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Abstract

Recent studies using long-run restrictions question the validity of the technology-driven real
business cycle hypothesis. We propose an alternative identi�cation that maximizes the contri-
bution of technology shocks to the forecast-error variance of labor productivity at a long, but
�nite, horizon. In small-sample Monte Carlo experiments, our identi�cation outperforms stan-
dard long-run restrictions by signi�cantly reducing the bias in the short-run impulse responses
and raising their estimation precision. Unlike its long-run restriction counterpart, when our
Max Share identi�cation technique is applied to U.S. data it delivers the robust result that hours
worked responds negatively to positive technology shocks.
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1 Introduction

By their nature, long-run restricted structural vector autoregressions are subject to the criticism

that restrictions on in�nite-order lag polynomials are ill-suited to samples of realistic proportions

[see, for example, Sims (1972); Faust (1996); and Faust and Leeper (1997)]. In �nite samples,

measures of the VAR moving-average parameters at very long horizons are imprecise; when relied

on for identi�cation, this parameter uncertainty translates into potentially spurious inference. Using

Monte Carlo methods, Erceg, Guerrieri, and Gust (EGG, 2005) and Chari, Kehoe, and McGrattan

(CKM, 2008) assesses the extent of these small-sample estimation problems. These papers simulate

repeated small samples of data from variations of standard Real Business Cycle (RBC) models

and/or New Keynesian sticky price models and apply the long-run (LR) identi�cation to obtain

hypothetical small-sample distributions of the impulse responses to technology shocks. Both studies

conclude that impulse responses identi�ed by LR restrictions can be substantially biased, either in

sign or in magnitude.

Recently, LR restrictions have attracted renewed attention as a means for identifying technology

shocks in VARs [see, in particular, Galí (1999) and Francis and Ramey (2005)]. In these papers,

identi�cation is based on the assumption that the unit root in labor productivity arises exclusively

from technology shocks. Results from some of these studies have led some to question the notion

that technological innovation is the preeminent force behind business cycle �uctuations. Positive

technology shocks identi�ed using U.S. data yield a decline in hours, apparently contradicting the

theoretical predictions of a broad class of RBC models.1 This result has initiated some controversy,

with a number of studies o¤ering con�icting evidence based on alternative speci�cations of the non-

productivity component of Galí�s empirical model.2 This paper focuses instead on the identifying

assumption regarding the estimated long-run productivity process.

We o¤er an alternative approach to identi�cation with the intent of addressing some of the

aforementioned shortcomings associated with LR in small-sample estimation. When applied to

1Basu, Fernald, and Kimball (2006) and Shea (1999) use di¤erent techniques to identify technology and conclude
that the hours response is negative.

2A number of papers [including Galí and Rabanal (2005) and Christiano, Eichenbaum, and Vigfusson (CEV, 2004)]
have focused on the stationarity of hours as the key determinant of the sign of the hours response to a technology
shock. A decline in hours is obtained when hours are �rst-di¤erenced [Galí (1999)], detrended [Fernald (2007)],
or demographically-adjusted [Francis and Ramey (2009)]. CEV (2004) argue that per capita labor is bounded and
cannot have a unit root. If assumed stationary, hours responds to a technology shock positively on impact.
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technology shocks, our methodology preserves the association between technology and productivity

at frequencies below typical business cycles. Speci�cally, we identify the technology shock as that

associated with the maximum forecast-error variance share (Max Share) in labor productivity at a

long, �nite horizon.3

The Max Share approach has several potential advantages over the conventional LR approach.

First, by focusing on a �nite horizon, we hope to gain estimation precision over LR, which relies

on much longer horizon parameter estimates. Second, in place of the restriction that the unit root

in productivity is driven exclusively by technology, our approach imposes a weaker restriction that

the forecast-error variance in productivity at long horizons is dominated by the technology shock.

Thus, we essentially allow other shocks to in�uence labor productivity at all (�nite) horizons over

which we employ the Max Share algorithm.

The mechanics of this methodology are similar to those introduced by Faust (1998); however,

the current application to technology shocks is substantively di¤erent in a number of important

ways. To our knowledge, we are the �rst to recognize the suitability of the Max Share approach

as a �nite-horizon alternative for identi�cation of structural VARs with long-run restrictions. In

its original context, Faust identi�ed monetary policy shocks using only the robust predictions of

structural VARs identi�ed with short-run restrictions. The two approaches also di¤er conceptu-

ally. Whereas Faust used his objective function as a robustness check of the claim that monetary

policy shocks explain only a small portion of output variability, we use our objective function as a

necessary condition for identi�cation.4 Finally, we take advantage of the methodology as a way to

obtain better small-sample estimation properties than in long-run structural vector autoregressions

(SVARs), something not considered in either Faust or in related work by Uhlig (2004).

The Max Share approach is also similar in spirit to the medium-term driving forces recently

proposed by Uhlig (2004) and Comin and Gertler (2006). However, a fundamental di¤erence

between these and the Max Share approach is that the latter allows the data to determine the

3While our application is to technology shocks, the identi�cation can be applied to any case in which a dominant
driving process exists. For example, in work following an earlier draft of this paper, Barsky and Sims (2011) adopt
our approach to identify information shocks that are orthogonal to contemporaneous output but have permanent
e¤ects on future output. Beaudry, Nam and Wang (2011) identify future changes in total factor productivity and
test whether these changes are related to shocks to economic optimism.

4Faust makes no presumption� theoretical or otherwise� that the identifying restriction imposed by the optimiza-
tion criterion necessarily holds in the data-generating process. In contrast, the objective function in our approach
serves a fundamental role as a substitute for the restriction that the long-run variance of labor productivity is primarily
driven by technology shocks.
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relative importance of technology at a predetermined horizon instead of specifying its relative

importance at the outset. For instance, Uhlig estimates a model in which technology shocks are

identi�ed by a process that explains all of the h-step-ahead forecast revision of labor productivity

for some �xed 0 � h < 1. Our approach, on the other hand, utilizes a maximization routine for

horizons up to and including h. We �nd this more palatable because, in the RBC world, technology

explains all of the forecast-error variance, at best, only at h =1; under the Uhlig assumption the

spectrum may be radically shifted in ways that potentially violate the underlying RBC assumption.

Using data simulated from an o¤-the-shelf RBC model and a standard medium-scale DSGE

model with sticky prices, we �nd that the Max Share approach exhibits less bias (measured by

the deviation between the median response and the theoretical response) and less uncertainty

(measured by the width of the 68 percent error bands) than the LR approach. These advantages

are found to be robust to alternative speci�cations of the theoretical technology and non-technology

shocks. However, relaxing the Galí assumption by allowing non-technology shocks to have nontrivial

e¤ects on labor productivity at su¢ ciently long horizons can qualitatively alter this short-run hours

response. Results using the Max Share approach applied to U.S. data are consistent with Galí�s

original �nding that hours decline after a technology shock.

In the next section, we present the Max Share identi�cation approach. We then compare the

small-sample performances of the two identi�cation approaches using data simulated from the RBC

and sticky price models. In the remainder of the paper, we apply the Max Share approach to postwar

U.S. data and examine the robustness of the LR �ndings to our relaxation of the original identifying

assumption. Finally, we incorporate the additional restriction that hours respond positively to a

technology shock to examine whether this causes a signi�cant shift in the associated share of the

maximum forecast-error variance.

2 Identi�cation

In this section, we provide an overview of the mechanics behind the standard LR and our Max

Share identi�cations. Both approaches isolate the (primary) driver of long-run productivity trend.

While the identifying approaches di¤er in their implementation, the key assumption behind both

the Max Share and LR identi�cation is consistent with that imposed by Galí:
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Assumption 1: Technology shock is the sole contributor of long-run labor pro-

ductivity shifts. All other structural innovations having transitory e¤ects on labor

productivity.

The assumption identifying technology shocks arises from a broad class of models in which log

labor productivity, xt, can be decomposed into two orthogonal components: an unobserved random

walk trend component, xTt , which we will call technology, and an unobserved cyclical process, x
S
t .
5

The trend-cycle decomposition of productivity is

xt = x
T
t + x

S
t ; (1)

where

xTt = x
T
t�1 + �t; (2)

�t � iid N(0; �2�), and x
S
t is stationary and ergodic. Since all processes except technology are

assumed stationary, the unit root in productivity must arise from xTt . Thus, under Assumption 1,

technology will necessarily dominate the forecast-error variance of the log-level of productivity at

suitably long forecast horizons.6 Given that xSt can be thought of as driven by an amalgamated

non-technology shock (composed of �scal, monetary, and tax shocks), Assumption 1 provides the

foundation for both the standard LR identi�cation and our �nite-horizon Max Share identi�cation.

2.1 The LR Identi�cation

Assume that the data-generating process can be approximated by the following linear model:

A(L)yt = "t;

where A(L) =
Pp
i=0AiL

i is a matrix polynomial in the lag operator, L; "t is a structural innovation;

E("t"
0
t) = I; and yt is an n� 1 vector of period-t macroeconomic variables with labor productivity

ordered �rst and entered in di¤erences.

5Throughout, we will assume that labor productivity is the only I (1) variable.
6Recall that the variance of a unit root process, var(xTt ) = t��, increases with t. When xt is included in a VAR,

the forecast-error variance of xt grows unbounded as the forecast horizon, h, increases. At su¢ ciently long horizons,
the forecast-error variance is dominated by the non-stationary component [Lütkepohl (1993), p. 377].
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To estimate this model, we begin with the reduced-form VAR:

B(L)yt = �t; (3)

where B(L) =
Pp
i=0BiL

i, B0 = I, and E(�t�
0
t) = V . The goal is to �nd a transformation of the

moving-average representation of the VAR:

yt = C(L)A
�1
0 A0�t;

which identi�es the i.i.d. structural shocks of the model:

"t = A0�t;

where C(L) = B(L)�1 and A0 is the contemporaneous structural parameter matrix. Conven-

tional long-run identi�cation [e.g., Blanchard and Quah (1989); Shapiro and Watson (1988)] im-

poses restrictions on the e¤ect of the j-th shock on the i-th variable at an in�nite horizon.

This is implemented through restrictions on
�
C(1)A�10

�
i;j
, where neutrality implies the restriction�

C(1)A�10
�
i;j
= 0 for some j. Formally, we have

�
C(1)A�10

�
i=1;j 6=i = 0; (4)

where i = 1 represents labor productivity growth ordered �rst and j 6= i indicates all non-technology

shocks.7

2.2 Finite-Horizon Max Share Identi�cation

As in Galí (1999), our objective is to isolate technology shocks by characterizing their e¤ect on

productivity at long horizons. However, instead of imposing long-run restrictions, we identify the

technology shock by maximizing the forecast-error variance share of productivity at long, �nite

horizons. This approach is consistent with suggestions in Uhlig (2004) and CEV and is adapted

from methods introduced in Faust (1998). We begin by introducing the methodology and then

7Equation (4) is isomorphic to the assumption that the zero-frequency spectrum of labor productivity growth is
attributable entirely to technology [see also DiCecio and Owyang (2010)].
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discuss its practicality.

2.2.1 Methodology

In the Max Share identi�cation, all variables including labor productivity enter the VAR in log-

levels.8 The method is operationalized by �rst expressing the h-step-ahead forecast error for y as

a function of realized reduced-form errors:

yt+h � byt+h = h�1X
�=0

C��t+h�� ; (5)

where byt+h is the h-step-ahead forecast of y conditional on time-t information. Next, we de�ne
an orthonormal matrix D; which obtains an alternative linear representation of the reduced-form

model:

yt+h � byt+h = h�1X
�=0

C�DD
0�t+h�� :

Then, the h-step-ahead forecast-error variance share for a particular variable i attributable to a

particular shock j in this new representation is

!ij (�(h)) =
e0i

hPh�1
�=0 C���

0C 0�

i
ei

e0i

hPh�1
�=0 C�
�C

0
�

i
ei
; (6)

where ei is an n � 1 indicator vector that picks out the impulse vector � = Dej , the i-th column

vector of D.

The technology shock is identi�ed by solving, for a given value of h, the following maximization

problem over all possible �:

max
�
!1j (�(h)) =

e0i

hPh�1
�=0 C���

0C 0�

i
ei

e0i

hPh�1
�=0 C�HH

0C 0�

i
ei
; (7)

where H is obtained by a Cholesky decomposition of 
� making the identi�ed technology shock,

"tech = �0H�1�� , orthogonal to other shocks in the system
9 We impose the additional normalization

8To execute LR, labor productivity must be entered in di¤erences. In principle, the Max Share identi�cation can
be used on systems in which labor productivity enters either in levels or in di¤erences. As an alternative, strong
beliefs can be incorporated into a prior.

9As described in the appendix in Faust (1998), the maximization problem is solved by obtaining ��, the eigenvector
associated with the maximum eigenvalue of V:
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�0� = 1, ensuring that the technology shocks have unit variance. The horizon h at which the

forecast-error variance for labor productivity is maximized is chosen exogenously. While h is initially

�xed at 10 years, we later consider the e¤ect of varying h from 2:5 to 20 years.

2.2.2 Practical Considerations

LR has previously been found to perform poorly in small samples of length comparable to the

U.S. postwar sample [see EGG and CKM]. The Max Share approach may demonstrate less small-

sample bias, in part because it relies on restrictions at a �nite horizon.10 Sims (1972) and, more

recently, Faust and Leeper (1997) and CEV (2007) make similar arguments regarding the di¤erences

between short- and long-run restrictions. Similar arguments have been made in favor of medium-run

restrictions [e.g., Uhlig (2004); Khan and Tsoukalas (2007)].11

The econometrician typically uses some criteria to determine the lag order, which may or may

not be the appropriate speci�cation. For example, the VAR representation of many theoretical

models is a VAR(1), which necessitates a truncation of the lag order for estimation. If the model

is misspeci�ed, the implied responses will be biased, the degree of bias depending on the manner

of identi�cation. There may be key di¤erences in the bias that arise from using either LR or Max

Share in small samples. LR, for example, places a restriction on C (1), the in�nite sum of the

transformed/rotated VAR coe¢ cients. The econometrician, however, does not use the true C (1);

instead, she uses the estimated bC (1) which may bias the identi�cation of the shock.12 A conjecture
is that imposing restrictions on

Ph�1
�=0 C���

0C 0� rather than C (1) can reduce� but not eliminate�

misspeci�cation bias while preserving the theoretical interpretation of the identi�cation.13 We

investigate this in Monte Carlo experiments below.

The preceding discussion suggests that errors in estimating C�A�10 may confound the identi�-

cation, making it possible to attribute too much of the forecast error variance in productivity to

10Unlike LR, the Max Share rotation is not preserved as the sample size increases [Mittnik and Zadrozny (1993)]
making the formal proof of bias reduction problematic.
11Dupor and Kiefer (2008) take a di¤erent approach with a similar �avor. They place restrictions on the �nite-

horizon e¤ects estimated via local projections [Jorda (2005)].
12An informal proof of this conjecture can be found in CEV (2007). CEV (2007) contend that using short-

run restrictions minimizes the e¤ect of potential misspeci�cation because short-run restrictions do not require bC (1)
for identi�cation. Moreover, CEV and others argue that identi�cation using very-long-horizon restrictions can be
problematic because the spectral mass near the zero frequency can be small.
13 In addition to bias caused by misspecifying the VAR, the Max Share identi�cation also may be subject to bias

caused by choosing h too small. It is not clear ex ante which e¤ect will dominate in small samples.
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technology. While both LR and Max Share may, to some extent, su¤er from this problem, the

risks in the LR approach are symmetric around zero. In the Max Share approach, however, the

maximization algorithm shrinks the risk of underestimating the forecast error variance share rel-

ative to that of overestimating. Given this trade-o¤, we must determine whether the Max Share

identi�cation yields a net advantage in small samples. In the next section, we measure the net

e¤ect of employing the Max Share identi�cation by comparing the small-sample performance of

the LR and Max Share identi�cations in Monte Carlo experiments against known data-generating

processes.

3 Monte Carlo Experiments

This section outlines the Monte Carlo methods used to assess the ability of the two identi�cation

approaches for small samples. We use simulated data from a real business cycle model (RBC) and

a New Keynesian (NK) model with nominal rigidities (sticky prices and wages) and real frictions

(monopolistic competition, habit formation in consumption, investment adjustment costs, variable

capital utilization). For both models, equation (1) holds, allowing us to obtain theoretical impulse

responses to a technology shock, but the hours response varies across models. For the RBC model,

hours rise in response to a positive technology shock; for the NK model, hours fall. Theoretical

impulse responses and simulated data are generated for parameterizations of the two models which

vary the persistence of the nontechnology component. Model details and parameterizations appear

in the online appendices.

Each Monte Carlo iteration consists of 247 simulated observations of each of the variables,

i.e., the same length as the U.S. data sample analyzed below.14 We estimate a reduced-form

VAR and obtain structural impulse responses both by using LR restrictions and by Max Share.

The posterior distributions for the impulse responses are simulated from 1; 000 draws utilizing a

Normal�Inverse-Wishart prior centered on the OLS estimates [see Sims and Zha (1999)]. To account

for potential asymmetries in the impulse responses, we retain the median, 16th, and 84th percentiles

for each response. This process is repeated to obtain 1; 000 median estimates and error bands, each

corresponding to what an econometrician would estimate given a single set of data. The average

14 In results not reported here, we found that increasing the sample size reduced the bias between the estimated
and theoretical impulse responses for both identi�cation mothods. These results are available upon request.
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of these 1; 000 median statistics and error bands, which can be interpreted as the expected value

of the econometrician�s estimates, is reported and compared with their theoretical counterparts.

Analysis of the posterior coverage follows. We also analyze the correlation between the theoretical

shocks and those estimated by both LR and Max Share.

3.1 Benchmark Results

Both the RBC and NK models are four-variable VAR(4) with the logs of labor productivity, hours,

the consumption-output ratio, and the investment-output ratio. Each reduced-form VAR is esti-

mated using OLS. Log productivity enters the VAR in �rst di¤erences for the LR but enters in levels

for the Max Share approach.15 The benchmark models are parameterized to be consistent with

those speci�ed in EGG; the AR(1) coe¢ cient of technology (�z) is set to 1 and non-technology

shocks have AR(1) coe¢ cients of 0:98.16 For Max Share, the technology shock is chosen to be

that which maximizes the forecast-error variance share at a horizon of 40 quarters. We consider

alternative horizons below.

Figure 1 presents the impulse responses to a 1-standard-deviation technology shock for both the

RBC model and the NK model, respectively. The thick solid lines depict the theoretical impulse

responses. The averages of the Max Share median responses across Monte Carlo iterations are

shown by the thick dotted lines, with the shaded areas representing the accompanying 68 percent

coverage bands. The average of the LR median responses and their error bands are shown by dashed

lines. In the RBC model, a positive technology shock leads to an immediate increase in both labor

productivity and hours. In the NK model, a positive technology shock leads to an increase in labor

productivity but a short-run decline in hours.

For the both models, our results corroborate EGG�s �ndings that LR biases the median re-

sponses but preserves their shape. The Max Share impulse responses match the theoretical impulse

responses qualitatively and display less bias than the LR responses, especially at short horizons.

For most variables, the both approaches yield impulse responses biased toward zero. Although

15 In results not reported here, we considered the e¤ect of entering productivity in di¤erences for the Max Share
identi�cation. The results for the RBC model were qualitatively similar to those reported here. Entering productivity
in di¤erences for the NK model produced responses essentially identical to those from LR. These results are available
upon request.
16We also tested the e¤ect of decreasing the persistence of non-technology shocks on both algorithms. Results

were qualitatively similar except that LR was able to distinguish the sign of the impact response of hours for the
RBC model. These results are reported in the online appendix or available upon request.
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the theoretical impulse responses are near the upper tail of the 68 percent probability intervals

for both methods, the Max Share responses are considerably closer to the theoretical responses for

the �rst two years following the shock. The probability intervals from the Max Share model are

also narrower than their LR counterparts over this horizon. In particular, consider the 68 percent

coverage for hours� the series many researchers look to di¤erentiate between models. For the RBC

model, the LR coverage interval includes zero, meaning that using LR to infer the true model from

the may be problematic. Max Share, on the other hand, clearly di¤erentiates between the two

models as both 68 percent coverage intervals exclude zero.

In addition to the responses to the shocks, we can compare the time series of identi�ed shocks

to the time series from the generated data. Table 1 presents the correlations between the model-

generated and the estimated technology shocks from both identi�cations. A higher correlation

suggests a more accurate identi�cation of the time series of shocks. The median correlation for

the Max Share shocks with the true shocks is greater (about 0:81 and 0:81 for the RBC and NK

models, respectively) than that for LR shocks (about 0:50 and 0:68 for the RBC and NK models,

respectively). Additionally, the median correlation for the LR model lies in the far left tail of

the distribution for the Max Share correlations. Taken together with the preceding results, this

suggests the technology shock is better identi�ed by Max Share than by LR in small samples similar

in length to the U.S. sample.

3.2 Bias and Coverage Analysis

The performance of Max Share depends on choosing h, the identi�cation horizon, large enough

to pick out the correct shock but small enough to minimize the misspeci�cation bias. All of the

previous results have been obtained with an exogenously chosen Max Share horizon, h, of 40

quarters, Here, we ask how much does changing the identi�cation horizon a¤ect the results? To

answer this, we compute the average absolute bias of the responses identi�ed by Max Share while

varying the forecast horizon. Figure 2 summarizes the bias properties of the Max Share approach

when h varies from 10 to 80 quarters for the benchmark parameterization. The bias is computed

over the �rst four quarters, expressed as a percentage of the true model response. The dotted lines

depict the bias computed using the Max Share approach; the dashed line shows a similar measure

for LR which is constant by de�nition. For both models, the bias shown by Max Share is clearly

10



smaller than that of LR for most variables and identi�cation horizons. The Max Share bias is

relatively constant over a wide range of h. For example, for the RBC model, the productivity bias

for Max Share(80) is approximately 27 percent, well below that for LR (51 percent) but only slightly

higher than for Max Share(10) (12 percent). In these model environments, the bias improvement

of the Max Share approach is robust to choosing relatively short identi�cation horizons.

These di¤erences in bias also a¤ect the true coverage. In the analysis above, we reported the 68

percent nominal coverage� that is, the means of the interior 68 percent of the posterior distributions

of the impulse responses. These nominal coverages may not necessarily contain the true (model)

response with 68 percent probability. In fact, the bias in the responses for both Max Share and LR

can a¤ect the true coverage leading us to ask how well the 68 percent nominal coverage represents

the true coverage. Figure 3 displays the percentage of Monte Carlo iterations in which the 68

percent nominal coverage band contains the true response for the baseline parameterizations of the

two models. Because of the bias in both identi�ed responses, the true coverage� especially at short

horizons� can be much less than the 68 percent nominal coverage. For the RBC model, Max Share

has better coverage for almost all of the variables. The exception is hours, where LR has larger

than 68 percent coverage. This suggests that LR produces error bands that are too wide. A similar

argument can be made for the NK model. LR more often contains the true response but, in all

cases, has greater than 68 percent coverage.

4 Max Share Identi�cation in U.S. Data

Having evaluated the small-sample performance of our identi�cation scheme through Monte Carlo

experiments, we turn to U.S. data and estimate a four-variable VAR(4). For the analysis of U.S.

data, we use data from the St. Louis Fed�s FRED and updated hours data from Francis and Ramey

(2009).17 The sample spans 1948:Q2 throughout 2009:Q4. The VARs include productivity (in log-

level or growth rate), log hours, log consumption- and investment-to-output ratios.18 As in the

Monte Carlo section above, the error bands are computed for 68 percent coverage using methods

17For a full description of the data, see the online appendix, http://research.stlouisfed.org/fred2/, and
http://weber.ucsd.edu/ vramey/research.html.
18As some variation exists in the data, we estimated versions of the VAR in which consumption is composed of

nondurables, services, and government spending; investment is composed of private investment plus durables; and
hours and productivity measures are adjusted for demographic components (Francis and Ramey, 2009). The impulse
responses were qualitatively similar across these models.
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detailed in Sims and Zha (1999).

4.1 Baseline Results for U.S. Data

The dotted lines in the left column of Figure 4 present the median impulse response to a one-

standard-deviation technology shock and the 68 percent probability intervals.19 The solid lines in

these �gures represent sign-restricted responses discussed below. In response to a positive technol-

ogy shock, both consumption and investment increase. If left unrestricted, labor hours fall for the

�rst few quarters and eventually rise above zero.

The right column of Figure 4 displays the impulse responses to a technology shock identi�ed

by LR with the associated 68 percent error bands. The median predictions for all of the variables

except hours are similar for both the LR and Max Share identi�cations. The median response of

hours on impact is positive under LR but not statistically distinguishable from zero. The hours

response to the Max Share shock, on the other hand, is negative on impact with zero lying outside

the 68 percent coverage interval. In addition, the error bands associated with the Max Share are

everywhere narrower.

Figure 5 compares the forecast-error variance shares for output and hours attributable to tech-

nology for both Max Share and LR. While the share of output variance is large at most horizons

under both identi�cations, technology explains only a minority share of the variance in hours when

identi�ed by Max Share. This result is consistent with CEV (2004) and would suggest that tech-

nology is not an important driver of the positive correlation in output and hours at business cycle

frequencies.

As we have previously noted, the identifying restriction imposed by Max Share depends on

the horizon for which the forecast-error variance share is maximized. To this end, we assess the

Max Share impulse responses�sensitivity to the forecast horizon by varying h between 40 and 100

quarters and �nd them to be qualitatively similar across horizons. As might be expected, the

width of the error bands for each response grows as the optimization horizon increases. This result

points to the di¢ culty that longer-horizon restrictions yield more uncertainty in their corresponding

short-run predictions.

19All of the Max Share results shown are based on h = 40 quarters; similar results were obtained for horizons of
20, 60, and 100 quarters. Although the width of the error bands for the Max Share identi�cation increases with h,
they are always narrower than those obtained from LR.
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4.2 Incorporating Sign Restrictions for U.S. Data

The Max Share approach also allows for exhaustive robustness analysis across a broad class of

models. While our �nding that hours respond negatively to a positive technology shock appears to

corroborate Galí�s original result, many papers have questioned the robustness of this prediction.

In particular, one can imagine that a small modi�cation to the identifying assumption� perhaps

corresponding to a more accommodative monetary policy or a greater in�uence of non-technology

factors� could yield a di¤erent qualitative prediction for hours. Taking all such possibilities into

account, a more complete robustness test asks: (1) Is it possible to identify a technology shock that

yields a positive response in hours? and (2) If so, what are the features of such a shock?

To this end, we reestimate the Max Share model with the additional restriction that hours

respond positively on impact to a positive technology shock.20 We then examine whether this has

a discernible e¤ect on the FEV share attributable to technology. The left column in Figure 4 also

shows the median impulse responses to a technology shock when the additional sign restriction

is imposed.21 The addition of the short-run sign restriction preserves the shape but shifts the

point estimates of the responses for each variable. In particular, the median hours response shifts

upward above the 68 percent probability interval of the unrestricted hours model for the �rst

�ve or so quarters. The positive restriction on hours also raises the short-term consumption and

investment responses. The net result of restricting technology to raise hours is apparently to amplify

technology�s e¤ect on short-run output. But how e¤ective is this �restricted�shock at explaining

cyclical �uctuations?

Figure 6 displays smoothed kernel densities for the empirical posterior distributions of the

maximum forecast-error variance shares estimated at horizons of 40 and 100 quarters. The black

line shows hours unrestricted and the gray line shows the share from the model estimated with

hours restricted to be positive on impact. The share of labor productivity �uctuations explained

by technology declines when hours are restricted to respond positively to a technology shock.

20Dedola and Neri (2007) propose an agnostic approach to identify technology shocks using only sign restrictions
on the impulse responses. Their results, however, are not directly comparable to ours as they make no restrictions
on technology�s contribution to productivity�s FEV.
21As in Faust (1998), sign and shape restrictions on the impulse response of variable i at horizon(s) h can also

be incorporated by solving the optimization problem (7) with an additional constraint of the form e0iCt� � 0. The
additional restriction on hours is not an overidentifying restriction suitable to a likelihood ratio test. The Max Share
identifying assumption (7) is su¢ cient to identify technology, but the system as a whole is underidenti�ed with or
without the additional sign restriction.
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Thus, a positive hours response is attainable, but only when the importance of technology shocks

signi�cantly diminishes at these horizons.22 This suggests that a positive hours response may

also result when non-technology shocks are in�uential to labor productivity at an in�nite horizon.

In other words, the exclusivity assumption in the LR model may be playing an important role in

obtaining the negative hours prediction. These results indicate that models identi�ed by restrictions

made at long horizons may contain only limited information about short-run movements in hours.

5 Conclusion

We propose an alternative method for identifying shocks in VARs in which long-run restrictions

have been ordinarily used. This methodology has the advantage of being robust to relaxing key

assumptions about the data-generating process while maintaining the spirit of long-run restrictions.

When applied to technology, the shock is identi�ed as that which yields the maximum forecast-error

variance share of productivity at some predetermined, yet �nite, horizon.

Applied to arti�cial small samples generated from o¤-the-shelf RBC and NK models, the Max

Share identi�cation outperforms the standard LR identi�cation. In particular, our identi�cation

reduces the bias of estimated impulse responses relative to theoretical responses. In addition, the

Max Share impulse responses appear to, on average, less biased than those identi�ed using the

identifying restrictions proposed by Galí (1999). We also �nd that the Max Share technology

shocks are more highly correlated with the theoretical shocks than those identi�ed by LR. These

results reveal a clear improvement over the LR estimates in small samples.

For U.S. postwar data, the Max Share model predicts a negative short-run response in hours,

con�rming the original LR �nding of Galí (1999) and others. However, a positive hours response is

attainable if a greater role for non-technology shocks is allowed. Unfortunately, neither model can

be rejected based on posterior odds. Nevertheless, our results suggest that the rejection of the RBC

framework on the basis of the qualitative response in hours depends critically on the assumption

that technology has exclusive in�uence on long-run productivity.

When we view our model and the in�nite-horizon models as a class, our results can be interpreted

22This does not necessarily imply that non-technology shocks in�uence long-run productivity. The odds ratios
for the restricted and unrestricted models were indistinguishable, preventing any conclusions based on how well the
model �ts the data.
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as demonstrating the limitations of long- (or in�nite-) horizon restrictions in predicting short-run

movements in hours. A modest, empirically reasonable adjustment to the assumption regarding the

long-run importance of non-technology factors yields di¤erent predictions for the direction of the

hours response. In light of these �ndings, we advocate a more �exible identi�cation environment

such as the one proposed here.

15



References

[1] Barsky, Robert B. and Sims, Eric R. �News Shocks and Business Cycles,�Journal of Monetary

Economics, April 2011, 58 (3), pp. 273-89.

[2] Basu, Susanto; Fernald, John G.; and Kimball, Miles S. �Are Technology Improvements Con-

tractionary?�American Economic Review, December 2006, 96 (5), pp. 1418-48.

[3] Beaudry, Paul; Nam, Doekwoo; and Wang, Jian. �Do Mood Swings Drive Business Cycles and

is it Rational?,�, NBER Working Paper No. 17651, December 2011.

[4] Blanchard, Olivier J. and Quah, Danny. �The Dynamic E¤ects of Aggregate Demand and

Supply Disturbances,�American Economic Review, September 1989, 79(4), pp. 655-73.

[5] Chari, V.V.; Kehoe, Patrick J.; and McGrattan, Ellen R. �Are Structural VARs with Long-Run

Restrictions Useful in Developing Business Cycle Theory?,�Journal of Monetary Economics,

November 2008 , 55 (8), pp. 1337�1352.

[6] Christiano, Lawrence J.; Eichenbaum, Martin; and Vigfusson, Robert. �What Happens After

a Technology Shock?,�Manuscript, August 2004.

[7] Christiano, Lawrence J.; Eichenbaum, Martin; and Vigfusson, Robert. �Assessing Structural

VARs,� NBER Macroeconomics Annual 2006, Volume 21, Eds. Daron Acemoglu, Kenneth

Rogo¤, and Michael Woodford, 2007, pp. 1-72.

[8] Comin, Diego and Gertler, Mark. �Medium-Term Business Cycles,�American Economic Re-

view, June 2006, 96 (3), pp. 523-51.

[9] DiCecio, Riccardo and Owyang, Michael. �Identifying Technology Shocks in the Frequency

Domain,�Federal Reserve Bank of St. Louis Working Paper 2010-025A

[10] Dedola, Luca and Neri, Stafano. �What Does a Technology Shock Do? A VAR Analysis with

Model-Based Sign Restrictions,� Journal of Monetary Economics, March 2007, 54 (2), pp.

512-49.

[11] Dupor, Bill and Kiefer, Leonard. �Executing Long Run Restrictions,�Manuscript, October

2008.

16



[12] Erceg, Christopher J.; Guerrieri, Luca; and Gust, Christopher. �Can Long-Run Restrictions

Identify Technology Shocks?,�Journal of the European Economic Association, December 2005,

3 (6), pp. 1237-78.

[13] Faust, Jon. �Theoretical Con�dence Level Problems with Con�dence Intervals for the Spec-

trum of a Time Series,�International Finance Discussion Paper No. 575, Board of Governors

of the Federal Reserve System, December 1996.

[14] Faust, Jon. �The Robustness of Identi�ed VAR Conclusions about Money,�Carnegie-Rochester

Conference Series on Public Policy, December 1998, 49 (0), pp. 207-44.

[15] Faust, Jon and Leeper, Eric M. �When Do Long-Run Identifying Restrictions Give Reliable

Results?,�Journal of Business and Economic Statistics, July 1997, 15 (3), pp. 345-53.

[16] Fernald, John. "Trend Breaks, Long-Run Restrictions, and Contractionary Technology Im-

provements," Journal of Monetary Economics 54(8), November 2007, 2467-85

[17] Francis, Neville and Ramey, Valerie A. �Is the Technology-Driven Real Business Cycle Hypoth-

esis Dead? Shocks and Aggregate Fluctuations Revisited,�Journal of Monetary Economics,

November 2005, 52 (8), pp. 1379-99.

[18] Francis, Neville and Ramey, Valerie A. �Measures of Per Capita Hours and their Implications

for the Technology-Hours Debate,� Journal of Money Credit and Banking, September 2009,

Volume 41, Issue 6, pp 1047-263.

[19] Galí, Jordi. �Technology, Employment, and the Business Cycle: Do Technology Shocks Explain

Aggregate Fluctuations?,�American Economic Review, March 1999, 89 (1), pp. 249-71.

[20] Galí, Jordi and Rabanal, Pau. �Technology Shocks and Aggregate Fluctuations: HowWell Does

the Real Business Cycle Model Fit Postwar U.S. Data?,�NBER Macroeconomics Annual 2004,

Volume 19, Eds. Mark Gertler and Kenneth Rogo¤, 2005, pp. 225-88.

[21] Jorda, Oscar. �Estimation and Inference of Impulse Responses by Local Projections,�Ameri-

can Economic Review, March 2005, 95 (1), pp. 161-82.

17



[22] Khan, Hashmat and Tsoukalas, John. �Technology Shocks and UK Business Cycles,�Working

Paper, December 2007.

[23] Lütkepohl, Helmut. Introduction to Multiple Time Series Analysis, Second Edition. New York:

Springer-Verlag, 1993.

[24] Mittnik, Stefan and Zadrozny, Peter A. �Asymptotic Distributions of Impulse Responses, Step

Responses, and Various Decompositions of Estimated Linear Dynamic Models,�Econometrica,

July 1993, 61 (4), pp. 857�70.

[25] Shapiro, Matthew D. and Watson, Mark W. �Sources of Business Cycle Fluctuations,�NBER

Macroeconomics Annual, 1988, Vol. 3, pp. 111-48.

[26] Shea, John. �What Do Technology Shocks Do?,�NBER Macroeconomics Annual 1998, Volume

13, Eds. Ben S. Bernanke and Julio J. Rotemberg, 1999, pp. 275-310.

[27] Sims, Christopher A. �The Role of Approximate Prior Restrictions in Distributed Lag Esti-

mation,�Journal of the American Statistical Association, March 1972, 67 (337), pp. 169-75.

[28] Sims, Christopher A. and Zha, Tao. �Error Bands for Impulse Responses,� Econometrica,

September 1999, 67 (5), pp. 1113-55.

[29] Uhlig, Harald. �Do Technology Shocks Lead to a Fall in Total Hours Worked?,�Journal of the

European Economic Association, April/May 2004, 2 (2/3), pp. 361-71.

18



Table 1
Correlation Between Estimated and Model Technology Shocks

RBC Model
Identi�cation 16th percentile median 84th percentile
LR
Max Share

0:09
0:67

0:50
0:81

0:75
0:89

NK Model
Identi�cation 16th percentile median 84th percentile
LR
Max Share

0:39
0:68

0:68
0:81

0:85
0:89

Table 1: We generate 1000 draws of arti�cial data from each model. All technology processes
have unit roots. Model parameters are given in the tables in the online appendices. For each
parameterization, the implied technology shocks are identi�ed using LR and Max Share. The
correlations between the estimated shocks and the arti�cial shocks are then calculated for each of
the 1,000 draws. The median, 16th, and 84th percentiles from the posterior distributions are used
for the correlations for each arti�cial sample as described in Section 3.
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Figure 1: Impulse responses to a technology shock in Monte Carlo experiments (benchmark models).

Theoretical responses [with AR(1) technology coe¢ cient �z = 1:0 and nontechnology AR(1) coe¢ cients
� = 0:98] are shown by thick solid lines. Median and 68-percent probability intervals for Max Share are
shown with dotted lines and shaded areas, respectively. LR median responses and 68-percent probability
intervals are shown by dashed lines. Median estimates and error bands are averages across 1,000 estimates,
each representing what an econometrician would estimate based on a sample with 247 observations and 1,000
draws from the posterior distributions for the impulse responses.
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Figure 2: Average absolute bias in LR (dashed) versus Max Share (dotted) across alternative
maximization horizons for simulated data.

Bias is measured as the absolute di¤erence between the median Max Share (or LR) and theoretical responses,
averaged over the �rst four quarters. The underlying Max Share and LR responses are averages across 1,000
median estimates, each representing what an econometrician would estimate based on a sample with 247
observations.
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Figure 3: Small sample 68-percent coverage for the model responses.

Percent of MC iterations for which the true response lies within the 68-percent nominal converage interval
across 1000 MC iterations. The dashed line is for the LR identi�cation; the dotted line is for Max Share.
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Figure 4: Impulse responses to a technology shock in the Max Share (on left) and the LR models
(on right).

Shaded areas are 68 percent Max Share probability intervals, as well as responses when hours are restricted
to be positive on impact in the Max Share model (thick solid line on left).
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Figure 5: Forecast-error variance share due to a technology shock using Max Share (left) and LR
(right) on U.S. data.

Dotted lines on the are computed with hours unrestricted. Solid lines are computed with hours restricted to
be positive on impact. Each set of three lines show the median and 68 percent coverage intervals.
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Figure 6: Posterior distributions of the maximized variance share of productivity with hours unre-
stricted (black) and restricted to be positive (gray).

The two lines show the smoothed kernel densities for the empirical posterior distributions of the maximum
forecast-error variance shares estimated at horizons of 40 and 100 quarters using U.S. data.
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