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Abstract
We include learning in a standard equilibrium business cycle model

with explicit growth. We use the model to study how the economy’s
agents could learn in real time about the important trend-changing
events of the postwar era in the U.S., such as the productivity slow-
down, increased labor force participation by women, and the “new
economy” of the 1990s. We find that a large fraction of the observed
variance of output relative to trend can be attributed to structural
change in our model. However, we also find that the addition of learn-
ing and occasional structural breaks to the standard and widely—used
growth model results in a balanced growth puzzle, as our approach
cannot completely account for observed trends in U.S. aggregate con-
sumption and investment. Finally, we argue that a model-consistent
detrending approach, such as the one we suggest here, is necessary if
the goal is to obtain an accurate assessment of an equilibrium business
cycle model.
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1 Introduction

1.1 Overview

It is widely acknowledged that important structural changes occurred during

the postwar era in the U.S. and other industrialized countries. A significant

slowdown in productivity growth occurred beginning in the late 1960s or

early 1970s, and some researchers find a significantly faster growth rate

for productivity during the “new economy” era beginning in the mid- to

late-1990s. Similarly, women are known to have increased their labor force

participation rates beginning in the 1960s. Perron (1989) and Hansen (2001)

discuss some of the econometric evidence for characterizing macroeconomic

data with log-linear trends coupled with occasional structural change. They

find, broadly speaking, that trend stationarity interrupted by some trend

breaks provides a good empirical model for U.S. macroeconomic time series.

In this paper, we take this evidence at face value and try to build models

that are consistent with it.

Much of equilibrium business cycle analysis abstracts from permanent

changes in trend growth paths (and, indeed, from growth itself). This in-

cludes a wide class of models ranging from the original real business cycle

papers to the more recent New Keynesian macroeconomics. In nearly all of

this work, the economy is viewed as essentially following a given balanced

growth path, deviating from that path only because of temporary shocks

which drive the business cycle. The path itself never changes. If it did, the

agents in the model would want to react to such movements. In this paper

we build a model that takes account of important trend-changing events

in a model-consistent way. We provide one method of understanding the

influence of structural change on business cycle fluctuations.
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1.2 Model summary

We study a version of a simple and standard equilibrium business cycle

model, namely, King, Plosser, and Rebelo (1988a), in which we explicitly al-

low for growth driven by two exogenous sources: productivity improvements

and increases in labor input. We replace the rational expectations assump-

tion with a recursive adaptive learning assumption following the methodol-

ogy of Evans and Honkapohja (2001). Our assumption involves a “constant

gain” learning algorithm, which discounts past data and allows the agents

to remain alert to the possibility of structural change. We verify that the

economy is stable under this learning assumption, meaning that, if there are

no changes in the underlying parameters for a period of time, the economy

will remain in a small neighborhood of the balanced growth path as if all

agents had rational expectations all the time.

We then subject the economy under learning to two kinds of shocks, the

standard business cycle shocks to total factor productivity as well as a few

unexpected and perfectly persistent shocks to the factors driving growth; the

latter shocks correspond to postwar U.S. events such as changing attitudes

concerning women in the workforce, the “productivity slowdown,” and the

“new economy.” These perfectly persistent shocks occur only once or twice

in fifty years, and so it is reasonable to think that they are completely unan-

ticipated and that agents must learn about them. When these shocks occur,

the agents adjust to a new balanced growth path and learn the new ratio-

nal expectations equilibrium. Thus in our model, agents are able to track

a balanced growth path that is sometimes changing, while simultaneously

reacting to ordinary business cycle shocks. When the ordinary business cy-

cle shock variance is reduced to a negligible level, we are able to trace out

the multivariate trend implied by the model with learning. We then remove

this same multivariate, broken trend from the actual data as well as from

the data generated by the model. We therefore provide a model-consistent

approach to detrending the macroeconomic data. We calculate business cy-
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cle statistics and discuss related issues concerning the performance of the

model.

1.3 Trend-cycle decomposition via statistical filters

Trend-cycle decomposition is an issue that has plagued equilibrium business

cycle research, and our model-consistent approach can address some of the

issues in this area. When comparing models to the data, the discipline im-

plied by the assumption that the economy is following a balanced growth

path is often discarded. Instead, atheoretic, statistical filters are typically

employed to detrend the actual data, and render it stationary.1 This ap-

proach has been widely criticized, for instance by Cogley and Nason (1995a),

Harvey (1997) and Canova (1998a). The criticisms are not hard to digest:

(1) Statistical filters do not remove the same trend from the data that the

balanced growth path of the model implicitly requires; (2) The “business

cycle facts” are not independent of the statistical filter employed; (3) The

data are often detrended one variable at a time while the model implies a

multivariate trend–thus the methodology does not respect the cointegra-

tion of the variables that the model requires; (4) The filtered trends imply

that trend growth rates sometimes change, but the agents in the model are

not allowed to react to these trend movements.

Our methodology goes some way towards addressing these concerns. Un-

der our model-consistent method, the trends we remove from the data will

be exactly the same ones that are implied by our model. We allow the agents

to react to changes in trend growth rates and we respect the cointegration

of the variables that the model implies. We do this in the simplest context

available for this issue, but we think our methodology has wide applicability

1For a detailed recent discussion, see King and Rebelo (1999). Examples of statis-
tical filtering techniques include the Hodrick—Prescott (1980) (HP) filter, Beveridge and
Nelson’s (1981) decomposition procedure and the band pass filters used by Stock and Wat-
son (1990), Baxter and King (1999), and Christiano and Fitzgerald (1999). See Canova
(1998a) for a more exhaustive list.
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across a range of growth and business cycle models.

1.4 Main findings

Adding structural change to the standard equilibrium business cycle model

means that a new type of shock, albeit a rare one, has been included. We

find that a large fraction of the observed variance of output relative to trend

can be attributed to this shock. Prescott (1986) and Kydland and Prescott

(1991) have argued that models closely related to the one we analyze can

explain 70 to 75 percent of the business cycle variation in real output. Our

analysis suggests that the remainder of the variation may be due, not to

monetary or fiscal policy, but to structural change.

We also identify a balanced growth puzzle. According to our analysis, the

balanced growth path dictated by productivity growth and growth in aggre-

gate labor hours should have been characterized by more consumption and

less investment over the period 1985 to 2001, compared to what was actu-

ally observed. This is in addition to changes in investment and consumption

that might have occurred because of an increase in the growth rate of pro-

ductivity, a “new economy,” which is already included in our model. We

suggest a number of avenues we think would be interesting to investigate in

future research regarding this puzzle.

Finally, we show that our model-consistent methodology allows us to

detrend the data in a relatively smooth fashion. The trends we calculate

are in some respects quite similar to those that would be calculated using

available statistical filtering techniques. In this sense, we are able to provide

some microfoundations for current practices in the equilibrium business cycle

literature. We also show how business cycle statistics for both the model

and the data are broadly consistent with the statistics which are commonly

reported, when the data are detrended using the trends dictated by our

model. There are some important differences, however, and we conclude that

the detrending methodology is not innocuous for understanding fluctuations
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in the data. A model-consistent approach like the one we suggest is necessary

to accurately evaluate equilibrium business cycle models.

1.5 Recent related literature

The literature on detrending and the evaluation of equilibrium business cy-

cle models is large. For critiques of the ability of technology-shock-driven

equilibrium business cycle models to reproduce the data and a discussion of

related detrending issues, see Cogley and Nason (1995ab) and Rotemberg

and Woodford (1996). The debate between Canova (1998ab) and Burn-

side (1998) concerned the finding that different statistical filters in general

yield a different set of business cycle facts. Canonical discussions of the

business cycle facts can be found in Cooley and Prescott (1994), Stock and

Watson (1999), and King and Rebelo (1999). King, Plosser, and Rebelo

(1988a,b) discuss model-consistent detrending in the same spirit as we do.

They investigate a model-consistent, linear trend in their Essay I; we es-

sentially introduce trend breaks and learning into a similar model. Perron

(1989) and Hansen (2001) discuss the econometric evidence for character-

izing macroeconomic data with log-linear trends coupled with occasional

structural change. The macroeconomics learning literature is summarized

in Evans and Honkapohja (2001). Packalén’s (2000) thesis studies expec-

tational stability, or learnability, in business cycle models like the one we

use. His main focus was on the theoretical stability of irregular equilibria.

See Rotemberg (2003) for a recent discussion of the plausibility of assuming

shocks to trends are independent of shocks that drive the business cycle.

Rotemberg employs a “slow technological diffusion” assumption on the for-

mer shocks, an assumption we do not make use of here. For applications of

learning about trends to issues in monetary policy, see Lansing (2000, 2002),

Collard and Dellas (2004) and Bullard and Eusepi (2003). The effects of a

change in trend productivity growth in a rational expectations environment

are discussed in Pakko (2002).
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2 Environment

2.1 Overview

We study a version of an equilibrium business cycle model with exogenous

growth. We stress that our methodology could be applied to a wide variety

of models in this general class.

Time is discrete and indexed by t = 0, 1, 2, .... The economy consists of

many identical households, and the number of households is growing over

time. These households make identical decisions, and so we will analyze

them as if there was only one decisionmaker. We work in terms of aggregate

variables, as opposed to per capita variables. We use capital letters to denote

aggregates. Because we have growth explicitly in the model, the aggregate

variables output, Yt, consumption, Ct, investment It, and capital, Kt, will

be nonstationary. We will transform these variables into their stationary

counterparts in order to solve the model. When we do so, we denote the

stationary variable by a small case, hatted letter, such as ĉt. With this

notation in mind, we write the household problem as maximization of

Et

∞X
t=0

βtηt
h
lnCt + θ ln

³
1− t̂

´i
(1)

by choice of consumption and leisure at each date subject to constraints

which apply at every date t:

Ct + It ≤ Yt, (2)

It = Kt+1 − (1− δ)Kt, (3)

Yt = ŝtK
α
t

³
XtNt t̂

´1−α
, (4)

Xt = γXt−1, X0 = 1, (5)

Nt = ηNt−1, N0 = 1, (6)

and

ŝt = ŝρt−1 t, ŝ0 = 1, (7)
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where ŝt is the technology shock. The household has a time endowment of

1 at each date t, and t̂ is the fraction of this endowment which is supplied

to the labor market. The variable Xt is the level of labor-augmenting pro-

ductivity, or number of efficiency units, in the economy; the growth in this

variable will drive real per capita income higher over time. The variable

Nt is the size of the labor force, or number of households, where the date

0 size is normalized to unity. The parameter β ∈ (0, 1) is the household’s
discount factor, θ > 0 controls the relative weight in utility placed on leisure,

δ ∈ (0, 1) is the net depreciation rate, α ∈ (0, 1) is the capital share, γ ≥ 1
is the gross rate of growth in productivity, η ≥ 1 is the gross rate of labor
force growth, and ρ ∈ (0, 1) controls the degree of serial correlation in the
technology shock. The standard expectations operator is denoted Et. The

stochastic term t is i.i.d., with mean of unity and variance of σ2.

By combining constraints (2) and (3), and using constraint (4), we can

write a Lagrangian for the household’s problem. Using the first order con-

ditions for this problem, we can write our system in terms of four equations

determining Ct, t̂, Kt, and Yt (along with the definitions of ŝt, Xt, and Nt).

In particular, combining (2) and (3) yields

Kt+1 = Yt + (1− δ)Kt − Ct, (8)

output is produced according to

Yt = ŝt

·
(Kt)

α
³
XtNt t̂

´1−α¸
, (9)

and the first order conditions yield

Ct =
1− α

θ
Yt

Ã
1− t̂

t̂

!
, (10)

as well as
1

Ct
= βηEt

½
1

Ct+1

£
αYt+1K

−1
t+1 + 1− δ

¤¾
. (11)

Our system is given by (8) through (11), along with (5), (6), and (7).
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2.2 A linear representation

We now wish to transform equations (8) through (11) along with their def-

initional counterparts (5), (6), and (7) into a stationary, linearized system

so that we may apply the techniques developed by Evans and Honkapohja

(2001). We sketch the transformation here, which involves three main steps,

and provide the details in Appendix A.

First, we transform equations (8) through (11) into a stationary sys-

tem by replacing Ct, Yt, and Kt as appropriate with variables of the form

ĉt = Ct/(XtNt), and so on. The hatted variables are therefore in per total

efficiency unit terms. The resulting system has a nonstochastic steady state

which can be calculated directly. We can denote the steady state vector

as
³
ĉt, k̂t, t̂, ŷt

´
=
¡
c̄, k̄, ,̄ ȳ

¢
, ∀t. An important feature of the steady state

values is that they depend on all parameters of the system, in general, and

in particular on the parameters γ and η. Thus for example, a change in the

gross growth rate of productivity, γ, will alter the nonstochastic steady state

of the system, as well as important ratios such as the consumption-output

ratio or the capital-output ratio.

Next, we linearize about the steady state, using a differences in loga-

rithms approach with variables of the form c̃t = ln (ĉt/c̄) , and so on. This

step requires additional, standard, approximations which are given in detail

in Appendix A. However, the linearized system, written in terms of loga-

rithmic deviations from steady state, is not satisfactory for our purposes.

The tilde variables involve steady state values, such as c̄, which, as we have

noted above, depend on the growth rates of productivity and the labor in-

put. If we allow agents to learn by estimating a VAR using
³
c̃t, k̃t, t̃, ỹt

´
,

then we would in effect be telling them when a change in the steady state

had occurred, which is inconsistent with our wish to allow them to learn

about such unexpected changes.

Consequently, as a final step we decompose the tilde variables by defin-

ing variables of the form ct = ln ĉt and c = ln c̄, and so on. We then collect
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all terms involving c, k, , and y into constant terms in each of the four

equations. We then require that agents estimate these constant coefficients

together with the coefficients on the endogenous variables of the model as

discussed below; thus, agents will have to learn the new steady state values

of the system that change whenever the growth rates γ or η change unex-

pectedly. Finishing up, we reduce the four equations down to two, defined

in terms of ct and kt.

Following these transformations, the system can be written as

ct = B10 + B11Etct+1 + B12Etkt+1 + B13Etst+1, (12)

kt = D20 +D21ct−1 +D22kt−1 +D23st−1, (13)

st = ρst−1 + ϑt, (14)

with ϑt = ln t, and where the coefficients Bi,j , Di,j , i = 1, 2; j = 0, 1, 2, 3;

are agglomerations of the underlying parameters of the model described in

detail in Appendix A.2

3 Learning

3.1 The system under recursive learning

We study the system (12)-(14) under a recursive learning assumption, as dis-

cussed in Evans and Honkapohja (2001). We imagine that initially, agents

have no specific knowledge of the economy in which they operate, other than

the perceived law of motion with which they are endowed (which is given

below). The agents we study will be able use this perceived law of motion to

learn the rational expectations equilibrium of (12)-(14)–there is precisely

one parameterization of this perceived law of motion that corresponds to the

rational expectations equilibrium of the system under any parameterization

of the model. We close the model under a learning assumption rather than

rational expectations because our environment is prone to infrequent shocks

2See Packalén (1999) for similar representations of equilibrium business cycle models.
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to growth factors that agents must learn about–permanent changes in the

growth rates of productivity, γ, or the labor input, η. We view such shocks

as occurring infrequently, perhaps only once or twice in fifty years. This

lends plausibility to our assumption that such shocks are largely unantici-

pated and that agents must learn about them when they occur. Our model,

then, is one where the economy follows a balanced growth path buffeted

by the usual business cycle shocks, st, but where the balanced growth path

itself changes course infrequently. The latter assumption, together with the

assumption that agents are learning, is what differentiates our model from

other equilibrium business cycle models. We think such a model is consis-

tent with the time-series econometric evidence of Perron (1989) and oth-

ers, namely, that postwar macroeconomic U.S. data can be rendered “trend

stationary” with just a few changes to the exogenous, deterministic trend

component of the model.

We begin our development of the model under learning by writing the

linearized model in equation form as

ct = B10 + B11Et ct+1 + B12Et kt+1 + B13Et st+1 +∆t (15)

kt = D20 +D21ct−1 +D22kt−1 +D23st−1 (16)

st = ρst−1 + ϑt (17)

In this system, we have added a small shock, ∆t, to the first equation.

While one can think of ∆ as a small shock to preferences, the primary role

of this shock is to prevent perfect multicollinearity in the regressions run

by the agents using capital and consumption data generated by the model;

in equilibrium, consumption is a perfect linear combination of the capital

stock and the productivity shock.3 The operator Et indicates (possibly

nonrational) expectations taken using the information available at date t.

3We will keep the standard deviation of the ∆ shock three orders of magnitude lower
than that of the technology shock. Because it is so small, this shock does not disturb the
dynamics we discuss in a quantitatively important way.
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We endow the households with a perceived law of motion given by

ct = a10 + a11ct−1 + a12kt−1 + a13st−1, (18)

kt = a20 + a21ct−1 + a22kt−1 + a23st−1. (19)

This perceived law of motion is a good one for the agents to use, because

it corresponds in form to the equilibrium law of motion for the economy.

Furthermore, it represents the minimal state variable (MSV) representation

of the rational expectations solution.4 By repeatedly calculating the coeffi-

cients in this vector autoregression as new data become available, the agents

may be able to correctly infer the equilibrium. The presence of constant

terms in the model (15)-(17) and in the perceived law of motion (18)-(19) is

effectively saying that the agents must learn the steady state values of vari-

ables instead of being given those values. This is important for our results,

because it allows the trends we calculate to be smooth.

To obtain the mapping from the perceived law of motion to the actual

law of motion, we use the perceived law of motion to obtain expected values

and we substitute these into (15)-(17) in place of rational expectations.

Consistent with much of the discussion in Evans and Honkapohja (2001),

we consider the case where the information available to agents at time t is

dated t− 1 and earlier. The expectations are then given by

Etct+1 = a10 + a11Etct + a12Etkt + a13Etst (20)

Etkt+1 = a20 + a21Etct + a22Etkt + a23Etst (21)

Etst+1 = ρEtst (22)

4We have written the perceived law of motion so that agents estimate both equations
(18)—(19) with knowing the REE coefficients of those equations. Since the law of motion
for capital (16) does not depend on expectations, we could assume (as in Packalén (2000))
that agents are perfectly informed of the coefficients of this law of motion; the only equation
that matters for our learning analysis is the equation for consumption, where expectations
play a role. Still, in keeping with the notion that agents are learning, it seems more natural
to imagine that agents must learn the coefficients on the capital accumulation equation
as well, and this is the route we choose to follow.
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where

Etct = a10 + a11ct−1 + a12kt−1 + a13st−1 (23)

Etkt = a20 + a21ct−1 + a22kt−1 + a23st−1 (24)

Etst = ρst−1 (25)

Substituting appropriately and collecting terms leads to the following actual

law of motion for consumption:

ct = T10 + T11ct−1 + T12kt−1 + T13st−1 +∆t (26)

where

T10 = B10 + B11 [a10 + a11a10 + a12a20]

+B12 [a20 + a21a10 + a22a20] , (27)

T11 = B11
£
a211 + a12a21

¤
+ B12 [a21a11 + a22a21] , (28)

T12 = B11 [a11a12 + a12a22] + B12
£
a21a12 + a222

¤
, (29)

T13 = B11 [a11a13 + a12a23 + a13ρ]

+B12 [a21a13 + a22a23 + a23ρ] + B13
£
ρ2
¤
. (30)

We write the system under learning as ct
kt
st

 =
 T10
D20
0

+
 T11 T12 T13
D21 D22 D23
0 0 ρ

 ct−1
kt−1
st−1

+
 1 0 0
0 0 0
0 0 1

 ∆t

0
ϑt

 .
(31)

A stationary MSV rational expectation solution solves

T1i = a1i, (32)

for i = 0, 1, 2, 3, with all eigenvalues of the matrixT11 T12 T13
D21 D22 D23
0 0 ρ

 (33)

inside the unit circle. For the calibrations we study, there is only one such

solution.
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3.2 Expectational stability

We can calculate expectational stability conditions for this system. Evans

and Honkapohja (2001) provide general conditions under which expecta-

tional stability governs the stability of the system under a wide variety of

real time, recursive learning assumptions. Expectational stability is deter-

mined by the following matrix differential equation

d

dτ
(ai,j) = T (ai,j)− (ai,j) , (34)

for i = 1, 2; j = 0, 1, 2, 3. This differential equation describes a process in

notional time by which beliefs, or forecasts, concerning the parameter vector

a deviate from realizations, represented by the T-mapping, T (a). The fixed

points of equation (34) give us the MSV solution. A particular MSV solution

(āi,j) is said to be E -stable if the MSV fixed point of the differential equation

(34) is locally asymptotically stable at that point.

The nontrivial part of the T -map involves only the coefficients in the

consumption equation. Let T1(a) describe this system as given by equations

(27-30). The Jacobian matrix required for evaluating expectational stability

is given by

DT1(ā)− I =


E11 B11ā10 B11ā20 0
0 E22 B11ā21 0
0 B11ā12 E33 0
0 B11ā13 B11ā23 E44

 , (35)

where

E11 = B11(1 + ā11) + B12ā21 − 1, (36)

E22 = 2B11ā11 + B12ā21 − 1, (37)

E33 = B11(ā11 + ā22) + B12ā21 − 1, (38)

E44 = B11(ā11 + ρ) + B12ā21 − 1. (39)

The conditions for E -stability of the MSV solution applicable to the model

we consider are given in Proposition 10.3 of Evans and Honkapohja (2001).
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According to this proposition, E -stability obtains if the real parts of the

eigenvalues of DT1(ā) are less than unity, or equivalently, if the eigenvalues

of DT1(ā) − I have negative real parts. We verified that the eigenvalues

of the above matrix are indeed always real and negative for the baseline

model calibration we describe below. We note that this finding holds for all

values of η and γ used in our analysis. Thus, for all parameter values we

consider in this paper, the system under learning is always expectationally

stable. This suggests stability in the real—time learning dynamics under

weak conditions.5 We therefore proceed to real time learning.

3.3 Real time learning

When the agents are learning in real-time, the parameters ai,j in the re-

cursive updating scheme are time-varying. This means that the T -mapping

now becomes

T10
¡
ξt−1

¢
= B10 + B11 [a10,t−1 + a11,t−1a10,t−1 + a12,t−1a20,t−1] +

B12 [a20,t−1 + a21,t−1a10,t−1 + a22,t−1a20,t−1] , (40)

T11
¡
ξt−1

¢
= B11

£
a211,t−1 + a12,t−1a21,t−1

¤
+

B12 [a21,t−1a11,t−1 + a22,t−1a21,t−1] , (41)

T12
¡
ξt−1

¢
= B11 [a11,t−1a12,t−1 + a12,t−1a22,t−1] +

B12
£
a21,t−1a12,t−1 + a222,t−1

¤
, (42)

and

T13
¡
ξt−1

¢
= B11 [a11,t−1a13,t−1 + a12,t−1a23,t−1 + a13,t−1ρ] +

B12 [a21,t−1a13,t−1 + a22,t−1a23,t−1 + a23,t−1ρ] + B13
£
ρ2
¤
. (43)

5The interested reader is referred to Evans and Honkapohja (2001) for the details of
this connection.
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The actual law of motion is thereforectkt
st

 =
T10 ¡ξt−1¢D20

0

+
T11 ¡ξt−1¢ T12

¡
ξt−1

¢
T13

¡
ξt−1

¢
D21 D22 D23
0 0 ρ

ct−1kt−1
st−1


+

1 0 0
0 0 0
0 0 1

∆t

0
ϑt

 . (44)

The coefficients ξt are updated according to a recursive least squares esti-

mation

ξt = ξt−1 + t−1R−1t zt−1z
0
t−1
£
T
¡
ξt−1

¢− ξt−1
¤
, (45)

Rt = Rt−1 + t−1
h
zt−1z

0
t−1 −Rt−1

i
, (46)

where

zt−1 =


1

ct−1
kt−1
st−1

 (47)

and
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¢
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T10

¡
ξt−1

¢
T11

¡
ξt−1

¢
T12

¡
ξt−1

¢
T13

¡
ξt−1

¢
 . (48)

When we study constant gain learning, we replace t−1 with a small positive

constant g in equations (45) and (46).

In order to simulate this system, we begin with initial, t − 1, values of
capital and consumption. We then obtain kt from the second equation of

(44). Using the third equation of (44), we draw ϑt and obtain st. Next,

we draw a value ∆t. Then we use equation (46) to obtain time t values for

ri,j , and equation (45) to obtain time t values for ξt. Finally, we use the

first equation of (44) to obtain the time t value for ct. This process is then

repeated to generate time series on ct, kt, and other variables of interest.

As we have shown, this system is expectationally stable in notional time,

which implies that it is stable under a real—time recursive least squares
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scheme in which the agents employ (45) and (46). Rather than studying

least-squares learning, we follow Sargent (1999) in considering a more gen-

eral, constant-gain learning system in which the t−1 gain in equation (45)

is replaced by a small positive constant value, g. A small constant gain, as

opposed to the 1/t gain of recursive least squares implies that past data is

discounted and that the system never settles down perfectly to a rational

expectations equilibrium. Instead, it will achieve an approximate equilib-

rium centered around the rational expectations equilibrium path.6 Thus,

under a constant gain updating scheme, we can no longer be assured that

the stability properties of the system will hold. However, if the gain is

sufficiently small and the system is in a sufficiently small neighborhood of

the rational expectations equilibrium, then we may expect the system to re-

main in that neighborhood. Moreover, by contrast with the least squares 1/t

gain, the small constant gain allows the system to respond immediately in

the event that an underlying parameter of the model changes unexpectedly.

This ever-vigilant property of the constant-gain learning system is essential

to avoiding long periods of systematic forecast errors that might lead agents

to conclude that their perceived law of motion was misspecified. Indeed, the

constant gain assumption implies that agents recognize that their model is

potentially prone to structural changes in the trend growth rate and may

therefore become misspecified. The constant gain allows agents to quickly

react should the balanced growth path change from the one they were previ-

ously tracking. Based on these considerations, the constant gain assumption

seems reasonable given the environment we consider.

In principle, we could now ask how this system would react to any (small

enough) change in any parameter of the model, not just changes in the

growth rates γ and η. Suppose, for instance, that people became more

patient, or that the share of capital in national income increased. Such

6These differences turn out to be quite small empirically, and so we do not discuss
them further.
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changes would alter the balanced growth path of the economy (through

level effects, for these parameter changes). But the agents in the model

would be able to learn the new rational expectations equilibrium implied

after changes in those parameters had taken place.7

We now turn to comparing the model with U.S. postwar data.

4 Application to postwar U.S. data

4.1 Overview

We now illustrate how our model can be used to understand post war U.S.

data. Since the model is quite simple and does not have some of the impor-

tant categories of national income that exist in the data, this exercise cannot

be completely satisfactory. However, since the model is also a variant of a

widely-known benchmark, we can begin to assess how important structural

change is for determining the nature of the business cycle in the data as well

as for the performance of the model relative to the U.S. data.

4.2 Calibration

We employ a standard calibration for this model under the assumption that

each period represents one quarter. For this purpose, we turn to Cooley

and Prescott (1994). They suggest the following calibration. In preferences,

the discount factor, β = .987, and the weight on leisure, θ = 1.78. For

technology, capital’s share α = .4 and the depreciation rate, δ = .012. The

serial correlation of the business cycle shock ρ = .95, and the shocks have a

standard deviation of .007. Cooley and Prescott (1994) also calibrate growth

7One could think of rational expectations versions of our system. Completely unantic-
ipated shocks are inconsistent with the rational expectations assumption, but one could
develop a model with regime-switching, say, in productivity growth, and then proceed to
analyze the dynamics of that model following switches. Such an approach has been pur-
sued by Kahn and Rich (2004) and Andolfatto and Gomme (2003). That approach puts
more structure on the nature of the trend-changing shocks than we have here, and requires
agents to understand the number of dimensions on which alternative regimes might occur.
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rates of labor and technological change, but since we allow changes in these

growth rates, the calibration of these features is undertaken separately.

In the learning algorithm we have outlined, the gain sequence would

normally be set to 1/t to correspond to recursive least squares. However,

for the reasons noted above, we have chosen to set the gain to a small positive

constant, g = .00025. Based on our experience with simulations, this is close

to the largest value of the gain that still remains consistent with stability

under recursive learning. Quantitatively, the choice of the gain does not

seem to have a large impact on our results, so long as it produces a stable

system.

Because the model economy does not have all of the major categories of

national income that the U.S. national accounts have, a direct comparison

between the model and the data is not a simple matter.8 All the data we

use are quarterly from 1948:Q1 to 2002:Q1. The data are in real terms, 1996

dollars, seasonally adjusted, and chain-weighted. Our model has predictions

for aggregates, and so we focus on them. We are quite concerned that the

aggregates in the model add up, so that the trends in the labor input and

productivity can be viewed as driving the trends in the other variables of

interest. We have no government sector in the model, and so we subtract

real government purchases from real GDP in the data we use. We also sub-

tract real farm business product from real GDP. This gives us a measure

of nonagricultural private sector output. We have a consistent private sec-

tor nonagricultural total hours series, from the Bureau of Labor Statistics

Establishment Survey, for this measure of output. We use this hours series

to represent our labor input. Productivity is then quarterly output divided

by quarterly aggregate hours. Our model has no international sector, but

net exports comprises a nontrivial component of GDP in the data. We add

8Consistency between the model and the actual data that the model data are compared
with does not seem to be the rule. For example, King and Rebelo (1999) make no effort
to remove government from their measure of output even though the model they consider
does not have a government sector.
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the services portion of net exports to our measure of consumption, and the

goods portion of net exports to our measure of investment. In the data where

sub-categories of exports and imports are available, capital goods, industrial

supplies, and automobiles make up a substantial fraction of goods exports,

and so we call this investment for the purposes of our study. Our measure

of investment is then gross private domestic investment plus net exports

of goods, plus personal consumption expenditures on consumer durables.

Our measure of consumption is personal consumption expenditures on ser-

vices and nondurable goods, plus net exports of services, less farm business

product, which is presumably mainly consumption-oriented.

Because of chain weighting, consumption plus investment still may not

add up to output. We checked this and found that any discrepancy was neg-

ligible after 1980. Before that, the discrepancy can be larger, as much as two

percent of output. We therefore allocated any discrepancy to consumption

and investment using the consumption-to-output ratio for that year. Thus

we end up with time series in which output is indeed equal to consumption

plus investment.

4.3 Breaks in the balanced growth path

It is well-known that there was a slowdown in measured productivity growth

in the U.S. economy beginning sometime in the late 1960s or early 1970s.

The state of the econometric evidence on this question is reviewed in Hansen

(2001). A key paper in the literature is Perron (1989), who argued that

for postwar quarterly real U.S. GDP, a time series model with a change

in the slope coefficients of a time trend allows one to reject the random

walk hypothesis in favor of trend stationarity around the broken trendline.

Perron associated the 1973 slowdown in growth with the oil price shock,

but this date is also associated with a slowdown in labor productivity.9

9Later authors, such as Zivot and Andrews (1992), extended the analysis to the case
where the break date was viewed as unknown.
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Another recent attempt to date a structural break during this period is Bai,

Lumsdaine, and Stock (1998). Their analysis is multivariate and suggests

a trend break sometime between 1966:Q2 and 1971:Q4, with a most likely

date of 1969:Q1.

We have designed our model to allow the economy to adapt to changes

of this type. We can alter the growth rate of productivity in the model at a

given point in time, and, provided the change is not too large, we can expect

the economy to adjust to the new balanced growth path.

How can we go about choosing break dates for our economy? We use the

following approach. Our model says that the nature of the balanced growth

path–the trend–is dictated by increases in productivity units X (t) and

increases in the labor input N (t). For ease of reference, let us call these

the “actual” productivity and labor input series. When the growth rates of

these variables, γ and η, change, the economy must adjust to a new balanced

growth path. The model also produces measured productivity and a mea-

sured labor input series. If there were never a trend break, these measured

series would have the same trend as the actual series. However, since it takes

some time for the economy to adjust to the new balanced growth path, in

general there will differences in the trends of the actual and the measured

productivity and labor input series. In the data, we have measured increases

in productivity and measured increases in the labor input. Thus it seems

quite clear that we need the trends in measured productivity and measured

labor input from the model to be comparable to the measured productivity

and measured labor input trends we have from the data in order to have a

satisfactory calibration.

One approach to calibrating the model would be to only allow trend

breaks where clear econometric evidence is available. This would probably

lead one to posit a single trend break in productivity sometime before 1973

(such as the one suggested by Bai, Lumsdaine, and Stock (1998)) and then

require the balanced growth path to be log-linear at all other times. We
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Table 1. Search Ranges
Growth Break Date Pre-Break Post-Break
Factor Search Range Growth Rate Growth Rate

Labor input 1955,Q1 to 1964,Q4 −0.72 to 3.32 % −0.12 to 3.94 %
Productivity 1 1965,Q1 to 1974,Q4 0.05 to 4.11 % −0.75 to 3.29 %
Productivity 2 1991,Q1 to 1997,Q1 −0.75 to 3.29 % −0.45 to 3.60 %
Table 1: We chose these search ranges for possible break dates in trend
labor input and trend productivity, as well as for the possible growth rates
between the trend breaks. Growth rates are in annual terms.

think this may not be the most interesting way to proceed. There could

easily be smaller changes in growth rates, economically significant from the

standpoint of judging business cycles, but not substantial enough to cause

a rejection of a null hypothesis of log-linear growth. One example of this

is the greater entry of women into the labor force beginning in the 1960s,

which is often cited as one of the major changes in the U.S. economy during

the postwar era. For the hours series we employ,10 a univariate test based on

Andrews (1993) cannot reject the null hypothesis of no change in the growth

rate of hours across the entire postwar era. A look at the data clarifies the

source of this result: The hours series before the 1960s is short and relatively

volatile, and any change in the growth rate, if it occurred, is relatively small.

Another example of this possibility is the idea of a “new economy” in the

1990s, which is not easy to defend with statistical tests.

Instead of relying on econometric evidence alone, we used a simulated

method of moments search procedure, described in more detail in Appendix

B, to choose break dates for the growth factors X (t) and N (t), as well as

for growth rates of these factors γ and η, based on the principle that the

trend in measured productivity from the model should match the trend in

measured productivity from the data. We began by specifying some ranges

over which we wish to search for trend breaks, as well as ranges for possible

10Total nonagricultural private sector hours from the establishment survey, quarterly,
1948:Q1 to 2002:Q1. We thank Jeremy Piger for conducting this test on the hours series.
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growth rates between the break dates. These ranges are described in Table

1, and reflect our “priors” on when we think reasonable dates for breaks

in log-linear trends might have occurred. When trend breaks occur in our

model, the agents must learn about them, and so we might expect X (t)

and N (t) to begin growing at a different rate at a date somewhat before

a trend break becomes apparent in the measured series. For this reason,

we included years before apparent trend breaks in the data (such as 1965

for the productivity slowdown) as possible trend break dates in our model.

We allowed two breaks for productivity, corresponding to a productivity

slowdown circa 1970 and a new economy circa 1995. We allowed one break

for the labor input, corresponding to changing attitudes toward women in

the workforce circa 1960. The growth rate ranges are calculated as the

mean quarterly growth rates for hours and productivity in the data for the

appropriate time period, which we allow to possibly be higher or lower by

one-half of one percent per quarter.11

We have two factors driving trend growth in the model, along with three

break dates and therefore five distinct periods of different growth rates (three

for productivity and two for the labor input). This means there is a vector

of eight objects we must choose. We begin with a set of candidate solutions.

For each candidate solution, we let our model generate a trend. This involved

simulating our learning model but “turning off” the standard business cycle

shock, st. In practice, this meant reducing the standard deviation of the

business cycle shock st by a factor of 1000 (from the Cooley and Prescott

(1994) calibration of .007 to .000007) , so that effectively this shock pro-

cess is not important in the output generated by our model.12 During this

simulation, we leave in the trend changes indicated by the candidate vector

11The table has these in annualized terms for ease of interpretation. The appropriate
time period is calculated as if the trend break were dated at the midpoint of the ranges
in Table 1.
12We require a small amount of noise in the system so that our VAR systems can still

be estimated.
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Table 2. Optimal Choices
Growth Break Date Pre-Break Post-Break
Factor Search Range Growth Rate Growth Rate

Labor input 1961,Q2 1.20 % 1.91 %
Productivity 1 1973,Q3 2.47 % 1.21 %
Productivity 2 1993,Q3 1.21 % 1.86 %

Table 2: Optimal choices of trend break dates and growth rates for the two
growth factors in the model. Growth rates are in annual terms.

of break dates. We then evaluate each candidate solution according to a

fitness criterion. The fitness measure is the sum of mean squared deviations

of measured productivity in the data from the implied trend, plus the sum

of mean squared deviations of measured hours in the data from the implied

trend. Hours and productivity thus receive equal weight in this calculation.

We then update the set of candidate solutions in the direction of those that

tended to generate better fitness scores using standard genetic operators,

as discussed further in Appendix B. The process continued until no further

fitness improvements could be found.

Table 2 reports our findings. For productivity growth, the break dates

are consistent with those that appear often in the literature. Productivity

(that is, X (t)) grows at a net annual rate of 2.47 percent until 1973:Q3,

then slows to an annual growth rate of 1.21 percent until 1993:Q3, before

accelerating to an annual rate of 1.86 percent through the end of the sample.

For the labor input (that is, N (t)), trend breaks are much less pronounced.

The labor input series grows at an annual rate of 1.20 percent initially, before

accelerating to 1.91 percent in 1961:Q2.

Our first task is to show that the breaks in growth rates we have deter-

mined imply reasonable trends for the measured labor input and for mea-

sured productivity. Figures 1 and 2 combine the trends calculated using our

model with the actual data on hours and productivity for the U.S. economy.

The trends are generally very smooth and are what many economists would
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have in mind when they say there is a “trend in the data.”

We stress that our procedure has been to use our theoretical framework

to fit trends for measured productivity and measured labor input only. But

the trends in these growth factors in turn imply trends for output, invest-

ment, and consumption. We have allowed the latter trends to be freely

determined by the model, i.e. we have not sought to fit trends for output,

investment and consumption to the data as we did for productivity and la-

bor hours. In addition, the business cycle shock occurs in conjunction with

the rare changes in trend we have modelled. We now turn assessing the

performance of the model.

4.4 The balanced growth puzzle

While we have fit trends for productivity and hours, we are letting the trends

in growth factors dictate the remaining trends in the model. Figures 3, 4,

and 5 show how the trends we have calculated using the model compare

to the level of output, consumption, and investment, respectively, in the

U.S. data.13 For output, the combination of hours growth and productivity

growth with some trend breaks provides a reasonable account of growth,

so reasonable in fact that one might think that the trend line was simply

drawn through the data by a student of business cycles. It is well known

that without the trend breaks, a purely log-linear trend does not provide as

reasonable of an account of this data.14

Figure 3 gives us confidence that a two-factor exogenous growth model

is a good one for disentangling trend from cycle in the data.

13For all of the trends we report, comparison to the data requires a units normalization.
We accomplish this normalization by assuming that the model is following a balanced
growth path during the initial portion of the sample, before the first trend break occurs.
14See, for instance, Figure 3 in King et al. (1988a, pp. 227—228). In that figure,

consumption, investment, output and other variables are shown to persistently lie either
above or below the deterministic trend for many years at a time. King et al. conclude
from their figure that the U.S. time series data indicate the “possibility of a low frequency
component not captured by the deterministic trend” (p. 231).
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The division of output between private sector consumption and invest-

ment is also dictated by the model. For these variables, the trend lines tend

to run through the data in the earlier and middle portions of the sample.

In the latter portion of the sample, actual consumption tends to run below

trend, while investment tends to run noticeably above trend.15 It was widely

reported that there was an “investment boom” in the 1990s, and the data we

have seem to bear this out. Since consumption is the only other component

of output here, it must run below trend to accommodate the boom.16

The consumption and investment trends are what we label the balanced

growth puzzle. Our model is a standard one, and we expect that it can

provide a reasonable account of growth during the postwar era. The model

does accomplish this over much of the sample. But during the latter portion

of the sample, investment booms and consumption lags, relative to what the

model suggests the trends should have been. This suggests that a two-factor

exogenous growth model, even with trend breaks included, is too simple to

account for consumption and investment trends. (For the output trend, it

seems to work well.) There are many possibilities that could be explored

to explain the puzzle. There were, for instance, important tax changes

during the 1980s, while our model abstracts completely from taxes. We

have a one-sector model, but perhaps a multisector model is required. The

increasing prevalence of new types of capital during the 1980s and 1990s

suggests depreciation rates may be increasing during this period. These

are just some possibilities, and we think all of these as well as others may

provide a portion of the explanation.

15We considered a few alternative data arrangements to see if this feature of the analysis
was robust to changes in the interpretation of “consumption” and “investment”. For
instance, we considered including consolidated government spending data, allocating using
available figures on government consumption versus government investment. We also
considered including consumer durable purchases as consumption instead of investment.
These types of changes did not alter the qualitative results.
16See Cogley (2003) for one approach to using consumption as the basis for determining

trend growth changes. Cogley comes to the conclusion that trend growth has been only
modestly faster in the 1990s than during the productivity slowdown era.
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The balanced growth puzzle notwithstanding, we think that these trends

are reasonable judgements of what the “actual” trends look like in the data.

However, our point is not so much to say that the fit is good, but that we

lay bare our assumptions about the growth process that allow us to detrend

the data in this manner. Other authors are welcome to provide alternative

assumptions on models like this one, or provide alternative growth mod-

els, in order to detrend the data in a different manner. Our hope is that

constructive work can be done along these lines.

We now take the calculated trends as the prediction of our model, so that

the deviations from trend are the business cycle components in the data. We

turn to evaluating the properties of these business cycle components.

4.5 Business cycle statistics

The reaction of the economy to changes in the balanced growth path will

depend in part on what business cycle shocks occur in tandem with the

growth rate changes. In part because of this, we average over a large num-

ber of economies in order to calculate business cycle statistics for artificial

economies. To generate the artificial data, we simulated the calibrated econ-

omy for a large number of periods to verify that the estimated coefficients

in the agents’ regressions were close to the rational expectations values.

We then collected an additional 217 observations, corresponding to the 217

quarters of actual U.S. data we have. During this latter part of the exercise,

we allowed the trend breaks as discussed at quarters corresponding to the

dates from Table 2, so that the agents in the economy had to also react to

the trend breaks as they were coping with the business cycle shock. The

trend that is taken from the artificial data is exactly the same one that is
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Table 3. Business Cycle Statistics
Relative Contemporaneous

Volatility Volatility Correlations
Data Model Data Model Data Model

Output 3.25 3.50 1.00 1.00 1.00 1.00
Consumption 3.40 2.16 1.05 0.62 0.60 0.75
Investment 14.80 8.86 4.57 2.53 0.65 0.92
Hours 2.62 1.54 0.81 0.44 0.65 0.80
Productivity 2.52 2.44 0.77 0.70 0.61 0.92

Table 3: Business cycle statistics, model-consistent detrending.

taken from the U.S. data.17

In assessing the behavior of equilibrium business cycle models like this

one, authors have typically compared volatility and contemporaneous corre-

lation measures from the model to those suggested by the data. We do the

same, using our model-consistent trends to calculate percentage deviations

of all variables from their trend values. We average our statistics across 500

economies each run for 217 periods with identical trend breaks.

We begin with overall volatility, which is measured by the standard de-

viation of the actual and artificial data series, and displayed in first column

of Table 3. These standard deviations are often more than twice the size of

those reported by others, for example, King and Rebelo (1999). The reason

for this is simple. The trends we use are essentially piecewise log-linear, and

so do not attribute a portion of every data movement to the trend compo-

nent, as many statistical filters do. Thus the portion of the variability in

the data that is attributed to business cycle volatility is likely to be larger

under our methodology. In this sense, the business cycle shock has to ex-

plain more under our approach than under traditional approaches to the

17An interesting question is whether an econometrician considering the productivity
data generated by one of these economies would detect the breaks in trend growth rates
that are built into the model. Another interesting question is whether the data gener-
ated by the model would be consistent with a random walk hypothesis in the eyes of an
econometrician. We hope to investigate these issues in future work.
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detrending question.

A key question for this line of research has been: How much of the

variability in the data can be explained by a model of this type? That

is, how much variance can we generate by simply assuming a single shock

to the production technology along with occasional breaks in trend growth

rates? One of our more interesting findings is that for the model, the average

standard deviation for output is 3.50 according to Table 3, while for the

data it is 3.25. That suggests that more than 100 percent of the variance of

output about the balanced growth path can be explained with a model of

this type! That is a high number even compared to other exercises along this

line. It suggests that shocks to the technology coupled with the important

movements in trend we have observed during the postwar era provide a

promising lead on accounting for all of the variability of output around

the balanced growth path during the postwar era. If anything, the model

generates too much volatility.18

Since the trends are piecewise log-linear in our model, they tend to be

less accommodating to the data than those computed using most statistical

filters. We stress that the higher volatility implied by our method applies

equally to both the model and the data. This is why the model can still

explain a large fraction of the variance in the data, even when that variance

has increased substantially relative to commonly reported statistics.

The volatilities in the data and for the model relative to output volatility

are given in the relative volatilities column of Table 3. There are several

interesting aspects of the results reported in this section. First, consumption

is about as volatile as output in the data, but only two-thirds as variable as

18Recent research has argued that the technology portion of the Solow residual may
be less volatile than we have calibrated it, by perhaps a factor of five. If we reduce the
standard deviation of the shock to technology, the business cycle volatility of this model
will fall proportionately. Again, ours is only an example, which we mainly want to keep
comparable to previous research. Interested readers can consult King and Rebelo (1999)
for an alternative equilibrium business cycle model that generates similar data with less
volatile shocks. That model is still in the balanced growth framework and so our methods
would still apply.
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output in the model. The source of this finding is quite clear from Figure

4, where the U.S. consumption data tends to drift below trend later in the

sample. This tends to increase the volatility of the consumption data if it

is measured as deviation from trend. The relative volatility of investment

is only about half as large in the model as it is in the data; however, in

both the model and the data investment is much more volatile than output.

Again, the investment boom of the 1990s seems to have contributed quite a

lot to the variance of investment in the data.

Hours worked in the data is about 80 percent as volatile as output, some-

what lower than the one-to-one ratio that is often reported in the literature.

But the relative volatility of hours in the model is still only about half what

it is in the data, that is, .44 in the model versus .81 in the data. Thus one

of the key findings of the original equilibrium business cycle literature, that

the labor market portion of the model is not satisfactory, holds up in this

example.

The contemporaneous correlations with output for both the model and

the data are given in the last columns of Table 3. All variables are pro-

cyclical, both in the model and in the data. These statistics tend to be

lower than their counterparts reported in the literature, for instance in King

and Rebelo (1999), for both the model and the data. The model predicts

too much procyclicality across all of the variables, but still, the statistics

reported are noticeably lower than those typically reported. One statistic is

not lower than typically reported, and that is the correlation of productivity

with output in the data, which is .61. Productivity is more strongly pro-

cyclical than suggested by Cooley and Prescott (1994) or King and Rebelo

(1999). Thus hours and productivity more or less move together both in

the model and in the data. Using alternative techniques for detrending, this

has not always been true, and in fact was judged to be a problem with the

model.
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5 Conclusion

The concept of a balanced growth path has had an enormous influence on

macroeconomists. In this paper we have taken this concept, which underlies

nearly all macroeconomic models in use today, to the data. Of course,

growth rates of important macroeconomic time series are well-known to be

inconsistent with purely log-linear growth through the postwar period. For

this reason, we have allowed permanent trend breaks where appropriate,

and we have used learning via the methodology of Evans and Honkapohja

(2001) as a “glue” that holds the resulting various balanced growth paths

together. In particular, learning enables us to deal with the transition from

one balanced growth path to another in a smooth manner. The result is a

piecewise, log-linear trend, like the ones discussed in the empirical literature

on structural change. We remove this same trend from the data as our

method of detrending the data. In this sense we have a model-consistent

method of detrending.

We have also included an application to the postwar U.S. data. Struc-

tural change itself is a new type of shock in this model, and we find that

it contributes substantially to the variance of output. We have also iden-

tified a balanced growth puzzle, in that we cannot completely account for

observed trends in U.S. aggregate consumption and investment beginning

in the mid-1980s using the simple, two-factor exogenous growth model aug-

mented with structural change. This puzzle stems from our consideration

of the multivariate nature of the trend as implied by the model; indeed, the

trend for output generated by our model fits the actual data series rather

well. Finally, we have shown how to calculate business cycle statistics using

model consistent detrending methods. Approximating these “true” statis-

tics via atheoretic, statistical filtering of artificial and actual data may lead

the researcher to misjudge the model’s successes and failures.
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A Linear representation of the model

We wish to analyze the system (8)-(11) in which the nonstationary variables,

namely capital, consumption, and output, are rendered stationary via

k̂t =
Kt

XtNt
, ŷt =

Yt
XtNt

, ĉt =
Ct

XtNt
. (49)

If there was no growth in productivity over time, these variables would

simply be in per capita terms; with productivity growth they are measured

in per total efficiency unit terms. By dividing equations (8) through (11) by

XtNt appropriately, we can write them in terms of stationary variables as

γηk̂t+1 = ŷt + (1− δ) k̂t − ĉt, (50)

ŷt = ŝt

³
k̂t

´α ³
t̂

´1−α
, (51)

ĉt =
(1− α)

θ
ŷt

Ã
1− t̂

t̂

!
, (52)
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and
1

ĉt
=

β

γ
Et

½
1

ĉt+1

·
αŷt+1

k̂t+1
+ 1− δ

¸¾
. (53)

A nonstochastic steady state of this transformed system corresponds to

a balanced growth path of the original system. The gross rate of growth

along the balanced growth path is γη. We denote the nonstochastic steady

state values by ĉt = c̄, ŷt = ȳ, k̂t = k̄, t̂ = ,̄ and ŝt = s̄ = 1, ∀t. These
equations can be solved explicitly. Define ϕ by

ϕ = (1 + θ) (α− 1)β (δ − 1) + γ [(α− 1) + θ (αβη − 1)] . (54)

Then

ȳ = ϕ−1 (α− 1)αβ
µ
β (δ − 1) + γ

αβ

¶2+ 1
α−1

, (55)

k̄ = ϕ−1 (α− 1)αβ
µ
β (δ − 1) + γ

αβ

¶ α
α−1

, (56)

¯= ϕ−1 (α− 1) [β (δ − 1) + γ] , (57)

and

c̄ = ϕ−1 (1− α)

µ
β (δ − 1) + γ

αβ

¶ α
α−1

[(α− 1)β (δ − 1)− γ + αβγη] . (58)

We can deduce that the capital to output ratio along a balanced growth

path will be equal to
k̄

ȳ
=

αβ

γ − β (1− δ)
, (59)

that the consumption to output ratio will be

c̄

ȳ
=

γ − β (1− δ)− αβ (γη − 1 + δ)

γ − β (1− δ)
, (60)

and that the capital-labor ratio will be

k̄
¯ =

µ
γ − β (1− δ)

αβ

¶ 1
α−1

. (61)
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Since the growth rates γ and η enter these expressions, growth matters for

the calibration of models in this class.19 Many models that have been studied

abstract from growth but calibrate to growth facts such as a constant capital

to output ratio.

In order to apply the Evans and Honkapohja (2001) methodology to

this problem, we need a linear system. Accordingly, we now proceed with

a well-known linearization of this model, expressed in terms of logarithmic

deviations from steady state. For this purpose we define

c̃t = ln

µ
ĉt
c̄

¶
, k̃t = ln

Ã
k̂t
k̄

!
, t̃ = ln

Ã
t̂

¯

!
, (62)

ỹt = ln

µ
ŷt
ȳ

¶
, and s̃t = ln

µ
ŝt
s̄

¶
. (63)

By noting that for any of these variables, x̂t = ex̃t x̄, using the approximation

ex ≈ 1 + x, and using the fact that ȳ = (γη − 1 + δ) k̄ + c̄, we can write

equation (50) as

γηk̃t+1 =
ȳ

k̄
ỹt + (1− δ) k̃t − c̄

k̄
c̃t. (64)

For equation (51), we can write

ỹt = s̃t + αk̃t + (1− α) t̃. (65)

Using the approximation c̃t t̃ ≈ 0 and the fact that c̄ = 1−α
θ ȳ 1−¯¯ allows us

to write equation (52) as

c̃t = ỹt −
µ

1

1− ¯
¶

t̃. (66)

And finally, for equation (53), we use the fact that βγ−1 (1− δ) = 1 −
βγ−1αȳk̄−1 as well as approximations of the form x̃ỹ ≈ 0 to deduce

c̃t = Etc̃t+1 − βγ−1αȳk̄−1Etỹt+1 + βγ−1αȳk̄−1Etk̃t+1. (67)

An important aspect of our analysis is that we want our agents to learn

the new value of the steady state (that is, the vector
¡
c̄, ȳ, k̄,

¢̄
when a change

19See for instance the discussion in Cooley and Prescott (1994).
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in growth occurs. With the system in the form of equations (64) through

(67), one is in effect assuming that the steady state values are known, and so

we cannot leave the system in this form. Instead, we let ct = ln ĉt, kt = ln k̂t,

yt = ln ŷt, t = ln t̂, and st = ln ŝt, and also c = ln c̄, k = ln k̄, y = ln ȳ,

= ln ,̄ and s = ln s̄ = 0, and then rewrite equation (64) as

kt+1 = κ0 + κ1yt + κ2kt + κ3ct, (68)

where

κ0 =

µ
1− (1− δ)

γη

¶
k − 1

γη

ȳ

k̄
y +

1

γη

c̄

k̄
c, (69)

κ1 =
1

γη

ȳ

k̄
, (70)

κ2 =
(1− δ)

γη
, (71)

and

κ3 = − 1
γη

c̄

k̄
. (72)

Equation (65) can be written as

yt = αkt + (1− α) t + st. (73)

For equation (66) we have

ct = π0 + π1yt + π2 t, (74)

where

π0 = c− y +
1− ,̄ (75)

π1 = 1, (76)

and

π2 =
−1
1− .̄ (77)

Next, equation (67) can be written as

ct = µ0 + µ1Etct+1 + µ2Etyt+1 + µ3Etkt+1, (78)
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where

µ0 = αβγ−1
ȳ

k̄
(y − k) , (79)

µ1 = 1, (80)

µ2 = −αβγ−1
ȳ

k̄
, (81)

and

µ3 = αβγ−1
ȳ

k̄
. (82)

And finally, the equation for the business cycle shock, (7), can be written as

st = ρst−1 + ϑt, (83)

where ϑt = ln t.

We now wish to reduce the system to three equations instead of five.

Accordingly, we solve equation (74) for t, substitute it into equation (73),

solve the resulting equation for yt, and substitute that solution into equations

(68) and (78).

This gives the system described in the text,

ct = B10 + B11Etct+1 + B12Etkt+1 + B13Etst+1, (84)

kt = D20 +D21ct−1 +D22kt−1 +D23st−1, (85)

st = ρst−1 + ϑt, (86)

with ϑt = ln t, and where

B10 = µ0 +
µ2 (α− 1)π0
π2 + (1− α)π1

, (87)

B11 = µ1 +
µ2 (1− α)

π2 + (1− α)π1
, (88)

B12 = µ3 +
µ2απ2

π2 + (1− α)π1
, (89)

B13 = µ2π2
π2 + (1− α)π1

, (90)
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D20 = κ0 +
κ1 (α− 1)π0

π2 + (1− α)π1
, (91)

D21 = κ3 +
κ1 (1− α)

π2 + (1− α)π1
, (92)

D22 = κ2 +
κ1απ2

π2 + (1− α)π1
, (93)

and

D23 = κ1π2
π2 + (1− α)π1

. (94)

B Search methodology

A string is a list of economy characteristics that need to be chosen by the

search algorithm. We used an eight-element string. The eight elements are

the three trend break dates (one in the labor input, and two in productivity),

along with the five growth rates for the periods between the break dates (two

for the labor input, and three for productivity). The values of all of these

elements were coded as real numbers. The program begins with a set of

50 candidate strings chosen randomly from the ranges given in Tables 1

and 2. For each of these strings, we simulate our model economy with the

parameters given in the string. This simulation occurs with a low value for

the business cycle shock variance (the calibrated standard deviation divided

by 1000). We then record the implied trend in productivity and hours for

the candidate string. To calculate the fitness of the string, we compute the

mean sum of squared deviations of the actual data from the implied trend

for both productivity and hours, and we add the two sums together. Strings

that get low fitness scores have a better fit to the data under this metric.

We then rank all of the strings based on the fitness scores.

The essence of genetic search is to update the population of strings using

genetic operators. We used three classes of operators, namely, selection,

crossover, and mutation. For selection, we simply kept the top 25 strings in

the population to compete in the next iteration of the search. The bottom
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25 strings were discarded. To keep the population constant, we created 25

new strings. Each of the 25 new strings was created as follows. We selected

two strings from the top 25, and subjected them to one of three crossover

routines, selected with equal probability. One routine, shuffle crossover, has

each element of the two strings chosen with equal probability to create a

new string. Another routine, arithmetic crossover, takes a random value

for each element of the string chosen to be between the values held by the

parents. The final method is to cut the strings at a randomly chosen element

and swap the elements to the right in the string. Once crossover has been

repeated 25 times there are 50 strings available for the next round of the

search. We subjected all but the very best string in this set to a possible

mutation. Mutation occurs element by element with small probability. If

it occurs on a given element early in the search, then the program selects

a random replacement for the existing element from the domains defined in

Tables 1 and 2. If mutation occurs later in the search, then this type of

mutation can be destructive to highly fit strings. Accordingly, we restricted

mutation to chose new elements closer to existing elements as the search

gets closer to completion.

We executed the genetic search for 500 iterations and reported the best

fit string at iteration 500. Subsequent runs of the program produced results

that were similar across searches.
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Figure 1: The calculated trend in measured productivity implied by the
model, as compared to the U.S. productivity data. The calculated trend is
relatively smooth and not dissimilar to those suggested by statistical filters.
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Figure 2: The trend for hours is also relatively smooth. Our calculations in-
dicate a change in trend in 1962, but otherwise the hours trend has remained
approximately log-linear.
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Figure 3: The calculated output trend compared to the U.S. data.
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Figure 4: The calculated consumption trend versus the U.S. data. Con-
sumption tends to fall below the calculated trend in the latter portion of the
sample.
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Figure 5: Investment in the U.S. data, plotted against the calculated trend.
Investment boomed in the latter portion of the sample.
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