131 *** -0.1105 *** -0.1120 *** -0.1152 *** -0.1116 *** -0.1110 ***

 (0.0257)  (0.0186)  (0.0181)  (0.0181)  (0.0187)  (0.0188)  (0.0183)  
Government share -0.3270 *** -0.3207 *** -0.3086 *** -0.3162 *** -0.3195 *** -0.3177 *** -0.3097 ***

 (0.0266)  (0.0183)  (0.0179)  (0.0181)  (0.0185)  (0.0192)  (0.0189)  
Local revenue tax share -0.0217 *** -0.0212 *** -0.0208 *** -0.0214 *** -0.0218 *** -0.0207 *** -0.0209 ***

 (0.0077)  (0.0070)  (0.0068)  (0.0069)  (0.0070)  (0.0071)  (0.0069)  
banking deregulation 0.1899   0.1978 * 0.1854   0.2179 * 0.1887   0.1874   0.1858   
 (0.1198)  (0.1159)  (0.1144)  (0.1153)  (0.1212)  (0.1167)  (0.1136)  
ρ   0.2243 *** 0.2356 ***   0.2933 *** 0.2223 ***

   (0.0329)  (0.0373)    (0.1040)  (0.0833)  
λ     0.2357 *** 0.2429 *** -0.0912   0.0197   
      (0.0358)  (0.0402)  (0.1373)  (0.1069)  
Sample size  1200 1200 1200 1200 1200 1200 1200 
Adjusted R-squared 0.544       
AIC 3.9152 3.8801 3.8879 3.8829 3.8907 3.8814 3.8895 
SC 3.9419 3.9183 3.9260 3.9210 3.9289 3.9238 3.9319 
Log-likelihood  -2319.079 -2323.746 -2320.753 -2325.451 -2318.860 -2323.734 

Notes: AIC and SC denote Akaike's Information Criterion and Schwarz Criterion.  Significance levels are as follows: *** denotes the 1 percent 
level, ** denotes the 5 percent level, and * the 10 percent level.  Standard errors are in parentheses.  All of the variables entered the regression 
equations as first difference of logs except for banking deregulation.  The dependent variable is the first difference of logged per capita income.  
See text for a description of the contiguity weights matrix and distance weights matrix.  States included in Census regions and divisions are listed 
in the Appendix. 
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Table 3 – Spatial Estimates of U.S. State Income Growth by Region 
 
 CENSUS REGIONS CENSUS DIVISIONS 
 (1) (2) (3) (4) 
  contiguity distance contiguity distance 
Constant 0.8304 *** 0.8349 *** 0.8529 *** 0.9359 ***

  (0.1456)  (0.1450)  (0.1489)  (0.1458)  
Labor 0.2976 *** 0.2955 *** 0.3178 *** 0.3207 ***

  (0.0723)  (0.0723)  (0.0725)  (0.0731)  
Education -0.0051   -0.0052   -0.0059   -0.0065   
  (0.0086)  (0.0086)  (0.0087)  (0.0091)  
Industry diversity -0.1116 *** -0.1120 *** -0.1122 *** -0.1141 ***

 (0.0185)  (0.0185)  (0.0186)  (0.0187)  
Government share -0.3154 *** -0.3160 *** -0.3149 *** -0.3214 ***

 (0.0182)  (0.0182)  (0.0183)  (0.0184)  
Local revenue tax share -0.0214 *** -0.0212 *** -0.0196 *** -0.0203 ***

 (0.0070)  (0.0071)  (0.0070)  (0.0071)  
banking deregulation 0.1833   0.1856   0.2140 * 0.1970 *

 (0.1167)  (0.1151)  (0.1163)  (0.1190)  
ρ1  (Northeast) 0.2812 *** 0.2845 ***    
 (0.0639)  (0.0628)     
ρ2  (Midwest) 0.1466 *** 0.1326 ***    
 (0.0508)  (0.0497)     
ρ3  (South) 0.0940 *** 0.1073 ***    
 (0.0297)  (0.0295)     
ρ4  (West) 0.1214 ** 0.1060 **    
 (0.0533)  (0.0524)     
ρ1  (New England)   0.2954 *** 0.2874 ***

                                                                     (0.0908)  (0.0933)  
ρ2  (Middle Atlantic)   0.3347 ** 0.1001   
   (0.1463)  (0.1569)  
ρ3  (East North Central)   0.4313 *** 0.2308 **

                                                                        (0.1068)  (0.1018)  
ρ4  (West North Central)   0.2446 *** 0.1888 ***

    (0.0540)  (0.0556)  
ρ5  (South Atlantic)   0.2321 *** 0.2354 ***

   (0.0772)  (0.0802)  
ρ6  (East South Central)                                        0.3334 *** 0.2114 **

   (0.1076)  (0.1075)  
ρ7   (West South Central)   -0.0883   -0.3137 **

   (0.1304)  (0.1357)  
ρ8   (Mountain)   -0.0065   -0.0236   
                                                                             (0.0706)  (0.1300)  
ρ9   (Pacific)   0.0055   0.1381   
   (0.1297)  (0.0967)  
Sample size  1200 1200 1200 1200 
AIC 3.8711 3.8717 3.8825 3.8961 
SC 3.9220 3.9226 3.9546 3.9682 
Log-likelihood -2310.713 -2311.077 -2312.521 -2320.707 
Notes: AIC and SC denote Akaike's Information Criterion and Schwarz Criterion.  Significance levels are as follows: *** denotes the 1 percent 
level, ** denotes the 5 percent level, and * the 10 percent level.  Standard errors are in parentheses. All of the variables entered the regression 
equations as first difference of logs except for banking deregulation.  The dependent variable is the first difference of logged per capita income.  
See text for a description of the contiguity weights matrix and distance weights matrix.  States included in Census regions and divisions are listed 
in the Appendix. 
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Table 4 – Spatial Correlation Coefficient Equality for Census Regions (p-values) 
 

Contiguity Weights Matrix 

 Northeast Midwest South West 
Northeast 
 

--    

Midwest 
 

0.000 --   

South 
  

0.000 0.000 --  

West 
 

0.000 0.000 0.123 -- 

Note: p-values are from joint significance t-tests on regional spatial coefficients from Column 1 of Table 3. Bold values identify pairs that are 
significantly different at the 10 percent level or better. 
 
 
 
 

 
Inverse Distance Weights Matrix 

 Northeast Midwest South West 
Northeast 
 

--    

Midwest 
 

0.000 --   

South 
  

0.000 0.105 --  

West 
 

0.000 0.000 0.477 -- 

Note: p-values are from joint significance t-tests on regional spatial coefficients from Column 2 of Table 3. Bold values identify pairs that are 
significantly different at the 10 percent level or better. 
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Table 5 – Spatial Correlation Coefficient Equality for Census Divisions (p-values) 
 

Contiguity Weights Matrix 

 New 
England 

Mid  
Atlantic 

East North 
Central 

W. North 
Central 

South 
Atlantic 

East South 
Central 

W. South 
Central 

Mountain 
 

Pacific 
 

New 
England --         

 
Mid  

Atlantic 
0.240 --        

 
East North 

Central 
0.000 0.007 --       

 
W. North 
Central 

0.083 0.164 0.000 --      

 
South 

Atlantic 
0.000 0.068 0.000 0.294 --     

 
East South 

Central 
0.011 0.486 0.000 0.049 0.000 --    

 
W. South 
Central 

0.000 0.000 0.000 0.000 0.000 0.000 --   

 
Mountain 

 
0.000 0.000 0.000 0.000 0.000 0.000 0.086 --  

 
Pacific 

 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.419 -- 

Note: p-values are from joint significance t-tests on regional spatial coefficients from Column 3 of Table 3. Bold values identify pairs that are 
significantly different at the 10 percent level or better. 
 

 
Inverse Distance Weights Matrix 

 New 
England 

Mid  
Atlantic 

East North 
Central 

W. North 
Central 

South 
Atlantic 

East South 
Central 

W. South 
Central 

Mountain 
 

Pacific 
 

New 
England --         

 
Mid  

Atlantic 
0.001 --        

 
East North 

Central 
0.000 0.009 --       

 
W. North 
Central 

0.005 0.190 0.182 --      

 
South 

Atlantic 
0.000 0.039 0.415 0.029 --     

 
East South 

Central 
0.000 0.012 0.000 0.331 0.304 --    

 
W. South 
Central 

0.000 0.000 0.000 0.000 0.000 0.000 --   

 
Mountain 

 
0.000 0.000 0.000 0.002 0.000 0.000 0.000 --  

 
Pacific 

 
0.000 0.264 0.000 0.108 0.000 0.000 0.000 0.000 -- 

Note: p-values are from joint significance t-tests on regional spatial coefficients from Column 4 of Table 3. Bold values identify pairs that are 
significantly different at the 10 percent level or better. 
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Appendix Table 1 – U.S. Bureau of the Census Regions and Divisions 
 

States Division Region 
 
CT, MA, ME, NH, RI, VT 

 
New England 

 
NJ, NY, PA 

 
Middle Atlantic 

Northeast 

  
IL, IN, MI, OH, WI 

 
East North Central 

 
IA, KS, MN, MO, ND, NE, SD 

 
West North Central 

Midwest 

 
DE, FL, GA, MD, NC, SC, VA, WV 

 
South Atlantic 

 
AL, KY, MS, TN 

 
East South Central 

 
AR, LA, OK, TX 

 
West South Central 

South 

 
AZ, CO, ID, MT, NM, NV, UT, WY 

 
Mountain 

 
CA, OR, WA 

 
Pacific 

West 
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